
CASEVision™/ClearCase
Reference Pages

Document Number 007-1613-030

CASEVision™/ClearCase Reference Pages
Document Number 007-1613-030

CONTRIBUTORS

Written by John Posner
Illustrated by John Posner
Production by Gloria Ackley
Engineering contributions by Atria Software, Inc.
Cover design and illustration by Rob Aguilar, Rikk Carey, Dean Hodgkinson,

Erik Lindholm, and Kay Maitz

© Copyright 1994, Silicon Graphics, Inc.— All Rights Reserved
© Copyright 1994, Atria Software, Inc.— All Rights Reserved
This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/
or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94039-7311.

Silicon Graphics and IRIS are registered trademarks and IRIX is a trademark of
Silicon Graphics, Inc. ClearCase and Atria are registered trademarks of Atria
Software, Inc. OPEN LOOK is a trademark of AT&T. UNIX is a trademark of AT&T
Bell Laboratories. Sun, SunOS, Solaris, SunSoft, SunPro, SPARCworks, NFS, and
ToolTalk are trademarks or registered trademarks of Sun Microsystems, Inc. OSF and
Motif are trademarks of the The Open Software Foundation, Inc.FrameMaker is a
registered trademark of Frame Technology Corporation. Hewlett-Packard, HP,
Apollo, Domain/OS, DSEE, and HP-UX are trademarks or registered trademarks of
Hewlett-Packard Company. PostScript is a trademark of Adobe Systems, Inc. X
Window System is a trademark of the Massachusetts Institute of Technology.

Contents iii

/vobs/doc/reference_man/framedocs/refmanTOC.doc — May 3, 1994 1:45 pm

Contents

Introduction...xi

cleartool Manual Pages

cleartool ClearCase user-level commands (command-line interface).......................................3
ct_permissions access permissions for cleartool commands ...9

annotate annotate lines of text file / timestamps, usernames, etc....................................12
apropos display cleartool command summary information..17
catcr display configuration record created by clearmake or clearaudit19
catcs display config spec of a view...25
cd change current working directory ..26
checkin create permanent new version of an element ...28
checkout create view-private, modifiable copy of a version ...32
chevent modify comment string in existing event record..37
chpool change the storage pool to which an element is assigned.................................41
chtype change the type of an element / rename a branch ...43
describe describe an object...46
diff compare versions of a text-file element or a directory.......................................53
diffcr compare configuration records created by clearmake or clearaudit59
edcs edit config spec of a view ...63
find use pattern, query, or expression to search for objects64
findmerge search for elements that require a merge / optionally perform merge...........70
help help on cleartool command usage ..77
ln create VOB hard link or VOB symbolic link..78
lock lock an object ..81
ls list VOB-resident objects and view-private objects in a directory87
lscheckout list checkouts of an element ...91
lsdo list derived objects created by clearmake or clearaudit.....................................94
lshistory list event records for VOB-database objects ..97
lslock list locks on objects ..103

iv CASEVision/ClearCase Reference Pages

/vobs/doc/reference_man/framedocs/refmanTOC.doc — May 3, 1994 1:45 pm

lspool list VOB storage pools ...107
lsprivate list objects in a view’s private storage area ..109
lsreplica list replicas of a VOB ...112
lstype list a VOB’s type objects..113
lsview list view registry entries..116
lsvob list VOB registry entries ..118
lsvtree list version tree of an element ..120
man display a ClearCase manual page ...122
merge merge versions of a text-file element or a directory ...124
mkattr attach attributes to objects ..134
mkattype create an attribute type object ..140
mkbranch create a new branch in the version tree of an element144
mkbrtype create a branch type object ...147
mkdir create a directory element...149
mkelem create a file or directory element ...151
mkeltype create an element type object ...156
mkhlink attach a hyperlink to an object ...160
mkhltype create a hyperlink type object ..164
mklabel attach version labels to versions of elements...166
mklbtype create a label type object ...170
mkpool create a VOB storage pool or modify its scrubbing parameters173
mktag create a view-tag or a public/private VOB-tag ...178
mktrigger attach a trigger to an element...181
mktrtype create a trigger type object..184
mkview create and register a view...197
mkvob create and register a versioned object base (VOB)..202
mount activate a VOB at its VOB-tag directory ...208
mv move or rename an element or VOB link...211
protect change permissions or ownership of an object ...213
protectvob change owner or groups of a VOB ..217
pwd print working directory ..221
pwv print working view..222
quit quit interactive cleartool session..224
recoverview recover a view database..225
reformatview update the format of a view database...227
reformatvob update the format (schema) of a VOB database..229

Contents v

/vobs/doc/reference_man/framedocs/refmanTOC.doc — May 3, 1994 1:45 pm

register create an entry in the vob_object or view_object registry file.........................233
reserve convert an unreserved checkout to reserved ..235
rmattr remove an attribute from an object...236
rmbranch remove a branch from the version tree of an element238
rmdo remove a derived object from a VOB ...240
rmelem remove an element from a VOB ..243
rmhlink remove a hyperlink object..245
rmlabel remove a version label from a version ...247
rmmerge remove a merge arrow from an element’s version tree249
rmname remove the name of an element or VOB symbolic link

from a directory version ...251
rmpool remove a VOB storage pool ...253
rmtag remove a view-tag or a VOB-tag from the network-wide

storage registry ..255
rmtrigger remove trigger from an element ...257
rmtype remove a type object from a VOB ...259
rmver remove a version from the version tree of an element262
rmview remove a view storage directory / remove view-related

records from a VOB...265
rmvob remove a VOB storage directory ...268
rnpool rename a VOB storage pool ...269
rntype rename a type object ...271
setcs set the config spec of a view ..274
setview create a process that is set to a view ...275
shell create a subprocess to run a shell or other program ..277
space report on VOB disk space usage ...278
startview start or connect to a view_server process ..281
umount deactivate a VOB ...283
uncheckout cancel a checkout of an element ..284
unlock unlock an object ...286
unregister remove an entry from the vob_object or view_object registry file.................287
unreserve change a reserved checkout to unreserved..289
winkin wink-in one or more derived objects to a view...291
xdiff compare versions of a text-file element or a directory graphically................293
xlsvtree list version tree of an element graphically...294
xmerge merge versions of a text-file element or a directory graphically....................295

vi ClearCase Reference Manual

/vobs/doc/reference_man/framedocs/refmanTOC.doc — May 3, 1994 1:45 pm

Non-cleartool Manual Pages

abe audited build executor / server for ClearCase distributed build...................299
albd_server location broker daemon / ClearCase master server...300
bldhost build hosts file / client-side control file for distributed build303
bldserver.control server-side control file for distributed build..306
cc.icon, default.icon file type to icon mapping rules (graphical interface)309
cc.magic, default.magic

ClearCase file typing rules ...312
clearaudit non-clearmake build and shell command auditing facility.............................317
clearbug create problem report for Atria Customer Support..320
clearcvt_ccase copy ClearCase data to a different VOB...321
clearcvt_dsee convert DSEE elements to ClearCase elements...327
clearcvt_rcs convert RCS files to ClearCase elements..333
clearcvt_sccs convert SCCS files to ClearCase elements..341
clearcvt_unix convert UNIX files to versions of ClearCase elements.....................................349
cleardiff compare or merge text files ..354
clearlicense monitor and control ClearCase license database ..357
clearmake ClearCase build utility / maintain, update, and

regenerate groups of programs ...361
clearmake.options clearmake build options specification file (BOS) ..375
clearprompt prompt for user input..377
config_ccase ClearCase configuration files ...380
config_record bill-of-materials for clearmake build or clearaudit shell..................................382
config_spec rules for selecting versions of elements to appear in a view...........................386
crontab_ccase ClearCase crontab scripts ...395
db_dumper, db_loader

dump/load a VOB database schema..397
db_server ClearCase database server program ...398
derived_object file built by clearmake or clearaudit, with an associated

configuration record..399
env_ccase ClearCase environment variables..404
errorlogs_ccase ClearCase error log files..410
events_ccase ClearCase operations and event records..411
export_mvfs export and unexport VOBs to NFS clients (non-ClearCase access)................416
exports_ccase list of VOBs to be accessed by non-ClearCase hosts...417

Contents vii

/vobs/doc/reference_man/framedocs/refmanTOC.doc — May 3, 1994 1:45 pm

exports list of VOBs to be accessed by non-ClearCase hosts (from HPUX-9)418
list of VOBs to be accessed by non-ClearCase hosts (from IRIX-5)................420
list of VOBs to be accessed by non-ClearCase hosts (from OSF/1)422
list of VOBs to be accessed by non-ClearCase hosts (from SunOS-4)............424
list of VOBs to be accessed by non-ClearCase hosts (from SunOS-5)............426

filesys_ccase file system table entries for VOBs: fstab.mvfs...428
filesys file system table entries for VOBs: fstab.mvfs (HPUX-9)429

file system table entries for VOBs: fstab.mvfs (IRIX-5)....................................433
file system table entries for VOBs: fstab.mvfs (OSF/1)437
file system table entries for VOBs: fstab.mvfs (SunOS-4)................................441
file system table entries for VOBs: fstab.mvfs (SunOS-5)................................445

fmt_ccase format strings for cleartool command output...449
init_ccase ClearCase startup/shutdown script...456
init ClearCase startup/shutdown script (HPUX-9) ..457

ClearCase startup/shutdown script (IRIX-5)..459
ClearCase startup/shutdown script (OSF/1) ...461
ClearCase startup/shutdown script (SunOS-4)..463
ClearCase startup/shutdown script (SunOS-5)..465

license.db ClearCase network-wide license database ..467
lockmgr VOB database access arbitrator ...470
makefile_ccase target description file for clearmake builds...471
mount_ccase mount/unmount commands for VOBs and the viewroot directory476
mount ClearCase-specific mount utility: mount_mvfs (HPUX-9)..............................477

ClearCase-specific mount utility: mount_mvfs (IRIX-5)479
ClearCase-specific mount utility: mount_mvfs (OSF/1).................................480
ClearCase-specific mount utility: mount_mvfs (SunOS-4)481
ClearCase-specific mount utility: mount_mvfs (SunOS-5)482

mvfscache control and monitor MVFS caches..483
mvfslog set or display MVFS console error logging level ..485
mvfsstat list MVFS statistics ..486
mvfsstorage list data container pathname for MVFS file...489
mvfstime list MVFS timing statistics for a command..490
mvfsversion list MVFS version string ...491
pathnames_ccase ClearCase pathname resolution, view context, and

extended namespace ...492
profile_ccase cleartool user profile: .clearcase_profile...500
promote_server change storage location of derived object data container502
query_language select objects by their meta-data / find, findmerge,

version-selector, config spec ..503

viii ClearCase Reference Manual

/vobs/doc/reference_man/framedocs/refmanTOC.doc — May 3, 1994 1:45 pm

registry_ccase ClearCase storage registry for VOBs and views ...508
rgy_passwd create or change encrypted VOB-tag registry password513
schemes X Window System resources for ClearCase graphical interface.....................514
scrubber remove data containers from VOB storage pools and

remove DOs from VOB database ..517
softbench_ccase ClearCase Encapsulation for SoftBench ...522
tooltalk_ccase ClearCase Encapsulation for ToolTalk ...527
type_manager programs for managing contents of element versions530
version_selector ClearCase version selector syntax ...536
view ClearCase view data structures ...539
view_scrubber remove derived object data containers from view storage..............................541
view_server server process that performs version selection for a view...............................543
VOB ClearCase VOB data structures ...545
vob_scrubber remove event records from VOB database ..551
vob_server ClearCase server program for VOB storage pool access..................................555
vobrpc_server ClearCase database server program ...556
wildcards_ccase pattern-matching characters for ClearCase pathnames557
xclearcase primary ClearCase graphical interface utility ...558
xcleardiff compare or merge text files graphically ...559

Permuted Index

Permuted Index..565

Contents ix

/vobs/doc/reference_man/framedocs/refmanTOC.doc — May 3, 1994 1:45 pm

Figures

Figure 1 Line of Descent of a Version...12
Figure 2 Default annotate Report Format ...13
Figure 3 Renaming a Branch vs. Renaming a Branch Type ..44
Figure 4 Pairwise-Differences Algorithm for Comparing Versions ..53
Figure 5 Side-by-Side File-Comparison Report ..54
Figure 6 Merging From the Zeroth Version on a Branch ..72
Figure 7 Merging Back and Out to a Subbranch...73
Figure 8 Determination of the Base Contributor for a Merge...126
Figure 9 Merging From a Branch ..128
Figure 10 Merging into an Unreserved Checkout ..128
Figure 11 Selective Merge ..129
Figure 12 Bitmap Lookup Procedure ...310
Figure 13 Conversion of RCS Revisions...336
Figure 14 Conversion of RCS Subbranches ...337
Figure 15 Conversion of SCCS Revisions ..344
Figure 16 Conversion of SCCS Subbranches...345
Figure 17 Data Flow in a clearmake Build...363
Figure 18 Hierarchical Makefile ..384
Figure 19 CR Hierarchy Created by Complete Build: clearmake hello...384
Figure 20 Version Tree and Extended Namespace ..496

x ClearCase Reference Manual

/vobs/doc/reference_man/framedocs/refmanTOC.doc — May 3, 1994 1:45 pm

Tables

Table 1 Operation Keywords for Type Trigger Types ...190
Table 2 Operation Keywords for Element and Global Element Trigger Types........................191
Table 3 Trigger Environment Variables..192
Table 4 Operations that Generate Event Records..413

Introduction xi

/vobs/doc/reference_man/framedocs/intro.doc — May 3, 1994 5:49 pm

0 Introduction

ClearCaseTM is a comprehensive software configuration management system from
AtriaTM Software, Inc. It manages multiple variants of evolving software systems,
tracks which versions were used in software builds, performs builds of individual
programs or entire releases according to user-defined version specifications, and
enforces site-specific development policies.

This manual describes in detail the ClearCase facilities with which you perform
version control and configuration management tasks. It focuses on command
syntax and use, and is not intended to be a learning tool. It is a reference manual,
which will be most useful if you have already obtained background about
ClearCase through other means.

If you are not already familiar with basic ClearCase concepts and use, you should
first refer to the learning documents supplied with your system, including the
ClearCase Concepts Manual, Getting Started with ClearCase, and the ClearCase User’s
Manual. If your responsibilities include software installation, licensing, and other
administrative tasks, you should also refer to the ClearCase Administrator’s Manual
and the ClearCase Notebook.

xii ClearCase Reference Manual

/vobs/doc/reference_man/framedocs/intro.doc — May 3, 1994 5:49 pm

Organization of this Manual

This manual does not use the standard “UNIX Reference Manual” organization:
Section 1, Section 1M, Section 4, and so on. Instead, it is organized as follows:

Part 1: Manual pages for cleartool and its subcommands
The cleartool program is the principal command-line interface (CLI) to
ClearCase capabilities. It has many subcommands, such as mkelem
(“make element”) and mklbtype (“make label type”). This part of the
manual includes an overall cleartool manual page, followed by
separate manual pages for each subcommand, organized
alphabetically. The page headings of these manual pages use a sans-
serif font for the name:

Part 2: All other ClearCase manual pages
All other manual pages are included in this section, in alphabetical
order. Manual pages for programs, data structures, and miscellany are
intermixed. The page headings of these manual pages use a serif font
for the name:

Part 3: Permuted index
A standard-UNIX “permuted index”, constructed from all the
ClearCase manual pages.

cleartool subcommand mkelem

ClearCase data structure cc.magic

Introduction xiii

/vobs/doc/reference_man/framedocs/intro.doc — May 3, 1994 5:49 pm

Typographical Conventions

This manual uses certain typographical conventions. Within the SYNOPSIS
section that begins most manual pages:

• Boldface type is used for command names and command options.

• If a command or option name has a short form, a “medial dot” (·) character
indicates the shortest legal abbreviation. For example:

lsc·heckout

This means that you can truncate the command name to lsc or any of its
intermediate spellings (lsch, lsche, lschec, and so on).

• Square brackets ([...]) around an option indicate that it is not required.

• Italic type is used for command arguments. For example:

mktag [–rep/ lace] view-storage-dir-pname view-tag

• Braces ({ ... }) around a group of options mean that exactly one of the options
is required.

• An ellipsis (...) means that the preceding option or argument can be repeated
as many times as desired.

NOTE: In certain contexts, ClearCase recognizes “...” within a pathname as a
wildcard, similar to “*” or “?”.

Throughout the manual pages, the following conventions also apply:

• ClearCase commands, UNIX commands, and cleartool subcommands appear
in italic type:

– For example, using mkelem to create a new element.

• Glossary terms and document names also appear in italic type:

– the versions of elements selected by the view’s config spec

– see the ClearCase Administrator’s Manual for a step-by-step procedure

• Simple file names, pathnames, and other user-supplied names also appear in
italic type:

– On most hosts, the registry directory contains only the rgy_hosts.conf and
rgy_region.conf configuration files

– the version to which version label REL2 has been attached

xiv ClearCase Reference Manual

/vobs/doc/reference_man/framedocs/intro.doc — May 3, 1994 5:49 pm

• Examples, system output, prompts, and messages appear in monospace type.
Within an extended example, user input appears in a contrasting font:

– % cleartool mklabel BL6 util.c
Created label "BL6" on "util.c" version "main/1".

• Names of keyboard characters appear in monospace type.

– press <Return> after entering the file name

ClearCase administration command cleartool_divider
hh

NAME cleartool_divider − separator page

DESCRIPTION

FOR POSITION ONLY

THIS PAGE TO BE REPLACED

BY A FULL-PAGE RUBYLITH AND

"cleartool Manual Pages"

May 1994 1

cleartool_divider ClearCase administration command
hh

FOR POSITION ONLY

BLANK PAGE WITH A

FULL-PAGE RUBYLITH

2 ClearCase Reference Manual

ClearCase user command cleartool
hh

NAME cleartool − ClearCase user-level commands (command-line interface)

SYNOPSIS
g Single-command mode:

cleartool subcommand [options/args]

g Interactive mode:

% cleartool
cleartool> subcommand [options/args]

.

.

.
cleartool> quit

DESCRIPTION
cleartool is the primary command-line interface to ClearCase’s version-control and configuration manage-
ment software. It has a rich set of subcommands that create, modify, and manage the information in
ClearCase VOBs and views.

CLEARTOOL SUBCOMMANDS
Manual pages for the individual cleartool subcommands make up the first section of this manual:

annotate ls mkelem recoverview rmview
apropos lscheckout mkeltype reformatview rmvob
catcr lsdo mkhlink reformatvob rnpool
catcs lshistory mkhltype register rntype
cd lslock mklabel reserve setcs
checkin lspool mklbtype rmattr setview
checkout lsprivate mkpool rmbranch shell
chevent lsreplica mktag rmdo space
chpool lstype mktrigger rmelem startview
chtype lsview mktrtype rmhlink umount
describe lsvob mkview rmlabel uncheckout
diff lsvtree mkvob rmmerge unlock
diffcr man mount rmname unregister
edcs merge mv rmpool unreserve
find mkattr protect rmtag winkin
findmerge mkattype protectvob rmtrigger xdiff
help mkbranch pwd rmtype xlsvtree
ln mkbrtype pwv rmver xmerge
lock mkdir quit

NOTE: The lstag command is supported for compatibility with older ClearCase releases; it is essentially
an obsolete version of the lsview command.

May 1994 3

cleartool ClearCase user command
hh

GETTING HELP
cleartool provides several on-line help facilities for its subcommands:
g Syntax summary — To display a syntax summary for an individual subcommand, use the help sub-

command or the −help option:
(syntax of all subcommands)cleartool help
(syntax of one subcommand)cleartool help mklabel
(syntax of one subcommand)cleartool mklabel -help

g Manual pages — cleartool has its own interface to the UNIX man(1) command. Enter cleartool man

command_name to display the manual page for a subcommand.
g Permuted index — File /usr/atria/doc/man/permuted_index contains the same information as the per-

muted index printed in this manual.
g ’whatis’ file — Use the apropos subcommand to extract help information from file

/usr/atria/doc/man/whatis, which is in the standard UNIX ‘‘whatis’’ format. This subcommand can also
extract auxiliary information — for example, glossary entries — from file /usr/atria/doc/man/whatis.aux.

For a master Table of Contents to all ClearCase manual pages, including those for the cleartool subcom-
mands, see the clearcase manual page: cleartool man clearcase. In addition, see the ‘‘Permuted
Index’’ in this manual.

USAGE OVERVIEW
You can use cleartool in either single-command mode or interactive mode. A single cleartool command can be
invoked from the shell using this syntax:

cleartool subcommand [options-and-args]

If you wish to enter a series of subcommands, enter the cleartool command with no arguments. This places
you at the interactive mode prompt:
cleartool>

You can then issue any number of subcommands (simply called ‘‘commands’’ from now on), ending with
quit to return to the shell. cleartool commands can be continued onto additional lines with the backslash
(\) character, as with UNIX shells.

Command options may appear in any order, but all options must precede any non-option arguments
(typically, names of files, versions, branches, and so on). If an option is followed by an additional argu-
ment, such as -branch /main/bugfix, there must be white space between the option string and the argu-
ment. If the argument itself includes space characters, it must be quoted.

Command Abbreviations and Aliases
Many subcommand names and option words can be abbreviated. A subcommand’s syntax summary
indicates all valid abbreviations. For example:

−−pre.decessor

4 ClearCase Reference Manual

ClearCase user command cleartool
hh

This means that you can abbreviate the option to the minimal ‘‘−pre’’, or to any intermediate spelling:
‘‘−pred’’, ‘‘−prede’’, and so on.

For option words, the minimal abbreviation is always three characters or fewer.

A few cleartool commands have a built-in command alias. For example, checkin’s alias is ci; checkout’s alias
is co. These commands are equivalent:
% cleartool checkin test.c

% cleartool ci test.c

PATHNAMES IN CLEARTOOL COMMANDS
Many cleartool commands require a pathname as an argument, such as the name of a file element, direc-
tory element, or view-private file. You can use either kind of standard UNIX pathname: full or relative. In
many cases, you can also use a ClearCase-defined variant: a view-extended pathname (full or relative) or a
version-extended pathname (full or relative).

A full pathname begins with a slash (/). For example:
full pathname/usr/src/project
full pathname/usr/bin/cc
view−extended full pathname/view/jpb/usr/src/project/test.c
version−extended full pathname/usr/src/project@@/main/3/test.c/main/bugfix/4

A relative pathname does not begin with a slash. For example:
relative pathnametest.c
relative pathname../lib
relative pathnamemotif/libX.a
view−extended relative pathname../../beta_vu/usr/src/project
version−extended relative pathnametest.c@@/main/4

For both full or relative pathnames:
g The standard UNIX pathname of an element implicitly references the version selected by the current

view. (This feature is called transparency.)
g A view-extended pathname references the version of the element selected by the specified view.
g A version-extended pathname directly references a particular version in an element’s version tree.

For more information, see the version_selector and pathnames_ccase manual pages.

PROCESSING OF VOB SYMBOLIC LINKS
In general, cleartool commands do not traverse VOB symbolic links; rather, they operate on the link objects
themselves. For example:
g You cannot perform a checkout command on a VOB symbolic link, even if it points to an element.
g A describe command lists information on a VOB symbolic link object, not on the object to which it

points.
g A mklabel -recurse command walks the entire subtree of a directory element, but it does not

traverse any VOB symbolic links it encounters.

May 1994 5

cleartool ClearCase user command
hh

COMMAND-LINE PROCESSING
In single-command mode, the cleartool command you enter is first processed by the UNIX shell. The shell
expands file name patterns and environment variables, and it interprets quotes and other special charac-
ters. cleartool processes the resulting argument list directly, without any further interpretation.

In interactive mode, cleartool itself interprets the command line similarly, but not identically, to the UNIX
shells:

line continuation
A \<NL> sequence is replaced by a <Space> character.

character escape
The two-character sequence \ special-char suppresses the special meaning of the character.

single-quoting
Allows white space characters and other special characters to be included in command argument.
Within a single-quoted string (’ ... ’), a double-quote character has no special meaning, and \’ is
replaced by ’.

double-quoting
Allows white space characters and other special characters to be included in command argument.
Within a double-quoted string (" ... "), \" is replaced by ", and \’ is replaced by ’.

commenting
Command lines that begin with a pound sign (#) character are ignored.

wildcards
File name patterns (including *, ?, and so on) that are not enclosed in quotes are expanded as
described in the wildcards_ccase manual page. These patterns are also supported in config specs and,
except for ellipsis (...), by the UNIX shells. (The meaning of ellipsis is slightly different in config
specs; see the config_spec manual page.)

In interactive mode, cleartool does not expand environment variables and does not perform command sub-
stitution (‘ ... ‘).

EVENT RECORDS AND COMMENTS
Each change to a VOB (checkin of new version, attaching of a version label, and so on) is accompanied by
the creation of an event record in the VOB database. Many cleartool commands allow you to annotate the
event record(s) they create with a comment string. Commands that display event record information
(describe, lscheckout, lshistory, lslock, lspool, lsreplica, and lstype) show the comments, as well. See the
fmt_ccase manual page for a description of the report-writing facility built into these commands.

All commands that accept comment strings recognize the same options:

−−c comment-string
Specifies a comment for all the event records. The comment string must be a single
command-line token; typically, you must quote it.

6 ClearCase Reference Manual

ClearCase user command cleartool
hh

−−cq Prompts for one comment, to be placed in all the event records created by this command.

−−cqe For each object processed by this command, prompts for a comment to be placed in the
corresponding event record.

−−nc (‘‘no additional comment’’) For each object processed by this command, creates an event
record with no user-supplied comment string.

A −cq or −cqe comment string can span several lines; end it by typing an EOF character (typically,
<Ctrl-D>), or by entering a line that consists of a single period (.) character.

The chevent command revises the comment string in an existing event record. See the events_ccase manual
page for a detailed discussion of event records.

Customizing Comment Handling
Each command that accepts a comment string has comment default, which takes effect if you enter the com-
mand without any comment option. For example, the checkin command’s comment default is −cqe, caus-
ing cleartool to prompt you to enter a comment for each element being checked in. The ln command’s
comment default is −nc: create the event record without a comment.

You can customize cleartool’s comment-handling with a user profile file, .clearcase_profile in your home
directory. For example, you might establish −cqe as the comment default for the ln command. See the
profile_ccase manual page for details.

PERMISSIONS CHECKING
All cleartool commands that modify (‘‘write’’) a VOB are subjected to permissions checking. The following
hierarchy is used, in a command-specific manner, to determine whether a command should proceed or be
cancelled:
g the root user (superuser)
g the VOB owner (that is, the user who created the VOB storage area)
g the owner of the corresponding element (for modifications to branches and versions)
g the creator of the type object (for modifications to objects of that type)
g the creator of a particular version or derived object
g members of an element’s group or derived object’s group (same UNIX group ID)

For example, the root user always has permission to use commands that modify a VOB. However, if you
try to modify an element that you do not own, and are neither the VOB owner nor the root user, cleartool
will not allow the operation to proceed.

Each cleartool command description lists the permissions required for using the command. The chtype
command, for example, lists these requirements for changing an element type:
element owner, vob owner, root user

This means that you must be the owner of the element whose type is to be changed, the owner of that
element’s VOB, or root. Otherwise, cleartool will not allow the chtype operation to proceed.

May 1994 7

cleartool ClearCase user command
hh

ClearCase also provides for temporary access control through explicit locking of individual objects with
the lock command. When an object is locked, it cannot be modified by anyone (except those explicitly
excluded from the lock), even root, the VOB owner, and the user who created the lock.

cleartool command descriptions list the locks that can prevent a command from being executed, even if
you have the necessary permissions. For example, the chtype command lists three locks that would
prevent you from changing an element type:
VOB, element type, pool (non-directory elements only)

This means that chtype would fail if the VOB containing the element were locked, if the element’s type
were locked (such as the text_file type), or the storage pool containing the (non-directory) element were
locked.

EXIT STATUS
If you exit cleartool by entering a quit command in interactive mode, the exit status is 0. The exit status
from single-command mode depends on whether the command succeeded (zero exit status) or generated
an error message (nonzero exit status).

Note that for the diff command, ‘‘success’’ means finding no differences.

FILES
/usr/atria/doc/man/permuted_index permuted index
/usr/atria/doc/man/whatis whatis file
/usr/atria/doc/man/whatis.aux auxiliary whatis file

SEE ALSO
clearcase, config_spec, ct_permissions, events_ccase, fmt_ccase, profile_ccase, version_selector

8 ClearCase Reference Manual

ClearCase miscellany ct_permissions
hh

NAME ct_permissions − access permissions for cleartool commands

DESCRIPTION
This manual page summarizes the access permissions needed to use cleartool subcommands. In general,
only subcommands that modify a VOB are subjected to permissions checking. cleartool uses the following
permissions hierarchy (most-privileged to least-privileged):
g root user (superuser)
g VOB owner (initially set to the user who created the VOB storage area)
g owner of the relevant element (for modifications to branches and versions)
g creator of the relevant type (for modifications to type objects)
g creator of a particular version or derived object
g creator of a particular storage pool
g user associated with a particular event
g members of an element’s or derived object’s group (same UNIX-level GID)

The sections below list all cleartool subcommands, categorized by their permissions requirements.

Permissions: none
annotate lslock mkview <3>
apropos lspool mkvob <3>
catcr lsprivate mv <2>
catcs lsreplica pwd
cd lstype pwv
describe lsview quit
diff lsvob rmname <2>
diffcr lsvtree rmtag
edcs man rmview
find mkattype setcs
findmerge <1> mkbrtype setview
help mkdir <2> shell
ln <2> mkelem <2> startview
ls mkeltype winkin
lscheckout mkhltype xdiff
lsdo mklbtype xlsvtree
lshistory mktag

NOTE 1: no permissions required for ‘‘search’’ functionality
NOTE 2: one or more directory elements must be checked out
NOTE 3: standard UNIX permissions for creating a subdirectory required

May 1994 9

ct_permissions.. ClearCase miscellany
hh

Permissions: element group member, element owner, VOB owner, root user
checkout rmattr
merge <1> rmhlink
mkattr rmlabel
mkbranch rmmerge
mkhlink rmtrigger
mklabel unreserve
mktrigger xmerge <1>
reserve

NOTE 1: applies to creation of merge arrows only, not to data

Permissions: version creator, element owner, VOB owner, root user
checkin
rmver
uncheckout

Permissions: VOB owner, root user
chpool
lock (pool or VOB)
mkpool
mktrtype
reformatvob
rmvob
unlock (pool or VOB)

Permissions: element owner, VOB owner, root user
chtype (element type)
lock (element)
protect (element or derived object)
rmelem
unlock (element)

Permissions: user associated with event, VOB owner, root user
chevent

Permissions: branch creator, element owner, VOB owner, root user
chtype (branch type)
lock (branch)
rmbranch
unlock (branch)

Permissions: type creator, VOB owner, root user
lock (type object)
mkattype -replace
mkbrtype -replace

10 ClearCase Reference Manual

ClearCase miscellany ct_permissions..
hh

mkeltype -replace
mkhltype -replace
mklbtype -replace
mktrtype -replace
rmtype
rntype
unlock (type object)

Permissions: user associated with event, VOB owner, root user
chevent

Permissions: DO owner, VOB owner, root user
protect (derived object)

Permissions: pool creator, VOB owner, root user
rmpool
rnpool

Permissions: DO group member, DO owner, VOB owner, root user
rmdo

NOTE: Only the VOB owner and the root user can delete a shared derived object.

Permissions: root user
protectvob

SEE ALSO
individual cleartool subcommand descriptions
clearcase, cleartool

May 1994 11

annotate cleartool subcommand
hh

NAME annotate − annotate lines of text file / timestamps, usernames, etc.

SYNOPSIS
ann.otate [−−all | −−rm] [−−nco] [−−out pname] [−−for.ce]

[−−nda.ta] [−−nhe.ader]
[−−s .hort | −−l .ong | −−fmt format[,hdr-format[,elide-format]]]
[−−rmf.mt rm-format]
pname ...

DESCRIPTION
Lists the contents of a version, annotating each line to indicate when, and in which version, the line was
added. You can customize the annotations using ClearCase’s report-writing facility (−fmt option), which
is described in the fmt_ccase manual page. By default, annotate writes its output to a file with the .ann

extension. You can send output to stdout, or to an arbitrary file, with the −out option.

RESTRICTIONS: See ‘‘Type Manager Interface’’ below.

Line of Descent
Each version has a line of descent (Figure 1), a sequence of ancestor versions going all the way back to
/main/0. annotate’s default listing has a header section that includes the event records of all the versions in
the line of descent of the annotated version.

0

1

2

3

4

5

hhhhhhhhhhhh
ports

0

1

2

3

4

hhhhhhhhhhhh
bugfix

0

1

2

hhh

hhh

Figure 1. Line of Descent of a Version

Type Manager Interface
The annotate command extracts information from the element’s versions. To do so, it invokes the annotate
method of the element’s type manager. Only the text_file_delta and z_text_file_delta type managers (which
correspond to the predefined element types text_file and compressed_text_file) include an annotate method.
You must use the −ndata option when annotating versions of other element types.

12 ClearCase Reference Manual

cleartool subcommand annotate
hh

REPORT FORMAT
The default annotate report format includes the following components, as shown in Figure 2.
g A header section, which lists the event record for each version along the line of descent, in standard

lshistory format.
g Text line annotations, which include a bar graph indicating how long ago the line first appeared in an

ancestor version, along with that version’s timestamp, creator, and version-ID.
g Elision strings, which replace text line annotations that would duplicate the annotation on the preced-

ing line. An elision string includes the bar graph and a single dot (.) character.
g Source lines from the specified version. Any <Tab> characters in source lines are expanded according

to the value of environment variable CLEARCASE_TAB_SIZE (default: 8).
/usr/hw/src/util.c

18-Mar-94 akp /main/3 (REL3)

special form of username message for root user

merge in fix to time string bugfix branch

18-Mar-94 akp /main/2

shorten HOME string

20-May-93 rick /main/1 (REL2)

define user, home, time functions

20-May-93 rick /main/0

20-May-93 rick /main/1 | }

. |

. | char *

. | env_time() {

. | time_t clock;

18-Mar-94 akp /main/3 | char *s;

20-May-93 rick /main/1 |

. | time(&clock);

18-Mar-94 akp /main/3 | s = ctime(&clock);

. | s[strlen(s)-1] = ’ ’;

. | return s;

20-May-93 rick /main/1 | }

element pathname

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

header section

c
c
c
c
c

elision strings

hh

text line annotations
hh

source lines

Figure 2. Default ´annotate´ Report Format

May 1994 13

annotate cleartool subcommand
hh

If you use the −rm or −all option, the report also includes deletion annotations. These appear on text lines
that are not in the annotated version, but do exist in some other version of the element:
20-May-93 rick /main/1 | |
. | | time(&clock);
. | DEL 18-Mar-94 akp | return ctime(&clock);

OPTIONS AND ARGUMENTS
Including Other Text Lines. Default: annotate’s listing includes only text lines that are present in the
specified version.

−−rm Also includes ‘‘removed lines’’ — text lines that were present in one or more versions along
the line of descent, but do not occur in the specified version. See also the −rmfmt option.

−−all Expands the listing to include all text lines that occurred in any version of the element, includ-
ing lines in versions that are not along the line of descent. (Lines from versions outside the
line of descent are annotated as UNRELATED; this annotation appears in the same column used
to annotate deletion lines.)

Handling of Checked-Out Versions. Default: An error occurs if you specify a checked-out version. (The
type manager can annotate checked-in versions only.)

−−nco If you specify a checked-out version, annotate automatically uses the version from which it
was checked out.

Destination of Listing. Default: Command output is sent to the file input-file.ann.

−−out output-pname
If output-pname is a file name, redirects command output to the specified file (overwriting the
file if it already exists). If output-pname is a single hyphen character (-out -), sends command
output to stdout. If output-pname is a directory, places command output for each annotated
version in a file within that the directory (which must already exist).

If you use this option when annotating more than one version, output-pname must be a direc-
tory.

Report Format. Default: The source file is listed as described in section ‘‘Report Format’’ above.

−−s .hort Uses predefined annotation format strings that yield an abbreviated report.

−−l .ong Uses predefined annotation format strings that yield a verbose report.

−−fmt format[,hdr-format[,elide-format]]
Specifies a display format for ‘‘primary’’ annotations, and optionally, for the header section
and/or elision strings. Format strings must be quoted. The default format is "%BAd %Sd %-

8.8u %-16.16Vn | ".

Use a hyphen (-) to designate a default format string. For example, to supply a hdr-format, but
not a primary annotation format, use the construction -fmt -,hdr-format. It is usually

desirable to terminate the hdr-format with a <NL> character, by using \n.

14 ClearCase Reference Manual

cleartool subcommand annotate
hh

If you omit the elide-format, it is computed based on the primary line-by-line annotation: all
characters except <Tab> and | in the primary annotation are replaced by <Space>, and the
middle character, if it is a <Space>, is replaced by a period (.).

In general, it is simpler to use fixed-width fields, not tab-character specifiers (\t), to create
aligned columns of annotations. See the fmt_ccase manual page for more details on compos-
ing format strings.

−−rmf.mt rm-format
Specifies a format for deletion annotations (see also −rm and −all). The default format is
"DEL %Sd %-8.8u | ".

−−for.ce Displays each text-line’s annotation, even if it duplicated the previous line’s annotation. This
option suppresses use of elision strings.

Partial Reports. Default: The report includes both a header section and the annotated text lines.

−−nda.ta Suppresses the annotated text lines; the report consists of the header section only.

−−nhe.ader Suppresses the header section; the report consists of the annotated text lines only.

EXAMPLES
g Annotate a source file, using the short format.
% cleartool annotate −short msg.c
Annotated result written to "msg.c.ann".

% cat msg.c.ann
/usr/vobs/src/msg.c

24-Apr-94 anne /main/rel2_bugfix/9
12-Mar-94 ravi /main/rel2_bugfix/8

...
23-Apr-94 rks /main/48 (REL2)
20-Apr-94 spc /main/47

...

20-May-93 | #include "hello.h"

. |

. | char *
21-Apr-94 | env_user() {

. | char * user_env;

. | user_env = getenv("USER");
...

. | time_t clock;
24-Mar-94 | char *s;
20-Sep-93 |
14-Jun-94 | s = ctime(&clock);

. | s[strlen(s)-1] = ’ ’;

. | return s;
20-May-93 | }

May 1994 15

annotate cleartool subcommand
hh

g Annotate a source file, using the long format.
% cleartool annotate −long msg.c
Annotated result written to "msg.c.ann".

% cat msg.c.ann
/vobs/src/msg.c

02-Apr-94.10:51:54 ##### Steve (scd.user@reach) /main/rel2_bugfix/1
a test

...

01-Apr-94.16:19:25 scd /main/1 | #include "hello.h"
02-Apr-94.10:51:54 scd /main/rel2_bugfix/1 | /* a test*/
01-Apr-94.16:19:25 scd /main/1 |
. | char *
. | hello_msg() {

...

g Annotate a source file, and write the output to stdout. Display deletion lines, customize the annotation
format, and suppress the header output.
% cleartool annotate −out − −fmt "%Sd %−8.8u | " −rm −nheader util.c
20-May-93 anne | | #include "hello.h"

. | |

. | | char *

. | | env_user() {

. | DEL 08-Feb-94 gcd | return getenv("USER");
08-Feb-94 gcd | | char *str = getenv("USER");

. | | if (strcmp(str,"root") == 0)
...

g Customize the header format, but use the default format for text line annotations.
% cleartool annotate −out − −fmt −,"Version %Vn created by %u.\n" util.c
version /main/3 created by anne.
version /main/2 created by anne.
version /main/1 created by rick.
version /main/0 created by rick.

20-May-93 rick /main/1 | #include "hello.h"
. |
. | char *
. | env_user() {
08-Feb-94 anne /main/3 | char *str = getenv("USER");
. | if (strcmp(str,"root") == 0)

...

SEE ALSO
type_manager, fmt_ccase

16 ClearCase Reference Manual

cleartool subcommand apropos
hh

NAME apropos − display cleartool command summary information

SYNOPSIS
g Extract information from standard ’whatis’ file:

apr.opos topic ...

g Extract information from auxiliary ’whatis’ file:

apr.opos [−−glo.ssary] topic-args

DESCRIPTION
Extracts information from file doc/man/whatis in your host’s ClearCase installation area (by default,
/usr/atria). Use apropos as you would use the standard UNIX whatis(1) or apropos(1) command. Alterna-
tively, use the −glossary option to extract a glossary definition or other help information from the auxili-
ary ‘‘whatis’’ file.

OPTIONS AND ARGUMENTS
Default: A lookup is performed in the standard ClearCase whatis file.

topic ... apropos makes a separate search for each topic character string in the standard ClearCase
whatis file. The string can occur anywhere within the line.

−−glo.ssary [topic-args]
All of the arguments are combined into a single character string; apropos displays all sections
in the auxiliary ClearCase whatis file whose header lines include this character string. Omit-
ting the topic-args causes the entire auxiliary file to be displayed.

EXAMPLES
g Search for lines with the word ‘‘reserve’’ in the standard ClearCase whatis file.
% cleartool apropos reserve
reserve - convert an unreserved checkout to reserved
unreserve - change a reserved checkout to unreserved

g Search in the auxiliary ClearCase whatis file for glossary terms that include the string ‘‘reserve’’.
% cleartool apropos −glossary reserve
+ reserve state

For a checked-out version, either "reserved" or "unreserved". The
reserve and unreserve commands change the reserve state of a
checked-out file.

+ reserved checkout
See checkout.

+ unreserved checkout
See checkout.

May 1994 17

apropos cleartool subcommand
hh

g Search in the auxiliary ClearCase whatis file for glossary terms that include the phrase ‘‘derived object’’.
% cleartool apropos −glossary derived object
+ configuration (of a derived object)

The information recorded in a derived object’s CR: versions of source
files used to build the object, build script, build options, and so
on.

+ degenerate derived object
A derived object that cannot be successfully processed, because it
data container and/or associated configuration record are not
available.

...

FILES
/usr/atria/doc/man/whatis
/usr/atria/doc/man/whatis.aux

SEE ALSO
cleartool subcommands: help, man

18 ClearCase Reference Manual

cleartool subcommand catcr
hh

NAME catcr − display configuration record created by clearmake or clearaudit

SYNOPSIS
catcr [−−r .ecurse | −−fla.t | −−uni .on | −−che .ck [−−uni .on] | −−mak.efile]

[−−sel .ect do-leaf-pattern] [−−ci] [−−ele .ment_only] [−−vie.w_only]
[−−typ.e { f | d | l } ...] [−−nam.e tail-pattern] [−−zer .o] [−−wd]
[−−nxn.ame] [−−l .ong | −−s .hort] do-pname ...

DESCRIPTION
Displays the configuration records (CRs) for the specified derived objects (DOs) and, optionally, for their
build dependencies. clearmake creates a CR each time it executes a build script that creates one or more
DOs.

See the config_record manual page for a detailed description of the contents of a CR, and for a description
of configuration record hierarchies. See the derived_object manual page for a description of derived objects.

Config Recs and clearaudit
The clearaudit utility produces a CR when it exits. In this case, the ‘‘build’’ consists of all commands exe-
cuted in the audited shell.

Controlling the Report
catcr allows precise control over report contents and format. It includes both input and output filters, and
supports a variety of report styles. Input filters, such as −select, control which DOs are ‘‘visited’’. All
visited DOs can potentially appear in the final listing. Output filters, such as −view_only, control which
DOs actually appear in the final listing. Often, this is a subset of all visited DOs.

You can:
g Generate a separate report for each derived object on the command line (default), or a single, compo-

site report for all derived objects on the command line (−union).
g Specify which derived objects should be considered when compiling report output. The −recurse,

−flat, −ci, and −select options control which subtargets are visited. They generate recursive or
flat-recursive reports of subtargets, visit checked-in DOs, and allow you to visit DOs with a particular
name only.

g Select the kind(s) of items that will appear in the report: elements only (−element_only), view private
objects only (−view_only), files, directories, or links (−type), or names matching a particular tail pat-
tern (−name).

g Display the CR in makefile format, rather than the section-oriented format described above
(−makefile).

g Choose a normal, long, or short report style. Expanding the listing with −long adds comments and
supplementary information; restricting the listing with −short lists file system objects only. You can
also list simple pathnames rather than version-extended pathnames (−nxname), and relative path-
names rather than full pathnames (−wd).

May 1994 19

catcr.. cleartool subcommand
hh

The −check option determines if the CR contains any ‘‘unusual’’ entries. For example, it determines if the
CR contains multiple versions of the same element, or multiple references to the same element with dif-
ferent names.

By default, catcr suppresses a CR entirely if the specified filters remove all objects (useful for searching).
With the −zero option, the listing includes the headers of such CRs.

PERMISSIONS AND LOCKS
Permissions Checking: No special permissions required. Locks: No locks apply. See the ‘‘Permissions
Checking’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
Reporting on Derived-Object Subtargets. Default: catcr lists the derived-object subtargets used to build
do-pname, but it does not examine or display subtarget CRs. The −recurse, −flat, −union, −check, and
−makefile options all direct catcr to recurse into subtarget CRs. Use −select to isolate the CRs of one or
more subtargets; use −ci to examine the CRs of pre-built, checked-in DO versions.

−−r .ecurse Displays the CRs of any derived objects that are subtargets of do-pname. Each CR is displayed
separately.

−−fla . t Similar to −recurse, but consolidates the CRs into a single list of versions and derived
objects, with no duplicate entries. −flat produces one report for each do-pname on the com-
mand line. The report includes file system objects only; no headers, variables and options, or
build scripts. A number preceding each file name indicates the total number of times it was
referenced during the build.

−−uni .on Produces one report for all derived objects on the command line. Like −flat, it consolidates
the CRs of each do-pname and its subtargets into a single list of objects, with no duplicate
entries. It then combines the separate lists into a single report with no duplicates. The report
includes file system objects only; no headers, variables and options, or build scripts.

−−che .ck [−−uni .on]
Flags entries in the CR that have unusual characteristics. It may optionally be specified with
−union. This option determines if a CR contains:

− Versions which are not currently checked in — This includes versions that no longer exist
(an intermediate version that only existed as a private file, for example), versions that are
currently checked out, and versions that were explicitly removed with the rmver com-
mand.

− Multiple versions of the same element — This could occur, for example, if a build used
multiple libraries, which were built from different source versions.

− Multiple references to the same element with different names, such as a renamed element
in different directory versions.

−−mak.efile Similar to −recurse, but displays the CR in simple makefile format. The listing includes the
dependencies and build script for each of the derived object’s subtargets. You should always
include the −wd option with −makefile; this causes catcr to list pathnames with respect to
the initial working directory of the build. (Note that this differs from the standard behavior
of −wd; see below). If you fail to include −wd, cleartool displays a warning message, and then

20 ClearCase Reference Manual

cleartool subcommand catcr..
hh

displays the makefile without modifying dependency pathnames.

−−sel .ect do-leaf-pattern
Starts the listing at the subtarget(s) of do-pname that match the specified pattern. do-leaf-
pattern can be a pattern (see the wildcards_ccase manual page) that matches a simple file name
— it must not include a slash character (/) or the ellipsis wildcard (...). Alternatively, it can
be a standard pathname of a derived object.

This option is useful for isolating a derived object that was built as a dependency of another
one. For example, this command displays the CR of the derived object named hello.o that was
used to build hello in the current view:
% cleartool catcr −select hello.o hello

−−ci (for use in recursive listings only)
By default, recursive listings stop at DO versions — DOs that have been checked in as versions
of elements, and used as sources during the build. This option allows you to recurse into the
CRs of DO versions. −ci only has effect with −recurse, −flat, and −union.

Specifying Kinds of Objects to Display. Default: catcr reports on all objects in the CR, which may
include: source files, directories, and symbolic links; derived objects; makefiles; view-private files, and
non-MVFS objects that were explicitly declared as dependencies.

−−ele .ment_only
Lists versions of elements only, including checked-out versions. This option excludes from
the listing derived objects (except DO versions), view-private files and directories, symbolic
links, and non-MVFS objects.

−−vie.w_only
Lists view-private objects only, including checked-out versions of elements. If you specify
this option along with −element_only, the listing includes just checked-out versions of ele-
ments.

−−typ.e { f | d | l } ...
Restricts the listing to files only (f), or to directories only (d), or to links only (l). If you omit
this option: a −short listing includes files only; a −long listing includes all three kinds. To
specify multiple kinds of objects, group them into a single argument: -type fd.

−−nam.e tail-pattern
Restricts the ‘‘MVFS objects’’ listing to those whose final pathname component(s) match the
specified pattern. tail−pattern can include any of the wildcard characters described in the
wildcards_ccase manual page.

Controlling Report Appearance. Default: catcr reports, in three sections, on MVFS objects, variables and
options, and the build script. The report uses full pathnames, and it omits comments and directory ver-
sions.

−−l .ong Expands the listing to include the kinds of objects in the CR, and comments. With
−makefile, adds comments only. For example, an object may be listed as a version, a directory
version, or derived object (see ls −long for a complete list). Comments indicate if an object is
in makefile, a referenced derived object, or a new derived object.

May 1994 21

catcr.. cleartool subcommand
hh

−−s .hort Restricts the listing to file system objects only (omits header information, variables and
options, and build scripts). With −makefile, the listing also includes build scripts.

−−nxn.ame Lists simple pathnames for MVFS objects, rather than version-extended pathnames or DO-
IDs.

−−wd Prints pathnames relative to the current working directory, rather than full pathnames. With
−makefile, displays pathnames relative to the initial working directory of the build.

−−zer .o Prints the CR header and options section, even if the specified filters remove all objects. The
listing will include the target name, current view, and so on, but no information on particular
file system objects.

Specifying the Derived Object(s). Default: None.

do-pname ...
One or more pathnames, specifying the derived objects whose CRs are to be included in the
listing. A standard or view-extended pathname specifies the DO in the view. An extended
pathname with a DO−ID specifies a particular DO, irrespective of view (for example,
hello.o@@24-Mar.11:32.412).

Use the lsdo command to list derived objects with their DO-IDs.

do-pname can be a DO version, specified with any of ClearCase’s version-specification
methods (standard pathname, version-extended pathname, and so on).

EXAMPLES
NOTE: Most examples show the same CR processed with different options. Some output lines have been
split for clarity.

g List the CR for a derived object in the current view named bgrs.
% cleartool catcr bgrs
Target bgrs built by jones.dvt
Host "oxygen" running SunOS 4.1.1 (sun4c)
Reference Time 11-Dec-92.12:02:39, this audit started 11-Dec-92.12:04:52
View was oxygen:/home/jones/views/920615.vws
Initial working directory was /vobs/docaux/bgr/sun4

MVFS objects:

/vobs/docaux/bgr/libbgr/sun4/libbgr.a@@10-Dec.16:45.1893
/vobs/docaux/bgr/sun4/bgrs@@11-Dec.12:05.1956
/vobs/docaux/bgr/sun4/buga.o@@11-Dec.12:04.1926

.

.

.
/vobs/docaux/bgr/sun4/bugs.o@@11-Dec.12:03.1902
/vobs/docaux/bgr/sun4/bugsched.o@@11-Dec.12:04.1953

.

.

.

Variables and Options:

CC=/usr/bin/cc
CFLAGS=-I../libbgr -DBSD -DSCCS -g

22 ClearCase Reference Manual

cleartool subcommand catcr..
hh

ENV_LDFLAGS=../libbgr/sun4/libbgr.a
OBJECTS=main.o pick.o bugs.o bugr.o bugi.o bugf.o bugc.o bugl.o buge.o
bugd.o buga.o bugh.o bugw.o bugfld.o bugdt.o bugu1.o bugu2.o bugsched.o

Build Script:

/usr/bin/cc -I../libbgr -DBSD -DSCCS -g main.o pick.o bugs.o
bugr.o bugi.o bugf.o bugc.o bugl.o buge.o bugd.o buga.o bugh.o bugw.o
bugfld.o bugdt.o bugu1.o bugu2.o bugsched.o
-o bgrs ../libbgr/sun4/libbgr.a

g Combine all CRs associated with bgrs and its subtargets into a single listing.
% cleartool catcr −flat bgrs

MVFS objects:

1 /vobs/docaux/bgr/buga.c@@/main/1 <19-Dec-91.11:49:03>
1 /vobs/docaux/bgr/bugc.c@@/main/1 <19-Dec-91.11:49:09>
1 /vobs/docaux/bgr/bugd.c@@/main/1 <19-Dec-91.11:49:14>

20 /vobs/docaux/bgr/bugs.h@@/main/3 <17-Jun-92.23:55:22>
1 /vobs/docaux/bgr/bugsched.c@@/main/1 <19-Dec-91.11:50:07>

.

.

.
2 /vobs/docaux/bgr/sun4/bugw.o@@11-Dec.12:04.1932
2 /vobs/docaux/bgr/sun4/main.o@@11-Dec.12:03.1896

The integer at the beginning of an entry indicates the number of times the object was referenced during
the build. For example, /vobs/docaux/bgr/bugs.h was referenced 20 times.

g Excerpt from the CR for the bugsched.o subtarget of bgrs the versions of elements involved in the build.
% cleartool catcr −select bugsched.o −element_only bgrs
Target bugsched.o built by akp.user
Host "oxygen" running SunOS 4.1.1 (sun4c)
Reference Time 11-Dec-92.15:23:21, this audit started 11-Dec-92.15:23:39
View was neptune:/usr/people/akp/views/920615.vws
Initial working directory was /vobs/docaux/bgr/sun4

MVFS objects:

/vobs/docaux/bgr/bugs.h@@/main/3 <17-Jun-92.23:55:22>
/vobs/docaux/bgr/bugsched.c@@/main/2 <11-Dec-92.15:23:04>
/vobs/docaux/bgr/libbgr/stint.h@@/main/2 <08-Sep-92.10:06:04>

Variables and Options:

CC=/usr/bin/cc
CFLAGS=-I../libbgr -DBSD -DSCCS -g
RM=rm -f
SRC=..

Build Script:

rm -f bugsched.o ; /usr/bin/cc -c -I../libbgr -DBSD -DSCCS -g ../bugsched.c

May 1994 23

catcr.. cleartool subcommand
hh

g Display in makefile format the CR for a derived object built at pathname bugi.o, specified by its DO-ID.
% cleartool catcr −wd −makefile bugi.o@@24−Nov.21:45.1623
Makefile generated 24-Nov-93.21:46:41

Target bugi.o built by akp.user
Host "neon" running SunOS 4.1.3 (sun4c)
Reference Time 24-Nov-93.21:45:19, this audit started 24-Nov-93.21:45:26
View was neptune:/usr/people/akp/views/930825.vws
Initial working directory was /vobs/docaux/bgr/sun4
bugi.o: \

../bugi.c \

../bugs.h \

../libbgr/stint.h
rm -f bugi.o ; /usr/bin/cc -c -I../libbgr -DBSD -DSCCS -g ../bugi.c

g List only header files (.h suffix) involved in the build of a particular derived object.
% cleartool catcr −name ’*.h’ bgrs

MVFS objects:

20 /vobs/docaux/bgr/bugs.h@@/main/3 <17-Jun-92.23:55:22>
19 /vobs/docaux/bgr/libbgr/intstint.h@@/main/1 <19-Dec-91.11:54:50>
36 /vobs/docaux/bgr/libbgr/stint.h@@/main/2 <08-Sep-92.10:06:04>
1 /vobs/docaux/bgr/spar.h@@/main/1 <19-Dec-91.11:50:42>

SEE ALSO
cleartool subcommands: diffcr, ls, lsdo, rmdo
clearaudit, clearmake, config_spec, config_record, derived_object, wildcards_ccase

24 ClearCase Reference Manual

cleartool subcommand catcs
hh

NAME catcs − display config spec of a view

SYNOPSIS
catcs [−−tag view-tag]

DESCRIPTION
Displays the contents of a view’s config spec.

PERMISSIONS AND LOCKS
Permissions Checking: No special permissions required. Locks: No locks apply. See the ‘‘Permissions
Checking’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
Specifying the View. Default: Displays the config spec of the current view.

−−tag view-tag
The view-tag of any view. If the working directory view differs from the set view, edcs displays a
warning message and uses the working directory view.

EXAMPLES
g Display the current view’s config spec.
% cleartool catcs
element * CHECKEDOUT
element * /main/LATEST

g Display the config spec of the view with view-tag jackson_fix.
% cleartool catcs −tag jackson_fix
element * CHECKEDOUT
element * .../rel2_bugfix/LATEST
element -file * REL2 -mkbranch rel2_bugfix
element * /main/LATEST

SEE ALSO
cleartool subcommands: edcs, lsview, mktag, pwv, setcs
config_spec

May 1994 25

cd cleartool subcommand
hh

NAME cd − change current working directory

SYNOPSIS
cd [dir-pname]

DESCRIPTION
Changes the current working directory, just like the standard cd(1) command. This command is intended
for use in interactive cleartool sessions, and in shell scripts that simulate interactive sessions.

Using Extended Pathnames
With a view-extended pathname, cd also changes your working directory view. The specified view’s config
spec determines which versions of elements are visible in your new working directory.

With a VOB-extended pathname that specifies an element or branch, cd changes your current working
directory to a location in version-extended namespace, wherein element names and branch names are treated
like directories in a read-only file system. The best way to leave version-extended namespace is to cd to a
full pathname. cd .. commands do not exit version-extended namespace until you ‘‘ascend’’ past the
VOB root directory. (See the pathnames_ccase manual page.)

PERMISSIONS AND LOCKS
Permissions Checking: No special permissions required. Locks: No locks apply. See the ‘‘Permissions
Checking’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
Specifying the New Working Directory. Default: Changes to your home directory, determined by exa-
mining the password database.

dir-pname The pathname of the directory to become your current working directory. You can specify a
view-extended or version-extended pathname, as described above.

EXAMPLES
g Change to the release subdirectory of the current working directory’s parent.
cleartool> cd ../release
element * CHECKEDOUT
element * .../rel2_bugfix/LATEST
element -file * REL2 -mkbranch rel2_bugfix
element * /main/LATEST

g Change to your home directory.
cleartool> cd
element * CHECKEDOUT
element * .../rel2_bugfix/LATEST
element -file * REL2 -mkbranch rel2_bugfix
element * /main/LATEST

g Use a view-extended pathname to change to the src directory in the context of the jackson_old view.
cleartool> cd /view/jackson_old/usr/hw/src
element * CHECKEDOUT
element * .../rel2_bugfix/LATEST
element -file * REL2 -mkbranch rel2_bugfix
element * /main/LATEST

26 ClearCase Reference Manual

cleartool subcommand cd
hh

g Change to the directory in extended namespace that represents the main branch of element hello.c.
cleartool> cd hello.c@@/main
element * CHECKEDOUT
element * .../rel2_bugfix/LATEST
element -file * REL2 -mkbranch rel2_bugfix
element * /main/LATEST

g Change to a directory in extended namespace, and then return to the original directory.
cleartool> cd src@@

cleartool> pwd
/view/jackson_vu@@/usr/hw/main/2/src

cleartool> cd /usr/hw/src

cleartool> pwd
/usr/hw/src

SEE ALSO
cleartool subcommands: pwd, pwv
config_spec, pathnames_ccase, cd(1)

May 1994 27

checkin cleartool subcommand
hh

NAME checkin − create permanent new version of an element

SYNOPSIS
checkin | ci [−−kee.p | −−rm] [−−fro.m source-pname] [−−cr] [−−pti .me]

[−−ide .ntical [−−c comment | −−cq | −−cqe | −−nc] pname ...

DESCRIPTION
For one or more elements, creates a successor to a version that was previously checked out in the current
view — the predecessor version. The version number of the successor is one greater than that of the prede-
cessor (except where rmver has been used to delete one or more versions from the end of the branch). An
appropriate message is displayed:
Checked in "msg.c" version "/main/motif/26".

A checkin record is created, which can be listed with the lshistory command:
% cleartool lshistory msg.c
06-Aug.12:09 akp create version "msg.c@@/main/motif/26"

.

.

.

Only elements can be checked in. You cannot simply checkin a view-private file, but must first make an
element of the same name. Use the mkelem -ci command to simultaneously create an element and chec-
kin a view-private file as its first version.

By default, the new version of a file element is created by copying the contents of the view-private file
named pname (the checked-out version), and then deleting that file. The −keep and −from options alter this
behavior.

After the element is checked in, your view typically selects the version you just created. But it is possible
that your view will select another version (perhaps on another branch). In this case, checkin displays a
warning message.

CHECKIN OF RESERVED AND UNRESERVED CHECKOUTS
At the time you enter a checkin command, there may be several checkouts of the same version. At most
one of the checkouts (perhaps yours) is reserved — all the others are unreserved. Your checkin command
succeeds in either of these cases:
g yours was a reserved checkout
g all checkouts were unreserved, and no one has checked in a successor version

If the command fails because someone else has a reserved checkout, you must wait until that checkout is
resolved, with checkin, uncheckout, or unreserve. If the command fails because someone has checked in a
successor version ahead of you, you can checkin your work now, by:
g performing a merge from the current LATEST version on the branch to your checked-out version
g entering the checkin command again

CHECKIN OF DERIVED OBJECTS
You can checkin a derived object to make it a version of an element (a DO version). By default, both the
data and configuration record of a derived object are checked in. To save disk storage, you can use the −cr
option to checkin only the configuration record, not the data.

28 ClearCase Reference Manual

cleartool subcommand checkin
hh

clearmake can reuse or wink-in a derived object only if it is stored under its original pathname. Thus, a DO
version created under an alternate name with checkin −from cannot be used by clearmake for build
avoidance. (It can still use the derived object named in the −from option, which is unaffected by this
command.)

See the derived_object manual page for information regarding subsequent operations on DO versions.

PERMISSIONS AND LOCKS
checkin can perform up to three permission checks:
g If the element’s set-UID bit is set, only the element’s owner, the VOB owner, or the root user can per-

form a checkin.
g If the element’s set-GID bit is set, only a member of the element’s group, the VOB owner, or the root

user can perform a checkout.
g For all elements, an error occurs if you are not the user who checked out the element, the element’s

owner, the VOB owner, or the root user.

Even if you have permission to execute this command, it fails if any of the following objects have been
locked: VOB, element type, branch type, element, branch, pool (file elements only).

OPTIONS AND ARGUMENTS
Managing Source Files. Default: checkin deletes each view-private, checked-out pname file after using it
to create a new version. You can use the following three options (which have no meaning for directory
elements) to save view-private copies, or to check in source files from other locations.

−−kee.p Saves the current contents of each checked-out version in a view-private file, in addition to
creating a new version. The view-private file gets a name of the form pname.keep (or possibly,
pname.keep.n). −keep is the default when you use the −from option, since the current con-
tents of the checked-out version would otherwise be lost.

−−rm Removes each view-private pname file after creating a new version. This is the default if you
do not use the −from option.

−−fro.m source-pname
Uses the contents of source-pname as the new version, instead of the view-private file pname.
By default, −keep is invoked to preserve the contents of the view-private pname. The source-
pname file itself is unaffected. This option makes it easy to copy data from another location
(outside the VOB, perhaps) into an element’s version tree.

When using this option, specify only one pname argument.

Checking In Derived Objects. Default: checkin checks in both the data and configuration record for a
derived object.

−−cr (for derived-object checkin only)
Checks in only the configuration record for the specified derived object(s). Each new DO ver-
sion will have a configuration record, but no data. You can use many cleartool commands
with such DO versions, such as catcr, diffcr, and mklabel (but not lsdo). It is also visible to stan-
dard UNIX ls(1). However, a version created with this option cannot be opened or executed,
since there is no data.

May 1994 29

checkin cleartool subcommand
hh

Miscellaneous Options. Default: checkin resets the new version’s modification time to the checkin time.
Also, checkin cancels the checkin operation for some types of pname files, if their contents match their
predecessor versions.

−−pti .me Preserves the modification time of the file being checked in. If you omit this option, cleartool
sets the modification time of the new version to the checkin time.

NOTE: On some platforms, it is important that the modification time be preserved for
archive files (libraries) created by ar(1) (and perhaps updated with ranlib(1)). The link editor,
ld(1), will complain if the modification time does not match a time recorded in the archive
itself. Be sure to use this option, or (more reliably) store archive files as elements of a user-
defined type, created with the mkeltype -ptime command. This causes −ptime to be
invoked automatically when the element is checked in.

−−ide .ntical Checks in the element even if the predecessor version is identical to the checked-out version.
By default, the checkin operation is cancelled in such cases.

NOTE: This situation applies only to elements whose type manager computes version-to-
version deltas (for example, elements of type text_file and compressed_text_file). If an element’s
type manager does not compute deltas, checkin always creates a new version, whether or not
it is identical to its predecessor. For example, a new version will always be created for an ele-
ment of type file, which uses the whole_copy type manager.

Event Records and Comments. Default: Creates one or more event records, with commenting controlled
by your home directory’s .clearcase_profile file (default: −cqe). See ‘‘Comment Handling’’ in the cleartool
manual page. Comments can be edited with chevent.

−−c comment , −−cq , −−cqe , −−nc
Overrides the default with one of ClearCase’s standard comment options.

NOTE: If a checkout comment exists (specified with checkout -c and/or automatically generated to
record changes to a checked-out directory), you can make it the checkin comment:
g Use checkin -nc.
g Use checkin -cqe and type <Ctrl-D> or .<Return> at the prompt.

Any other entry at the −cqe prompt specifies a new checkin comment, discarding the checkout comment
(if any) for that element. The −c and −cq options always discard the checkout comment (if any) for each
element processed.

Element Argument(s). Default: None.

pname ... The pathnames of one or more elements to be checked in.

EXAMPLES
g After verifying its checkout comment, checkin element util.c, using that comment.
% cleartool lscheckout −long util.c
10-Dec-92.16:11:07 Chuck Jackson (jackson.dvt@oxygen)
checkout version "util.c" from /main/4 (reserved)
by view: "oxygen"/home/jackson/cj.vws"
"revise syntax"

30 ClearCase Reference Manual

cleartool subcommand checkin
hh

% cleartool checkin −nc util.c
Checked in "util.c" version "/main/5".

g Checkin an element from an alternate file, discarding the checked-out version. Provide a comment on the
command line.
% cleartool checkin −rm −from /usr/tmp/util.c −c "Release 1.1 update" util.c
Checked in "util.c" version "/main/6".

g Checkin only the configuration record of a derived object, discarding its data.
% cleartool checkin −nc −cr hello
Checked in "hello" version "/main/1".

g Checkin all elements in the current VOB that are checked-out to the current view. Specify a single com-
ment for all the create version event records.
% cleartool checkin −cq ‘cleartool lscheckout −all −me −cview −short‘
Comment for all listed objects:
checkpoint before vacation
.
Checked in "/usr/hw/src/hello.h" version "/main/2".
Checked in "/usr/hw/release" version "/main/1".
Checked in "/usr/hw/src/util.h" version "/main/1".

...

SEE ALSO
cleartool subcommands: checkout, lshistory, merge, mkelem, mkeltype, rmver, uncheckout
clearmake, derived_object, profile_ccase, touch(1)

May 1994 31

checkout cleartool subcommand
hh

NAME checkout − create view-private, modifiable copy of a version

SYNOPSIS
checkout | co [−−res .erved | −−unr.eserved] [−−bra.nch branch-pname]

[−−out dest-pname | −−nda.ta]
[−−c comment | −−cq | −−cqe | −−nc] pname ...

DESCRIPTION
For one or more elements, checks out a branch (or equivalently, the most recent version on a branch). In
most cases, this creates a writable copy of that version in the current view (the checked-out version), but see
‘‘Checking Out a DO Version’’ below. An appropriate message is displayed — for example:
Checked out "msg.c" from version "/main/motif/25".

A checkout record is created, which can be listed with the lscheckout command:
% cleartool lsco msg.c
05-Aug.20:50 akp checkout version "msg.c" from /main/motif/25 (reserved)

You can checkout only the most recent version on a branch. To modify an earlier version, you must create
a subbranch at that version. (See the mkbranch manual page). Furthermore, from a single view, you can
checkout only one branch of an element at a time.

You can checkout a version that your view does not currently select, either by using the −branch option
or by specifying a pname argument that includes a branch pathname (for example,
msg.c@@/main/rel4_bugfix). In such cases, a warning message appears:
cleartool: Warning: Version checked out is different from
version previously selected by view.

If a view-private object already exists with the same name as an element being checked out, checkout saves
the private object as pname.keep (or possibly, pname.keep.n).

Before using a command that changes the contents of a directory (mkelem, mkdir, rmname, ln, or mv), you
must first checkout the directory. Each of these commands automatically appends an appropriate line to
the directory’s checkout comment. For example, using mkelem to create a new element within a directory
might add this comment line:
Added file element "wel.c".

RESERVED AND UNRESERVED CHECKOUTS
A version can have at most one reserved checkout and any number of unreserved checkouts. Performing a
reserved checkout guarantees you the right to create a successor to the version you checked out. If several
users perform unreserved checkouts, any one of them (and just one) can create a successor version. Each
other user with an unreserved checkout must perform a merge before checking his or her versions back in
as a further successor.

Each reserved or unreserved checkout of a version must be performed in a different view.

You can change the checkout status of a checked-out version with the reserve and unreserve commands.

32 ClearCase Reference Manual

cleartool subcommand checkout
hh

CHECKING OUT A DO VERSION
If the version being checked out is a derived object (DO version), checkout attempts to wink-in the DO to
your view. If it cannot perform the wink-in, it copies the DO’s data instead. A wink-in cannot be per-
formed if you use the −out option to specify a destination in another VOB, or in a non-VOB location,
such as /tmp.

See the derived_object manual page for additional information on the behavior of checked-out DO ver-
sions.

AUTO-MAKE-BRANCH
If the view selects a version using a config spec rule with a −−mkbranch branch-type clause:

1. checkout first creates a branch of type branch-type.

2. It checks out (version 0 on) the newly-created branch.

Except for some extra messages, this appears little different from an ordinary checkout. The checked-out
version has the expected contents, because version 0 on the new branch has the same contents as the ver-
sion at the branch point.

Multiple-Level Auto-Make-Branch
A config spec can include a ‘‘cascade’’ of auto-make-branch rules, causing checkout to create multiple
branching levels at once. checkout keeps performing auto-make-branch until version 0 on the newly-
created branch is not selected by a rule with a −mkbranch clause. For example:

(1)element * CHECKEDOUT
(2)element * .../br2/LATEST
(3)element * .../br1/LATEST -mkbranch br2
(4)element * MYLABEL -mkbranch br1
(5)element * /main/LATEST

If you checkout an element in a view that currently selects the version labeled MYLABEL:

1. A branch of type br1 is created at the MYLABEL version (Rule 4).

2. Rule 3 now selects the newly-created version .../br1/0, so a branch of type br2 is created at that version.

3. Version .../br1/br2/0 is checked out. The checked-out version has the same contents as the MYLABEL
version, and is selected by Rule 1. When you edit and checkin a new version, .../br1/br2/1, the view
will select it with Rule 2.

CHECKED-OUT FILES
A checked-out file is a view-private object, which can be read, edited, and even deleted like any standard
file. The initial permissions on the checked-out file are determined by this algorithm:
g start with the permissions of the element itself (see the mkelem and protect manual pages)
g add a ‘‘write’’ permission wherever the element itself has a ‘‘read’’ permission (user, group, and/or

other)
g subtract ‘‘read’’, ‘‘write’’, and/or ‘‘execute’’ permissions according to your current umask(1) value

May 1994 33

checkout cleartool subcommand
hh

You can change the permissions of the checked-out file with the standard UNIX chmod(1) command. But
you must use the ClearCase protect command to change the permissions of the element itself.

PERMISSIONS AND LOCKS
checkout can perform up to three permission checks:
g If the element’s set-UID bit is set, only the element’s owner, the VOB owner, or the root user can per-

form a checkout.
g If the element’s set-GID bit is set, only a member of the element’s group, the VOB owner, or the root

user can perform a checkout.
g For all elements, an error occurs if you are not a member of the element’s group, the element’s owner,

the VOB owner, or the root user.

Even if you have permission to execute this command, it fails if any of the following objects have been
locked: VOB, element type, branch type, element, branch.

OPTIONS AND ARGUMENTS
Reserved and Unreserved Checkouts. Default: checkout reserves the branch.

−−res .erved ‘‘Reserves’’ the branch: no user in another view can perform a reserved checkout of the same
branch (but any number of unreserved checkouts can be performed); no new versions can be
created on the branch until your checkout is resolved with checkin or uncheckout.

−−unr.eserved
Leaves the branch unreserved: other users, in other views, can checkout the same version (but
at most one of the checkouts can be reserved).

See the checkin manual page for a discussion of how new versions are created from reserved
and unreserved checkouts.

Non-Standard Checkouts. Default: If pname specifies a particular branch, checkout that branch — that is,
the latest version on the branch. Otherwise, checkout the branch containing the version specified by
pname. checkout creates a view-private copy of each checked-out version and names it pname in view-
private storage.

−−bra.nch branch-pname
Specifies the branch whose most recent version is to be checked out. If you omit this option,
cleartool determines the branch from the pname argument, or uses the branch whose version is
currently selected by the view.

Creation of Checked-Out Version in View. Default: (file elements only) Copies the version being
checked out (that is, the most recent version on the branch being checked out) to a view-private file with
the same pathname as the element; exception: if the version being checked out is a derived object, it is
winked-in to the view.

−−out dest-pname
(does not apply to directories or DO versions) Creates a writable file under an alternate file
name (perhaps in a different directory). No view-private file named pname is created. The ls
command lists the element as checkedout but removed.

34 ClearCase Reference Manual

cleartool subcommand checkout
hh

−−nda.ta (does not apply to directories) Creates a checkout record for the version, but does not create
an editable file containing its data. The ls command lists the file as checkedout but

removed.

Event Records and Comments. Default: Creates one or more event records, with commenting controlled
by your home directory’s .clearcase_profile file (default: −cqe). See ‘‘Comment Handling’’ in the cleartool
manual page. Comments can be edited with chevent.

−−c comment , −−cq , −−cqe , −−nc
Overrides the default with one of ClearCase’s standard comment options.

Element Argument(s). Default: None.

pname ... Pathnames of one or more elements to be checked out. By default, the branch whose version
is currently selected by the view is checked out. You can override this by specifying a
−branch option, or by specifying the version-extended pathname of a branch or version. (If
you specify an ‘‘old’’ version, cleartool still checks out the most recent version on its branch.)

EXAMPLES
g Checkout the currently-selected version of element hello.c, with no comment.
% cleartool checkout −nc hello.c
Checked out "hello.c" from version "/main/3".

g Checkout the latest version on the rel2_bugfix branch of file msg.c, to an alternate file name.
% cleartool checkout −nc −branch /main/rel2_bugfix −out msg_test.c msg.c
Checked out "msg.c" from version "/main/rel2_bugfix/1".

% cleartool ls
...

msg_test.c
msg.c@@/main/rel2_bugfix/CHECKEDOUT from /main/rel2_bugfix/1 [checkedout but removed]

...

g Checkout the latest version on the rel2_bugfix branch of file msg.c, using an extended pathname to indicate
the branch.
% cleartool checkout −nc msg.c@@/main/rel2_bugfix
Checked out "msg.c" from version "/main/rel2_bugfix/1".

This command checks out the same version as the preceding example.

g Perform an unreserved checkout of element hello.h. Provide a comment on the command line.
% cleartool checkout −c "modify local defines" −unreserved hello.h
Checked out "hello.h" from version "/main/2".

g Checkout hello.c. Then, change your mind and cancel the checkout, removing the view-private copy.
% cleartool checkout −nc hello.c
Checked out "hello.c" from version "/main/1".

% cleartool unco −rm hello.c
Checkout cancelled for "hello.c".

May 1994 35

checkout cleartool subcommand
hh

SEE ALSO
cleartool subcommands: checkin, lscheckout, ls, mkelem, mkbranch, protect, reserve, uncheckout, unreserve
clearmake, config_spec, derived_object, profile_ccase

36 ClearCase Reference Manual

cleartool subcommand chevent
hh

NAME chevent − modify comment string in existing event record

SYNOPSIS
g Modify event records of objects by specifying names:

chevent [−−c comment | −−cq | −−cqe | −−nc] [−−app.end | −−ins .ert | −−rep.lace]
{

pname ...
| { −−elt .ype | −−brt .ype | −−att .ype | −−hlt .ype | −−lbt .ype | −−trt .ype | −−rpt .ype }

[−−vob pname-in-vob] type-name ...
| −−poo.l [−−vob pname-in-vob] pool-name ...
| −−hli .nk hlink-selector ...
| −−vob pname-in-vob
| −−vre.plica [−−vob.pname-in-vob] replica-name ...

}

g Modify event records of objects by specifying event-IDs:

chevent [−−c comment | −−cq | −−cqe | −−nc] [−−app.end | −−ins .ert | −−rep.lace]
−−eve.nt [−−vob pname-in-vob] event-ID ...

DESCRIPTION
Modifies or replaces the comment string in one or more existing event records. This command is useful for
correcting typing errors, and for including information that was omitted in the original comment.

There are several ways to specify an event record whose comment you want to change:
g If you specify a checked-out version, chevent changes the comment in the checkout event record.
g If you specify any other object, chevent changes that object’s creation event record. For example, if

you specify a label type object, chevent changes the comment supplied when that label type was
created with mklbtype.

g You can change the comment in an arbitrary event record by passing its event-ID to the −event
option. Use the command lshistory -eventid to capture event-IDs. (Event IDs remain valid until
the VOB is reformatted with reformatvob.)

See the events_ccase manual page for details on the operations that cause event records to be created, and
how event records are attached to objects. See also ‘‘Event Records and Comments’’ in the cleartool
manual page.

PERMISSIONS AND LOCKS
Permissions Checking: To modify an event’s comment, you must be the user associated with the event, the
VOB owner, or the root user. Locks: Even if you have permission to execute this command, locks cause it
to fail as follows:

May 1994 37

chevent cleartool subcommand
hh

Object Locks that Prevent Changing the Object’s Events
VOB VOB
pool VOB, pool
type VOB, type
symbolic link VOB
element VOB, element type, element
branch, version VOB, element type, element, branch type, branch
hyperlink VOB, hyperlink type

See also ‘‘Permissions Checking’’ in the cleartool manual page.

OPTIONS AND ARGUMENTS
Specifying the Comment Change. Default: For each object or event, chevent prompts for a comment
string to apply to the corresponding event record.

−−c comment Specifies a character string to replace the existing comment or be added to it.

−−cq Prompts for one comment, which will be used to update all of the event records.

−−cqe Same as default — prompts for a separate comment string for each object or event ID.

−−nc No comment. When combined with −replace, this option removes the existing comment.
Otherwise, it nullifies the effect of chevent.

Specifying How to Change the Comment. Default: The new comment is appended to the existing one,
separated by a <NL> character.

−−app.end Same as default.

−−ins .ert The new comment is inserted before the existing one, followed by a <NL> character.

−−rep.lace The existing comment is discarded; the new comment replaces it.

Specifying Event Records to Be Changed. Default: None.

pname ...
{ −−elt .ype | −−brt .ype | −−att .ype | −−hlt .ype | −−lbt .ype | −−trt .ype | −−rpt .ype } [−−vob pname-in-vob] type-name
−−poo.l [−−vob pname-in-vob] pool-name ...
−−hli .nk hlink-selector ...
−−vob pname-in-vob ...
−−vre.plica [−−vob pname-in-vob] replica-name ...
−−eve.nt [−−vob pname-in-vob] event-ID ...

Names of one or more objects, or (with −event) one or more numerical event-IDs. Use the
same syntax as with lock to specify an object. Specifying a checked−out version changes its
checkout version comment. You can use any of the following to specify the checked-out
version:

(standard pathname)hello.h
(extended pathname to checked−out ’placeholder’ version)hello.h@@/main/rel2_bugfix/CHECKEDOUT

38 ClearCase Reference Manual

cleartool subcommand chevent
hh

(’placeholder’ version has unique numeric suffix)hello.h@@/main/rel2_bugfix/CHECKEDOUT.465

You must specify a VOB object using its VOB-tag or a pathname thereunder. (You cannot use
the pathname of the VOB storage directory.) The pname argument(s) must be specified after
all options; the −event keyword can appear anywhere an option is valid.

To determine the event-ID of an event, use lshistory -eventid.

Specifying the VOB. Default: Use the VOB containing the current working directory.

−−vob pname-in-vob
With −xxtype, −pool, −hlink, −event, or −vreplica, this option specifies the VOB in
which the event record(s) are to be changed.

You can also use an option in this form to indicate a VOB object whose creation event record
is to be changed.

The pname-in-vob can be any location within the VOB.

EXAMPLES
g Add a creation comment for an element:
% cleartool chevent hello.c@@
Comments for "hello.c":

Main module of greeting program.
.
Modified event of file element "hello.c".

% cleartool describe hello.c@@
file element "hello.c@@"
created 04-Dec-93.14:38:26 by anne.user
"Main module of greeting program."
element type: text_file
source pool: p1 cleartext pool: pc1

g Add a header to a checked-out version’s checkout comment:
% cleartool lscheckout bye.c
13-May.13:58 anne checkout version "bye.c" from /main/11 (reserved)
"Improve error handling."

% cleartool chevent −insert −c "Fix bug #2493:" bye.c
Modified event of version "bye.c".

% cleartool lscheckout bye.c
13-May.13:58 anne checkout version "bye.c" from /main/11 (reserved)
"Fix bug #2493:
Improve error handling."

g Update a label type creation comment:
% cleartool chevent −append −brtype v1_bugfix
Comments for "v1_bugfix":

Branches should sprout from the version labeled "V1"
.
Modified event of branch type "v1_bugfix".

% cleartool lstype −brtype v1_bugfix
28-Mar.16:26 ali branch type "v1_bugfix"

May 1994 39

chevent cleartool subcommand
hh

"Branch for fixes to version 1.
Branches should sprout from the version labeled "V1""

g Delete the comment on a branch object:
% cleartool chevent −replace −nc welcome.c@@/main/v1_bugfix
Modified event of branch "welcome.c".

g Find the event ID for an operation and append a comment string to the one already assigned to that
event. Then check that the new comment was added.
% cleartool lshistory −long −eventid util.c
event 45678:
21-Mar-94.14:45:20 Anne Duvo (anne@neptune)
destroy sub-branch "bugfix" of branch "util.c@@/main"
"Destroyed branch "/main/bugfix"."
...

% cleartool chevent −c "bugfix merge completed." −append −event 45678
Modified event "45678".

% cleartool lshistory −long −eventid util.c
event 45678:
21-Mar-94.14:45:20 Anne Duvo (anne@neptune)
destroy sub-branch "bugfix" of branch "util.c@@/main"
"Destroyed branch "/main/bugfix".
"bugfix merge completed."
...

SEE ALSO
cleartool subcommands: lshistory, lock, mktrtype
vob_scrubber, events_ccase

40 ClearCase Reference Manual

cleartool subcommand chpool
hh

NAME chpool − change the storage pool to which an element is assigned

SYNOPSIS
chpool [−−for.ce] [−−c comment | −−cq | −−cqe | −−nc] pool-name pname ...

DESCRIPTION
Changes the source storage pool, derived object storage pool, or cleartext storage pool to which one or more ele-
ments are assigned.

For a file element:
g Changing the source pool moves the data container(s) that store all existing versions from the current

pool to the specified pool.
g Changing the cleartext pool designates a different location for new cleartext versions. Existing clear-

text versions remain where they are, and will eventually be scrubbed. (See the scrubber manual page.)
g An error occurs if you attempt to assign a file element to a derived object pool; file elements have

source and cleartext pools only.

For a directory element:
g Changing the source pool or the cleartext pool affects pool inheritance by new elements: in the future,

elements created within the directory will be assigned to the new pool. The pool assignments of
existing elements remain unchanged.

g Changing the derived object pool designates a new location for shared derived objects with pathnames
in that directory: in the future, the promote_server program will copy data containers to the new pool.
The existing contents of the old pool remain unchanged, and will eventually be deleted by scrubber.

Commands for Listing Pools
The lspool command lists a VOB’s storage pools. The describe command includes storage pool assign-
ments in its listing for an element — to reference an element (rather than one of its versions), append the
extended naming symbol to the element’s standard pathname:
cleartool describe msg.c@@

PERMISSIONS AND LOCKS
Permissions Checking: For each object processed, you must be one of the following: VOB owner, root user.
Locks: An error occurs if any of the following objects are locked: VOB, element type, element, pool. See
the ‘‘Permissions Checking’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
User Interaction. Default: Prompts for confirmation before moving data containers.

−−for.ce Suppresses the confirmation step.

Event Records and Comments. Default: Creates one or more event records, with commenting controlled
by your home directory’s .clearcase_profile file (default: −nc). See ‘‘Comment Handling’’ in the cleartool
manual page. Comments can be edited with chevent.

May 1994 41

chpool cleartool subcommand
hh

−−c comment , −−cq , −−cqe , −−nc
Overrides the default with one of ClearCase’s standard comment options.

Specifying the Pool. Default: None.

pool-name An existing storage pool.

Specifying the Elements. Default: None.

pname ... One or more pathnames, each of which specifies a file or directory element. A standard path-
name is valid — you need not append the extended naming symbol. (More generally, speci-
fying a version or a branch is equivalent to specifying its element.)

EXAMPLES
g Reassign all elements in the current directory that have a .c suffix to cleartext pool cltxt2.
% cleartool chpool cltxt2 *.c
Changed pool for "cm_add.c" to "cltxt2".
Changed pool for "cm_fill.c" to "cltxt2".
Changed pool for "convolution.c" to "cltxt2".
Changed pool for "msg.c" to "cltxt2".
Changed pool for "test_cmd.c" to "cltxt2".
Changed pool for "util.c" to "cltxt2".

g Change the default source pool for the src directory, so that new elements created in this directory will be
assigned to the c_pool pool.
% cleartool chpool c_pool src
Changed pool for "src" to "c_pool".

g Change the source pool for hello.c to sdft, the VOB’s default source pool. (Assumes the element had been
assigned to a different pool.)
% cleartool chpool sdft hello.c
Move all versions of element "hello.c"? [no] yes
Changed pool for "hello.c" to "sdft".

SEE ALSO
cleartool subcommands: lspool, mkdir, mkelem, mkpool
promote_server, scrubber, profile_ccase

42 ClearCase Reference Manual

cleartool subcommand chtype
hh

NAME chtype − change the type of an element / rename a branch

SYNOPSIS
chtype [−−for.ce] [−−c comment | −−cq | −−cqe | −−nc] type-name pname ...

DESCRIPTION
Changes the element type of one or more existing elements, or renames one or more existing branches.
Both these operations involve changing the type object associated with the element or branch.

Changing an Element’s Type
You can use chtype to convert an element from one element type to another (for example, from file to
text_file). Typically, you change an element’s type to change the way its versions are stored. For example,
versions of a file element are stored in separate data containers in a VOB source pool. Converting the ele-
ment to type text_file causes all its versions to be stored in a single data container, as a set of deltas
(version-to-version differences); this saves disk space.

Restrictions. All versions of an element must ‘‘fit’’ the new element type. For example, converting an ele-
ment to type text_file fails if any of its versions contains binary data, rather than ASCII text. You cannot
convert files to directories, and vice-versa.

Renaming a Branch
You can use chtype to rename a branch (for example, from bugfix to maintenance). ClearCase implements a
branch as an instance of a branch type object. Thus, ‘‘rename the branch from A to B’’ actually means
‘‘change the branch from an instance of branch type A to an instance of branch type B.’’

NOTE: Don’t confuse the renaming of a particular branch (chtype) with the renaming of a branch type
(rntype). Figure 3 illustrates the difference.

May 1994 43

chtype cleartool subcommand
hh

Renaming a Particular Branch:

branch type

’A’
c
c
c
c
hhhhhhhhhhhhhhhhhhhhhhh

c
c
c
chhhhhhhhhhhhhhhhhhhhhhh

branch type

’B’
c
c
c
c
hhhhhhhhhhhhhhhhhhhhhhh

c
c
c
chhhhhhhhhhhhhhhhhhhhhhh

branch in

element X
c
c
c
c
hhhhhhhhhhhhhh

c
c
c
chhhhhhhhhhhhhh

cc
c
c
c

branch in

element Y
c
c
c
c
hhhhhhhhhhhhhh

c
c
c
chhhhhhhhhhhhhh

cc
c
c
c

before renaming with ’chtype’

branch type

’A’
c
c
c
c
hhhhhhhhhhhhhhhhhhhhhhh

c
c
c
chhhhhhhhhhhhhhhhhhhhhhh

branch type

’B’
c
c
c
c
hhhhhhhhhhhhhhhhhhhhhhh

c
c
c
chhhhhhhhhhhhhhhhhhhhhhh

branch in

element X
c
c
c
c
hhhhhhhhhhhhhh

c
c
c
chhhhhhhhhhhhhh

c
c
c
c
c
c
c
c
c

branch in

element Y
c
c
c
c
hhhhhhhhhhhhhh

c
c
c
chhhhhhhhhhhhhh

cc
c
c
c

after renaming with ’chtype’

Renaming a Branch Type:

branch type

’old’
c
c
c
c
hhhhhhhhhhhhhhhhhhhhhhh

c
c
c
chhhhhhhhhhhhhhhhhhhhhhh

branch
c
c
c
c
hhhhhhhhhhhhhh

c
c
c
chhhhhhhhhhhhhh

hhhhhhhhhhhhhhc
c
c
c
c

before renaming with ’rntype’

branch type

’new’
c
c
c
c
hhhhhhhhhhhhhhhhhhhhhhh

c
c
c
chhhhhhhhhhhhhhhhhhhhhhh

branch
c
c
c
c
hhhhhhhhhhhhhh

c
c
c
chhhhhhhhhhhhhh

hhhhhhhhhhhhhhc
c
c
c
c

after renaming with ’rntype’

Figure 3. Renaming a Branch vs. Renaming a Branch Type

PERMISSIONS AND LOCKS
Permissions Checking: For each object processed, you must be one of the following: change element type:
element owner, VOB owner, root user; change branch type: branch creator, element owner, VOB owner,
root user. Locks: An error occurs if any of the following objects are locked: change element type: VOB, ele-
ment type, element, pool (non-directory elements, or new type manager only); change branch type: VOB,
element type, element, branch type, branch. See the ‘‘Permissions Checking’’ section of the cleartool
manual page.

44 ClearCase Reference Manual

cleartool subcommand chtype
hh

OPTIONS AND ARGUMENTS
Confirmation Step. Default: chtype prompts for confirmation if changing an element’s type will change
the way its versions are stored in the VOB storage pool.

−−for.ce Suppresses the confirmation step.

Event Records and Comments. Default: Creates one or more event records, with commenting controlled
by your home directory’s .clearcase_profile file (default: −nc). See ‘‘Comment Handling’’ in the cleartool
manual page. Comments can be edited with chevent.

−−c comment , −−cq , −−cqe , −−nc
Overrides the default with one of ClearCase’s standard comment options.

Specifying the New Type. Default: None.

type-name An existing element type, or an existing branch type.

Specifying the Elements or Branches. Default: None.

pname ... When changing an element type: One or more pathnames, each of which specifies a file or
directory element. A standard pathname is valid — you need not append the extended nam-
ing symbol. That is, specifying a version is equivalent to specifying its element. If the type-
name argument is an element type, supplying a pname that terminates with a branch name
causes an error.

When renaming a branch: One or more extended pathnames, each of which specifies a par-
ticular branch of an element. For example:
foo.c@@/main/bugfix
bar.c@@/main/maint/bug405

EXAMPLES
g Convert an element to type file.
% cleartool chtype file hello.c
Change version manager and reconstruct all versions for "hello.c"? [no] yes
Changed type of element "hello.c" to "file".

g Rename a branch from rel2_bugfix to maintenance, providing a comment.
% cleartool chtype −c "rel2_bugfix no longer in use" \

maintenance util.c@@/main/rel2_bugfix
Changed type of branch "util.c@@/main/rel2_bugfix" to "maintenance".

g Convert an archive library to compressed_file format, suppressing confirmation prompts.
% cleartool chtype −force compressed_file libutil.a
Changed type of element "libutil.a" to "compressed_file".

SEE ALSO
cleartool subcommands: mkbrtype, mkeltype, mkelem, rntype
cc.magic, profile_ccase

May 1994 45

describe cleartool subcommand
hh

NAME describe − describe an object

SYNOPSIS
g Describe file system objects:

des .cribe [−−cvi .ew] [−−l .ong | −−s .hort | −−fmt format-string]
[−−ver.sion version-selector | −−anc .estor]
[−−ala .bel { label-type-name[,. . .] | −−all }]
[−−aat . tr { attr-type-name[,. . .] | −−all }]
[−−ahl . ink { hlink-type-name[,. . .] | −−all }]
[−−ihl . ink { hlink-type-name[,. . .] | −−all }]
[−−pre.decessor] pname ...

g Describe type objects:

des .cribe −−typ.e [−−l .ong | −−s .hort | −−fmt format-string] [−−vob pname-in-vob] type-name ...

g Describe derived objects:

des .cribe DO-name ...

g Describe hyperlink objects:

des .cribe −−hli .nk hlink-selector ...

g Describe storage pools:

des .cribe −−poo.l [−−l .ong | −−s .hort | −−fmt format-string] [−−vob pname-in-vob] pool-name ...

g Describe VOB:

des .cribe −−vob pname-in-vob [−−l .ong | −−s .hort | −−fmt format-string]

g Describe VOB replica:

des .cribe [−−l .ong | −−s .hort | −−fmt format-string] −−vre.plica [−−vob pname-in-vob] replica-name ...

DESCRIPTION
Lists information about VOBs and the objects they contain. For example, you can use describe to:
g list the attributes and/or version labels attached to a particular version
g list the hyperlinks attached to a particular object
g list the predecessor of a particular version
g list the views that have checkouts or derived objects in a particular VOB (describe -long -vob)

46 ClearCase Reference Manual

cleartool subcommand describe..
hh

describe produces several kinds of listings:
g File system data — Provides information on elements, branches, versions, derived objects, and VOB

symbolic links.

The description of an element (for example, cleartool describe hello.h@@) includes a listing of
the storage pools to which the element is currently assigned. (See mkpool and chpool for more infor-
mation.)

A version’s description includes the version-ID of its predecessor version.

An ordinary derived object is listed with derived object in its header; a derived object that has
been checked in as a version of an element (DO version) is listed with derived object version in
its header.

g Type object — Provides information on a VOB’s type objects (for example, on a specified list of label
types). This form of the command displays the same information as lstype -long.

g Hyperlink object — Provides information on a hyperlink object.
g Storage pool — Provides information on a VOB’s source, derived object, and cleartext storage pools.

This form of the command displays the same information as lspool -long.
g VOB object or VOB replica — Provides information on the object that represents the VOB itself, or

the object that represents one of its replicas (Atria MultiSite product). For a VOB object, this includes
such information as its storage area, creation date, owner, and related views.

Unavailable Remote VOB
File system objects can be hyperlinked to objects in another VOB. If the other VOB is currently unavail-
able (perhaps it has been unmounted), describe tries to be helpful:
cleartool: Error: Unable to locate versioned object base with object id:
"51023fa9.68b711cc.b358.08:00:69:02:1d:c7".
...

Hyperlinks:
@183@/usr/proj /usr/proj/elem2.c@@/main/2 -> <object not available>

Versions Without Data
The description of a version can include the annotation [version has no data]. A file element version
can be created without data, using checkin −cr; an existing version’s data can be removed with rmver

-data.

This annotation appears for all versions of directory elements. This reflects the fact there is no data con-
tainer in a source storage pool for a directory version — the contents of a directory version are stored in
the VOB database.

Hyperlink Inheritance
By default, a version implicitly inherits a hyperlink attached to any of its ancestor versions, on the same
branch or on a parent branch. Inherited hyperlinks are listed only if you use the −ihlink option.

May 1994 47

describe.. cleartool subcommand
hh

A hyperlink stops being passed down to its descendents if it is superseded by another hyperlink of the
same type, explicitly attached to some descendent version. You can use a null-ended hyperlink (‘‘from’’
object, but no ‘‘to’’ object) as the superseding hyperlink to effectively cancel hyperlink inheritance.

PERMISSIONS AND LOCKS
Permissions Checking: No special permissions required. Locks: No locks apply. See the ‘‘Permissions
Checking’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
Describing Objects in Other Views. Default: If you use a view-extended pathname to specify an object
in (or as seen through) another view, describe lists that view’s name for the object:
version: "/view/gamma/usr/project/src/util.c"

−−cvi .ew Lists an object using the current view’s name for it:
version: "/usr/project/src/all_utils.c"

This option is useful when different views select different directory versions, in which ele-
ments have been renamed.

Report Format. Default: Lists the object’s name and some additional information.

−−l .ong Expands the listing. With −vob, for example, lists all views that have checkouts or derived
objects associated with the specified VOB. This listing includes the UUIDs of those views,
which can be used with rmview.

−−s .hort Lists only an object’s (path)name. The effect is slightly different when used in combination
with −label, −attr, −hlink, or −predecessor. See the descriptions of these options
below.

−−fmt format-string
Lists information using the specified format string. See the fmt_ccase manual page for details
on using this report-writing facility.

Excerpting Description Information. Default: describe lists the predecessor (if the object is a version), and
reports on all of the object’s version labels, attributes, and hyperlinks. With one or more of the following
options, the report includes the requested information only — for example, only a listing of the predeces-
sor version and version label(s).

−−ala .bel label-type-name[,. . .]
−−aat . tr attr-type-name[,. . .]
−−ahl . ink hlink-type-name[,. . .]
−−ihl . ink hlink-type-name[,. . .]
−−pre.decessor

Specify one or more of these options to excerpt information from the overall description of an
object. A list of names of type objects must be comma-separated, with no white space; you
can use the special keyword -all to specify all types of a particular kind.

48 ClearCase Reference Manual

cleartool subcommand describe..
hh

If you specify −short as well, the listing is restricted even further:

− For −predecessor, just the version-ID of the predecessor version is listed.

− For −alabel, just the version label(s) are listed.

− For −aattr, just the attribute value(s) are listed.

− For −ahlink, the listing includes the pathname(s) of the object(s) hyperlinked to pname,
annotated with -> (listed object is the ‘‘to’’ object) or <- (listed object is the ‘‘from’’
object). For example:
-> /usr/proj/include/db.h@@/main/52
<- /usr/proj/bin/vega@@/main/5

Inherited hyperlinks are not included in this listing.

− For −ihlink, the listing includes the hyperlinks inherited by pname, which must specify a
version. Pathnames of both the ‘‘from’’ and ‘‘to’’ objects are listed, one of which is an
ancestor of pname, or is pname itself. (That is, −ihlink also includes hyperlinks that are
attached to pname itself.)

Specifying the Objects to be Described. Default: describe expects at least one argument that names an
element, branch, version, VOB link, derived object, or hyperlink (pname, DO-name, or hlink-selector). You
can use −version or −ancestor to control the way pname arguments are interpreted. To describe a type
object, storage pool object, or the VOB object itself, you must use one of the options −type, −pool, or
−vob.

pname ... One or more pathnames, indicating objects to be described: elements, branches, versions, or
derived objects.

− A standard or view-extended pathname to an element specifies the version selected by
the view.

− A standard or view-extended pathname to a derived object specifies the DO in the view.

− An extended pathname specifies an element, branch, version, or derived object, indepen-
dent of view.

Examples:
(version of ’foo.c’ selected by current view)foo.c
(derived object ’foo.o’ built or winked−in to current view)foo.o
(version of ’foo.c’ selected by another view)/view/gamma/usr/project/src/foo.c
(derived object ’foo.o’ built in another view)/view/gamma/usr/project/src/foo.o
(version 5 on main branch of ’foo.c’)foo.c@@/main/5
(derived object, specified by DO−ID)foo.o@@11-Nov.09:19.219
(version of ’foo.c’ with version label ’REL3’)foo.c@@/REL3
(the element ’foo.c’)foo.c@@
(the main branch of element ’foo.c’)foo.c@@/main

For versions, −version overrides these interpretations of pname.

May 1994 49

describe.. cleartool subcommand
hh

−−ver.sion version-selector
(for use with versions only) For each pname, describes the version specified by version-selector.
This option overrides both version-selection by the view and version-extended naming. See
the version_selector manual page for syntax details.

−−anc .estor (for use with elements and versions only) Describes the closest common ancestor version of
all the pname arguments, which must all be versions of the same element. See the merge
manual page for a discussion of ‘‘closest common ancestor’’.

−−hli .nk hlink-selector ...
One or more names in this form:

hyperlink-type-name@hyperlink-ID[@pname-in-vob]

Hyperlinks are not file system objects — you cannot specify them with shell wildcards. The
final component is required only for a hyperlink in another VOB. Examples:
DesignFor@598f
RelatesTo@58843@/vobs/monet

−−typ.e type-name ...
Lists information about the type objects specified by the type-name argument(s). If there are
multiple types with the same name (for example, a label type and a hyperlink type are both
named REL3), all of them are listed.

−−poo.l pool-name ...
Lists information about the storage pools specified by the pool-name argument(s).

−−vre.plica [−−vob pname-in-vob] replica-name ...
Lists information about a particular replica of the current VOB, or another VOB.

−−vob pname-in-vob
With −type, −pool, −hlink, or −vreplica, this option specifies the VOB whose non-file-
system object is to be described. The pname-in-vob can be any location within the VOB.

You can also use an option in this form to indicate a VOB object to be described.

EXAMPLES
g Describe the version of element msg.c selected by your view.
% cleartool describe msg.c
version "msg.c@@/main/1"
created 08-Dec-93.12:12:55 by Chuck Jackson (test user) (jackson.dvt@oxygen)
element type: c_source
Labels:
REL6
REL1

g Describe a branch of an element, specifying it with an extended pathname.
% cleartool describe util.c@@/main/rel2_bugfix
branch "util.c@@/main/rel2_bugfix"
created 08-Dec-93.12:15:40 by Bev Jackson (test user) (jackson.dvt@oxygen)
branch type: rel2_bugfix
element type: text_file

50 ClearCase Reference Manual

cleartool subcommand describe..
hh

branched from version: /main/31

g Describe the label type REL3.
% cleartool describe −type REL3
label type "REL3"
created 08-Dec-92.12:13:36 by Bev Jackson (test user) (jackson.dvt@oxygen)
constraint: one version per branch

g Create a Tested attribute type and apply the attribute to the version of element util.h selected by your
current view. Then, use describe to display the newly applied attribute value, and use the −fmt option to
format the output.
% cleartool mkattype −nc −default ’"TRUE"’ Tested

% cleartool mkattr −default Tested util.h

% cleartool describe −aattr −all −fmt "Name: %Xn\nType of object: %m\n" util.h
Name: util.h@@/main/CHECKEDOUT
Type of object: version
Attributes:
Tested = "TRUE"

g Describe ddft, the current VOB’s default derived object storage pool.
% cleartool describe −pool ddft
pool "ddft"
created 15-Dec-93.09:34:00 by jenny.adm@oxygen
"Predefined pool used to store derived objects."
kind: derived pool
pool storage global pathname "/net/oxygen/usr/vobstore/tut/tut.vbs/d/ddft"
maximum size: 0 reclaim size: 0 age: 96

g Describe how the current view names an element that is named hello.mod in the jackson_fix view.
% cleartool describe −cview /view/jackson_fix/usr/hw/src/hello.mod
version "/usr/hw/src/hello.c@@/main/4"
created 08-Dec-92.12:16:29 by Chuck Jackson (test user) (jackson.dvt@oxygen)
element type: text_file

g Describe the VOB containing the current working directory. List views with checkouts or derived objects
in that VOB.
% cleartool describe −vob . −long
versioned object base "/usr/hw"
created 15-Dec-93.09:34:00 by jenny.adm@oxygen
"VOB dedicated to development of "hello, world" program"
VOB storage remote host:path "oxygen:/usr/vobstore/tut/tut.vbs"
VOB storage local pathname "/usr/vobstore/tut/tut.vbs"
VOB ownership:
owner jackson
group dvt

VOB holds objects from the following views:
oxygen:/usr/vobstore/tut/old.vws [uuid 249356fe.d50f11cb.a3fd.00:01:56:01:0a:4f]

May 1994 51

describe.. cleartool subcommand
hh

g Describe a hyperlink.
% cleartool describe −hlink Merge@516262@/vobs/proj
hyperlink "Merge@516262@/vobs/proj"
created 14-Jul-93.16:43:35 by Bill Bo (bill.user@uranus)
Merge@516262@/vobs/proj /vobs/proj/lib/cvt/cvt_cmd.c@@/main/v1.1_port/8 ->
/vobs/proj/lib/cvt/cvt_cmd.c@@/main/71

g Describe a derived object in the current view.
% cleartool describe −cview util.o
derived object "util.o@@11-Apr.12:03.33"
created 11-Apr-94.12:03:33 by Anne Duvo (anne.dev@oxygen)
references: 2 (shared)
derived pool: ddft
=> saturn:/usr/anne/views/anne_main.vws
=> oxygen:/usr/jackson/views/jackson_proj2.vws

SEE ALSO
cleartool subcommands: chpool, lshistory, lspool, lstype, merge, mkpool, rmview
fmt_ccase, version_selector

52 ClearCase Reference Manual

cleartool subcommand diff
hh

NAME diff − compare versions of a text-file element or a directory

SYNOPSIS
diff [−−win.dow | −−tin .y] [−−dif .f_format | −−ser . ial_format | −−col .umns n]

[−−opt . ions pass-through-opts] [−−pre.decessor] pname ...

DESCRIPTION
Calls an element-type-specific program (the compare method) to compare the contents of two or more file
elements, or two or more directory elements. Typically the files are versions of the same file element; a
directory comparison must involve versions of the same directory element.

You can also use this command to compare ordinary text files.

Selection of a ’compare’ Method
diff uses ClearCase’s type manager mechanism to determine how to compare the specified objects. For
example, if the objects to be compared are all versions of a compressed_text_file element, diff invokes the
program named compare in the type-manager directory /usr/atria/lib/mgrs/z_text_file_delta.

If none of the objects is a version of an element, diff uses the text_file_delta type manager, and displays a
message:
cleartool: Warning: No type info, using text file type manager.

For most ClearCase predefined type managers, the compare program is a symbolic link to the cleardiff util-
ity. For more information, see the type_manager manual page.

TEXT FILE COMPARISON ALGORITHM AND REPORT FORMAT
Text files are compared using a pairwise-differences algorithm, as illustrated in Figure 4.

B

C1 C2 Cn

base file

pairwise differences

contributor files

Figure 4. Pairwise-Differences Algorithm for Comparing Versions

g The first file is treated as the base contributor file. (It is referred to as file 1 in command output, and
simply as the base file in this manual page.)

g Each other contributor file is compared with the base file, producing a set of pairwise differences.

In effect, this process partitions the base file into two kinds of sections (groups of text lines): the
unchanged sections, in which none of the other contributors differs from the base file; and the difference
sections, in which one or more of the other contributors differs from the base file.

May 1994 53

diff cleartool subcommand
hh

Each difference section is reported as one or more pairwise differences. For example, if three contributor
files all differ from the base file in a particular section, diff lists the file1-file2 difference, followed by the
file1-file3 difference, followed by the file1-file4 difference.

Side-by-Side File Comparison Report Style
The default file-comparison report begins with a file summary, which lists all the input files and their
assignments as file 1, file 2, and so on. If no differences are detected among the files, this listing is
replaced by the message Files are identical.

The remainder of the report is a series of pairwise differences, each of which is preceded by a descriptive
header line, as illustrated in Figure 5.

<<< file 1: util.c@@/main/1

>>> file 2: util.c@@/main/3

------[after 15]---------|-----[inserted 16]-----------

-| char *s;

|-
-----[changed 18]--------|-----[changed to 19-21]------

return ctime(&clock); | s = ctime(&clock);

-| s[strlen(s)-1] = ’\0’;

| return s;

|-

c
c
c
c
c

file summary

header

difference

header

c
c
c
c
c

difference

Figure 5. Side-by-Side File-Comparison Report

The −quiet and −diff_format options suppress the file summary. The −headers_only option
suppresses the differences, listing the header lines only.

Header Lines. Each header line indicates which text lines in the input files were changed, and how they
were changed. The words describe the change in terms of ‘‘how the first file was changed to produce the
second file’’. The numbers in the header lines are the same (and in the same order) as in the headers out-
put by standard UNIX diff. Header lines can have the following formats, where each of A, B, and so on
might be a single line number (for example, 46) or a range (for example, 256-290):

------------[after A]------------|------------[inserted B]-------------

Insertion of one or more lines. B indicates where the inserted lines occur in the second file. A
indicates the corresponding point in the first file.

-----------[deleted C]-----------|--------------[after D]--------------

Deletion of one or more lines. C indicates which lines from the first file were deleted. D indi-
cates the corresponding point in the second file.

54 ClearCase Reference Manual

cleartool subcommand diff
hh

--------[deleted/moved C]--------|----------[after D now B]-----------

Deletion of one or more lines from the first file, to which there corresponds an insertion of the
same lines in the second file. Typically, this indicates that a range of lines was moved from
one location to another — see inserted/moved below. C indicates where the lines were
deleted from the first file; B indicates the location where these same lines were inserted in the
second file. D indicates the point in the second file that corresponds to C.

-----------[changed X]-----------|------------[changed to Y]-----------

One or more lines changed in place. X indicates which lines in the first file were changed. Y
indicates where the replacement lines occur in the second file.

----------[after A was C]--------|----------[inserted/moved B]--------

Insertion of one or more lines in the second file, to which there corresponds a deletion of the
same lines from the second file. Typically, this indicates that a range of lines was moved
from one location to another — see deleted/moved above. B indicates where the lines were
inserted in the second file; C indicates where these same lines were deleted from the first file;
A indicates the point in the first file that corresponds to B.

Differences. diff can report a pairwise difference in several ways. When comparing files, its default is to
list corresponding lines side-by-side, and possibly truncated.

A plus sign (+) at the end of a difference line indicates that it has been truncated in the report. To see
more of such lines, you can increase the report width using the −columns or −tiny option. The minus
signs (-) along the vertical separator line indicate the endpoints of the groups of differing lines. They help
to distinguish empty lines in the input files from blank space in command output.

Other File Comparison Report Styles
The −serial_format option causes the differences to be reported as entire lines, in above-and-below for-
mat instead of side-by-side format. Compare the following with the example above:
-----[after 15 inserted 16]-----
> char *s;
-----[18 changed to 19-21]-----
< return ctime(&clock);

> s = ctime(&clock);
> s[strlen(s)-1] = ’ ’;
> return s;

The −diff_format option causes both the headers and differences to be reported in the style of the stan-
dard UNIX diff(1) utility. Compare the following with the examples above:
15a16
> char *s;
18c19,21
< return ctime(&clock);

> s = ctime(&clock);
> s[strlen(s)-1] = ’ ’;
> return s;

May 1994 55

diff cleartool subcommand
hh

When diff compares multiple files, it adds file-identification annotations to the diff-style headers.

DIRECTORY-COMPARISON ALGORITHM AND REPORT FORMAT
For a comparison of directory versions, the cleardiff program is not invoked at all. Instead, diff invokes a
directory-element-specific compare method, whose report format is very similar to cleardiff´s, described
above.

(This program, /usr/atria/lib/mgrs/directory/compare, can be invoked only by cleartool subcommands.)

Kinds of Directory Entries
A version of a ClearCase directory can contain several kinds of entries:
g File Elements — reported by diff as: (1) the element’s name (in this directory version); (2) the

element’s creation time; (3) the username of the element’s creator. Example:
obj2 12-Aug.14:00 akp

Note that multiple VOB hard links to the same element will have the same creator and creation time,
but different names.

g Directory Elements — reported by diff in the same way as file elements, except that a slash character
(/) is appended to the element name. Example:
sub6/ 13-Aug.15:00 akp

g VOB Symbolic Links — reported by diff as: (1) the link’s name (in this directory version), followed
by -> and the text (contents) of the link; (2) the link’s creation time; (3) the username of the element’s
creator. Example:
doctn -> ../vobs/doctn 13-Aug.08:44 akp

How Differences are Reported
diff’s report is a series of differences, each of which focuses on one directory entry. A difference can be a
simple addition or deletion; it can also involve the renaming of an existing object, or the reuse of an exist-
ing name for another object. The following examples illustrate the various possibilities:
--|---------------[added]----------

-| obj2 12-Aug.14:00 akp

An object named obj2 was added (mkelem, mkdir, or ln) in the second version of the directory.

---------------[removed]--------------|----------------------------------
obj5 12-Aug.14:00 akp |-

An object named obj5 was removed (rmname) in the second version of the directory.

---------------[renamed]--------------|-------------[renamed to]-------
obj3 12-Aug.14:00 akp | obj3.new 12-Aug.14:00 akp

An object named obj3 was renamed (mv) to obj3.new in the second version of the directory.

-------------[old object]-------------|-------------[new object]-------
obj4 12-Aug.14:04 akp | obj4 19-Oct.17:10 akp

56 ClearCase Reference Manual

cleartool subcommand diff
hh

In the second version of the directory, an object named obj4 was removed (rmname) and
another object was created with that same name.

----------[old link text]-------------|-----------[new link text]------
doctn -> ../vobs/doctn 13-Aug.08:44 akp | doctn -> ../vb/doctn 19-Sep.21:01 akp

(special case of the preceding example) In the second version of the directory, a VOB sym-
bolic link named doctn was removed (rmname) and another VOB symbolic link was created
with that same name.

---------------[renamed]--------------|--------[renamed to]------------
obj4 12-Aug.14:01 akp | obj1 12-Aug.14:01 akp
---------------[removed]--------------|----------------------------------
obj1 12-Aug.14:00 akp |-

These two differences show that in the second version of the directory, an object named obj1

was removed and another object was renamed from obj4 to obj1.

PERMISSIONS AND LOCKS
Permissions Checking: No special permissions required. Locks: No locks apply. See the ‘‘Permissions
Checking’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
With the exception of −predecessor and −options, diff options are the same as those of cleardiff.

Using a Separate Window. Default: Sends output to the current window.

−−win.dow Displays output in a separate difference window, formatted as with -columns 120. Type an
operating system INTR character (typically, <Ctrl-C>) in the difference window to close it.
The diff command returns immediately, not waiting for the difference window to be closed.

−−tin .y Same as −window, but uses a smaller font in a 165-character difference window.

Output Format. Default: Reports differences in the format described in ‘‘How Differences Are Reported’’
above.

−−ser . ial_format
Reports differences with each line containing output from a single file, instead of in a side-
by-side format.

−−col .umns n
Establishes the overall width of a side-by-side report. The default width is 80 — only the first
40 or so characters of corresponding difference lines appear. If n does not exceed the default
width, this option is ignored.

−−dif .f_format
Reports both headers and differences in the same style as the standard diff(1) utility, and
suppresses the file summary from the beginning of the report.

Passing Through Options to the ’compare’ Method. Default: Does not pass any special options to the
underlying compare method (typically, the cleardiff program).

May 1994 57

diff cleartool subcommand
hh

−−opt . ions pass-through-opts
Specifies one or more compare method options that are not directly supported on the diff com-
mand line. Use quotes if you are specifying more than one pass-through option — diff must
see them as a single command-line argument. For example, this command passes through
the −quiet and −blank_ignore options:
cleartool diff -options "-qui -b" -pred util.c

Comparison of a Version with its Predecessor. Default: None.

−−pre.decessor
Effectively converts the first pname argument into two names: (1) the predecessor of pname in
the version tree; (2) pname itself. If pname specifies a checked-out version, the predecessor is
the version from which it was checked out.

An error occurs if the pname does not specify a version:
cleartool: Error: Not a vob object: "myfile.c".

Specifying the Data to be Compared. Default: None.

pname ... One or more pathnames, indicating the objects to be compared: versions of file elements, ver-
sions of directory elements, or any other files. If you don’t use −predecessor, you must
specify at least two pname arguments.

EXAMPLES
g Compare the version of a file element in the current view with the version in another view.
% cleartool diff util.c /view/jackson_old/usr/hw/src/util.c

g Compare the version of foo.c in the current view with its predecessor version:
% cleartool diff −predecessor foo.c

g Compare three files: the version of msg.c selected by the current view, its predecessor version, and
msg.SAVE in your home directory:
% cleartool diff −pre msg.c $HOME/msg.SAVE

g In a separate 132-column window, compare the version of util.c in the current view with a version on the
rel2_bugfix branch.
% cleartool diff −window −columns 132 util.c util.c@@/main/rel2_bugfix/LATEST

SEE ALSO
cleartool subcommands: diffcr, merge, xdiff, xmerge
cleardiff, xclearcase, xcleardiff, type_manager

58 ClearCase Reference Manual

cleartool subcommand diffcr
hh

NAME diffcr − compare configuration records created by clearmake or clearaudit

SYNOPSIS
diffcr [−−r .ecurse | −−fla.t] [−−sel .ect do-leaf-pattern] [−−ci] [−−ele .ment_only]

[−−vie.w_only] [−−typ.e { f | d | l } ...] [−−nam.e tail-pattern]
[−−wd] [−−nxn.ame] [−−l .ong | −−s .hort] do-pname-1 do-pname-2

DESCRIPTION
Compares the configuration records (CRs) of two derived objects. A CR is produced by clearmake when it
finishes executing a build script. By comparing CRs, you can determine differences in:
g versions of MVFS objects used as sources or produced during the build (includes elements and other

objects whose pathnames are under a VOB mount point)
g versions of non-MVFS objects that appeared as makefile dependencies during the build (explicit depen-

dencies declared in the makefile)
g the total number of times an object was referenced during a build, and the first target in which that

object was referenced
g build options (which can come from the command line, the UNIX environment, the makefile itself,

and so on)
g the build script executed
g non-critical differences, such as the date/time of the build, view name, host name, and so forth

The do-pname arguments specify the derived objects to be compared. You can use a derived object ID
(DO-ID) to identify a derived object created in any view. Alternatively, you can use a standard or view-
extended pathname (for example, myprog.o or /view/jpb/usr/src/myprog.o), to identify a DO created in the
current view or another view. A DO-ID takes the form:

DO-pname@@creation_date.creation_time.id-number

Example: myprog.o@@11-Nov.17:39.3871. (The lsdo command lists derived objects by DO-ID.)

diffcr supports the same filter and report style options as the catcr command. This means that you can res-
trict the comparison to particular subtargets of the do-pnames, control which objects actually appear in the
listing, select how pathnames are displayed, and expand the listing to include comments and other sup-
plementary information. See catcr for additional background.

PERMISSIONS AND LOCKS
Permissions Checking: No special permissions required. Locks: No locks apply. See the ‘‘Permissions
Checking’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
Comparing Differences in Subtargets. Default: diffcr compares the CRs for do-pname-1 and do-pname-2
only, not for any of their subtargets.

May 1994 59

diffcr cleartool subcommand
hh

−−r .ecurse Compares the CRs of the two specified derived objects, and their common subtargets. Each
pair of CRs is compared separately. By default, a recursive comparison does not descend
into DO versions; use −ci to override this.

−−fla . t Similar to −recurse, but consolidates the CRs for each do-pname-n into a single list, with no
duplicates, and then compares the lists. The report includes file system objects only; no
headers, variables and options, or build scripts. It also includes the total number of times
each object was referenced during the build, and the first target in which that object was
referenced (First seen in target).

−−sel .ect do-leaf-pattern
Starts the comparison at the subtarget(s) of do-pname that match do-leaf-pattern (which can
include pattern-matching characters — see the wildcards_ccase manual page). This option is
useful for focusing on a particular object (for example, object module hello.o) that was built
as part of a larger object (for example, executable hello).

−−ci (for use with
−recurse or −flat only) Descends into the CRs of DO versions that were used as build
sources.

Specifying Kinds of Objects to Display. Default: diffcr reports on all objects in the CRs, which may
include: source files, directories, and symbolic links; derived objects; makefiles; view-private files, and
non-MVFS objects that were explicitly declared as dependencies.

−−ele .ment_only
Lists versions of elements only, including checked-out versions. This option excludes from
the listing derived objects (except DO versions), view-private files and directories, symbolic
links, and non-MVFS objects.

−−vie.w_only
Lists view-private objects only, including checked-out versions of elements. If you specify
this option along with −element_only, the listing includes just checked-out versions of ele-
ments.

−−typ.e { f | d | l } ...
Lists file system objects of a particular kind: files (f) directories (d), or links (l). The default
value varies with the report style: normal and short listings (−short) default to f; long list-
ings (−long) default to fdl. You may specify multiple kinds of objects by grouping them
into a single argument; -type fd, for example.

−−nam.e tail-pattern
Considers the entry for a file system object only if its final pathname component matches the
specified pattern. See the wildcards_ccase manual page for a list of pattern-matching charac-
ters.

Controlling Report Appearance. Default: diffcr reports, in three sections, on MVFS objects, variables and
options, and the build script. The report uses full pathnames, and it omits comments and directory ver-
sions.

60 ClearCase Reference Manual

cleartool subcommand diffcr
hh

−−l .ong Expands the report to include the kinds of objects in the CR, and comments. With
−makefile, adds comments only. For example, an object may be listed as a version, a directory
version, or derived object (see ls −long for a complete list). Comments indicate if an object is
in makefile, a referenced derived object, or a new derived object.

−−s .hort Restricts the report to file system objects only (omits header information, variables and
options, and build scripts). With −makefile, the listing also includes build scripts.

−−wd Lists pathnames relative to the current working directory, rather than as full pathnames.

−−nxn.ame Lists simple pathnames for MVFS objects, rather than version-extended pathnames or DO-
IDs.

Specifying the Derived Objects. Default: None.

do-pname-1, do-pname-2
Standard pathnames and/or DO-IDs of two derived objects to be compared. Either or both
can be a DO version.

EXAMPLES
g Compare the CRs of two derived objects built at the name bgrs. Use lsdo to determine the DO-ID of the

derived object that is not visible in the current view.
% cleartool lsdo −zero bgrs
11-Dec.15:24 "bgrs@@11-Dec.15:24.1487"
11-Dec.12:05 "bgrs@@11-Dec.12:05.1256"

% cleartool diffcr bgrs bgrs@@11−Dec.12:05.1956
< Target bgrs built by jones.dvt
> Target bgrs built by jones.dvt
< Reference Time 11-Dec-93.15:23:52, this audit started 11-Dec-93.15:23:59
> Reference Time 11-Dec-93.12:02:39, this audit started 11-Dec-93.12:04:52
< View was oxygen:/usr/jones/views/main.vws [uuid 66e68edc.471511cd.ac55.08:00:2b:33:ec:ab]
> View was oxygen:/usr/jones/views/r1_fix.vws [uuid 8b468fd0.471511cd.aca5.08:00:2b:33:ec:ab]

MVFS objects:

< /vobs/docaux/bgr/sun4/bgrs@@11-Dec.15:24.1987
> /vobs/docaux/bgr/sun4/bgrs@@11-Dec.12:05.1956

< /vobs/docaux/bgr/sun4/bugs.o@@11-Dec.15:23.1981
> /vobs/docaux/bgr/sun4/bugs.o@@11-Dec.12:03.1902

< /vobs/docaux/bgr/sun4/bugsched.o@@11-Dec.15:23.1984
> /vobs/docaux/bgr/sun4/bugsched.o@@11-Dec.12:04.1953

The comparison shows that the builds used different versions of the object modules bugs.o and bugsched.o.

g Compare the same two derived objects again, this time including the CRs of all subtargets.
% cleartool diffcr −flat bgrs bgrs@@11−Dec.12:05.1956

MVFS objects:

< First seen in target "bugs.o"

May 1994 61

diffcr cleartool subcommand
hh

< 1 /vobs/docaux/bgr/bugs.c@@/main/2 <11-Dec-92.15:22:53>
> First seen in target "bugs.o"
> 1 /vobs/docaux/bgr/bugs.c@@/main/1 <19-Dec-91.11:49:54>

< First seen in target "bugsched.o"
< 1 /vobs/docaux/bgr/bugsched.c@@/main/2 <11-Dec-92.15:23:04>
> First seen in target "bugsched.o"
> 1 /vobs/docaux/bgr/bugsched.c@@/main/1 <19-Dec-91.11:50:07>

< First seen in target "bgrs"
< 1 /vobs/docaux/bgr/sun4/bgrs@@11-Dec.15:24.1987
> First seen in target "bgrs"
> 1 /vobs/docaux/bgr/sun4/bgrs@@11-Dec.12:05.1956

< First seen in target "bgrs"
< 2 /vobs/docaux/bgr/sun4/bugs.o@@11-Dec.15:23.1981
> First seen in target "bgrs"
> 2 /vobs/docaux/bgr/sun4/bugs.o@@11-Dec.12:03.1902

< First seen in target "bgrs"
< 2 /vobs/docaux/bgr/sun4/bugsched.o@@11-Dec.15:23.1984
> First seen in target "bgrs"
> 2 /vobs/docaux/bgr/sun4/bugsched.o@@11-Dec.12:04.1953

The integer at the beginning of an entry indicates the number of times the object was referenced during
the build. The first seen in target message indicates the first target rebuild in which the object was
referenced.

g For the same two derived objects as in the preceding examples, compare the file element versions used to
build subtarget bugsched.o. Report the differences in short format.
% cleartool diffcr −short −select bugsched.o −type f −element_only \

bgrs bgrs@@11−Dec.12:05.1956

< /vobs/docaux/bgr/bugsched.c@@/main/2
> /vobs/docaux/bgr/bugsched.c@@/main/1

g Compare two builds of program main, listing only those entries that involve files src/prog.c, include/prog.h,
and bin/prog.o.
% diffcr −recurse −name ’prog.[cho]’ main1 main2

SEE ALSO
cleartool subcommands: ls, lsdo, catcr, rmdo
clearaudit, clearmake, wildcards_ccase

62 ClearCase Reference Manual

cleartool subcommand edcs
hh

NAME edcs − edit config spec of a view

SYNOPSIS
edcs [−−tag view-tag] [file]

DESCRIPTION
Revises a view’s config spec by invoking a text editor on an existing config spec:
g the view’s current config spec, or
g a text file that you would first like to edit, then make the view’s config spec (if you don’t need to edit

the file, just use setcs)

At the end of the edit session, there is a confirmation step:
Compile and set this config spec? [yes]

A no answer cancels the command — the view retains its current config spec.

The text editor invoked by edcs is specified by the environment variable VISUAL (first choice) or EDITOR
(second choice). If neither of these EVs is set, vi(1) is invoked.

PERMISSIONS AND LOCKS
Permissions Checking: No special permissions required. Locks: No locks apply. See the ‘‘Permissions
Checking’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
Specifying the View. Default: Edits and sets a config spec for the current view.

−−tag view-tag
The view-tag of any view.

Specifying the Config Spec File. Default: Edits the view’s current config spec, which is stored in file
config_spec in the view storage directory.

file The pathname of a file to be used as input to the edit session. If the file does not exist, edcs
creates it.

EXAMPLES
g Edit the config spec of the current view.
% cleartool edcs

g Edit the config spec of the view with the view-tag jackson_fix.
% cleartool edcs −tag jackson_fix

g Use an ASCII file named cspec_REL3 as input to an edit session, producing a new config spec for the
current view.
% cleartool edcs cspec_REL3

SEE ALSO
cleartool subcommands: catcs, lsview, mktag, setcs
config_spec

May 1994 63

find cleartool subcommand
hh

NAME find − use pattern, query, or expression to search for objects

SYNOPSIS
g Find objects visible in currently-selected directory structure:

find pname ... [−−nam.e pattern] [−−fol . low] [−−dep.th | −−nr.ecurse | −−d.irectory]
selection-options action-options

g Find all objects in named VOBs:

find pname-in-vob ... −−a.ll [−−vis . ible | −−nvi .sible] selection-options action-options

g Find objects throughout all mounted VOBs:

find −−avo.bs [−−vis . ible | −−nvi .sible] selection-options action-options

selection-options:
−−use .r login-name
−−gro.up group-name
−−typ.e { f | d | l } ...
−−nxn.ame
−−cvi .ew
−−ele .ment query
−−bra.nch query
−−ver.sion query

action-options (at least one required, multiple allowed):
−−pri .nt
−−exe.c command-invocation
−−ok command-invocation ...

DESCRIPTION
The ClearCase find command is similar to the standard UNIX find(1) command. Only a limited set of the
standard find options are supported; the way that commands are invoked on selected objects (−exec and
−ok options) differs from the UNIX standard.

find starts with a certain set of objects, selects a subset of the objects, and then performs an action on the
subset. The selected objects can be elements, branches, versions, or VOB symbolic links. The action can
be to list the objects, or to execute a command on each object, either conditionally or unconditionally.

Typically, you start with all objects in a directory tree as seen through your view (similar to standard
UNIX find). You can also start with all objects in one or more VOBs, regardless of their visibility through
a particular view.

64 ClearCase Reference Manual

cleartool subcommand find
hh

OPTIONS AND ARGUMENTS
Specifying the Starting Set of Objects. Default: None — you must specify one of the following: (1) one
or more elements, using pname arguments; (2) one or more VOBs, using pname arguments along with the
−all option; (3) all mounted VOBs, using the −avobs option.

pname ... One or more file and/or directory elements; find starts with the elements, branches, and ver-
sions that are part of the specified file elements and the subtrees under the specified directory
elements.

−−a.ll Modifies the meaning of each pname argument to specify its entire VOB, not just a single file
or directory.

−−avo.bs find starts with all the elements, branches, and versions in all the VOBs active (mounted) on
the local host. (If environment variable CLEARCASE_AVOBS is set to a colon-separated list
of VOB-tags, this set of VOBs is used instead.)

NOTE: Processing all of a VOB’s elements (using −all or −avobs) is an order of magnitude faster than
‘‘walking’’ its entire directory tree (by specifying the VOB’s root directory as a pname argument). With
these options, the order in which elements are processed and/or reported is very different from ‘‘tree-
walk’’ order.

Considering Objects that are Not Currently Visible. Default: If you specify one or more entire VOBs,
using −all or −avobs, all elements in the VOB(s) are included, whether or not they are visible in the
view.

−−vis . ible Includes only those elements, along with their branches and versions, that are visible (have a
standard pathname) in the view.

−−nvi .sible Includes only those elements, along with their branches and versions, that are not visible (do
not have a standard pathname) in the view.

Selecting Elements Using Standard Criteria. The following options use standard-UNIX criteria to select
subsets of objects. See also the following section, where the options involve ClearCase-specific criteria.

−−nam.e pattern
Selects the subset of objects whose element names match the specified file name pattern. (See
the wildcards_ccase manual page.)

−−fol . low Causes VOB symbolic links to be traversed during the ‘‘walk’’ of the directory tree.

−−dep.th (same as standard UNIX) Causes directory entries to be processed before the directory itself.

−−nr.ecurse For each directory element, selects the objects in the element itself, and in the file and direc-
tory elements within it, but does not descend into its subdirectories.

−−d.irectory For each directory, examines only the directory itself, not the file elements it catalogues.

−−use .r login-name
Selects only those objects in the subset of elements owned by user login-name.

May 1994 65

find cleartool subcommand
hh

−−gro.up group-name
Selects only those objects in the subset of elements belonging to group group-name.

−−typ.e f
−−typ.e d
−−typ.e l Selects the subset of objects of a certain kind: file elements (f), directory elements (d), or VOB

symbolic links (l). To include multiple kinds of objects, group the keyletters into a single
argument (-type fd), or use multiple options (-type f -type d).

Selecting Elements Using Queries. The options in this section select a subset of objects using the Clear-
Case query language, which is described in the query_language manual page. You can use these options in
any combination. They are always applied in this order, successively refining the set of selected objects:
first −element, then −branch, then −version. The result of applying one or more of these options is a
set of objects at the ‘‘finest granularity level’’ — all versions if you used −version, or else all branches if
you used −branch, or else all elements if you used −element. If you use none of these options, the set
includes elements and VOB symbolic links. There is no way to use a query to select a set of VOB sym-
bolic links.

The ‘‘Formulating Queries’’ section below provides additional usage notes.

−−ele .ment query
Selects element objects using a ClearCase query; all of a selected element’s branches and ver-
sions are also selected.

−−bra.nch query
From the set of objects that ‘‘survived’’ the element-level query (if any), selects branch objects
using a ClearCase query; all of a selected branch’s versions are also selected.

−−ver.sion query
From the set of objects that ‘‘survived’’ the element-level and branch-level queries (if any),
selects version objects using a ClearCase query.

−−cvi .ew Modifies the set of objects selected by the −element, −branch, and −version queries (if
any):

− If you did not specify −version, replaces each element and branch with the version that
is currently selected by the view. (No substitution is performed on VOB symbolic links.)

− If you did specify −version, further restricts the subset to versions that are currently
selected by the view.

Use of Extended Pathnames. Default: find submits the objects it selects to the specified action using
extended pathnames, such as foo.c@@ (element), foo.c@@/main (branch), or foo.c@@/main/5 (version).

−−nxn.ame Removes the extended naming symbol (by default, @@) and any subsequent version-ID or
branch pathname from the name of each selected object. Duplicate names that result from
this transformation are suppressed. In effect, this option transforms ClearCase extended
names into standard UNIX names; it also transforms names of branches or versions into
names of elements.

66 ClearCase Reference Manual

cleartool subcommand find
hh

Specifying the Action. Default: None — you must specify an action to be performed on the selected
objects. You can specify a sequence of several actions, using two −exec options, or −exec followed by
−print, and so on.

−−pri .nt Lists the names of the selected objects, one per line.

−−exe.c command-invocation
Execute the specified command once for each selected object.

−−ok command-invocation
For each selected object, display a confirmation prompt; if you respond ‘‘yes’’, execute the
specified command.

The −exec and −ok command invocation does not follow the standard UNIX find syntax. Do not use {}

to indicate a selected object, and a quoted or escaped semicolon to terminate the command. Instead, enter
the entire command as a quoted string; use one or more of these environment variables to reference the
selected object:

CLEARCASE_PN
pathname of selected element or VOB symbolic link

CLEARCASE_XN_SFX
extended naming symbol (default: @@)

CLEARCASE_ID_STR
branch pathname of a branch object (/main/rel2_bugfix); version-ID of a version object
(/main/rel2_bugfix/4); null for a version object

CLEARCASE_XPN
full version-extended pathname of the selected branch or version (concatenation of the three preced-
ing variables)

FORMULATING QUERIES
The meaning of a query predicate often depends on which option you use it with. For example, an
attype query will be TRUE with −element if the element itself has an attribute of type attype-name; with
−branch, it will be TRUE if the branch itself has an attribute of type attype-name; and with −version, it
will be TRUE if the version itself has an attribute of type attype-name. Other query predicates have similar
object-dependent interpretations.

In general, you should quote each query to prevent shell-level interpretation of characters such as (, ",
and <Space>.

In csh(1), it is not sufficient to quote the ! character; you have to escape it:
% cleartool find . −version ’\! attype(TESTED)’ −print

Unlike queries in version selectors, find queries do not need to be enclosed in braces ({ ... }).

See the query_language manual page for complete details on query language primitives and syntax.

May 1994 67

find cleartool subcommand
hh

EXAMPLES
g List all file elements in and below the current working directory.
% cleartool find . −type f −print
./Makefile@@
./hello.c@@
./hello.h@@
./msg.c@@
./util.c@@

This listing includes the extended naming symbol. The −nxname option suppresses this symbol.

g List the version labeled REL1 for each element in or below the current working directory.
% cleartool find . −version "lbtype(REL1)" −print
.@@/main/1
./Makefile@@/main/1
./hello.c@@/main/2

g List each header file (*.h) and C source file (*.c) for which some version is labeled REL2 or REL3.
% cleartool find . −name ’*.[ch]’ \

−element ’lbtype_sub(REL2) || lbtype_sub(REL3)’ −print
./hello.c@@
./hello.h@@
./util.c@@

g List all versions that have a QAed attribute with the string value "Yes". Note the use of double-quotes
inside single-quotes to specify the string literal.
% cleartool find . −version ’QAed == "YES"’ −print
./Makefile@@/main/2
./hello.c@@/main/4
./hello.h@@/main/1
./util.c@@/main/2
./util.c@@/main/rel2_bugfix/1

g List the standard name of each element that has (or contains a branch or version that has) a BugNum attri-
bute with the value 189.
% cleartool find . −nxname −element ’attr_sub(BugNum,==,189)’ −print
./hello.c

g For each element that has had a merge from the rel2_bugfix branch to the main branch, archive the current
version of the element to a tar(1) file in your home directory.
% cleartool find . −element "merge(/main/rel2_bugfix,/main)" \

−exec ’tar −cvf $HOME/rel2bugmerge.tar $CLEARCASE_PN’

g If any element’s most recent version on the main branch is missing label REL3, label it.
% cleartool find . −version ’version(/main/LATEST) && \! lbtype(REL3)’ \

−exec ’cleartool mklabel −replace REL3 $CLEARCASE_XPN’

68 ClearCase Reference Manual

cleartool subcommand find
hh

g Attach a Testing attribute with string value "Done" to all versions labeled REL2. Note that the double-
quote characters that surround the string value must themselves be escaped or quoted:
% cleartool find . −ver ’lbtype(REL2)’ \

−exec ’cleartool mkattr Testing \"Done\" $CLEARCASE_XPN’

g Conditionally delete all branches of type experiment.
% cleartool find . −branch ’brtype(experiment)’ \

−ok ’cleartool rmbranch −force $CLEARCASE_XPN’

g Change all elements currently using storage pool my_cpool to use pool cdft instead.
% cleartool find . −all −element ’pool(my_cpool)’ \

−exec ’cleartool chpool cdft $CLEARCASE_PN’

g Obsolete elements that are no longer visible.
% cleartool find . −all −nvisible \

−exec ’cleartool lock −obsolete $CLEARCASE_PN’

SEE ALSO
cleartool subcommands: describe, ls
find(1), query_language, wildcards_ccase

May 1994 69

findmerge cleartool subcommand
hh

NAME findmerge − search for elements that require a merge / optionally perform merge

SYNOPSIS
findm.erge { −−avo.bs | pname ... | [pname ...] −−all }

[−−fol . low] [−−dep.th | −−nr.ecurse | −−d.irectory] [−−nam.e pattern]
[−−typ.e { f | d | fd }] [−−ele .ment query]
[−−use .r login-name] [−−gro.up group-name]
{ −−fta .g view-tag | −−fve.rsion version-selector | −−fla.test }
[−−nze.ro] [−−nba.ck] [−−why.not] [−−vis . ible] [−−log pname]
{

−−pri .nt [−−l .ong | −−s .hort | −−nxn.ame]
| −−exe.c command-invocation | −−ok command-invocation
| −−mer.ge | −−okm.erge | −−xme.rge | −−okx.merge

} ...
[−−abo.rt | −−qal . l] [−−ser . ial] [−−c comment | −−cq | −−cqe | −−nc]

DESCRIPTION
For one or more elements, determines whether a merge is required from a specified version to the version
selected by your view, then executes one or more actions:
g listing the elements that require a merge
g performing the required mergers (checking out elements as necessary)
g performing an arbitrary command

findmerge works as follows:

1. It considers a set of elements, which you specify using syntax similar to that of the standard UNIX
find(1) command and the ClearCase find command.

2. For each of these elements, findmerge examines the relationship between the version selected by your
view and the version specified by the −ftag, −fversion, or −flatest option. It determines
whether or not a merge is required from that other version to your view’s version.

3. findmerge then performs the action(s) you specify with −print, −exec, and/or the various −merge
variants.

PERMISSIONS AND LOCKS
Any user can enter a findmerge command. If the specified action involves a checkout and/or merge, then
the permissions-checking of those commands comes into play.

OPTIONS AND ARGUMENTS
Specifying the Elements To Be Considered. Default: None.

−−avo.bs Considers all the elements in all the VOBs active (mounted) on the local host. (If environment
variable CLEARCASE_AVOBS is set to a colon-separated list of VOB-tags, this set of VOBs is
used instead.)

70 ClearCase Reference Manual

cleartool subcommand findmerge
hh

pname ... One or more file and/or directory elements; only the specified file elements and the subtrees
under the specified directory elements will be considered.

pname ... −−all
Appending −all to a pname list causes all the elements in the VOB(s) containing the pname(s)
to be considered, whether or not they are visible in your view.

Narrowing the List of Elements To Be Considered. Use the following options to select a subset of the
elements specified by pname arguments and the −all or −avobs option.

−−dep.th (same as standard UNIX) Causes directory entries to be processed before the directory itself.

−−fol . low Causes VOB symbolic links to be traversed.

−−nr.ecurse For each directory element, considers the file and directory elements within it, but does not
descend into its subdirectories.

−−d.irectory For each directory, considers only the directory itself, not the file elements it catalogues.

−−nam.e pattern
Considers only those elements whose leaf names match the specified file name pattern. (See
the wildcards_ccase manual page.)

−−typ.e f
−−typ.e d
−−typ.e fd Considers file elements only (f), directory elements only (d), or both (fd).

−−ele .ment query
Considers only those elements that satisfy the specified query (same as the ClearCase find
command).

−−use .r login-name
Considers only those elements owned by user login-name.

−−gro.up group-name
Considers only those elements belonging to group group-name.

Specifying the ’FROM’ Version. Default: None — you must use one of these options to specify another
version of each element, to be compared with the version selected by your view.

−−fta .g view-tag
Compare with the version selected by the view with the specified view-tag. A version of the
same element is always used, even if the element has a different name in the other view.

−−fve.rsion version-selector
Compare with the version specified by the version-selector.

−−fla . test (consider only elements that are currently checked-out) Compare with the most recent ver-
sion on the branch from which your version was checked out. This option is useful with ele-
ments for which you have unreserved checkouts: if one or more new versions have been
checked in by other users, you must merge the most recent one into your checked-out version
before you can perform a checkin.

May 1994 71

findmerge cleartool subcommand
hh

Special Version Tree Geometry: Merging From Version 0. If a merge is required from a version that
happens to be version 0 on its branch, findmerge’s default behavior is to perform the merge and issue a
warning message:
Element "util.c" has empty branch [to /main/6 from /main/br1/0]

More often, findmerge determines that no merge is required from a zeroth version; it handles this case just
like any other no-merge-required case. Figure 6 illustrates both these cases.

....
hhhhhhhhhhhh

hhhhhhhhhhhh
.......................

merge is

needed

....
hhhhhhhhhhhh

.............

merge is

not needed

Figure 6. Merging From the Zeroth Version on a Branch

The following option overrides this default behavior.

−−nze.ro Does not perform a merge if the ‘‘from’’ contributor is version 0 on its branch. This gives you
the opportunity to delete the empty branch, and then perform a merge from the version at
which the branch was created.

Special Version Tree Geometry: Merge Back-and-Out to Subbranch. findmerge flags this special case
with a warning message:
Element "msg.c" requests merge to /main/12 backwards on same branch from /main/18

This situation arises when:
g You are merging from a ‘‘parent’’ branch to a subbranch.
g For a particular element, no subbranch has been created yet.
g Your view selects a version of that element using a -mkbranch config spec rule.

In this case, findmerge’s default behavior is to perform the merge by checking out the element (which
creates the subbranch at the ‘‘to’’ version), then overwriting the checked-out version with the ‘‘from’’ ver-
sion. Figure 7 illustrates this case.

72 ClearCase Reference Manual

cleartool subcommand findmerge
hh

....
BSLVL’to’ version

’from’ version

element * BSLVL -mkbranch subproj
hhh

hhh

....
BSLVL hhhhhhhhhhhhsubproj

....
checked-out

.

merge by

copying

Figure 7. Merging Back and Out to a Subbranch

The following option overrides this default behavior.

−−nba.ck Does not perform the merge in the case described above. It may be appropriate to simulate
the merge by moving the version label down to the ‘‘from’’ version. Note, however, that this
alternative leaves the element without a subbranch, which may or may not be desirable.

Verbosity of Merge Analysis. By default, findmerge:
g Silently skips elements that do not require a merge.
g Issues a warning message if your view does not select any version of an element, but the view

specified with −ftag does. (This occurs only when all elements of a VOB are being considered, with
−all or −avobs, and a new element has been created in the ‘‘from’’ view.)

The following options override this behavior.

−−why.not For each element that does not require a merge, displays a message explaining the reason.

−−vis . ible Suppresses the warning messages for elements that are not visible in the current view.

Actions to be Performed on the Selected Elements. Default: None.

−−pri .nt [−−l .ong | −−s .hort | −−nxn.ame]
Lists the names of the elements that require a merge. The default listing includes the
version-IDs of the ‘‘to’’ and ‘‘from’’ versions, and that of the base contributor (common ances-
tor):
Needs Merge "Makefile" [to /main/7 from /main/br1/1 base /main/6]

Specifying −short reduces the listing to version-extended pathnames of the ‘‘to’’ and ‘‘from’’
versions:
Makefile@@/main/7 Makefile@@/main/br1/1

Specifying −long adds to the default listing a description (describe command output) of the
‘‘from’’ version:
Needs Merge "Makefile" [to /main/7 from /main/br1/1 base /main/6]
version "Makefile@@/main/br1/1"
created 09-Nov-93.11:18:39 by Allison K. Pak (akp.user@neptune)

May 1994 73

findmerge cleartool subcommand
hh

element type: text_file
predecessor version: /main/br1/0

Specifying −nxname reduces the listing to just the standard pathname of the element:
./Makefile

−−exe.c command-invocation
−−ok command-invocation

Runs the specified command for each selected element. With −ok, findmerge pauses for
verification on each element, thus allowing you to process some elements and skip others.
Like the ClearCase find command, findmerge sets the following variables in the specified
command’s environment:

CLEARCASE_PN pathname of element

CLEARCASE_XN_SFX extended naming symbol (default: @@)

CLEARCASE_ID_STR version-ID of ‘‘to’’ version

CLEARCASE_XPN version-extended pathname of ‘‘to’’ version

CLEARCASE_F_ID_STR version-ID of ‘‘from’’ version

CLEARCASE_FXPN version-extended pathname of ‘‘from’’ version

CLEARCASE_B_ID_STR version-ID of base contributor version

−−mer.ge
−−okm.erge
−−xme.rge
−−okx.merge

Performs a character-oriented or graphical merge for each element that requires it. The ‘‘ok’’
variants pause for verification on each element, thus allowing you to process some elements
and skip others.

Special Case: Specifying -merge -xmerge causes findmerge to perform a character-oriented
merge in −abort mode; if the merge aborts (because it could not proceed completely
automatically), then the interactive graphical merge tool is invoked.

Logging of Merge Analysis. Default: A line is written to a merge log file for each element that requires a
merge. The log takes the form of a shell script that can be used to perform, at a later time, merges that are
not completed automatically (see −print and −abort, for example). A pound sign character (#) at the
beginning of a line indicates that the required merge was performed successfully. The log file’s name is
generated by findmerge and displayed when the command completes.

−−log pname Creates pname as the merge log file, instead of selecting a name automatically. To suppress
creation of a merge log file, use -log /dev/null.

Merge Options. If you have findmerge actually perform merges, you can specify the following options,
which work exactly as they do in the merge command. (−abort and −qall are mutually exclusive.)

74 ClearCase Reference Manual

cleartool subcommand findmerge
hh

−−abo.rt Cancels a merge if it is not completely automatic.

−−qal . l Turns off automated merging.

−−ser . ial Reports differences with each line containing output from one contributor, instead of in a
side-by-side format.

Specifying Checkout Comments. Default: When findmerge checks out elements in order to perform
merges, it prompts for a single checkout comment (like checkout -cq). You can override this behavior
by specifying one of the standard comment options.

−−c checkout-comment
−−cq
−−cqe
−−nc Standard comment options.

EXAMPLES
g Compare a source file version in your current view to a version on another branch. Log the results of the

comparision, but do not perform the merge. (If a merge is required, the log file stores a command that
will perform the merge.)
% cleartool findmerge msg.c −fversion /main/rel2_bugfix/LATEST −print
Needs Merge "msg.c" [to /main/2 from /main/rel2_bugfix/1 base /main/1]
A ’findmerge’ log has been written to "findmerge.log.04-Feb-94.10:01:23"

% cat findmerge.log.04−Feb−94.10:01:23
cleartool findmerge msg.c@@/main/2 -fver /main/rel2_bugfix/1 -log /dev/null -merge

g For the current directory subtree, compare all versions visible in the current view against the versions
selected by another view. Print a list of versions that require merging, but do not perform the merge. For
versions where no merge is required, explain why.
% cleartool findmerge . −ftag rel2_bugfix_view −whynot −print
No merge "./Makefile" [/main/3 descended from /main/2]
No merge "./cm_add.c" [element not visible in view rel2_bugfix_view]
No merge "./hello.c" [to /main/4 from version zero /main/rel2_bugfix/0]

...
A ’findmerge’ log has been written to "findmerge.log.04-Feb-94.11:00:59"

% cat findmerge.log.04−Feb−94.11:00:59
cleartool findmerge ./msg.c@@/main/2 -fver /main/rel2_bugfix/1 -log /dev/null -merge

g For the current directory subtree, compare versions visible in the current view against versions on
another branch, and perform any required merges. The resulting log file annotates all successful merges
with a # character.
% cleartool findmerge . −fversion /main/rel2_bugfix/LATEST −merge
Needs Merge "./util.c" [to /main/3 from /main/rel2_bugfix/2 base /main/rel2_bugfix/1]
Comment for all listed objects:
Merge from rel2_bugfix branch.
.
Checked out "util.c" from version "/main/3".

<<< file 1: /tmp/george_fig_hw/src/util.c@@/main/rel2_bugfix/1
>>> file 2: ./util.c@@/main/rel2_bugfix/2

May 1994 75

findmerge cleartool subcommand
hh

>>> file 3: ./util.c

---------[changed 7-8 file 1]----------|--------[changed to 7-12 file 3]-------

if (user_env) | if (user_env) {
return user_env; | if (strcmp(user_env,"root") == +

...
Moved contributor "./util.c" to "./util.c.contrib".
Output of merge is in "./util.c".
Recorded merge of "./util.c".
A ’findmerge’ log has been written to "findmerge.log.24-Mar-94.13:23:05"
% cat findmerge.log.24−Mar−94.13:23:05
#cleartool findmerge ./util.c@@/main/3 -fver /main/rel2_bugfix/2 -log /dev/nu
ll -merge -c "Merge from rel2_bugfix branch."

g As in the previous command, merge from another branch. This time, if any merge cannot be completed
automatically (two or more contributors modify the same line from the base contributor), invoke the
graphical merge utility to complete the merge.
% cleartool findmerge . −fversion /main/rel2_bugfix/LATEST −merge −xmerge

SEE ALSO
cleartool subcommands: find, merge, xmerge
query_language, version_selector, wildcards_ccase, xcleardiff
find(1)

76 ClearCase Reference Manual

cleartool subcommand help
hh

NAME help − help on cleartool command usage

SYNOPSIS
h.elp [command-name]

command-name −−h.elp

DESCRIPTION
Displays a usage message for all cleartool subcommands, or for one particular subcommand. You can also
use help as a command option — for example:
% cleartool des −h

PERMISSIONS AND LOCKS
Permissions Checking: No special permissions required. Locks: No locks apply. See the ‘‘Permissions
Checking’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
Specifying a Subcommand. Default: Displays syntax summaries for all cleartool subcommands, grouped
by function (not alphabetically).

command-name −−h.elp
h.elp command-name

Displays the syntax summary for one cleartool subcommand.

EXAMPLES
g Display a usage message for the mkview command.
% cleartool help mkview
Usage: mkview -tag view-tag [-tcomment tag-comment] [-tmode text-mode]

[-region network-region] [-ln link-storage-to-dir-pname]
[-host hostname -hpath host-stg-pname -gpath global-stg-pname]
view-storage-pname

g Display a usage message for the mkview command using the −help option.
% cleartool mkview −help
Usage: mkview -tag view-tag [-tcomment tag-comment] [-tmode text-mode]

[-region network-region] [-ln link-storage-to-dir-pname]
[-host hostname -hpath host-stg-pname -gpath global-stg-pname]
view-storage-pname

g Display a usage message for all cleartool commands, and redirect the output to a file for future reference.
% cleartool help > cleartool_cmd_summary

SEE ALSO
cleartool subcommands: man
clearcase

May 1994 77

ln cleartool subcommand
hh

NAME ln − create VOB hard link or VOB symbolic link

SYNOPSIS
g Create one link:

ln [−−s . link] [−−c comment | −−cq | −−cqe | −−nc] pname link-pname

g Create one or more links in a specified directory:

ln [−−s . link] [−−c comment | −−cq | −−cqe | −−nc] pname [pname ...] target-dir-pname

DESCRIPTION
NOTE: A link can be created in a directory only if that directory is checked-out. ln automatically
appends an appropriate line to the directory’s checkout comment.

The ClearCase ln command is similar to UNIX ln(1). It can create a single link, or it can create multiple
links in a specified directory.

You can use both UNIX ln and the ClearCase ln command to create links in a VOB directory. Links
created with UNIX ln are view-private objects and, thus, are invisible to users not working in your view.
Links created with the ClearCase ln command (VOB links) are cataloged in directory versions, in the same
way as elements. A VOB link becomes visible to those using other views only when you checkin the
directory in which you create the link.

There are two kinds of VOB links:
g A VOB hard link (created if you omit the −slink option) is an additional name for an existing ele-

ment.
g A VOB symbolic link (created if you use the −slink option) is a separate, unversioned object. Its con-

tents is a character string, the link text, in the form of a pathname. You can attach attributes and
hyperlinks to a VOB symbolic link, but not version labels.

The two kinds of VOB links differ in the way checkout/checkin works:
g You cannot checkout a VOB symbolic link. To ‘‘revise’’ a VOB symbolic link, you can (1) checkout its

directory, (2) remove the old VOB link, (3) create a new link with the same name, and (4) checkin the
directory.

g Since a VOB hard link is just another name for an element, you can checkout the link (that is, checkout
the element it names). When you do so, all the other names for the element will be listed by a Clear-
Case ls command as checkedout but removed. (The element is checked-out, but there are no view-
private files with the other names.) The command lscheckout -all lists the checked-out element
only once.

VOB symbolic links and VOB hard links can be renamed with mv, and deleted with rmname.

VOB HARD LINKS AND DIRECTORY MERGES
The ClearCase merge and findmerge commands can merge both file elements and directory elements.
Merging versions of a directory element can involve creation of a hard link to a directory:

78 ClearCase Reference Manual

cleartool subcommand ln
hh

g Working on a subbranch, a user checks out directory src, then uses mkdir to create (sub)directory ele-
ment testing within src.

g When the subbranch is merged back into the main branch, a hard link named testing is made in a
main-branch version of src, referencing the directory element already cataloged in the subbranch ver-
sion.

Most UNIX implementations do not allow creation of such hard links to directories. ClearCase allows it
only in this ‘‘directory merge’’ context: the two links (both named testing in the example above) must
occur in versions of the same directory element (src in the example above).

RECOVERING A REMOVED ELEMENT
You can use ln to ‘‘recover’’ an element that you mistakenly removed from a VOB directory with rmname.
See the rmname manual page for details.

UNIX HARD LINKS AND DERIVED OBJECTS
You cannot make a VOB hard link to a derived object, but you can make additional UNIX hard links to
one. See the derived_object manual page for a discussion.

CAUTION
As with UNIX ln, the form of this command that creates multiple links in a directory is intended pri-
marily for the creation of hard links. When using it to create VOB symbolic links, be sure not to create
links that point to themselves. For example:
% cleartool ln −slink hello.c hello.h util.c subd
Link created: "subd/hello.c".
Link created: "subd/hello.h".
Link created: "subd/util.c".

% cd subd ; ls −l
total 3
lrwxrwxrwx 1 jackson dvt 7 Mar 3 13:20 hello.c -> hello.c
lrwxrwxrwx 1 jackson dvt 7 Mar 3 13:20 hello.h -> hello.h
lrwxrwxrwx 1 jackson dvt 6 Mar 3 13:20 util.c -> util.c

PERMISSIONS AND LOCKS
Permissions Checking: No special permissions required. Locks: An error occurs if any of the following
objects are locked: VOB. See the ‘‘Permissions Checking’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
Type of Link. Default: Creates one or more VOB hard links.

−−s . link Creates VOB symbolic links.

Event Records and Comments. Default: Creates one or more event records, with commenting controlled
by your home directory’s .clearcase_profile file (default: −nc). See ‘‘Comment Handling’’ in the cleartool
manual page. Comments can be edited with chevent.

−−c comment , −−cq , −−cqe , −−nc
Overrides the default with one of ClearCase’s standard comment options.

May 1994 79

ln cleartool subcommand
hh

Specifying the ’To’ Part. Default: None.

pname ... Each pname must be a standard or view-extended pathname:

− For VOB hard links, each pname must specify an existing element. The element must be
in the same VOB as the link being created. (NOTE: You cannot create a VOB hard link to
a VOB symbolic link.)

− For VOB symbolic links, each pname is a character string that becomes the link text.

Specifying the Name of the New Link. Default: None.

link-pname A pathname within the same VOB as pname, at which one new VOB hard link or VOB sym-
bolic link is to be created. An error occurs if an object already exists at link-pname.

target-dir-pname
The pathname of an existing directory element in the same VOB as the pname argument(s). ln
creates a new link in this directory for each preceding pname argument. See ‘‘Caution’’ above.

EXAMPLES
g Create a VOB hard link, hw.c, as another name for element hello.c.
% cleartool ln hello.c hw.c
Link created: "hw.c".

g Create a VOB symbolic link, messages.c, pointing to msg.c.
% cleartool ln −slink msg.c messages.c
Link created: "messages.c".

g Create a group of hard links in the subd directory for all .h files in the current working directory.
% cleartool ln *.h subd
Link created: "subd/hello.h".
Link created: "subd/msg.h".
Link created: "subd/util.h".

SEE ALSO
cleartool subcommands: catcr, checkout, describe, ls, lsdo, merge, mkbranch, mv, rmname
derived_object, profile_ccase, ln(1)

80 ClearCase Reference Manual

cleartool subcommand lock
hh

NAME lock − lock an object

SYNOPSIS
g Lock entire VOB:

lock [−−nus.ers login-name[,. . .] | −−obs.olete] [−−c comment | −−cq | −−cqe | −−nc]
−−vob { pname-in-vob | vob-storage-dir-pname }

g Lock VOB storage pool:

lock [−−rep.lace] [−−nus.ers login-name[,. . .] | −−obs.olete]
[−−c comment | −−cq | −−cqe | −−nc]
[−−vob pname-in-vob] −−poo.l pool-name ...

g Lock element or branch:

lock [−−rep.lace] [−−nus.ers login-name[,. . .] | −−obs.olete]
[−−c comment | −−cq | −−cqe | −−nc] pname ...

g Lock type object:

lock [−−rep.lace] [−−nus.ers login-name[,. . .] | −−obs.olete]
[−−c comment | −−cq | −−cqe | −−nc]
{ −−elt .ype | −−brt .ype | −−att .ype | −−hlt .ype | −−lbt .ype | −−trt .ype | −−rpt .ype }
[−−vob pname-in-vob] type-name ...

DESCRIPTION
Creates a lock on an entire VOB, or on one or more file system objects, type objects, or VOB storage pools. A
lock on an object disables ClearCase operations that modify the object; a lock has no effect on ‘‘read’’
operations, such as lshistory. (Exception: see ‘‘Cleartext Pool’’ below.) The following sections describes
the several kinds of locks.

VOB Lock
Locking an entire VOB disables all ‘‘write’’ operations to that VOB. A typical application is locking a VOB
to prevent it from being modified during backup.

Type Lock
In general, locking a type object disables:
g operations that create, delete, or modify instances of the type
g operations that delete or modify the type object itself (for example, renaming it)

The following sections describe how these general rules apply to the different kinds of type objects.

Element Type. If an element type is locked, you cannot:
g use it in an rmtype, rntype, or mkeltype -replace command

May 1994 81

lock cleartool subcommand
hh

g create an element of that type with mkelem or mkdir
g change an existing element to that type with chtype
g modify the element’s version tree with checkout, checkin, or mkbranch

Branch Type. If a branch type is locked, you cannot:
g use it in an rmtype, rntype, or mkbrtype -replace command
g create a branch of that type with mkbranch
g rename (that is, change the type of) an existing branch to that type with chtype
g modify the branch with checkout or checkin

You can create a subbranch at any version on a locked branch, using mkbranch. (Creating a subbranch
does not modify the branch itself.)

Label Type. If a label type is locked, you cannot:
g use it in an rmtype, rntype, or mklbtype -replace command
g attach or remove a version label of that type with mklabel or rmlabel (This includes moving a label

from one version to another with mklabel -replace.)

Attribute Type. If a attribute type is locked, you cannot:
g use it in an rmtype, rntype, or mkattype -replace command
g attach or remove an attribute of that type with mkattr or rmattr (This includes moving an attribute

from one version to another with mkattr -replace.)

Hyperlink Type. If a hyperlink type is locked, you cannot:
g use it in an rmtype, rntype, or mkhltype -replace command
g create or remove a hyperlink of that type with mkhlink or rmhlink

Trigger Type. If a trigger type is locked, you cannot:
g use it in an rmtype, rntype, or mktrtype -replace command
g (if created with mktrtype -element) create or remove a trigger of that type with mktrigger or

rmtrigger

In general, locking a trigger type does not inhibit triggers of that type from firing. Exception: trigger
firing is inhibited if a trigger type created with mktrtype -element -global or mktrtype -type is
made obsolete (using lock -obsolete).

Replica Type. If a replica type is locked, you cannot:
g use it in an rmtype, rntype, or mkrptype -replace command
g create or remove a VOB replica of that type with mkreplica or rmvob.

82 ClearCase Reference Manual

cleartool subcommand lock
hh

Storage Pool Lock
Locking a VOB storage pool inhibits commands that create or remove the pool’s data containers. It also
prevents the pool’s scrubbing parameters from being modified with mkpool -update. The following
sections describe how this principle applies to the different kinds of storage pools.

Source Pool. If a source storage pool is locked, you cannot:
g create an element that would be assigned to that pool, with mkelem or mkdir (A new element inherits

its pool assignments from its parent directory element.)
g change an existing element’s pool assignment to/from that pool, with chpool
g change an element’s element type with chtype, if the change would require recreation of source data

containers (for example, changing from type file to type text_file)
g checkin a new version of an element assigned to that pool
g create or remove a branch of an element assigned to that pool, with mkbranch or rmbranch
g remove a version of an element assigned to that pool, or remove the element itself, with rmver or

rmelem

Derived Object Pool. If a derived object storage pool is locked:
g clearmake cannot wink-in a previously unshared derived object in a directory assigned to that pool

(The invocation of promote_server to copy the data container from view-private storage to the derived
object storage pool fails.)

g scrubber cannot remove data containers from the pool
g an rmdo command fails for a derived object whose data container is in that pool

Cleartext Pool. If a cleartext storage pool is locked:
g an attempt to read (for example, with cat) a version of an element assigned to that pool may fail. (It

fails if a new cleartext data container for that version would have been created and cached in the
cleartext pool.)

OBSOLETE OBJECTS
An object becomes obsolete if it is processed with a lock -obsolete command. An obsolete type object
or obsolete storage pool is not only locked, but is also invisible to certain forms of the lstype, lslock, and
lspool commands. For example, the command lstype -lbtype omits obsolete label types from its list-
ing.

An obsolete VOB or obsolete file system object is no different from one with an ordinary lock.

You can change an object’s status from obsolete to ‘‘just plain locked’’ by using a lock -replace com-
mand:

(make a branch type obsolete)% cleartool lock -obsolete -brtype test_branch
Locked branch type "test_branch".

(change the branch type to ’just locked’)% cleartool lock -replace -brtype test_branch

May 1994 83

lock cleartool subcommand
hh

Similarly, you can use a lock -replace command to make a locked object obsolete.

REMOVING LOCKS
The unlock command removes a lock from an object, re-enabling the previously prohibited operations.

PERMISSIONS AND LOCKS
Kind of Object Users Permitted to Lock the Object
type object type creator, VOB owner, root user
storage pool VOB owner, root user
VOB VOB owner, root user
element element owner, VOB owner, root user
branch branch creator, element owner, VOB owner, root user

Even if you have permission to execute this command, it fails if an entire-VOB lock has been placed on
the VOB containing the object.

OPTIONS AND ARGUMENTS
Replacing an Existing Lock. Default: An error occurs if you attempt to lock an object that is already
locked.

−−rep.lace (cannot be used when locking an entire VOB) Uses a single ‘‘atomic’’ transaction to replace an
existing lock with a new lock. (If you use two commands to unlock the object, then lock it
again, there is a short interval during which the object is ‘‘unprotected’’.)

You can use this option to change a object’s status from ‘‘just locked’’ to ‘‘obsolete’’.

Specifying the Degree of Locking. Default: Locks an object to all users, but does not make the object
obsolete.

−−obs.olete Locks an object for all users, and also makes it obsolete.

−−nus.ers login-name[,. . .]
Allows the specified users to continue using the object, which becomes locked to all other
users. The list of user names must be comma-separated, with no white space.

Event Records and Comments. Default: Creates one or more event records, with commenting controlled
by your home directory’s .clearcase_profile file (default: −nc). See ‘‘Comment Handling’’ in the cleartool
manual page. Comments can be edited with chevent.

−−c comment , −−cq , −−cqe , −−nc
Overrides the default with one of ClearCase’s standard comment options.

Specifying the Kind of Object to be Locked. Default: The final argument(s) are assumed to be the
names of elements and or branches. To lock another kind of object, you must use one of the following
options to specify the kind.

−−vob The argument (only one allowed) will specify an entire VOB. This must be the last option
specified — see ‘‘Specifying the VOB’’ below.

84 ClearCase Reference Manual

cleartool subcommand lock
hh

−−elt .ype The argument(s) will specify element type objects.
−−brt .ype The argument(s) will specify branch type objects.
−−att .ype The argument(s) will specify attribute type objects.
−−hlt .ype The argument(s) will specify hyperlink type objects.
−−lbt .ype The argument(s) will specify label type objects.
−−trt .ype The argument(s) will specify trigger type objects.
−−rpt .ype The argument(s) will specify replica type objects.
−−poo.l The argument(s) will specify storage pools.

Specifying the VOB. Default: When locking type objects and storage pools: processes objects in the VOB
containing the current working directory; when locking an entire VOB: no default — you must specify a
VOB.

−−vob pname-in-vob
The VOB to be locked, or whose type object(s) or storage pool(s) are to be locked. pname-in-
vob can be any location within the VOB.

−−vob vob-storage-dir-pname
This alternative form of the −vob option is valid only when locking an entire VOB. This is a
convenience feature, enabling administrators to process entire-VOB locks without having to
use a view.

Specifying the Objects. Default: None.

type-name ...
pool-name ...
pname ... (mutually exclusive)

One or more names, specifying the objects to be locked. To lock an element, you can specify
the element itself (for example, foo.c@@) or any of its versions (for example, foo.c or
foo.c@@/RLS1.3). To lock a branch, use an extended pathname (for example,
foo.c@@/main/rel2_bugfix).

EXAMPLES
g Lock three label types for all users.
% cleartool lock −lbtype REL1 REL1.1 REL2
Locked label type "REL1".
Locked label type "REL1.1".
Locked label type "REL2".

g Obsolete a branch type.
% cleartool lock −obsolete −brtype rel2_bugfix
Locked branch type "rel2_bugfix".

g Lock the VOB containing the current working directory.
% cleartool lock −vob .
Locked versioned object base "/usr/hw".

May 1994 85

lock cleartool subcommand
hh

g Lock the motif branch for all users except gomez and jackson.
% cleartool lock −nusers gomez,jackson −brtype motif
Locked branch type "motif".

g Lock elements with a .c suffix for all users. Then, try to checkout one of the locked elements.
% cleartool lock *.c
Locked file element "hello.c".
Locked file element "msg.c".
Locked file element "util.c".

% cleartool checkout −nc msg.c
cleartool: Error: Lock on file element prevents operation "checkout".
cleartool: Error: Unable to check out "msg.c".

SEE ALSO
cleartool subcommands: lshistory, lslock, lspool, lstype, protect, unlock
profile_ccase, promote_server, scrubber

86 ClearCase Reference Manual

cleartool subcommand ls
hh

NAME ls − list VOB-resident objects and view-private objects in a directory

SYNOPSIS
ls [−−r .ecurse | −−d.irectory] [−−s .hort | −−l .ong] [−−vob._only | −−vie.w_only]

[−−nxn.ame] [−−vis . ible] [pname ...]

DESCRIPTION
Lists MVFS objects: those accessed at pathnames within VOB directories. An error occurs if you try to list
a non-MVFS object.

Listing Format
By default, ls lists:
g the name of each element cataloged in the current directory, with the version-ID of the particular ver-

sion selected by the view. Also included is the version selector part of the config spec rule that selects
this version.

g the name of each view-private object in the current directory
g the name of each derived object visible in the view, along with its unique DO-ID

The listing for an element or derived object may also include an annotation that indicates an unusual or
noteworthy state. For example, the listing for an element that has been checked out to your view identifies
the version that was checked out:
hello.c@@/main/CHECKEDOUT from /main/4 Rule: CHECKEDOUT

The following annotations may also appear:

eclipsed

No version of the element is selected, because a view-private object with the same name exists in your
view. Typical occurrence: you create a view-private file in your view, then an element with the same
pathname is created in another view; in your view, a ls -vob_only shows the element to be eclipsed.

eclipsed by checkout

(appears only when you use the −vob_only option) No version from the element’s version tree is
selected, because the element has been checked out in this view, and a checked-out version always
eclipses all checked-in versions.

checkedout but eclipsed

The element has been checked out in this view, but there is no CHECKEDOUT config spec rule; thus, the
checked-out version is not visible in the view.

checkedout but removed

The element was checked out in this view, but the view-private file was subsequently removed. You
might have removed the file with UNIX rm(1). ClearCase removes it (in effect) when you checkout a
file with checkout -out, or when you checkout a DO version.

NOTE: If a file element has several names, by virtue of one or more VOB hard links, checking out the
element under one name causes all the other names to be listed with this annotation. (The element is
checked-out, but there are no view-private files with the other names.)

May 1994 87

ls cleartool subcommand
hh

no version selected

The element is not selected by any config spec rule, or is selected by a -none config spec rule.

error on reference

The element is selected by a -error config spec rule.

view−−>vob hard link

The object is a view-private (UNIX-level) hard link to an object in VOB storage.

no config record

The derived object’s data container is still stored in the view, but the derived object in the VOB data-
base (and, typically, its associated configuration record) have been deleted by rmdo. This can occur
only in the view in which the derived object was originally built.

disputed checkout

The element is considered to be checked-out by the view_server but is not so indicated in the VOB
database (or vice-versa). This can occur during the short interval in which a checkin or checkout com-
mand is in progress. The annotation should not appear if you enter the ls command again.

removed with white out

The derived object was winked-in (and is still referenced) by the current view, but it has been forcibly
removed from the VOB database with rmdo. The derived object is not recoverable.

Elements Suppressed from the View
The listing includes elements selected with −none and −error config spec rules, and elements that are
not selected by any config spec rule. Standard commands, such as ls(1), and cat(1), get not found errors
when accessing such elements. You can specify such elements in commands that access the VOB database
only, such as describe, lsvtree, and mklabel.

PERMISSIONS AND LOCKS
Permissions Checking: No special permissions required. Locks: No locks apply. See the ‘‘Permissions
Checking’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
Report Format. Default: The default report format is described in ‘‘Listing Format’’ above.

−−s .hort Restricts the listing of each entry to its version-extended pathname only.

−−l .ong Annotates listing of each entry with a classification — version, directory version, view private
object, derived object, derived object version, or symbolic link — and lists the config spec rule that
matches the object.

−−nxn.ame Lists simple pathnames instead of version-extended pathnames.

VOB/View Restriction. Default: The listing includes both objects in VOB storage and objects in view
storage.

−−vob._only
Restricts the listing to objects in VOB storage only, including versions of elements and VOB
links. This may also add some entries to the listing: those for the underlying elements that are
eclipsed by checked-out versions.

88 ClearCase Reference Manual

cleartool subcommand ls
hh

−−vie.w_only
Restricts the listing to view objects only: view-private files, directories, and links; checked-out
versions; and all derived objects visible in the view.

NOTE: Derived objects visible in the view are listed by −view_only (and not −vob_only),
regardless of whether or not they are (or ever have been) shared.

−−vis . ible Restricts the listing to objects visible to the standard ls command.

Specifying the Objects to be Listed. Default: The current working directory (equivalent to specifying ‘‘.’’
as the pname argument). If you don’t specify any other options, all files and links in the current working
directory are listed; all subdirectory entries are listed, but not the contents of these subdirectories.

pname ... Restricts the listing to the specified files, directories, and/or links.

Handling of Directory Arguments. Default: For each pname that specifies a directory element, ls lists the
contents of that directory, but not the contents of any of its subdirectories.

NOTE: This includes directories in ClearCase’s version-extended namespace, which represent elements
and their branches. For example, specifying foo.c@@/main/bug403 as an argument lists the contents of that
branch: all the versions on the branch.

−−r .ecurse Includes a listing of the entire subtree below any subdirectory included in the top-level list-
ing. VOB symbolic links are not traversed during the recursive descent.

−−d.irectory Lists information on a directory itself, rather than its contents.

EXAMPLES
NOTE: In some examples, output is wrapped for clarity.

g List the VOB-resident objects and view-private objects in the current working directory.
% cleartool ls
Makefile@@/main/3 Rule: /main/LATEST
bug.report
cm_add.c@@/main/0 Rule: /main/LATEST
cm_fill.c@@/main/0 Rule: /main/LATEST
convolution.c@@/main/CHECKEDOUT from /main/0 Rule: CHECKEDOUT
edge.sh
hello@@24-Mar.11:32.418
hello.c@@/main/CHECKEDOUT from /main/4 Rule: CHECKEDOUT
hello.h@@/main/CHECKEDOUT from /main/2 Rule: CHECKEDOUT
hello.o@@24-Mar.11:32.412
hw.c@@/main/4 Rule: /main/LATEST
include@@/main/CHECKEDOUT Rule: CHECKEDOUT

g Use the objects in the current working directory, with annotations.
% cleartool ls −long
version Makefile@@/main/3 Rule: element * /main/LATEST
view private object bug.report
version cm_add.c@@/main/0 Rule: element * /main/LATEST
view derived object hello@@24-Mar.11:32.418
version hello.h@@/main/CHECKEDOUT from /main/2

Rule: element * CHECKEDOUT
view derived object hello.o@@24-Mar.11:32.412

May 1994 89

ls cleartool subcommand
hh

directory version include@@/main/CHECKEDOUT Rule: element * CHECKEDOUT
symbolic link messages.c --> msg.c
version msg.c@@/main/1 Rule: element * /main/LATEST
view private object util.c.contrib

g List only the view-private objects in the current working directory.
% cleartool ls −view_only
bug.report
hello@@24-Mar.11:32.418
hello.c@@/main/CHECKEDOUT from /main/4 Rule: CHECKEDOUT
hello.h@@/main/CHECKEDOUT from /main/2 Rule: CHECKEDOUT
hello.o@@24-Mar.11:32.412
msg.o@@23-Mar.20:42.379
util.c@@/main/CHECKEDOUT from /main/4 Rule: CHECKEDOUT
util.o@@24-Mar.11:32.415

g List the contents of the directory in extended namespace that corresponds to the main branch of element
util.c.
% cleartool ls util.c@@/main
util.c@@/main/0
util.c@@/main/1
util.c@@/main/2
util.c@@/main/3
util.c@@/main/CHECKEDOUT
util.c@@/main/LATEST
util.c@@/main/REL2
util.c@@/main/REL3
util.c@@/main/rel2_bugfix

SEE ALSO
cleartool subcommands: checkout, lsprivate, lsvtree, uncheckout
config_spec

90 ClearCase Reference Manual

cleartool subcommand lscheckout
hh

NAME lscheckout − list checkouts of an element

SYNOPSIS
lsc .heckout | lsco [−−r .ecurse | −−d.irectory | −−all | −−avo.bs | −−are.plicas]

[−−l .ong | −−s .hort | −−fmt format-string]
[−−me | −−use .r login-name] [−−cvi .ew]
[−−brt .ype branch-type-name] [pname ...]

DESCRIPTION
Lists the checkout records (the ‘‘checkouts’’) for one or more elements. There are many controls for specify-
ing the scope: which elements, directories, or VOBs; which user; which view; and so on.

Checkouts and VOB Hard Links
A file element can have several names, by virtue of one or more VOB hard links. Checking out such an ele-
ment under one name causes all the names to be listed as checked−out. But the command lscheckout

-all lists the checked-out element only once.

PERMISSIONS AND LOCKS
Permissions Checking: No special permissions required. Locks: No locks apply. See the ‘‘Permissions
Checking’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
Specifying the Elements. Default: The current working directory (equivalent to specifying ‘‘.’’ as the
pname argument). If you don’t specify any options, lscheckout lists all checkouts of elements in the current
directory, to any view. If the current directory is itself checked-out, this is indicated, also.

pname ... One or more pathnames, specifying file elements and/or versions of directory elements. (A
standard or view-extended pathname to a directory specifies the version selected by the
view.)

− For each pname that specifies a file element, the listing includes that element’s checkout
event records.

− For each pname that specifies a version of a directory element, the listing includes
checkout event records of elements cataloged in that directory version.

The following options modify the processing of the pname arguments.

−−r .ecurse Lists the checkouts of elements in the entire subtree below any directory encountered. VOB
symbolic links are not traversed during the recursive descent.

−−d.irectory Lists the checkouts (if any) of a directory itself, rather than the checkouts of elements
cataloged in it.

−−all Lists all the checkouts in the VOB containing pname. If you don’t specify any pname argu-
ments, lists all checkouts in the VOB containing the current working directory.

−−avo.bs Similar to −all, but includes checkouts in all VOBs active (mounted) on the local host. (If
environment variable CLEARCASE_AVOBS is set to a colon-separated list of VOB-tags, this
set of VOBs is used instead.)

May 1994 91

lscheckout cleartool subcommand
hh

−−are.plicas Similar to −all, but includes checkouts in all replicas of the VOB containing pname.

Report Format. Default: The listing of a checkout event record looks like this:
31-Aug.20:19 drp checkout version "ct+lscheckout.1" from /main/24 (reserved)

−−l .ong Expands the listing to include the view to which the element is checked out.

−−s .hort Restricts the listing to the pathnames of checked-out elements only.

−−fmt format-string
Lists information using the specified format string. See the fmt_ccase manual page for details
on using this report-writing facility.

Selecting Checkout Records to List. Default: The listing includes all checkouts for the specified ele-
ments: made in any view, made by any user.

−−me Restricts the listing to your own checkouts.

−−use .r login-name
Restricts the listing to checkouts made by the specified user.

−−cvi .ew Restricts the listing to checkouts made in the current view, not in other views.

−−brt .ype branch-type-name Restricts the listing to checkouts on branches of the specified type.

EXAMPLES
NOTE: In some examples, output is wrapped for clarity.

g List the checkouts in the current working directory.
% cleartool lscheckout
08-Dec.12:17 jackson checkout version "hello.c" from /main/4 (reserved)
08-Dec.12:17 jackson checkout version "hello.h" from /main/1 (unreserved)
"modify local defines"

08-Dec.12:17 jackson checkout version "msg.c"
from /main/rel2_bugfix/0 (reserved)

g List only the names of elements checked out to the current view.
% cleartool lscheckout −short −cview
hello.c
hello.h
hw.c
include

g List the checkouts in all directories at or below the current directory.
% cleartool lscheckout −recurse
08-Dec.12:17 jackson checkout version "hello.c"

from /main/4 (reserved)
08-Dec.12:17 jackson checkout version "hello.h"

from /main/1 (unreserved)
"modify local defines"

08-Dec.12:17 jackson checkout version "msg.c"
from /main/rel2_bugfix/0 (reserved)

08-Dec.12:17 jackson checkout directory version "subd"
from /main/1 (reserved)

08-Dec.12:17 jackson checkout version "./subd/util.h"

92 ClearCase Reference Manual

cleartool subcommand lscheckout
hh

from /main/0 (reserved)

g List elements checked out by the user in all mounted VOBs.
% cleartool lscheckout −avobs −me
08-Dec.12:17 jackson checkout version "/usr/hw/src/hello.c"

from /main/4 (reserved)
08-Dec.12:17 jackson checkout version "/usr/hw/src/hello.h"

from /main/1 (unreserved)
"modify local defines"

08-Dec.12:17 jackson checkout directory version "/usr/hw/release"
from /main/0 (reserved)

08-Dec.12:17 jackson checkout version "/usr/hw/src/msg.c"
from /main/rel2_bugfix/0 (reserved)

08-Dec.12:17 jackson checkout version "/usr/hw/src/util.h"
from /main/0 (reserved)

SEE ALSO
cleartool subcommands: checkin, checkout, lsprivate, uncheckout
fmt_ccase

May 1994 93

lsdo cleartool subcommand
hh

NAME lsdo − list derived objects created by clearmake or clearaudit

SYNOPSIS
lsdo [−−r .ecurse] [−−me] [−−zer .o] [−−l .ong | −−s .hort | −−fmt format-string]

[−−sna .me | −−sti .me] [pname ...]

DESCRIPTION
Lists information about one or more derived objects (DOs) in a VOB. Derived objects are created by the
clearmake and clearaudit utilities. By default, lsdo lists all derived objects built at a given pathname, no
matter what view they were built in. Exceptions:
g Unshared derived objects that have a zero reference count are omitted unless you use the −zero

option.
g DO versions, derived objects that have checked in as versions of elements, are never listed.

You can use pname arguments to restrict the listing to derived objects with particular pathnames, or to all
the derived objects in particular directories. You can specify a derived object with a standard pathname,
or with an extended name that includes a derived object’s unique DO-ID.

lsdo lists derived objects without respect to which views (if any) reference them. At any given time, a
view ‘‘sees’’ at most one derived object at a given pathname.

PERMISSIONS AND LOCKS
Permissions Checking: No special permissions required. Locks: No locks apply. See the ‘‘Permissions
Checking’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
Handling of Directory Arguments. Default: If any pname argument is a directory, the DOs in pname are
listed, but not the DOs in any subdirectories of pname.

−−r .ecurse Includes DOs in the entire subtree below any pname that is a directory (or the current working
directory if you don’t specify any pname arguments). VOB symbolic links are not traversed
during the recursive descent into a directory.

Selection of Derived Objects. Default: lsdo lists DOs created by any user, but excludes DOs whose data
containers no longer exist.

−−me Restricts the listing to derived objects that you created.

−−zer .o Includes in the listing unshared (that is, never-shared) derived objects with zero reference
counts. Such objects cannot be candidates for configuration lookup and wink-in, because their
data containers no longer exist.

Controlling Report Appearance. Default: Each DO’s listing includes its extended name (including DO-
ID) along with creation-related data: time, username, and hostname. For example:
11-Jun.12:00 akp "hello.o@@11-Jun.12:00.554" on neptune

In a listing of several DOs, the entries are sorted by derived object name. Within a group of like-named
DOs, the entries are sorted chronologically, most recent entry first. The −long, −short, and −fmt
options are mutually exclusive; the −sname and −stime options are mutually exclusive.

94 ClearCase Reference Manual

cleartool subcommand lsdo
hh

−−l .ong Expands the listing to include a DO’s reference count and the views that reference it.

−−s .hort Restricts the listing for a DO to its extended name (including DO-ID).

−−fmt format-string
Lists information using the specified format string. See the fmt_ccase manual page for details
on using this report-writing facility.

−−sna .me (confirms the default) Sorts the listing by derived object name.

−−sti .me Sorts all entries chronologically, most recent entry first.

Specifying the Derived Object(s). Default: Lists all derived objects created in the current working direc-
tory.

pname ... Standard pathnames and/or DO-IDs:

− A directory name causes all derived objects built in that directory to be listed.

− A standard or view-extended pathname of a file causes all derived objects built under
that name to be listed.

− A pathname that includes a unique DO-ID (for example, conv.c@@19-Nov.21:28.127450)
specifies a particular derived object to be listed.

EXAMPLES
g List, in reverse chronological order, all derived objects that you have created in the current working direc-

tory.
% cleartool lsdo −stime −me −short
ctl@@14-May.15:18.339307
ctl_V.o@@14-May.15:18.339305
libcmd.a@@14-May.15:16.339302
libcmd_V.o@@14-May.15:16.339300
cmd_type.o@@14-May.15:15.339297
cmd_view.o@@14-May.15:15.339294
cmd_utl.o@@14-May.15:15.339291
cmd_trig.o@@14-May.15:14.339288
cmd_lh.o@@14-May.15:14.339285

g List information on a derived object, identified by its extended pathname.
% cleartool lsdo util.o@@08−Dec.12:06.231
08-Dec.12:06 "util.o@@08-Dec.12:06.231"

g List all derived objects created in the current working directory with file name hello. Use the long format,
to show which views reference the DOs; include DOs that are not referenced by any view.
% cleartool lsdo −long −zero hello
08-Dec-92.12:06:19 Chuck Jackson (test user) (jackson.dvt@oxygen)
create derived object "hello@@08-Dec.12:06.234"
references: 1 => oxygen:/usr/vobstore/tut/old.vws

08-Dec-92.12:05:35 Chuck Jackson (test user) (jackson.dvt@oxygen)
create derived object "hello@@08-Dec.12:05.143"

May 1994 95

lsdo cleartool subcommand
hh

SEE ALSO
cleartool subcommands: diffcr, catcr, rmdo
clearaudit, clearmake, crontab_ccase, fmt_ccase

96 ClearCase Reference Manual

cleartool subcommand lshistory
hh

NAME lshistory − list event records for VOB-database objects

SYNOPSIS
g File system data history:

lsh .istory [−−min.or] [−−nco] [−−l .ong | −−s .hort | −−fmt format-string]
[−−eve.ntid] [−−sin .ce date-time] [−−use .r login-name]
[−−r .ecurse | −−d.irectory | −−a.ll | −−avo.bs]
[−−bra.nch branch-type] [pname ...]

g Hyperlink history:

lsh .istory [−−min.or] [−−l .ong | −−s .hort | −−fmt format-string] [−−eve.ntid]
[−−sin .ce date-time] [−−use .r login-name] −−hli .nk hlink-selector ...

g Type history:

lsh .istory [−−min.or] [−−nco] [−−l .ong | −−s .hort | −−fmt format-string]
[−−eve.ntid] [−−sin .ce date-time] [−−use .r login-name]
[−−vob pname-in-vob]
{ −−elt .ype | −−brt .ype | −−att .ype | −−hlt .ype | −−lbt .ype | −−trt .ype | −−rpt .ype }
type-name ...

g Storage pool history:

lsh .istory [−−min.or] [−−nco] [−−l .ong | −−s .hort | −−fmt format-string]
[−−eve.ntid] [−−sin .ce date-time] [−−use .r login-name]
[−−vob pname-in-vob] −−poo.l pool-name ...

g VOB history:

lsh .istory [−−l .ong | −−s .hort | −−fmt format-string] [−−eve.ntid]
[−−sin .ce date-time] [−−use .r login-name] −−vob pname-in-vob

g VOB replica history:

lsh .istory [−−l .ong | −−s .hort | −−fmt format-string] [−−eve.ntid] [−−sin .ce date-time]
[−−use .r login-name] −−vre.plica [−−vob pname-in-vob] replica-name ...

DESCRIPTION
Lists event records in reverse-chronological order, describing ClearCase operations that have affected a
VOB’s data. There are several kinds of listing:
g File system data history — Lists events concerning elements, branches, versions, and VOB links.

This includes records for creation and deletion of objects, and records for attaching and removal of
annotations: version labels, attributes, and hyperlinks.

May 1994 97

lshistory cleartool subcommand
hh

g Hyperlink history — Lists events concerning hyperlink objects: creation, deletion,
attaching/removal of attributes.

g Type history — Lists events concerning type objects that have been defined in the VOB.
g Storage pool history — Lists events concerning the VOB’s storage pools.
g VOB history — Lists events concerning the VOB object itself. This includes the deletion of type

objects and elements from the VOB.
g VOB replica history — Lists events concerning a VOB replica, including synchronization updates.

PERMISSIONS AND LOCKS
Permissions Checking: No special permissions required. Locks: No locks apply. See the ‘‘Permissions
Checking’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
Default: If you don’t specify any objects to be listed, lshistory reports on events concerning file system
objects in the current working directory. (This is equivalent to specifying ‘‘.’’ as the lone pname argument.)
The following sections describe how to produce a report on other file system objects, or on other kinds of
objects.

File System Data History. Use the following to specify one or more file system objects for a history list-
ing.

pname ... One or more pathnames, specifying elements and/or VOB symbolic links whose history is to
be listed.

−−bra.nch branch-type
Restricts the report to events relating to branches of the specified type. NOTE: You cannot
use a pname argument like foo.c@@/main to restrict the report in this way.

−−r .ecurse Processes the entire subtree below any directory element encountered. VOB symbolic links
are not traversed during the recursive descent.

−−d.irectory Lists information on a directory element itself, rather than on its contents.

−−a.ll Reports on all objects in the VOB containing pname: file system objects, type objects, and
storage pools. If you omit pname, uses the VOB containing the current working directory.

−−avo.bs Similar to −all, but includes all VOBs active (mounted) on the local host. (If environment
variable CLEARCASE_AVOBS is set to a colon-separated list of VOB-tags, this set of VOBs is
used instead.) If a VOB has multiple replicas, events from all the replicas are reported.

Hyperlink History. Use the following to specify one or more hyperlink objects for a history listing.

−−hli .nk hlink-selector ... One or more names of hyperlink objects, in this form:

hyperlink-type-name@hyperlink-ID[@pname-in-vob]

Hyperlinks are not file system objects — you cannot specify them with shell wildcards. The
final component is required only for a hyperlink in another VOB. Examples:
DesignFor@598f
RelatesTo@58843@/vobs/monet

98 ClearCase Reference Manual

cleartool subcommand lshistory
hh

Type History. Use the following to specify one or more type objects for a history listing.

−−elt .ype (element type)
−−brt .ype (branch type)
−−att .ype (attribute type)
−−hlt .ype (hyperlink type)
−−lbt .ype (label type)
−−trt .ype (trigger type)
−−rpt .ype (replica type)

(mutually exclusive — exactly one required) Reports on events that involve the type objects
specified with type-name arguments.

type-name ...
One or more names of type objects. The types must exist in the VOB containing the current
working directory, unless you specify another VOB with −vob pname-in-vob.

Storage Pool History. Use the following to select one or more storage pool objects for a history listing.

−−poo.l pool-name ...
One or more names of VOB storage pools. The pools must belong to the VOB containing the
current working directory, unless you specify another VOB with −vob pname-in-vob.

VOB History. Use the following to select one or more VOBs for a listing of events on the VOB itself.

−−vob pname-in-vob
Specifies the VOB whose history is to be listed. pname-in-vob can be the pathname of any
object within the VOB.

VOB Replica History. Use the following to select one or more VOB replicas for a listing of replication-
specific events.

−−vre.plica [−−vob pname-in-vob] replica-name ...
Specifies the VOB replica whose history is to be listed. pname-in-vob can be the pathname of
any object within the VOB.

Selecting Events for the Specified Objects. Default: The report includes all the ‘‘major’’ events in the
entire histories of the selected objects.

−−min.or Includes less important events in the listing: attaching of attributes, version labels, and so on.
For type objects and storage pools, minor events include rename operations and changes to
pool parameters (mkpool -update).

−−sin .ce date-time
Restricts the report to events recorded since the specified date-time. The date-time argument
can have any of the following formats:

date-time := date.time | date | time | now
date := day-of-week | long-date
day-of-week := today | yesterday | Sunday | .. | Saturday | Sun | .. | Sat
long-date := d[d]−−month[−−[yy]yy]
month := January | ... | December | Jan | ... | Dec

May 1994 99

lshistory cleartool subcommand
hh

time := h[h]:m[m][:s[s]]

Specify the time in 24-hour format, relative to the local time zone. If you omit the time, it
defaults to 00:00:00. If you omit the date, it defaults to today. If you omit the century,
year, or a specific date, the most recent one is used. Dates before January 1, 1970 UCT are
invalid.

Examples:
22-November-1990
sunday
yesterday.16:00
8-jun
13:00
today

−−nco Excludes checkout version events (the ones listed by the lscheckout command).

−−use .r login-name
Restricts the report to events recorded for commands entered by the specified user.

Report Format. Default report format for an element:
02-Feb.10:51 scd create version "msg.c@@/main/rel2_bugfix/1"
"Version for branch creation test"

02-Feb.10:51 scd create version "msg.c@@/main/rel2_bugfix/0"
02-Feb.10:51 scd create branch "msg.c@@/main/rel2_bugfix"

...
01-Feb.16:17 scd create file element "msg.c@@"

Default report format for a hyperlink:
cleartool lshistory -hlink Merge@535@/tmp/scd_reach_hw
08-Feb.11:25 scd create hyperlink "Merge@535@/tmp/scd_reach_hw"

Default report format for a storage pool:
01-Feb.16:05 scd create pool "cdft"
"Predefined pool used to store cleartext versions."

−−l .ong Expands the listing to include other object-specific information.

−−s .hort Restricts the listing to names only: pathnames of file system objects, names of type objects, or
names of storage pools.

−−fmt format-string
Lists information using the specified format string. See the fmt_ccase manual page for details
on using this report-writing facility.

−−eve.ntid Displays a numerical event-ID on the line that precedes each event record (even if you use
−fmt). You can change the comment assigned to an arbitrary event record by supplying an
event-ID to the chevent -event command. Event-IDs remain valid until the VOB is refor-
matted with reformatvob.

100 ClearCase Reference Manual

cleartool subcommand lshistory
hh

EXAMPLES
g List the event history of an element.
% cleartool lshistory hello.c
08-Dec.12:05 jackson import file element "hello.c@@"
20-May.15:41 cory create version "hello.c@@/main/3" (REL2)
"include name, home dir, and time in message
KNOWN BUG: extra NL at end of time message"

07-May.08:34 akp create version "hello.c@@/main/2" (REL1)
"ANSI compatibility: declare return value type, make explicit return value
also: clean up wording for The Boss"

04-May.13:35 akp create version "hello.c@@/main/1"
"first implementation"

04-May.13:35 akp create version "hello.c@@/main/0"
04-May.13:35 akp create branch "hello.c@@/main"
04-May.13:35 akp create file element "hello.c@@"

g List the events for an element that occurred after March 20, 1993, at 3 PM. Include minor events in the
listing, such as meta-data modifications.
% cleartool lshistory −minor −since 20−mar−93.15:00 hello.c
08-Dec.12:12 jackson modify meta-data file element "hello.c@@"
"CHMOD +r"

08-Dec.12:05 jackson import file element "hello.c@@"
20-May.17:35 cory modify meta-data version "hello.c@@/main/3" (REL2)
"Added label "REL2"."

20-May.15:41 cory create version "hello.c@@/main/3" (REL2)
"include name, home dir, and time in message
KNOWN BUG: extra NL at end of time message"

15-May.14:46 ross modify meta-data version "hello.c@@/main/2" (REL1)
"Added label "REL1"."

07-May.08:34 akp create version "hello.c@@/main/2" (REL1)
"ANSI compatibility: declare return value type, make explicit return value
also: clean up wording for The Boss"

04-May.13:35 akp create version "hello.c@@/main/1"
"first implementation"

04-May.13:35 akp create version "hello.c@@/main/0"
04-May.13:35 akp create branch "hello.c@@/main"
04-May.13:35 akp create file element "hello.c@@"
"first implementation"

g List the history of a label type, using the long format.
% cleartool lshistory −lbtype −long REL1
08-Jan-94.12:05:43 Chuck Jackson (test user) (jackson.dvt@oxygen)
import label type "REL1"

15-Apr-94.14:45:00 ross.devt@neptune
create label type "REL1"
"create label for Release 1 of "hello world" program"

g For all elements in the current working directory, list events involving the rel2_bugfix branch.
% cleartool lshistory −branch rel2_bugfix
24-Mar.12:45 jackson create version "msg.c@@/main/rel2_bugfix/0"
24-Mar.12:45 jackson create branch "msg.c@@/main/rel2_bugfix"
"release 2 bugfixes"

23-Mar.20:40 jackson create version "util.c@@/main/rel2_bugfix/1"
"fix bug: extra NL in time string"

May 1994 101

lshistory cleartool subcommand
hh

23-Mar.20:39 jackson create version "util.c@@/main/rel2_bugfix/0"
23-Mar.20:39 jackson create branch "util.c@@/main/rel2_bugfix"

g List the history of the VOB object itself for the current VOB.
% cleartool lsh −vob .
10-Dec.08:01 gomez unlock versioned object base "/home/gomez/personal"
09-Dec.15:48 gomez lock versioned object base "/home/gomez/personal"
"Locked for all users."

02-Oct.19:46 gomez create versioned object base "/home/gomez/personal"
"gomez’s personal vob"

SEE ALSO
cleartool subcommands: describe, lscheckout, lspool, lstype, lsvtree, xlsvtree, chevent
xclearcase, events_ccase, fmt_ccase

102 ClearCase Reference Manual

cleartool subcommand lslock
hh

NAME lslock − list locks on objects

SYNOPSIS
g List locks on development data:

lslock [−−s .hort | −−l .ong | −−fmt format-string] [−−obs.olete] [−−a.ll] [pname ...]

g List locks on type objects:

lslock [−−s .hort | −−l .ong | −−fmt format-string] [−−obs.olete]
[−−vob pname-in-vob]
{ −−elt .ype | −−brt .ype | −−att .ype | −−hlt .ype | −−lbt .ype | −−trt .ype | −−rpt .ype }
type-name ...

g List locks on VOB storage pools:

lslock [−−s .hort | −−l .ong | −−fmt format-string] [−−obs.olete]
[−−vob pname-in-vob] −−poo.l pool-name ...

g List the lock on an entire VOB:

lslock [−−s .hort | −−l .ong | −−fmt format-string] [−−obs.olete]
−−vob { pname-in-vob | vob-storage-dir-pname }

DESCRIPTION
Lists locks that have been placed on one or more VOB-database objects (with the lock command). The list-
ing can include all the locks created within a VOB, or just a particular set of locks:
g locks on elements or branches
g locks on type objects
g locks on VOB storage pools
g the lock on the VOB object itself

Obsolete Type Objects
Type objects can be rendered obsolete with the lock -obsolete -xxtype command. lslock lists an
obsolete type object only if (1) you specify its name with a type-name argument, or (2) you use the
−obsolete option.

PERMISSIONS AND LOCKS
Permissions Checking: No special permissions required. Locks: No locks apply. See the ‘‘Permissions
Checking’’ section of the cleartool manual page.

May 1994 103

lslock cleartool subcommand
hh

OPTIONS AND ARGUMENTS
Specifying the Locked Objects. Default: Lists all the locks created in the VOB containing the current
working directory.

Development data locks — use the following to list locks on elements and/or branches.

pname ... One or more pathnames, each of which specifies an element or branch:
(element ’foo.c’)foo.c
(element ’foo.c’)foo.c@@
(branch of element ’foo.c’)foo.c@@/main/bugfix

(Versions cannot be locked; a pathname to a version references the element object.) Using
pname arguments restricts the listing to locks on those particular objects (but see the −all
description below).

NOTE: Specifying an element lists only the lock on the element itself, not on any of its
branches.

−−a.ll For each pname argument, lists all locks in the VOB containing pname. Has no effect if you
don’t specify any pname argument (since the default is to list all locks in the current VOB).

Type Object Locks — use the following to list locks on type objects:

−−elt .ype type-name ...
−−brt .ype type-name ...
−−att .ype type-name ...
−−hlt .ype type-name ...
−−lbt .ype type-name ...
−−trt .ype type-name ...
−−rpt .ype type-name ...

(mutually exclusive) Lists locks on the type objects specified by the type-name argument(s).
The types must exist in the VOB containing the current working directory, unless you specify
another VOB with −vob pname-in-vob.

−−vob pname-in-vob
Specifies the VOB whose locks on type objects are to be listed. pname-in-vob can be the path-
name of any object within the VOB.

Storage Pool Locks — use the following to list locks on VOB storage pools:

−−poo.l pool-name ...
One or more names of VOB storage pools. The pools must belong to the VOB containing the
current working directory, unless you specify another VOB with −vob pname-in-vob.

−−vob pname-in-vob
Specifies the VOB whose pool locks are to be listed. pname-in-vob can be the pathname of any
object within the VOB.

VOB Locks — use the following to list the lock on an entire VOB:

104 ClearCase Reference Manual

cleartool subcommand lslock
hh

−−vob pname-in-vob
Specifies the VOB whose lock is to be listed. pname-in-vob can be the pathname of any object
within the VOB.

−−vob vob-storage-dir-pname
This alternative form of the −vob option is valid only listing VOB locks. This is a conveni-
ence feature, enabling administrators to list entire-VOB locks without having to use a view.

Report Format. Default: A lock listing looks like this:
01-Sep.08:42 drp lock attribute type "AT2" (locked)
"Locked for all users."

−−l .ong Expands the listing with more time-specific and user-specific information.

−−s .hort Restricts the listing to names of locked objects only.

−−fmt format-string
Lists information using the specified format string. See the fmt_ccase manual page for details
on using this report-writing facility.

Listing Obsolete Objects. Default: An obsolete object is not listed unless you specify it with a
command-line argument.

−−obs.olete Includes obsolete objects in the listing. (Has no effect if you specify one or more objects with
arguments.)

EXAMPLES
g List the locks on three label types.
% cleartool lslock −lbtype REL1 REL1.1 REL2
08-Dec.12:19 jackson lock label type "REL1" (locked)
"Locked for all users."

08-Dec.12:19 jackson lock label type "REL1.1" (locked)
"Locked for all users."

08-Dec.12:19 jackson lock label type "REL2" (locked)
"Locked for all users."

g List the lock on a particular branch of a particular element.
% cleartool lslock util.c@@/main/rel2_bugfix
08-Dec.12:19 jackson lock branch "util.c@@/main/rel2_bugfix" (locked)
"Locked for all users."

g List the entire-VOB lock on the current VOB, in long format.
% cleartool lslock −long −vob .
08-Dec-92.14:57:58 Chuck Jackson (test user) (jackson.dvt@oxygen)
lock versioned object base "/usr/hw" (locked)
"Locked for all users."

g List all locked objects (including the obsolete ones) in the current VOB.
% cleartool lslock −obsolete
08-Dec.12:18 jackson lock file element

"/usr/hw/src/hello.c@@" (locked)
"Locked for all users."

May 1994 105

lslock cleartool subcommand
hh

08-Dec.12:19 jackson lock label type "REL1" (locked)
"Locked for all users."

08-Dec.12:19 jackson lock label type "REL2" (locked)
"Locked for all users."

08-Dec.12:18 jackson lock branch type "motif" (locked)
"Locked except for users: gomez jackson"

08-Dec.12:18 jackson lock branch type "patch3" (obsolete)
"Locked for all users (obsolete)."

08-Dec.12:18 jackson lock file element
"/usr/hw/src/convolution.c@@" (locked)

"Locked for all users."
08-Dec.12:19 jackson lock branch

"/usr/hw/src/util.c@@/main/rel2_bugfix@@" (locked)
"Locked for all users."

g List the locks on two of the current VOB’s storage pools.
% cleartool lslock −pool staged cdft
08-Dec.12:19 jackson lock pool "staged" (locked)
"Locked for all users."

08-Dec.12:19 jackson lock pool "cdft" (locked)
"Locked for all users."

SEE ALSO
cleartool subcommands: lock, ls, lshistory, lspool, lstype, unlock
fmt_ccase

106 ClearCase Reference Manual

cleartool subcommand lspool
hh

NAME lspool − list VOB storage pools

SYNOPSIS
lspool [−−s .hort | −−l .ong | −−fmt format-string] [−−obs.olete]

[−−vob pname-in-vob] pool-name ...

DESCRIPTION
Lists information about one or more VOB storage pools. This listing does not include the elements
assigned to the pool; use the find command for this purpose. Example:
% cleartool find /vobs/include −element ’pool(src_pool_2)’ −print

Obsolete Storage Pools
Storage pools can be rendered obsolete with the lock -pool -obsolete command. The obsolete/non-
obsolete status of a pool affects some forms of this command.

PERMISSIONS AND LOCKS
Permissions Checking: No special permissions required. Locks: No locks apply. See the ‘‘Permissions
Checking’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
Listing Format. Default: A storage pool listing looks like this:
20-Nov-1993 drp pool "cdft"

−−l .ong Expands the listing to pool parameters and pathnames.

−−s .hort Restricts the listing to pool names only.

−−fmt format-string
Lists information using the specified format string. See the fmt_ccase manual page for details
on using this report-writing facility.

Listing Obsolete Pools. Default: If you don’t specify any pool-name argument, a VOB’s obsolete pools are
suppressed from the listing.

−−obs.olete Includes obsolete pools in the listing when you don’t specify any pool-name argument. Has no
effect if you specify one or more pool-name arguments.

Specifying the Pools. Default: Lists all storage pools in the VOB containing the current working direc-
tory.

pool-name ...
One or more names of storage pools to be listed. A pool is listed whether or not it is obsolete.

−−vob pname-in-vob
The VOB whose storage pools are to be listed. pname-in-vob can be the pathname of any
object within the VOB.

May 1994 107

lspool cleartool subcommand
hh

EXAMPLES
g List all storage pools for the VOB containing the current working directory.
% cleartool lspool
08-Dec.12:21 jackson pool "c_pool"
"pool for c source files"

15-Dec.09:34 jenny pool "cdft"
"Predefined pool used to store cleartext versions."

08-Dec.12:21 jackson pool "cltxt2"
15-Dec.09:34 jenny pool "ddft"
"Predefined pool used to store derived objects."

08-Dec.12:21 jackson pool "do1"
08-Dec.12:21 jackson pool "my_ctpool"
"alternate cleartext pool"

15-Dec.09:34 jenny pool "sdft"
"Predefined pool used to store versions."

08-Dec.12:19 jackson pool "staged"

g List information about a particular storage pool, in long format.
% cleartool lspool −long do1
pool "do1"
08-Dec-92.12:21:13 by Chuck Jackson (test user) (jackson.dvt@oxygen)
kind: derived pool
pool storage global pathname "/net/oxygen/usr/vobstore/tut/tut.vbs/d/do1"
maximum size: 10000 reclaim size: 8000 age: 168

g List a particular storage pool, verifying that it is obsolete.
% cleartool lspool −short cltxt2
cltxt2 (obsolete)

SEE ALSO
cleartool subcommands: chpool, lock, mkpool, unlock
fmt_ccase

108 ClearCase Reference Manual

cleartool subcommand lsprivate
hh

NAME lsprivate − list objects in a view´s private storage area

SYNOPSIS
lsp .rivate [−−tag view-tag] [−−vob pname-in-vob] [−−l .ong | −−s .hort] [−−co]

DESCRIPTION
Lists the file system objects that belong to a view:
g view-private files, links, and directories
g unshared derived objects
g shared derived objects that are cataloged in (visible through) the view — even though these objects

are stored in a VOB storage pool
g checked-out versions of file elements

Except for the shared derived objects, all of these objects are stored in the view’s private storage area.

NOTE: This command does not list checked-out directory elements, because such a checkout does not
produce a view-private object. Use the lscheckout command to list directory checkouts.

The objects are listed with full pathnames (thus including the VOB-tag), one per line.

STRANDED VIEW-PRIVATE FILES
lsprivate sometimes lists a view-private file in a special way, because it has become stranded: it has no
name in the VOB namespace, as currently constructed by your view. There are several possible causes
and, hence, several actions you can take.

File Still Accessible Through Some Directory Version
The lsprivate listing for a file can include a version-extended pathname to some directory element:
/usr/hw/src@@/main/3/subdir1/canUCme

In this example, file canUCme is stranded because its parent directory, subdir1, does not appear in the view
as it is currently configured; but the file could be accessed through version /main/3 of directory element
src, which does contain an entry for subdir1. (Note that you cannot use this ‘‘pathname’’ to access the
view-private object. A version-extended pathname can refer only to an element, branch, or version — not
to a view-private file.)

To make such a stranded file visible again, you must make its parent directory visible, by reconfiguring
the view (in this case, to select version /main/3 of directory element src).

VOB Is Inactive
If a VOB is not currently active on your host, all view-private files corresponding to that VOB are tem-
porarily stranded. lsprivate displays a warning message and prepends a # character to pathnames within
that VOB:
cleartool: Warning: VOB not mounted: "/usr/hw"

VOB UUID is 1127d379.428211cd.b3fa.08:00:69:06:af:65
.
.
.

#/usr/hw/src/.cmake.state
#/usr/hw/src/findmerge.log.18-Mar-94.13:43:27
#/usr/hw/src/hello

May 1994 109

lsprivate.. cleartool subcommand
hh

#/usr/hw/src/hello.o
.
.
.

Reactivating the VOB on your host will restore lsprivate command output to normal for pathnames within
that VOB.

VOB Is Inaccessible
If a VOB has been unregistered, all view-private files corresponding to that VOB are temporarily
stranded; if the VOB has been deleted, the view-private files are permanently stranded. lsprivate cannot
distinguish these cases; it may guess at the VOB’s probable VOB-tag, but it lists the view-private files with
an Unavailable-VOB prefix:
cleartool: Error: Unable to get VOB object registry information for

replica uuid "1127d379.428211cd.b3fa.08:00:69:06:af:65".
cleartool: Warning: VOB is unavailable -- using name: "<Unavailable-VOB-1>".

If it has been deleted use ’recoverview -vob <uuid>’
VOB UUID is 1127d379.428211cd.b3fa.08:00:69:06:af:65
Last known location of storage is phobos:/usr/people/david/tut/tut.vbs

#<Unavailable-VOB-1>/<DIR-3587d464.428211cd.b40c.08:00:69:06:af:65>/.cmake.state
#<Unavailable-VOB-1>/<DIR-3587d464.428211cd.b40c.08:00:69:06:af:65>/findmerge.log.18-Mar-94.13:43:27

Directory Element Has Been Deleted
If a directory element (or its entire VOB) has been deleted, all the corresponding view-private files are
permanently stranded. They are listed with the VOB’s UUID, as above, with no ‘‘cure’’ possible, except to
use recoverview to move the files to the view’s lost+found directory.

PERMISSIONS AND LOCKS
Permissions Checking: No special permissions required. Locks: No locks apply. See the ‘‘Permissions
Checking’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
Specifying the View. Default: The current view is listed; a working directory view takes precedence over
a set view.

−−tag view-tag
The view-tag of any registered view to which you have ‘‘read’’ access.

Selecting Objects to List. Default: All of the view’s objects are listed.

−−vob pname-in-vob
Restricts the listing to objects for the specified VOB. pname-in-vob can be the pathname of any
object within the VOB.

−−co Restricts the listing to checked-out versions of file elements. Checked-out directory elements
are never listed by lsprivate.

Listing Style. Default: Checked-out versions are annotated with [checkedout].

−−l .ong Lists objects in the style of ls -long.

−−s .hort Lists pathnames only — no annotations.

110 ClearCase Reference Manual

cleartool subcommand lsprivate..
hh

EXAMPLES
g List the private objects in the view with view-tag jackson_vu, from the VOB identified by the pathname

/usr/hw/src.
% cleartool lsprivate −tag jackson_vu −vob /usr/hw/src
/usr/hw/src/bug.report
/usr/hw/src/convolution.c [checkedout]
/usr/hw/src/edge.sh
/usr/hw/src/hello
/usr/hw/src/hello.c [checkedout]
/usr/hw/src/hello.h [checkedout]
/usr/hw/src/hello.o
/usr/hw/src/msg.o
/usr/hw/src/util.c [checkedout]
/usr/hw/src/util.c.contrib
/usr/hw/src/util.c.contrib.1
/usr/hw/src/util.o

g List all checked-out versions of elements in the current view, from all VOBs.
% cleartool lsprivate −co
/usr/hw/src/convolution.c [checkedout]
/usr/hw/src/hello.c [checkedout]
/usr/hw/src/util.c [checkedout]
/vobs/doc/PLAN/DocumentationProposal [checkedout]
/vobs/doc/reference_man/test/attest.dat [checkedout]
/vobs/doc/reference_man/test/testelem.c [checkedout]

g List all elements in the current view, from all VOBs, using a long listing.
% cleartool lsprivate −long
view private object /tmp/scd_reach/src/findmerge.log.04-Feb-94.10:01:01
view private object /tmp/scd_reach/src/findmerge.log.04-Feb-94.11:00:59
version /vobs/doc/reqs@@/main/CHECKEDOUT from /main/33 Rule: element * CHECKEDOUT
version /vobs/doc/specs@@/main/CHECKEDOUT from /main/7 Rule: element * CHECKEDOUT

SEE ALSO
cleartool subcommands: checkout, ls, lscheckout, reformatview

May 1994 111

lsreplica cleartool subcommand
hh

NAME lsreplica − list replicas of a VOB

SYNOPSIS
lsreplica [−−s .hort | −−l .ong | −−fmt.format]

[−−tag vob-tag | −−vob { pname-in-vob | vob-storage-dir-pname }]
[−−rpt .ype | replica-name ...]

DESCRIPTION
Lists one or more of the replicas of a VOB. VOB replicas are created with the Atria MultiSite product.

EXAMPLES
g List all replicas of the VOB whose VOB-tag is /vobs/gvob_ech.
% cleartool lsreplica −tag /vobs/gvob_ech
11-Mar.13:42 david versioned object base replica "original"
11-Mar.13:45 david versioned object base replica "second_rep"

SEE ALSO
cleartool subcommands: chevent, describe, lscheckout, lshistory, lslock, lsvob, lock, unlock

112 ClearCase Reference Manual

cleartool subcommand lstype
hh

NAME lstype − list a VOB´s type objects

SYNOPSIS
lst .ype { −−elt .ype | −−brt .ype | −−lbt .ype | −−att .ype | −−hlt .ype | −−trt .ype | −−rpt .ype }

[−−vob pname-in-vob] [−−s .hort | −−l .ong | −−fmt format-string] [−−obs.olete]
[type-name ...]

DESCRIPTION
Lists information about one or more of a VOB’s type objects.

Obsolete Type Objects
Type objects can be rendered obsolete with the lock -xxtype -obsolete command. lstype lists an
obsolete type object only if (1) you specify its name with a type-name argument, or (2) you use the
−obsolete option.

PERMISSIONS AND LOCKS
Permissions Checking: No special permissions required. Locks: No locks apply. See the ‘‘Permissions
Checking’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
Specifying the Kind of Type Object. Default: None.

−−elt .ype (element type)
−−brt .ype (branch type)
−−att .ype (attribute type)
−−hlt .ype (hyperlink type)
−−lbt .ype (label type)
−−trt .ype (trigger type)
−−rpt .ype (replica type)

(mutually exclusive) Specifies the kind type object to be listed. For example, −attype selects
attribute type as the kind of object to be listed.

Listing Format. Default: A type object listing looks like this:
07-Nov-1993 sakai element type "text_file"

−−l .ong Expands the listing to include any type-specific parameters (for example, that a label type is
‘‘one-per-element’’; that an element type inherited its type manager from the text_file super-
type; and so on.)

−−s .hort Restricts the listing to type names only.

−−fmt format-string
Lists information using the specified format string. See the fmt_ccase manual page for details
on using this report-writing facility.

Listing Obsolete Types. Default: If you don’t specify any type-name argument, only the non-obsolete
types of the specified kind are listed.

May 1994 113

lstype cleartool subcommand
hh

−−obs.olete Includes obsolete type objects in the listing when you don’t specify any individual type
objects with type-name arguments. Has no effect if you specify one or more type-name argu-
ments.

Specifying the VOB. Default: Lists type objects in the VOB that contains the current working directory.

−−vob pname-in-vob
The VOB whose type object(s) are to be listed. pname-in-vob can be any location within the
VOB.

Specifying Individual Type Objects. Default: All type objects of the specified kind (for example, all
attribute type objects) are listed.

type-name ...
One or more names of type objects. The listing will include only the named object(s).

EXAMPLES
g List all branch types defined in the VOB containing the current working directory.
% cleartool lstype −brtype
15-Dec.09:34 jenny branch type "main"
"Predefined branch type used to represent the main branch of elements."

08-Dec.12:12 jackson branch type "motif"
"motif development branch"

08-Dec.12:12 jackson branch type "patch2"
08-Dec.12:12 jackson branch type "patch3"
08-Dec.12:12 jackson branch type "rel2_bugfix"

g List all label types defined in the current VOB. Use the short format, and include obsolete label types.
% cleartool lstype −lbtype −obsolete −short
CHECKEDOUT
LATEST
REL1 (obsolete)
REL2
REL3
V2.7.1 (obsolete)

Note that the listing includes the two predefined label types, LATEST and CHECKEDOUT.

g List information about a particular user-defined element type, in long format.
% cleartool lstype −long −eltype c_source
element type "c_source"
08-Dec-92.12:12:38 by Chuck Jackson (test user) (jackson.dvt@oxygen)
type manager: text_file_delta (inherited from type "text_file")
supertype: text_file
meta-type of element: file element

g List information about a particular trigger type, in long format.
% cleartool lstype −trtype −long trig1
trigger type "trig1"
08-Dec-92.12:14:08 by Chuck Jackson (test user) (jackson.dvt@oxygen)
element trigger
pre-operation MODIFY_ELEM
action: -exec checkcmt

114 ClearCase Reference Manual

cleartool subcommand lstype
hh

g List information about a particular hyperlink type.
% cleartool lstype −long −hltype design_spec
hyperlink type "design_spec"
08-Dec-92.12:13:31 by Chuck Jackson (test user) (jackson.dvt@oxygen)
"source to design document"

SEE ALSO
cleartool subcommands: describe, mkattype, mkeltype, mkhltype, mklbtype, mkbrtype, mktrtype, rmtype,
rntype
fmt_ccase

May 1994 115

lsview cleartool subcommand
hh

NAME lsview − list view registry entries

SYNOPSIS
lsview [−−s .hort | −−l .ong] [−−hos.t hostname] [−−reg.ion network-region]

[view-tag ... | −−sto .rage view-storage-dir-pname ...]

DESCRIPTION
Lists one or more ClearCase views. To be accessible to cleartool subcommands, including lsview, a view:
g must have an entry in the view_object registry file
g must have one or more entries in the view_tag registry file

These files, view_object and view_tag, constitute the view registry and are located in directory
/usr/adm/atria/rgy on the network’s registry server host. The registry_ccase manual page describes the Clear-
Case registry files in detail.

Default Output
By default, lsview lists all views registered for the current network region, whether they are active or not.
The default output line for each listed view looks like this:
* anneRel4 /net/host2/usr/viewstore/anneRel4.vws

The three output fields report:
g whether the view is active (*)
g the view-tag
g the view storage directory pathname

PERMISSIONS AND LOCKS
Permissions Checking: No special permissions required. Locks: No locks apply. See the ‘‘Permissions
Checking’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
Listing Format. Default: See ‘‘Default Output’’ above.

−−l .ong Expands the listing to include all information stored in the view registry regarding the listed
views. (See also the registry_ccase manual page.)

−−s .hort Restricts the listing to view-tags only.

Specifying the Views. Default: List all views registered for the local network region.

−−hos.t hostname
Confines the listing to views whose storage directories reside on host hostname.

−−reg.ion network-region
Confines the view listing to include only the views registered for a particular network region.
(The mkview and mktag commands have a −region option, which can be used to assign
view-tags to specific network regions.) The network-region argument can include pattern-
matching characters as described in wildcards_ccase. Single-quote the network-region argu-
ment, if it includes pattern-matching characters.

116 ClearCase Reference Manual

cleartool subcommand lsview
hh

view-tag ... Specifies a single view to be listed. The view must be registered, but it need not be active to be
listed with lsview. The view-tag argument can include pattern-matching characters as
described in wildcards_ccase. Single-quote any view-tag argument that includes pattern-
matching characters.

−−sto .rage view-storage-dir-pname ...
One or more views, identified by full pathnames to their storage directories.

EXAMPLES
g List the views registered for the local network region.
% cleartool lsview
* mainRel5 /net/host5/usr/viewstore/mainRel5.vws

anneRel5 /net/host5/usr/viewstore/anneRel5.vws
* anneTest /net/host2/usr/anne/viewstore/anneTest.vws

nordTest /net/host2/usr/nord/nordtest.vws
* nordRel5 /net/host4/usr/viewstore/nordRel5.vws

nortRel4 /net/host8/usr/viewstore/nordRel4.vws

g List, using the long display format, the registry information for the view with view-tag mainRel5.
% cleartool lsview −long mainRel5
Tag: mainRel5
Global path: /net/host5/usr/viewstore/mainRel5.vws
Server host: host5
Region: main_headqtrs
Active: YES
View tag uuid:a9c1ba4d.853e11cc.a96b.08:00:69:06:05:d8

View on host: host5
View server access path: /usr/viewstore/mainRel5.vws
View uuid: a9c1ba4d.853e11cc.a96b.08:00:69:06:05:d8

g For a particular host, list the views whose view-tags match a wildcard pattern.
% cleartool lsview −host host4 ’*anne*’
* anne_main /net/host4/usr/anne/views/anne_main.vws
anne_rel2 /net/host4/usr/anne/views/anne_rel2.vws

SEE ALSO
cleartool subcommands: mkview, mktag, register, unregister
registry_ccase, view

May 1994 117

lsvob cleartool subcommand
hh

NAME lsvob − list VOB registry entries

SYNOPSIS
lsvob [−−s .hort | −−l .ong] [−−hos.t hostname] [−−reg.ion network-region]

[vob-tag ... | −−sto .rage vob-storage-dir-pname ...]

DESCRIPTION
Lists one or more VOBs. To be accessible to cleartool subcommands, including lsvob, a VOB must be
registered. That is, it must have an entry in the vob_object file on the registry server host. In addition, each
VOB typically has one or more entries in the vob_tag registry file, as you cannot mount, or even create, a
VOB without assigning a tag to it. (See the mkvob manual page; the registry_ccase manual page describes
the ClearCase registry files in detail.)

Default Output
By default, lsvob lists all VOBs registered for the current network region, whether they are mounted
(active) or not. The default output line for each listed VOB looks like this:
* /vobs/src /net/host2/usr/vobstore/src_vob public

The four output fields report:
g whether the VOB is mounted (*)
g the VOB-tag
g the VOB storage directory pathname
g whether the VOB is public or private (see the mkvob manual page)

PERMISSIONS AND LOCKS
Permissions Checking: No special permissions required. Locks: No locks apply. See the ‘‘Permissions
Checking’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
Listing Format. Default: See ‘‘Default Output’’ above.

−−l .ong Expands the listing to include all information stored in the VOB registry regarding the listed
VOBs. (See the registry_ccase manual page.)

−−s .hort Restricts the listing to VOB-tags only.

Specifying the VOBs. Default: List all VOBs registered for the local network region, both mounted and
unmounted, public and private.

−−hos.t hostname
Confines the listing to VOBs whose storage directories reside on host hostname.

−−reg.ion network-region
Confines the VOB listing to include only the VOBs registered for one or more network
regions. (The mkvob and mktag commands have a −region option, which can be used to
assign VOB-tags to specific network regions.) The network-region argument can include
pattern-matching characters as described in wildcards_ccase. Single-quote the network-region
argument, if it includes pattern-matching characters.

118 ClearCase Reference Manual

cleartool subcommand lsvob
hh

vob-tag ... Specifies one or more VOBs to be listed. A VOB must be registered, but it need not be
mounted, to be listed with lsvob. The vob-tag argument can include pattern-matching charac-
ters as described in wildcards_ccase. Single-quote any vob-tag argument that includes pattern-
matching characters.

−−sto .rage vob-storage-dir-pname ...
One or more VOBs, identified by full pathnames to their storage directories.

EXAMPLES
g List the VOBs registered for the local network region.
% cleartool lsvob
* /vobs/demo /net/host5/usr/vobstore/demo_vob public
* /vobs/src /net/host2/usr/vobstore/src_vob public
* /vobs/design /net/host2/usr/vobstore/design_vob public
/vobs/doc /net/host2/usr/vobstore/doc_vob public

* /vobs/stage /net/host4/usr/vobstore/stage_vob public
/vobs/bugvob /net/host8/usr/anne/vobstore/bug_vob private

g List, using the long display format, the registry information for the VOB with VOB-tag /vobs/vob12. The
output line Active: YES indicates that the VOB is currently mounted.
% cleartool lsvob −long /vobs/vob12
Tag: /vobs/vob12
Global path: /net/host5/usr/vobstore/vob12.vbs
Server host: host5
Access: public
Mount options: rw,soft
Region: us_west
Active: YES
Vob tag replica uuid:cb4caf2f.f48d11cc.abfc.00:01:53:00:e8:c3

Vob on host: host5
Vob server access path: /usr/vobstore/vob12.vbs
Vob family uuid: aed00001.9d3e11ca.bc4c.00:01:53:00:e8:c3
Vob replica uuid: cb4caf2f.f48d11cc.abfc.00:01:53:00:e8:c3

g For a particular host, list the VOBs whose VOB-tags match a wildcard pattern.
% cleartool lsvob −host host4 ’*anne*’
* /usr/anne/vobs/test2 /net/host4/usr/anne/vobs/test2.vbs public
* /usr/anne/vobs/work /net/host4/usr/anne/vobs/work.vbs private

SEE ALSO
cleartool subcommands: mkvob, mount, umount, register, unregister, mktag
registry_ccase

May 1994 119

lsvtree cleartool subcommand
hh

NAME lsvtree − list version tree of an element

SYNOPSIS
lsvt .ree [−−nr.ecurse] [−−a.ll] [−−mer.ge] [−−nco] [−−s .hort]

[−−bra.nch branch-pname] pname ...

DESCRIPTION
Lists part or all of the version tree of one or more elements. By default, the listing includes all branches of
an element’s version tree, but only certain versions on those branches. Command options control which
branches, how many branches, and which versions are listed. You can also control the way version are
annotated with version labels and merge arrows.

Graphical Version Tree Display
As an alternative to lsvtree’s character−based listing, the xlsvtree command provides an interface to the
xclearcase utility, which displays version trees graphically.

PERMISSIONS AND LOCKS
Permissions Checking: No special permissions required. Locks: No locks apply. See the ‘‘Permissions
Checking’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
Selecting the Starting Point. Default: Starts the version tree listing at an element’s main branch.

−−bra.nch branch-pname
Starts the version tree listing at the specified branch. You can also use an extended name as
the pname argument (for example, foo.c@@/main/bug405) to start the listing at a particular
branch.

Listing Subbranches. Default: Lists the entire subtree of the branch selected as the starting point.

−−nr.ecurse Omits all subbranches from the listing, showing only versions on a single branch.

Selecting and Annotating Versions on a Branch. Default: For each branch included in the listing, these
selected versions are listed: (1) checked-out versions (annotated with the view name) and their predeces-
sors; (2) versions that are the LATEST on their branches; (3) versions that have been assigned version
labels; (4) versions at which a subbranch was created. A version is annotated with up to five of its version
labels; an ellipsis (...) indicates that the version has additional labels.

−−a.ll Lists all versions on a branch, not just the selected versions; annotates each version with all of
its version labels.

−−mer.ge Includes all versions that are at the ‘‘from’’ end of one or more merge arrows (hyperlinks of
type Merge). Annotations on each such version indicate the corresponding ‘‘to’’ objects.

−−nco Excludes checked-out versions from the listing. The predecessor of a checked-out version is
also excluded, unless there is another reason to include it (for example, it has a version label).

−−s .hort Restricts the listing to version-extended pathnames. Version labels, merge annotations, and
checkout annotations are omitted.

120 ClearCase Reference Manual

cleartool subcommand lsvtree..
hh

Specifying the Elements or Branches. Default: None.

pname ... One or more pathnames, specifying elements or branches of elements. (Alternatively, use the
−branch option to specify a branch of an element.)

EXAMPLES
g List selected versions from an element’s version tree.
% cleartool lsvtree util.c
util.c@@/main
util.c@@/main/1 (REL2)
util.c@@/main/rel2_bugfix
util.c@@/main/rel2_bugfix/1
util.c@@/main/3 (REL3)
util.c@@/main/4

g List all versions on the rel2_bugfix branch of an element’s version tree.
% cleartool lsvtree −branch /main/rel2_bugfix −all util.c
util.c@@/main/rel2_bugfix
util.c@@/main/rel2_bugfix/0
util.c@@/main/rel2_bugfix/1

SEE ALSO
cleartool subcommands: describe, lshistory, ls, lstype, xlsvtree
xclearcase

May 1994 121

man cleartool subcommand
hh

NAME man − display a ClearCase manual page

SYNOPSIS
man [command_name]

DESCRIPTION
Formats and displays the specified ClearCase on-line manual page. For cleartool subcommands, you can
use any valid command abbreviation or alias. (You need not include the manual page source file’s ct+

prefix.) For example:
(full command name)% cleartool man lscheckout
(abbreviation)% cleartool man lsch
(alias)% cleartool man lsco
(actual filename)% cleartool man ct+lscheckout
(incorrect: does not match actual filename)% cleartool man ct+lsco

With no arguments, man displays the cleartool overview manual page. To display an alphabetical listing
of all ClearCase manual pages, use cleartool man clearcase or cleartool man toc.

USAGE OF MANPATH
ClearCase manual pages are stored in subdirectories of /usr/atria/doc/man. The man subcommand
modifies the environment to include a MANPATH variable set to this directory. It then executes the
UNIX man(1) command in a subprocess. Thus, the shell from which you invoke cleartool need not have
MANPATH set.

If, however, you wish to use UNIX man directly, without going through cleartool, be sure to include
/usr/atria/doc/man in your MANPATH. For example:
setenv MANPATH /usr/catman:/usr/man:/usr/atria/doc/man

Note that with UNIX man, you must match the manual page source file name:
(correct)% man ct+describe
(incorrect)% man describe
(incorrect)% man des

PERMISSIONS AND LOCKS
Permissions Checking: No special permissions required. Locks: No locks apply. See the ‘‘Permissions
Checking’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
Specifying the Manual Page. Default: Displays the overview manual page for cleartool.

command_name
The name (or abbreviation, or alias) of a cleartool subcommand; or the name of any other
ClearCase manual page.

EXAMPLES
g Display the manual page for the mkview command.
cleartool> man mkview
Reformatting page. Wait...

...

122 ClearCase Reference Manual

cleartool subcommand man
hh

g Display a Table of Contents for all cleartool commands.
% cleartool man toc
Reformatting page. Wait...

...

g Display the cleartool overview manual page.
% cleartool man
Reformatting page. Wait...

...

SEE ALSO
cleartool subcommands: help, apropos
clearcase, man(1), Permuted Index in this manual.

May 1994 123

merge cleartool subcommand
hh

NAME merge − merge versions of a text-file element or a directory

SYNOPSIS
merge { −−to contrib-&-result-pname | −−out output-pname } [−−bas .e pname]

[−−nda.ta | −−nar.rows] [−−rep.lace] [−−abo.rt | −−qal . l]
[−−opt . ions pass-through-options] [−−win.dow | −−tin .y]
[−−dif .f_format | −−ser . ial_format | −−col .umns n]
[−−c comment | −−cq | −−cqe | −−nc]
[−−ins .ert | −−del .ete]
{ −−ver.sion contrib-version-selector ... | contrib-pname ... }

DESCRIPTION
Calls an element-type-specific program (the merge method) to merge the contents of two or more files, or
two or more directories. Typically the files are versions of the same file element; a directory merge must
involve versions of the same directory element.

You can also perform a subtractive merge, which removes from a version the changes made in one or more
of its predecessors.

Selection of a ’merge’ Method
merge uses ClearCase’s type manager mechanism to select a merge method very similarly to the way that
the diff command selects a compare method. For details, see ‘‘Selection of a ’compare’ Method’’ in the diff
manual page.

FILE MERGE ALGORITHM
A merge is a straightforward extension of a file comparison. Instead of simply displaying the pairwise
differences, the merge method analyzes the differences (sometimes with your help) and copies sections of
text to the output file:
g Sections in which there are no differences among the contributors are automatically copied to the out-

put file.
g If a difference section has exactly one contributor differing from the base file, the merge method

automatically ‘‘accepts the change’’, and copies the contributor’s modified section to the output file:
------------[changed 3-4]----|--------[changed to 3-4 file 2]---
now is the thyme | now is the time
for all good men | for all good people

-|-
*** Automatic: Applying CHANGE from file 2 [lines 3-4]
============

(The −qall option turns off automatic acceptance of this kind of change.)
g For difference sections in which two or more contributors differ from the base file, the merge method

senses the conflict, and prompts you to resolve it. It displays all the pairwise differences, and allows
you to accept or reject each one for inclusion in the output file.
-------------[changed 10]----|---------[changed to 10 file 2]---
cent | sent

-|-
-------------[changed 10]----|---------[changed to 10 file 3]---

124 ClearCase Reference Manual

cleartool subcommand merge..
hh

cent	scent

Do you want the CHANGE made in file 2? [yes] no
Do you want the CHANGE made in file 3? [yes] yes
Applying CHANGE from file 3 [line 10]
============

Be sure to verify that the changes you accept produce consistent merged output. For example, after
performing a merge involving file util.c, you might compare files util.c.contrib (which contains its pre-
vious contents) and the new util.c (which contains the merge output).

Determination of the Base Contributor
If all the contributors are versions of the same element, merge determines the base contributor automati-
cally. It examines the element’s ‘‘merge-enhanced’’ version tree — the directed graph consisting of the
actual version tree along with all the merge arrows created by previous merge operations. This examina-
tion reveals the relationships among versions from the standpoint of their contents (‘‘which versions con-
tributed their data to me?’’), rather than from the standpoint of their creation order (‘‘which versions were
created before me?’’). merge selects the ‘‘closest common ancestor’’ in this enhanced version tree to be the
base contributor.

If no merges have been performed in the element, the actual common ancestor in the version tree is
selected to be the base contributor. Figure 8 illustrates some common cases.

May 1994 125

merge.. cleartool subcommand
hh

....

A

C

hhhhhhhhhhhhbugfix

C

....

A

hhhhhhhhhhhhmotif

C

hhhhhhhhhhhhwindows

C
merge

....

C

hhhhhhhhhhhhbugfix

A

C

merge

....
hhhhhhhhhhhhports

C

hhhhhhhhhhhhbugfix

A

C

merge

hhhhhhhhhhhhmerge

Figure 8. Determination of the Base Contributor for a Merge

If the contributors are not all versions of the same element, there is no base contributor. This means that
you must resolve all discrepancies among the contributors; thus, the −qall option is enabled automati-
cally.

Recording of Merge Arrows
Under certain circumstances, cleartool records the merge by creating one or more merge arrows (hyperlinks
of type Merge):
g All contributor files must be versions of the same file element.
g One of the contributors must be a checked-out version, and you must specify this version as the target

to be overwritten with the merge output (−to option).
g You must not use the −narrows option, which suppresses the creation of the merge arrow(s).

If all these conditions hold, cleartool draws an arrow from each contributor version (except the base contri-
butor) to the target version.

Merge arrows can be viewed and traversed with xclearcase. The find command can locate versions with
Merge hyperlinks. The describe command lists all of a version’s hyperlinks, including merge arrows:
% cleartool describe util.c@@/main/3

126 ClearCase Reference Manual

cleartool subcommand merge..
hh

version "util.c@@/main/3"
...
Hyperlinks:
Merge@278@/vob_3 /vob_3/src/util.c@@/main/rel2_bugfix/1
-> /vob_3/src/util.c@@/main/3

NOTE: The −ndata option creates merge arrows without actually performing a merge.

DIRECTORY MERGE ALGORITHM
Each version of a ClearCase directory element catalogs (contains the names of) certain file elements, direc-
tory elements, and VOB symbolic links. merge can process two or more versions of the same directory
element, producing a directory version that reflects the contents of all the contributors. The algorithm is
similar to that for a file merge: merge compares a base contributor (common ancestor) version with each
other contributor, producing a set of ‘‘pairwise differences’’. It applies these differences to the base contri-
butor as automatically as possible, invoking a user interaction only when two or more of the pairwise
differences are in conflict. (See the diff manual page for more on this algorithm.)

One of the directory versions — the merge target, specified with the −to option — must be checked out.
(Typically, it is the version selected by your view.) merge updates the checked-out directory by adding,
removing, and changing names of elements and/or links.

NOTE: Unlike a file merge, a directory merge does not leave behind a .contrib file, with the pre-merge
contents of the target version. For this reason, we recommend that you use this procedure when merging
directories:

1. Make sure that all contributor versions of the directory are checked in.

2. Checkout the target version of the directory.

3. Perform the directory merge immediately, without making any other changes to the checked-out ver-
sion.

This procedure makes it easy to determine exactly what the merge accomplished: enter a diff

-predecessor command on the checked-out version, which has just been updated by merge.

Using ’ln’ to Implement a Merge
ClearCase implements directory merges using VOB hard links. You can use the ClearCase ln command to
perform full or partial merges manually. See the ln manual page for details.

COMMON SCENARIOS
This section presents common scenarios for performing merges. See also the ‘‘Examples’’ section.

Case 1: Merging From a Branch
A common usage of this command is to combine the changes made on a subbranch (for example, a bugfix
branch) of a file element with changes made on the main branch. The following illustration shows such a
merge.

The target is C1, the checked-out version on the main branch, and the other contributor is C2, the latest
version on a bugfix branch. cleartool automatically determines that version B is the common ancestor, to
be used as the base file. The merged result replaces the contents of the target, C1, as shown in Figure 9.

May 1994 127

merge.. cleartool subcommand
hh

B

c
c
c

c
c
c

c
c
c

C1

hhhhhhhhhhhhhh

c
c
c

C2

main branch
of file ’foo.c’ bugfix branch

base file

contributor

target and contributor

merge command:
cleartool merge -to foo.c \
foo.c@@/main/bugfix/LATEST

Figure 9. Merging From a Branch

Case 2: Merging into an Unreserved Checkout
Another common use of this command arises from ClearCase’s unreserved checkout capability: you per-
form an unreserved checkout and edit the file, but someone else checks in a successor version ahead of
you. You can check in your work only if you first merge with the version that ‘‘beat’’ you.

The next illustration shows a merge in which the target is C1, an unreserved, checked-out version that has
lost the ‘‘race’’ to checkin. The other contributor is C2, the version that won the race. cleartool automati-
cally determines that version B is the common ancestor, to be used as the base file. The result of the
merge replaces the contents of the target, C1. cleartool will allow C1 to be checked in when it sees the
merge arrow from C2 to C1, as illustrated in Figure 10.

c
c
c

B

c
c
c
c
c
c
c

C2

.
C1

main branch
of file ’foo.c’

base file

your unreserved checkout
(target and contributor)

successor version
checked in by
someone else
(contributor)

merge command:
cleartool merge -to foo.c foo.c@@/main/LATEST

a subsequent checkin command creates
successor to C2, with merged contents

Figure 10. Merging into an Unreserved Checkout

128 ClearCase Reference Manual

cleartool subcommand merge..
hh

SPECIAL MERGE SCENARIOS
merge has options that invoke special kinds of merges: selective and subtractive.

Selective Merges
By default, merge takes into account an entire, cumulative sequence of changes. For example, a merge
from version /main/bugfix/4 back into the main branch involves the changes made in version 3, and also the
changes made in versions 2 and 1 on that branch. In some cases, however, you may wish to incorporate
just the changes made in one specific version (or a range of versions), disregarding the changes made in
its predecessors. The −insert option implements a selective merge capability, as illustrated in Figure 11.
In each merge, the heavy outlines indicate the versions on the bugfix branch whose changes are integrated
back into the main branch.

....

....

checked-out

hhhhhhhhhhhhbugfix

std. merge

standard merge:
cleartool merge \
-to foo.c \
-ver /main/bugfix/3

....

....

checked-out

hhhhhhhhhhhhbugfix

sel. merge

selective merge of one version:
cleartool merge \
-to foo.c \
-insert -ver /main/bugfix/3

....

....

checked-out

hhhhhhhhhhhhbugfix

sel. merge

selective merge of range of versions:
cleartool merge \
-insert -to foo.c \
-ver /main/bugfix/2 \
/main/bugfix/3

Figure 11. Selective Merge

In a selective merge, no merge arrow is created; such an arrow would indicate that all of a version’s data
has been merged, not just some of its data.

Subtractive Merges
The −delete option invokes a subtractive merge, which is the opposite of a selective merge:
g A selective merge adds to the checked-out version the changes made in one or more other versions.
g A subtractive merge removes from the checked-out version the changes made in one or more of its

predecessors.

For example, to ‘‘undo’’ the changes made in versions 5 − 9 of file foo.c, while retaining all the changes
made before version 5 and after version 9, you might issue this command:
cleartool merge -to foo.c -delete -ver /main/5 /main/9

PERMISSIONS AND LOCKS
Permissions Checking: For each object processed, you must be one of the following: (creation of ’merge
arrows’ only): element group member, element owner, VOB owner, root user. Locks: An error occurs if
any of the following objects are locked: (creation of ’merge arrows’ only): VOB, element type, element,

May 1994 129

merge.. cleartool subcommand
hh

branch type, branch, hyperlink type. See the ‘‘Permissions Checking’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
Destination of Merge Output. Default: None.

−−to contrib-&-result-pname
Specifies a version of a file or directory element to be the merge target: one of the contributors
to the merge, and also the location where the merged output is stored. merge proceeds as fol-
lows:

1. (file merge only) Preserves the target’s current contents in view-private file contrib-&-
result-pname.contrib. The file name may get a .n extension, to prevent a name collision.

2. Stores the merged output in contrib-&-result-pname.

You can suppress these data-manipulation steps by using −ndata; you must do so to
avoid an error if the file is not checked-out:
cleartool: Error: ...
Only a checked out version can be modified to have the data
resulting from the merge.

3. Creates a merge arrow (hyperlink of type Merge) from all other contributors to the
checked-out version. You can suppress this step by using the −narrows option.

If the merge target cannot be overwritten, merge saves its work in view-private file contrib-&-
result-pname.merge. The file name may get a .n extension, to prevent a name collision.

−−out output-pname
(file merge only) Specifies a view-private file or non-MVFS file to be the merge target.
output-pname is not used as a contributor, and no merge arrows are created. Use this option
to perform a merge that does not overwrite any of its contributors. An error occurs if output-
pname already exists.

Specifying a Comment for the Merge Arrow. Default: Attaches a comment to each merge arrow (hyper-
link of type Merge) according to your home directory’s .clearcase_profile file (default: −nc). See ‘‘Com-
ment Handling’’ in the cleartool manual page. Comments can be edited with chevent.

−−c comment , −−cq , −−cqe , −−nc
Overrides the default with one of ClearCase’s standard comment options.

Specifying the Base Contributor. Default: Uses the procedure described in ‘‘Determination of the Base
Contributor’’ above.

−−bas .e pname
Specifies pname as the base contributor for the merge. You cannot use the −version option
to specify this argument; use a version-extended pathname.

Suppressing Parts of the Merge Process. Default: merge stores its results in the location specified by −to
or −out; with −to, it also creates merge arrows.

130 ClearCase Reference Manual

cleartool subcommand merge..
hh

−−nda.ta (use only with −to) Suppresses the merge, but creates the corresponding merge arrows.

An error occurs if you use −ndata along with −out — together, the two options leave merge
with no work to do.

−−nar.rows (for use with −to; invoked automatically by −out) Performs the merge, but suppresses the
creation of merge arrows.

Replacing a Previous Merge. Default: An error occurs if a merge arrow is already attached to any ver-
sion where merge would create one.

−−rep.lace Allows creation of new merge arrows to replace existing ones.

Controlling User Interaction. Default: Works as automatically as possible, prompting you to make a
choice only when two or more nonbase contributors differ from the base contributor.

−−abo.rt Cancels the command instead of engaging in a user interaction; a merge takes place only if it
is completely automatic. This command is useful in shell scripts that ‘‘batch’’ many merges
(for example, all file elements in a directory) into a single procedure.

−−qal . l Turns off automated merging. merge prompts you to make a choice every time a nonbase
contributor differs from the base contributor. This option is turned on automatically if merge
cannot determine a common ancestor (or other base contributor), and you do not use −base.

Invoking ’cleardiff’ Options. Default: Does not pass any special options to the underlying merge method
(implemented by the cleardiff utility for all predefined element types).

−−opt . ions pass-through-options
Allows you to specify merge options that are not directly supported on the merge command
line. For example, to invoke cleardiff’s −quiet option, use cleartool merge −options
-quiet.

Event Records and Comments. Default: Creates one or more event records, with commenting controlled
by your home directory’s .clearcase_profile file (default: −nc). See ‘‘Comment Handling’’ in the cleartool
manual page. Comments can be edited with chevent.

−−c comment , −−cq , −−cqe , −−nc
Overrides the default with one of ClearCase’s standard comment options.

Using a Separate Window. Default: merge does its work in the current window.

−−win.dow Performs the merge in a separate difference window. Output to this window is formatted as
with -columns 120. When the merge finishes, type an operating system INTR character
(typically, <Ctrl-C>) in the difference window to close it. The merge command does not ter-
minate until you close the difference window.

−−tin .y Same as −window, but uses a smaller font in a 165-character difference window.

Output Format. Default: Displays output in the format described in the ClearCase diff manual page.

−−dif .f_format
Displays output in the same style as the standard diff(1) utility.

May 1994 131

merge.. cleartool subcommand
hh

−−ser . ial_format
Reports differences with each line containing output from one contributor, instead of in a
side-by-side format.

−−col .umns n
Establishes the overall width of side-by-side output. The default width is 80 — only the first
40 or so characters of corresponding difference lines appear. If n does not exceed the default
width, this option is ignored.

Specifying Special Merges. Default: A standard merge is performed: all the differences between the base
contributor and each nonbase contributor are taken into account.

−−ins .ert Invokes a selective merge of the changes made in one or more versions. See the ‘‘Selective
Merges’’ section above for a description. If you specify one contributor with −version or a
pname argument, just that version’s changes are merged. Specifying two contributors defines
an inclusive range of versions; just the changes made in that range of versions are merged.

No merge arrow is created in a selective merge.

Restrictions: You must specify the target version with the −to option; this version must be
checked-out. No version specified with −version or a pname argument can be a predecessor
of the target version.

−−del .ete Invokes a subtractive merge of the changes made in one or more versions. See the ‘‘Subtractive
Merges’’ section above for a description. If you specify one contributor with −version or a
pname argument, just that version’s changes are removed. Specifying two contributors
defines an inclusive range of versions; just the changes made in that range of versions are
removed.

No merge arrow is created in a subtractive merge.

Restrictions: You must specify the target version with the −to option; this version must be
checked-out. All versions specified with −version or a pname argument must be predeces-
sors of the target version.

Specifying the Data to be Merged. Default: None.

−−ver.sion contrib-version-selector ...
(for use only if all contributors are versions of the same element) If you use the −to option to
specify one contributor, you can specify the others with −ver followed by one or more ver-
sion selectors. (See the version_selector manual page.)

contrib-pname ...
One or more pathnames, indicating the objects to be merged: versions of file elements, ver-
sions of directory elements, or any other files. If you don’t use −to, you must specify at least
two contrib-pname arguments.

These two commands are equivalent:
% cleartool merge −to foo.c −version /main/bugfix/LATEST /main/3

% cleartool merge −to foo.c foo.c@@/main/bugfix/LATEST \
foo.c@@/main/3

132 ClearCase Reference Manual

cleartool subcommand merge..
hh

EXAMPLES
g Merge the version of file util.c in the current view with the most recent versions on the rel2_bugfix and

motif branches; suppress the creation of merge arrows.
% cleartool merge −to util.c −narrows \

−version /main/rel2_bugfix/LATEST /main/motif/LATEST

g Merge the version of file util.c, in view jackson_fix, into version 3 on the main branch, placing the merged
output in a temporary file.
% cleartool merge −out /tmp/proj.out util.c@@/main/3 \

/view/jackson_fix/usr/hw/src/util.c

g Subtractive merge: remove the changes made in version 3 from file util.c.
% cleartool merge −to util.c −delete −version util.c@@/main/3

g Manually mimic the findmerge command functionality. Use the find command to determine which files
need to be merged from the rel2_bugfix branch to the main branch, and invoke a script named safemerge to
perform the merges. safemerge implements a ‘‘if-merge-aborts-use-xmerge’’ algorithm. It performs
automatic merges with the merge command (determined by the −abort option), and merges that require
operator intervention with the xmerge command. The safemerge script is shown immediately after the find
command.
% cleartool find . −ele ’needs_merge(/main/rel2_bugfix,/main)’ \

−exec ’safemerge $CLEARCASE_PN rel2_bugfix’

safemerge script:
#!/bin/sh
#
arg1: element name
arg2: subbranch of /main
#
cleartool checkout -nc $1@@/main
cleartool merge -abort -to $1 $1@@/main/$2/LATEST > /dev/null 2>&1
if [$? -ne 0] ; then

cleartool xmerge -to $1 $1@@/main/$2/LATEST
fi

SEE ALSO
cleartool subcommands: describe, diff, find, findmerge, ln, mkhlink, rmmerge, xdiff, xmerge
cleardiff, xcleardiff, xclearcase, profile_ccase, version_selector

May 1994 133

mkattr cleartool subcommand
hh

NAME mkattr − attach attributes to objects

SYNOPSIS
g Attach attributes to specified objects:

mkattr [−−rep.lace] [−−r .ecurse] [−−ver.sion version-selector]
[−−c comment | −−cq | −−cqe | −−nc]
{ attribute-type-name value | −−def.ault attribute-type-name }
[−−hli .nk] pname ...

g Attach attributes to versions listed in configuration record:

mkattr [−−rep.lace] [−−c comment | −−cq | −−cqe | −−nc]
−−con.fig do-pname [−−sel .ect do-leaf-pattern] [−−ci]
[−−typ.e { f | d } ...] [−−nam.e tail-pattern]
{ attribute-type-name value | −−def.ault attribute-type-name }

DESCRIPTION
Prerequisite: An ’attribute type’ object, created with ’mkattype’, must already exist in the VOB(s) containing the
objects to which you wish to attach attributes.

Attaches an attribute to one or more objects, each of which can be an element, a version, a branch, a VOB
symbolic link, or a hyperlink. You can specify the objects themselves on the command line, or you can
specify a particular derived object. In the latter case, mkattr attaches attributes to versions only — some or
all the versions that were used to build that derived object.

An attribute is a name/value pair:
(integer−valued attribute)BugNum / 455
(real−valued attribute)BenchMark / 12.9
(string−valued attribute)ProjectID / "orange"
(date−value attribute)DueOn / 5-Jan

Restrictions on Attribute Usage
In several situations, attempting to attach a new attribute causes a collision with an existing attribute:
g You want to change the value of an existing attribute on an object.
g (if the attribute type was created with mkattype -vpbranch) An attribute is attached to a version,

and you want to attach an attribute of the same type to another version on the same branch.
g (if the attribute type was created with mkattype -vpelement) An attribute is attached to a version,

and you want to attach an attribute of the same type to any other version of the element.

A collision causes mkattr to fail and report an error, unless you use the −replace option, which first
removes the existing attribute.

Referencing Objects by Their Attributes
ClearCase’s find command can locate objects by their attributes. Examples:

134 ClearCase Reference Manual

cleartool subcommand mkattr..
hh

cleartool find . −element ’attype_sub(BugNum)’ −print
List all elements in the current working directory for which some version has been assigned a
BugNum attribute.

cleartool find util.c −version ’BugNum==4059’ −print
List the version of element util.c to which the attribute BugNum has been assigned with the
value 4059.

More generally, queries written in the ClearCase query language can access objects using attribute types
and attribute values. See the query_language manual page for details.

PERMISSIONS AND LOCKS
Permissions Checking: For each object processed, you must be one of the following: element group
member, element owner, VOB owner, root user. Locks: An error occurs if any of the following objects are
locked: VOB, element type, element, branch type, branch, attribute type. See the ‘‘Permissions Checking’’
section of the cleartool manual page.

OPTIONS AND ARGUMENTS
Moving an Attribute or Changing Its Value. Default: An error occurs if an attribute collision occurs (see
‘‘Restrictions on Attribute Usage’’ above).

−−rep.lace Removes an existing attribute of the same type before attaching the new one, thus avoiding
the collision. (No error occurs if a collision would not have occurred.)

Specifying the Attribute Type and Value. Default: None — you must specify an existing attribute type;
you must also indicate a value, either directly or with the −default option.

attribute-type-name
An attribute type, previously created with mkattype. If the objects to be assigned attributes
reside in different VOBs, the attribute type must exist in each VOB.

−−def.ault If the attribute type was created with a default value (mkattype -default), you can use
−default attribute-type-name to specify the name/value pair. An error occurs if the attribute
type was not created with a default value.

value Specifies the attribute’s value. The definition of the attribute type specifies the required form
of this argument (for example, to an integer). It may also restrict the permissible values (for
example, to values in the range 0−7).

Value Type Input Format

integer any integer that can be parsed by the strtol(2) system call

real any real number that can be parsed by the strtod(2) system call

date a date-time string in standard ClearCase format:

date-time := date.time | date | time | now
date := day-of-week | long-date
day-of-week := today | yesterday | Sunday | .. | Saturday | Sun | .. | Sat
long-date := d[d]−−month[−−[yy]yy]
month := January | ... | December | Jan | ... | Dec

May 1994 135

mkattr.. cleartool subcommand
hh

time := h[h]:m[m][:s[s]]

Specify the time in 24-hour format, relative to the local time zone. If you omit
the time, it defaults to 00:00:00. If you omit the date, it defaults to today.
If you omit the century, year, or a specific date, the most recent one is used.
Dates before January 1, 1970 UCT are invalid.

string any string in standard C-language string literal format. It must be enclosed
in double quotes; it can include escape sequences: \n, \t, and so on.

NOTE: The double-quote (") character is special to both the cleartool com-
mand processor and the UNIX shells. Thus, you must escape or quote this
character on the command line. These two commands are equivalent:
cleartool mkattr QAed ’"TRUE"’ hello.c
cleartool mkattr QAed \"TRUE\" hello.c

opaque a ‘‘word’’ consisting of an even number of hex digits (for example, 04a58f or
FFFB). ClearCase stores the value as a byte sequence in a host-specific for-
mat.

Directly Specifying the Objects. The options and arguments in this section specify objects to be assigned
attributes directly on the command line. Do not use these options and arguments when using a derived
object to provide a list of versions to be assigned attributes.

pname ... (required) One or more pathnames, indicating objects to be assigned attributes.

− A standard or view-extended pathname to an element specifies the version selected by
the view.

− A VOB-extended pathname specifies an element, branch, or version, independent of
view.

Examples:
(version of ’foo.c’ selected by current view)foo.c
(version of ’foo.c’ selected by another view)/view/gamma/usr/project/src/foo.c
(version 5 on main branch of ’foo.c’)foo.c@@/main/5
(version of ’foo.c’ with version label ’REL3’)foo.c@@/REL3
(the element ’foo.c’)foo.c@@
(the main branch of element ’foo.c’)foo.c@@/main

Use −version to override these interpretations of pname.

−−ver.sion version-selector
For each pname, attaches the attribute to the version specified by version-selector. This option
overrides both version−selection by the view and version−extended naming. See the
version_selector manual page for syntax details.

−−r .ecurse Processes the entire subtree of each pname that is a directory element (including pname itself).
VOB symbolic links are not traversed during the recursive descent into the subtree.

136 ClearCase Reference Manual

cleartool subcommand mkattr..
hh

NOTE: mkattr differs from some other commands in its default handling of directory element
pname arguments: it assigns an attribute to the directory element itself; it does not assign attri-
butes to the elements cataloged in the directory.

−−hli .nk Indicates that the pname argument(s) name hyperlink objects, not file system objects. The
hyperlink-specifier arguments take this form:

hyperlink-type-name@hyperlink-ID[@pname-in-vob]

Hyperlinks are not file system objects — you cannot specify them with shell wildcards. The
final component is required only for a hyperlink in another VOB. Examples:
DesignFor@598f
RelatesTo@58843@/vobs/monet

Event Records and Comments. Default: Creates one or more event records, with commenting controlled
by your home directory’s .clearcase_profile file (default: −nc). See ‘‘Comment Handling’’ in the cleartool
manual page. Comments can be edited with chevent.

−−c comment , −−cq , −−cqe , −−nc
Overrides the default with one of ClearCase’s standard comment options.

Using a Derived Object to Specify Versions. The options and arguments in this section specify versions
to be assigned attributes by selecting them from the configuration record(s) associated with a particular
derived object. Do not use these options when specifying objects to be assigned attributes directly on the
command line.

−−con.fig do-pname
(required) Specifies one derived object. A standard pathname or view-extended pathname
specifies the DO that currently appears in a view. To specify a DO independent of view, use
an extended name that includes a DO-ID (for example, hello.o@@24-Mar.11:32.412) or a
version-extended pathname to a DO version.

With the exception of checked-out versions, mkattr attaches attributes to all the versions that
would be included in a catcr -flat listing of that derived object. Note that this includes
any DO created by the build and subsequently checked in as a DO version.

If the DO’s configuration includes multiple versions of the same element, the attribute is
attached only to the most recent version.

Use the following options to modify the list of versions to which attributes will be attached.

−−sel .ect do-leaf-pattern
−−ci
−−nam.e tail-pattern
−−typ.e { f | d } ...

Modify the set of versions to be assigned attributes in the same way that these options modify
a catcr listing. See the catcr manual page for details, along with the ‘‘Examples’’ section below.

May 1994 137

mkattr.. cleartool subcommand
hh

EXAMPLES
g Create an attribute type named BugNum. Then, attach that attribute with the value 21 to the version of

util.c that fixes bug 21.
% cleartool mkattype −nc −vtype integer BugNum
Created attribute type "BugNum".

% cleartool mkattr BugNum 21 util.c
Created attribute "BugNum" on "util.c@@/main/maintenance/3".

g Attach the TESTED attribute to the version of hello.h in the view, and assign it the value TRUE.
% cleartool mkattr TESTED ’"TRUE"’ hello.h
Created attribute "TESTED" on "hello.h@@/main/2".

g Update the value of the TESTED attribute on hello.h to "FALSE". This example shows that to overwrite
an existing attribute value, you must use the −replace option.
% cleartool mkattr −replace TESTED ’"FALSE"’ hello.h
Created attribute "TESTED" on "hello.h@@/main/2".

g Attach the RESPONSIBLE attribute to the element (not a particular version) hello.c.
% cleartool mkattr RESPONSIBLE ’"Anne"’ hello.c@@
Created attribute "RESPONSIBLE" on "hello.c@@".

g Attach the TESTED_BY attribute to the version of util.c in the view, assigning it the value of the USER
environment variable as a double-quoted string. Using \" causes the shell to pass through the double-
quote character instead of interpreting it. (Specifying the attribute value as ’"$USER"’ would not work,
because the single-quotes suppress environment variable substitution.)
% cleartool mkattr TESTED_BY \"$USER\" util.c
Created attribute "TESTED_BY" on "util.c@@/main/5".

g Attach the TESTED attribute with its default value to each version that was used to build derived object
hello.o. Note that the attribute is assigned both to files and to directories.
% cleartool mkattr −config hello.o −default TESTED
Created attribute "TESTED" on "/usr/hw/@@/main/1".
Created attribute "TESTED" on "/usr/hw/src@@/main/2".
Created attribute "TESTED" on "/usr/hw/src/hello.c@@/main/3".
Created attribute "TESTED" on "/usr/hw/src/hello.h@@/main/1".

138 ClearCase Reference Manual

cleartool subcommand mkattr..
hh

g Attach the TESTED attribute with the value "FALSE" to those versions that were used to build hello, and
whose pathnames match the *.c tail pattern.
% cleartool mkattr −config ’hello’ −name ’*.c’ TESTED ’"FALSE"’
Created attribute "TESTED" on "/usr/hw/src/hello.c@@/main/3".
Created attribute "TESTED" on "/usr/hw/src/util.c@@/main/1".

g Attach the TESTED attribute with the value "TRUE" to all versions in the VOB mounted at /src/lib that
were used to build hello. Use interactive mode to enable use of the ClearCase ‘‘...’’ wildcard.
% cleartool

cleartool> mkattr −config hello −name ’/src/lib/...’ TESTED ’"TRUE"’

SEE ALSO
cleartool subcommands: catcr, describe, ln, lstype, mkattype, rmattr, rmtype, rntype
profile_ccase, query_language, version_selector

May 1994 139

mkattype cleartool subcommand
hh

NAME mkattype − create an attribute type object

SYNOPSIS
mkattype [−−rep.lace] [−−vpe.lement | −−vpb.ranch | −−vpv.ersion]

[−−vob pname-in-vob]
[−−vty.pe { integer | real | time | string | opaque }]
[

{
[−−gt low-val | −−ge low-val] [−−lt high-val | −−le high-val]

|
−−enu.m value[,. . .]

}
]
[−−def.ault default-val]
[−−c comment | −−cq | −−cqe | −−nc] [−−oma.ster] type-name ...

DESCRIPTION
Creates one or more attribute types for future use within a VOB. After creating an attribute type in a VOB,
you can use mkattr to attach attributes of that type to several kinds of objects in that VOB: elements,
branches, versions, and VOB symbolic links.

Attributes as Name/Value Pairs
An attribute is a name/value pair. When creating an attribute type, you must specify the kind of value
(integer, string, and so on). You can also restrict the possible values to a particular list or range. Exam-
ples:
g Attributes of type FUNC_TYPE might be restricted to integer values in the range 1−5
g Attributes of type QAed might be restricted to the string values "TRUE" and "FALSE".

Predefined Attribute Types
Each new VOB is created with two string-valued attributes types, named HlinkFromText and HlinkToText.
When you enter a mkhlink -ftext command, the from text you specify is stored as an instance of Hlink-
FromText on the hyperlink object. Similarly, an HlinkToText attribute implements the to text of a hyper-
link.

PERMISSIONS AND LOCKS
Permissions Checking: For each object processed, you must be one of the following: type creator (for
−replace only), VOB owner, root user. Locks: An error occurs if any of the following objects are locked:
VOB, attribute type (for −replace only). See the ‘‘Permissions Checking’’ section of the cleartool manual
page.

OPTIONS AND ARGUMENTS
Handling of Name Collisions. Default: An error occurs if an attribute type named type-name already
exists in the VOB.

140 ClearCase Reference Manual

cleartool subcommand mkattype..
hh

−−rep.lace Replaces the existing definition of type-name with a new one. You must specify all options,
even those that you wish to preserve from the old definition. Additional restrictions:

− If there are existing attributes of this type, you cannot change the −vtype value.

− If there are existing attributes of this type, you cannot replace a less restrictive
−vpelement, −vpbranch, or −vpversion specification with a more restrictive one.
(−vpelement is the most restrictive.)

− You cannot replace the predefined attribute types HlinkFromText and HlinkToText.

− When replacing an attribute type that was created with the −omaster option, you must
use −omaster again; that is, you cannot convert an attribute type from shared to
unshared.

Instance Restrictions. Default: In a given element, one attribute of the new type can be attached to each
version, to each branch, and to the element itself. One attribute of the type can be attached to a VOB sym-
bolic link.

−−vpe.lement
Attributes of this type can be attached only to versions; and only one version of a given ele-
ment can get an attribute of this type.

−−vpb.ranch
Attributes of this type can be attached only to versions; and only one version on each branch of
a given element can get an attribute of this type.

−−vpv.ersion
Attributes of this type can be attached only to versions; within a given element, all versions
can get an attribute of this type.

VOB Specification. Default: The attribute type is created in the VOB that contains the current working
directory.

−−vob pname-in-vob
Specifies the VOB in which to create the attribute type(s). pname-in-vob can be the pathname
of any object within the VOB.

Specifying the Kind of Value. Default: One or more string-valued attribute types are created.

−−vty.pe integer
Attributes of this type can be assigned integer values. You can use these options to restrict
the possible values: −gt, −ge, −lt, −le, −enum.

−−vty.pe real
Attributes of this type can be assigned floating-point values. You can use these options to
restrict the possible values: −gt, −ge, −lt, −le, −enum.

−−vty.pe time
Attributes of this type can be assigned values in the standard ClearCase date-time format.
You can use these options to restrict the possible values: −gt, −ge, −lt, −le, −enum.

May 1994 141

mkattype.. cleartool subcommand
hh

−−vty.pe string
Attributes of this typ can be assigned character-string values. You can use the −enum option
to restrict the possible values.

−−vty.pe opaque
Attributes of this type can be assigned arbitrary byte sequences as values.

Restricting the Possible Values. Default: The values that can be assigned to attributes of the new type
are unrestricted within the basic value type (any integer, any string, and so on). You can specify a list of
permitted values, using −enum; alternatively, you can specify a range using −gt or −ge to specify the
lower bound, and −lt or −le to specify the upper bound.

−−gt low-val or −−ge low-val
Lower bound of an integer, real, or time value. −gt means greater than. −ge means ‘‘greater
than or equal to’’.

−−lt high-val or −−le high-val
Upper bound of an integer, real, or time value. −lt means ‘‘less than’’. −le means ‘‘less than
or equal to’’.

−−enu.m value[,. . .]
Comma-separated list (no white space allowed) of permitted values for any value type. See
‘‘Specifying the Attribute Type and Value’’ in the mkattr manual page for details on how to
enter the various kinds of value arguments.

Specifying a Default Attribute Value. Default: Users will not be able to use mkattr -default to create
an instance of this attribute type — they will have to specify an attribute value on the command line.

−−def.ault default-val
Specifies a default attribute value; entering a mkattr -default command creates an attri-
bute with the value default-val.

Event Records and Comments. Default: Creates one or more event records, with commenting controlled
by your home directory’s .clearcase_profile file (default: −cqe). See ‘‘Comment Handling’’ in the cleartool
manual page. Comments can be edited with chevent.

−−c comment , −−cq , −−cqe , −−nc
Overrides the default with one of ClearCase’s standard comment options.

Naming the Attribute Types. Default: None.

type-name ...
One or more names for the attribute types to be created. Compose the name(s) according to
these rules:

− It must contain only letters, ideographs, digits, and the special characters underscore (_),
period (.), and hyphen (-). The first character must not be a hyphen.

− It must not be a valid integer or real number. (Be careful with names that begin with
‘‘0x’’, ‘‘0X’’, or ‘‘0’’, the standard prefixes for hexadecimal and octal integers.)

142 ClearCase Reference Manual

cleartool subcommand mkattype..
hh

Mastership of the Attribute Type. Attempts to attach or remove attributes of this type will succeed only
in the VOB replica which is the current master of the attribute type. The VOB replica in which the new
attribute type is created becomes its initial master.

−−oma.ster Mastership of this attribute type will be ignored in mkattr and rmattr commands; instead,
mastership of the object to which the attribute is being attached will determine whether the
command succeeds.

EXAMPLES
g Create a string-valued attribute type named Responsible.
% cleartool mkattype −nc Responsible
Created attribute type "Responsible".

g Create an integer-valued attribute type named Confidence_Level, with a low value of 1 and a high value of
10. Restrict its use to one-per-branch.
% cleartool mkattype −nc −vpbranch −vtype integer −gt 0 −le 10 \

Confidence_Level
Created attribute type "Confidence_Level".

g Create a string-valued attribute type named QAed, with an enumerated list of valid values.
% cleartool mkattype −nc −enum ’"TRUE","FALSE","in progress"’ QAed
Created attribute type "QAed".

g Create a time-valued attribute type named QA_date, with a default value of today. Provide a comment on
the command line.
% cleartool mkattype −c "attribute for QA date" −vtype time \

−default today QA_date
Created attribute type "QA_date".

g Create an enumerated attribute type, with a default value, called Released.
% cleartool mkattype −nc −enum ’"TRUE","FALSE"’ −default ’"FALSE"’ Released
Created attribute type "Released".

g Change the default value of an existing attribute type named TESTED. Provide a comment on the com-
mand line.
% cleartool mkattype −replace −default ’"TRUE"’ \

−c "changing default value" TESTED
Replaced definition of attribute type "TESTED".

SEE ALSO
cleartool subcommands: describe, lstype, mkattr, mkeltype, rmattr, rntype
events_ccase, profile_ccase

May 1994 143

mkbranch cleartool subcommand
hh

NAME mkbranch − create a new branch in the version tree of an element

SYNOPSIS
mkbranch [−−ver.sion version-selector] [−−nco] [−−c comment | −−cq | −−cqe | −−nc]

branch-type-name pname ...

DESCRIPTION
Prerequisite: A ’branch type’ object, created with ’mkbrtype’, must already exist in the VOB(s) containing the
specified elements.

Creates a new branch in the version trees of one or more elements. A checkout is performed on the new
branch, unless you use the −nco option.

Auto-Make-Branch
The checkout command sometimes invokes mkbranch automatically. If the view’s version of an element is
selected by a config spec rule with a −−mkbranch branch-type clause:

1. checkout first creates a branch of type branch-type.

2. It then checks out (version 0 on) the newly-created branch.

Similarly, entering a mkbranch command explicitly can invoke one or more additional branch-creation
operations. See ‘‘Multiple-Level Auto-Make-Branch’’ in the checkout manual page.

PERMISSIONS AND LOCKS
Permissions Checking: For each object processed, you must be one of the following: element group
member, element owner, VOB owner, root user. Locks: An error occurs if any of the following objects are
locked: VOB, element type, branch type, element, pool (non-directory elements only). See the ‘‘Permis-
sions Checking’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
Checkout of the New Branch. Default: The newly-created branch is checked out. Additional checkouts
may ensue — see ‘‘Auto-Make-Branch’’ above.

−−nco Suppresses automatic checkout of the branch.

Event Records and Comments. Default: Creates one or more event records, with commenting controlled
by your home directory’s .clearcase_profile file (default: −cqe). See ‘‘Comment Handling’’ in the cleartool
manual page. Comments can be edited with chevent.

−−c comment , −−cq , −−cqe , −−nc
Overrides the default with one of ClearCase’s standard comment options.

Specifying the Branch Type. Default: None.

branch-type-name
An existing branch type, previously created with mkbrtype. If the elements reside in different
VOBs, the branch type must exist in each VOB.

144 ClearCase Reference Manual

cleartool subcommand mkbranch
hh

Specifying the Branch Points. Default: None.

pname ... One or more pathnames, indicating the versions at which branch are to be created.

− A standard or view-extended pathname to an element specifies the version selected by
the view.

− A version-extended pathname specifies a version, independent of view.

Use −version to override these interpretations of pname.

−−ver.sion version-selector
For each pname, creates the branch at the version specified by version-selector. This option
overrides both version−selection by the view and version−extended naming. See the
version_selector manual page for syntax details.

EXAMPLES
g Create a branch type named solaris. Then, set a view that prefers versions on the solaris branch, and create

a branch of that type in file util.h.
% cleartool mkbrtype −c "solaris development branch" solaris
Created branch type "solaris".

% cleartool setview solaris_port

% cleartool mkbranch −nc solaris util.h
Created branch "solaris" from "util.h" version "/main/1".
Checked out "util.h" from version "/main/solaris/0".

g Create a branch named rel2_bugfix off the version of hello.c in the view, and checkout the initial version on
the branch.
% cleartool mkbranch −nc rel2_bugfix hello.c
Created branch "rel2_bugfix" from "hello.c" version "/main/4".
Checked out "hello.c" from version "/main/rel2_bugfix/0"

g Create a branch named maintenance off version /main/1 of file util.c. Do not checkout of the initial version
on the branch.
% cleartool mkbranch −version /main/1 −nco −nc maintenance util.c
Created branch "maintenance" from "util.c" version "/main/1".

g Create a branch named motif off version /main/3 of file hello.c, and checkout the initial version on the
branch. Use a version-extended pathname to specify the version.
% cleartool mkbranch −nc motif hello.c@@/main/3
Created branch "motif" from "hello.c" version "/main/3".
Checked out "hello.c" from version "/main/motif/0".

May 1994 145

mkbranch cleartool subcommand
hh

g For each file with a .c suffix, create a branch named patch2 at the currently-selected version, but do not
checkout the initial version on the new branch. Provide a comment on the command line.
% cleartool mkbranch −nco −c "release 2 code patches" patch2 *.c
Created branch "patch2" from "cm_add.c" version "/main/1".
Created branch "patch2" from "cm_fill.c" version "/main/3".
Created branch "patch2" from "msg.c" version "/main/2".
Created branch "patch2" from "util.c" version "/main/1".

SEE ALSO
cleartool subcommands: describe, lstype, mkbrtype, rmtype, rntype
profile_ccase, version_selector

146 ClearCase Reference Manual

cleartool subcommand mkbrtype
hh

NAME mkbrtype − create a branch type object

SYNOPSIS
mkbrtype [−−rep.lace] [−−pel .ement] [−−vob pname-in-vob]

[−−c comment | −−cq | −−cqe | −−nc] type-name ...

DESCRIPTION
Creates one or more branch types with the specified names for future use within a particular VOB. After
creating a branch type in a VOB, you can create branches of that type in that VOB’s elements, using
mkbranch.

Instance Restrictions
ClearCase’s version-extended naming scheme requires that a branch of a version tree have at most one
subbranch of a given type. (If there were two bugfix subbranches of the main branch, then the version-
extended pathname foo.c@@/main/bugfix/3 would be ambiguous.) The −pelement option imposes a
tighter restriction: only one branch of this type can be created in an element’s entire version tree.

Recommended Naming Convention
A VOB cannot contain a branch type and a label type with the same name. For this reason, we strongly
recommend that you adopt this convention:
g Make all letters in names of branch types lowercase (a − z).
g Make all letters in names of label types uppercase (A − Z).

PERMISSIONS AND LOCKS
Permissions Checking: For each object processed, you must be one of the following: (with −replace only):
type creator, VOB owner, root user. Locks: An error occurs if any of the following objects are locked:
VOB, branch type (with −replace only). See the ‘‘Permissions Checking’’ section of the cleartool manual
page.

OPTIONS AND ARGUMENTS
Handling of Name Collisions. Default: An error occurs if a branch type named type-name already exists
in the VOB.

−−rep.lace Replaces the existing definition of type-name with a new one. You must specify all options,
even those that you wish to preserve from the old definition. Additional restrictions:

− You cannot replace the predefined branch type main.

− If there are existing branches of this type, you cannot replace a less restrictive definition
(no instance restriction) with a more restrictive definition (−pelement specified).

Instance Restrictions. Default: Multiple branches of the new type can be created in a given element.
(NOTE: Each one must have a different branch as its ‘‘parent’’.)

−−pel .ement
Only one branch of the new type can be created in a given element’s version tree.

May 1994 147

mkbrtype.. cleartool subcommand
hh

VOB Specification. Default: The branch type is created in the VOB that contains the current working
directory.

−−vob pname-in-vob
A pathname within any VOB. The branch type(s) will be created in that VOB.

Event Records and Comments. Default: Creates one or more event records, with commenting controlled
by your home directory’s .clearcase_profile file (default: −cqe). See ‘‘Comment Handling’’ in the cleartool
manual page. Comments can be edited with chevent.

−−c comment , −−cq , −−cqe , −−nc
Overrides the default with one of ClearCase’s standard comment options.

Naming the Branch Types. Default: None.

type-name ...
One or more names for the branch types to be created. Compose the name(s) according to
these rules:

− It must contain only letters, ideographs, digits, and the special characters underscore (_),
period (.), and hyphen (-). The first character must not be a hyphen.

− It must not be a valid integer or real number. (Be careful with names that begin with
‘‘0x’’, ‘‘0X’’, or ‘‘0’’, the standard prefixes for hexadecimal and octal integers.)

See ‘‘Recommended Naming Convention’’ above.

EXAMPLES
g Create a branch type named motif, which can be used without restriction in an element’s version tree.

Provide a comment on the command line.
% cleartool mkbrtype −c "motif development branch" motif
Created branch type "motif".

g Create two branch types for working on program ‘‘patches’’, and a bugfix branch for ‘‘release 2’’. Restrict
their use to one-per-element.
% cleartool mkbrtype −nc −pelement patch2 patch3 rel2_bugfix
Created branch type "patch2".
Created branch type "patch3".
Created branch type "rel2_bugfix".

g Change the usage restriction of an existing branch type such that it can be used only once per element.
Provide a comment on the command line.
% cleartool mkbrtype −replace −pelement −c "change to one per element" motif
Replaced definition of branch type "motif".

SEE ALSO
cleartool subcommands: chtype, describe, lstype, mkbranch, rmtype, rntype
profile_ccase

148 ClearCase Reference Manual

cleartool subcommand mkdir
hh

NAME mkdir − create a directory element

SYNOPSIS
mkdir [−−nco] [−−c comment | −−cq | −−cqe | −−nc] dir-pname ...

DESCRIPTION
NOTE: A new directory element can be created only if its parent directory is checked-out. mkelem
automatically appends an appropriate line to the parent directory’s checkout comment.

Creates one or more directory elements. (You can also use the standard UNIX mkdir(1) command, but that
creates view-private directories, not elements.) Unless you specify the −nco (‘‘no checkout’’) option, the
new directory is checked out automatically. A directory element must be checked out before you can
create elements and VOB links within it.

The mkelem -elt directory command is equivalent to this command.

The new directory element is assigned to the same storage pools (source, derived object, and cleartext) as
its parent directory element. You can assign the directory to different pools with the chpool command.

You cannot create a directory element with the same name as an existing view-private file or directory.

Access Mode
In standard UNIX fashion, new directory elements are created with mode 777, as modified by your
umask. The meanings of the ‘‘read’’, ‘‘write’’, and ‘‘execute’’ access permissions do not exactly their stan-
dard UNIX meanings, however. See the protect manual page for details.

Converting View-Private Directories
You cannot use this command to convert an existing view-private directory structure into directory and
file elements. To accomplish this task, use the clearcvt_unix utility.

PERMISSIONS AND LOCKS
Permissions Checking: No special permissions required. Locks: An error occurs if any of the following
objects are locked: VOB, element type. See the ‘‘Permissions Checking’’ section of the cleartool manual
page.

OPTIONS AND ARGUMENTS
Checkout of the New Directory. Default: mkelem performs a checkout on the new directory element.

−−nco Suppresses checkout of the new directory element.

Event Records and Comments. Default: Creates one or more event records, with commenting controlled
by your home directory’s .clearcase_profile file (default: −cqe). See ‘‘Comment Handling’’ in the cleartool
manual page. Comments can be edited with chevent.

−−c comment , −−cq , −−cqe , −−nc
Overrides the default with one of ClearCase’s standard comment options.

Naming the Directory(s). Default: None.

May 1994 149

mkdir cleartool subcommand
hh

dir-pname ...
One or more pathnames, specifying directories to be created.

EXAMPLES
g Create a subdirectory named subd, and checkout the directory to the current view.
% cleartool mkdir −nc subd
Created directory element "subd".
Checked out "subd" from version "/main/0".

g Create a subdirectory named release, but do not check it out. Provide a comment on the command line.
% cleartool mkdir −nco −c "Storage directory for released files" release
Created directory element "release".

SEE ALSO
cleartool subcommands: cd, checkout, chpool, mkelem, mkpool, mv, protect, pwd, rmelem
clearcvt_unix, profile_ccase

150 ClearCase Reference Manual

cleartool subcommand mkelem
hh

NAME mkelem − create a file or directory element

SYNOPSIS
mkelem [−−elt .ype element-type-name] [−−nco | −−ci]

[−−c comment | −−cq | −−cqe | −−nc] element-pname ...

DESCRIPTION
NOTE: A new element can be created in a directory only if that directory is checked-out. mkelem
automatically appends an appropriate line to the directory’s checkout comment.

Creates one or more new elements. For each one, mkelem:

1. determines an element type from the specified −eltype option, or by using the ClearCase file-typing
facility (see below)

2. creates an element object with that element type in the appropriate VOB database

3. if you are using the −ci option to convert a view-private file to an element, uses the permissions of
that file, including set-UID and/or set-GID bits; otherwise, sets the access mode of the new element to
444 (file element) or 777 (directory element), as modified by your current umask(1) setting

4. initializes the element’s version tree by creating a single branch (named main), and a single, empty
version (version 0) on that branch

5. either does nothing (−nco option), or creates version 1 by copying a view-private file (−ci option), or
checks out the element to your view (default)

6. assigns the element to the same source storage pool, cleartext storage pool, and (for new directory ele-
ments only) derived object storage pool as its parent directory element

NOTE: Error messages appear if your config spec lacks a ‘‘/main/LATEST’’ rule. The mkelem command
succeeds in creating version /main/0; but since your view does not have a rule to select this version, the
element cannot be ‘‘seen’’ or checked out.

The following sections provide more information on each of these steps.

File Types and Element Types
Each element is an instance of an element type (just as each version label is an instance of a label type, each
attribute is an instance of an attribute type, and so on). You can specify an element type with the
−eltype option. (The lstype -eltype command lists a VOB’s element types.) The element type must
already exist in the VOB where you are creating the new element. A mkelem -eltype directory com-
mand is equivalent to a mkdir command.

If you do not specify an element type on the command line, mkelem determines one automatically by
using magic files to perform file-typing. This involves a pattern-match on the new element’s name (and an
examination of the existing view-private file with that name, if one exists — see ‘‘Converting View-Private
Files to Elements’’ below). If file-typing fails, an error occurs and no element is created:
cleartool: Error: Can’t pick element type from rules in ...

May 1994 151

mkelem.. cleartool subcommand
hh

For more on file-typing, see the cc.magic manual page.

Access Mode
Standard UNIX procedure is to create files with mode 666, and directories with mode 777, as modified by
your umask. But a file element’s ‘‘write’’ access settings are essentially irrelevant — modifications to ele-
ments are controlled by ClearCase-level permissions, as described in the ct_permissions manual page.
When your view selects a checked-in version of a file element, all of its ‘‘write’’ permissions are turned off,
corresponding to the fact that the element is read-only. When you checkout an element, ‘‘write’’ permis-
sions are added to the view-private copy. (See the checkout manual page for details.)

In view of the fundamental read-only status of file elements, the mode to which your umask is applied is
444 (not 666) for a file element. When you convert a view-private file to an element (see below), its ‘‘read’’
and ‘‘execute’’ rights become those of the new element.

Converting View-Private Files to Elements
You can use the mkelem command to convert a view-private file to a file element with the same name.
There are several cases:

1. By default, mkelem creates an empty version 0 of the new element, then checks out the new element to
your view. The view-private file becomes the checked-out version of the new element.

2. If you use the −ci option (‘‘checkin’’), mkelem does all of the above, then proceeds to checkin version 1
of the new element. Thus, version 1 has the contents of the view-private file.

3. If you use the −nco option (‘‘no checkout’’), mkelem just creates an empty version 0 of the new ele-
ment.

During the element-creation process, mkelem renames the view-private file to prevent a name collision
that would affect other ClearCase software (for example, triggers on the mkelem operation). If this
renaming fails, a warning message appears. There are two renaming procedures:
g In cases 1 and 2 above, where a checkout is performed on the new element, mkelem temporarily

renames the view-private file, using a .mkelem (or possibly, .mkelem.n) suffix. After the new element
has been created and checked out, mkelem restores the original name. This produces the intended
effect: the data formerly in a view-private file is now accessible through an element with the same
name.

g In case 3 above, where no checkout is performed on the new element, mkelem alerts you that the
view-private file has been renamed, using a .keep (or possibly, .keep.n) suffix. Note that the view-
private file has not really been converted to an element — it has been moved out of the way to allow
creation of an element in its place.

NOTE: If mkelem is interrupted, it tries to ‘‘clean up’’. It is possible that your view-private file will be left
under the .mkelem file name.

Auto-Make-Branch During Element Creation
If your config spec has a ‘‘/main/LATEST’’ rule with a −mkbranch clause, mkelem checks out a subbranch
instead of the main branch. For example, suppose your view has this config spec: bugfix branch when
checked-out:

152 ClearCase Reference Manual

cleartool subcommand mkelem..
hh

element * CHECKEDOUT
element * .../gopher_port/LATEST
element * V1.0.1 -mkbranch gopher_port
element * /main/LATEST -mkbranch gopher_port

In this case, a newly-created element will automatically get a gopher_port branch; and this branch will be
checked out instead of main:
Created directory element "release".
% cleartool mkelem −c "new element for Gopher porting work" base.h
Created element "base.h" (type "text_file").
Created branch "gopher_port" from "base.h" version "/main/0".
Checked out "base.h" from version "/main/gopher_port/0".

The auto-make-branch facility is not invoked if you use the −nco option to suppress checkout of the new
element. For more on this facility, see the checkout and config_spec manual pages.

Referencing Element Objects and Their Versions
You sometimes need to distinguish an element itself from the particular version of the element that is
selected by your view. In general:
g Appending the extended naming symbol (by default, @@) to an element’s name references the ele-

ment itself.
g A simple name (no extended naming symbol) is a reference to the version selected by the view.

For example, msg.c@@ references an element, whereas msg.c references a version of that element. In many
contexts (for example, checkin and lsvtree), ClearCase allows you to ignore the distinction. But there are
ambiguous contexts in which you need to be careful. For example, you can attach attributes and hyper-
links either to version objects or to element objects. Thus, these two commands are different:

(attaches attribute to version)% cleartool mkattr BugNum 403 msg.c
(attaches attribute to element)% cleartool mkattr BugNum 403 msg.c@@

NOTE: Do not create elements whose names end with the extended naming symbol. ClearCase cannot
handle such elements.

Storage Pools
Physical storage for an element’s versions (data containers) will be allocated in the storage pools that
mkelem assigns. You can change pool assignments with the chpool command.

Group Membership Restriction
Each VOB has a group list. You can create an element in a VOB only if your principal group — the first (or
only) group listed when you enter an id(1) command — is on this list. See the protectvob manual page for
more on this topic.

PERMISSIONS AND LOCKS
Permissions Checking: No special permissions required. Locks: An error occurs if any of the following
objects are locked: VOB, element type, pool (non-directory elements only). See the ‘‘Permissions Check-
ing’’ section of the cleartool manual page.

May 1994 153

mkelem.. cleartool subcommand
hh

OPTIONS AND ARGUMENTS
Checkout of the New Element. Default: mkelem performs a checkout on the new element. If a view-
private file already exists at that pathname, it becomes the checked-out version of the element. Other-
wise, an empty view-private file is created, and becomes the checked-out version.

−−nco Suppresses automatic checkout; mkelem creates the new element, along with the main branch
and version /main/0, but does not check it out. If element-pname exists, it is moved aside to a
.keep file, as explained above.

−−ci Creates the new element and version /main/0, performs a checkout, and checks in a new ver-
sion containing the data in view-private file or derived object element-pname, which must
exist. You cannot use this option when creating a directory element.

Specifying the Element Type. Default: mkelem performs file-typing to select an element type. If file-
typing fails, an error occurs. See the cc.magic manual page for details on file-typing.

−−elt .ype element-type-name
Specifies the type of element to be created. The element type must be a ClearCase predefined
type, or a user−defined type created with the mkeltype command. Specifying −eltype
directory is equivalent to using the mkdir command.

Event Records and Comments. Default: Creates one or more event records, with commenting controlled
by your home directory’s .clearcase_profile file (default: −cqe). See ‘‘Comment Handling’’ in the cleartool
manual page. Comments can be edited with chevent.

−−c comment , −−cq , −−cqe , −−nc
Overrides the default with one of ClearCase’s standard comment options.

Specifying the Element(s). Default: None.

element-pname ...
The pathnames of one or more elements to be created. If you also specify the −−ci option, each
element-pname must name an existing view-private object. You cannot create a directory ele-
ment with the same name as an existing view-private file or directory.

EXAMPLES
g Create a file element named convolution.c of type text_file (ASCII file type), and checkout the initial version

(version 0).
% cleartool mkelem −nc −eltype compressed_text_file convolution.c
Created element "convolution.c" (type "compressed_text_file").
Checked out "convolution.c" from version "/main/0".

g Create three file elements, cm_add.c, cm_fill.c, and msg.c, allowing the ClearCase magic file to determine
the element type(s). Do not checkout the initial versions.
% cleartool mkelem −nc −nco cm_add.c cm_fill.c msg.c
Created element "cm_add.c" (type "text_file").
Created element "cm_fill.c" (type "text_file").
Created element "msg.c" (type "text_file").

154 ClearCase Reference Manual

cleartool subcommand mkelem..
hh

g Convert a view-private file named test_cmd.c, to an element, and checkin the initial version.
% cleartool mkelem −nc −ci test_cmd.c
Created element "test_cmd.c" (type "text_file").
Checked in "test_cmd.c" version "/main/1".

g Create two directory elements and checkout the initial version of each.
% cleartool mkelem −nc −eltype directory libs include
Created element "libs" (type "directory").
Checked out "libs" from version "/main/0".
Created element "include" (type "directory").
Checked out "include" from version "/main/0".

g Create an element type named archive for library archive files, with the user-defined bin_file as its super-
type. Then, change to the libs directory, check it out, and create two elements of type archive without
checking them out.
% cleartool mkeltype −nc −supertype bin_file archive
Created element type "archive".

% cd libs

% cleartool co −nc .
Checked out "." from version "/main/1".

% cleartool mkelem −nc −nco −eltype archive libntx.a libpvt.a
Created element "libntx.a" (type "archive").
Created element "libpvt.a" (type "archive").

SEE ALSO
cleartool subcommands: checkout, chpool, lstype, lshistory, mkdir, mkeltype, mkpool, protect, protectvob
cc.magic, config_spec, ct_permissions, profile_ccase

May 1994 155

mkeltype cleartool subcommand
hh

NAME mkeltype − create an element type object

SYNOPSIS
mkeltype [−−rep.lace] −−sup.ertype elem-type-name [−−man.ager mgr-name]

[−−pti .me] [−−att .ype attr-type[,. . .]] [−−vob pname-in-vob]
[−−c comment | −−cq | −−cqe | −−nc] type-name ...

DESCRIPTION
Creates one or more user-defined element types for future use within a VOB. User-defined element types
are variants of the ClearCase predefined types (see complete list below). After creating an element type,
you can create elements of that type using mkelem, or change its type using chtype.

Element Supertypes
When you create a new element type, you must specify an existing element type as its supertype. The new
element type inherits the type manager of the supertype, unless you use the −manager option. The type
manager performs such tasks as storing/retrieving the contents of the element’s versions (See the
type_manager manual page.)

For example, you might create an element type c_source, with text_file as the supertype; c_source inherits
the type manager associated with the text_file supertype — the text_file_delta manager.

The lstype -eltype -long command lists both the supertype of an element type and its type manager.

Text Files, Cleartext, and a View´s Text Mode
This section applies to the element types text_file and compressed_text_file, and to all user-defined element
types derived from them through the supertype mechanism.

All versions of a text file element are stored together in a single, structured data container file. When a
user program accesses a particular version, the type manager:

1. extracts the text lines of that particular version from the data container

2. stores the extracted lines in a cleartext file, within the cleartext storage pool directory associated with
the element

3. arranges for the program to access the cleartext file (not the structured data container)

On subsequent accesses to the same version, steps 1 and 2 can be skipped — the program accesses the
existing cleartext file, which is ‘‘cached’’ in the cleartext storage pool.

Operating systems vary in their use of text-file line terminators. To avoid confusion, each ClearCase view
has a text mode, which determines the line terminator for text files in that view. (See the mkview manual
page.) After the type manager constructs a cleartext file for a version, its line terminators may be adjusted
before the version is presented to the calling program. Adjustment of line terminators can also occur
when the checkout command copies a version of a text file element, creating a view-private file (the
‘‘checked-out version’’).

PERMISSIONS AND LOCKS
Permissions Checking: For each object processed, you must be one of the following: type creator (with
−replace only), VOB owner, root user. Locks: An error occurs if any of the following objects are locked:
VOB, element type (with −replace only). See the ‘‘Permissions Checking’’ section of the cleartool manual

156 ClearCase Reference Manual

cleartool subcommand mkeltype..
hh

page.

OPTIONS AND ARGUMENTS
Handling of Name Collisions. Default: An error occurs if an element type named type-name already
exists in the VOB.

−−rep.lace Replaces the existing definition of type-name with a new one. You must specify all options,
even those that you wish to preserve from the old definition. You cannot:

− change the type manager (−manager or −supertype option) if there are existing elements
of type type-name

− change the definition of a predefined element type (such as file or text_file)

Supertype / Type Manager Inheritance. Default: None — you must specify a supertype. The new ele-
ment type inherits the type manager of this supertype, unless you use the −manager option.

−−sup.ertype elem-type-name
The name of an existing element type, predefined or user-defined. ClearCase’s predefined
element types are:

file Versions can contain any kind of data (ASCII, binary). Uses the
whole_copy type manager.

compressed_file Versions can contain any kind of data (ASCII, binary). Uses the
z_whole_copy type manager.

text_file All versions must contain ASCII text. Null bytes are not permitted (a
byte of all zeros); no line can contain more than 8000 characters.
Uses the text_file_delta type manager.

compressed_text_file All versions must contain ASCII text. Uses the z_text_file_delta type
manager.

directory Versions of a directory element catalog (list the names of) elements
and VOB symbolic links. Uses the directory type manager, which
compares and merges versions of directory elements.

The lstype command lists a VOB’s existing element types. The listing includes
file_system_object, but you can only specify -supertype file_system_object, if you also
specify a type manager with −manager.

−−man.ager mgr-name
Specifies the type manager for the new element type(s), overriding inheritance from the
supertype. ClearCase’s type managers are:

text_file_delta Stores all versions in a single structured data container file (similar to
an SCCS s. file or an RCS ,v file). Uses incremental file differences
to reconstruct individual versions ‘‘on the fly’’. For ASCII files only.

May 1994 157

mkeltype.. cleartool subcommand
hh

z_text_file_delta Stores all versions in a single structured data container file, in
compressed format. For ASCII files only.

whole_copy Stores a whole copy of each version in a separate data container file.

z_whole_copy Stores each version of an element in a separate, compressed data
container file.

Note that compressed files generally take more time to checkin (since
they must be compressed), and reconstruct when first accessed (first
cleartext fetch). See compress(1) for details on the z_text_file_delta and
z_whole_copy compression algorithm.

directory Not involved in storing/retrieving directory versions, which reside
in the VOB database, not in a source storage pool. This type
manager compares and merges versions of the same directory ele-
ment.

Controlling Version-Creation Time. Default: For all elements of the newly created type: whenever a
new version is checked in, the version’s time-modified stamp is set to the checkin time.

−−pti .me For all elements of the newly created type: preserves the time-modified stamp of the
checked-out version during checkin. In effect, this establishes checkin -ptime as the default
for elements of this type.

Suggested Attributes. (advisory only, not restrictive) Default: The new element type has no list of sug-
gested attributes.

−−att .ype attr-type[,. . .]
A comma-separated list (no white space) of existing attribute types. Use this option to inform
users of suggested attributes for use with elements of the newly created type. (Users can
view the list with describe or lstype -eltype -long.)

VOB Specification. Default: The element type is created in the VOB that contains the current working
directory.

−−vob pname-in-vob
Specifies the VOB in which to create the element type(s). pname-in-vob can be the pathname
of any object within the VOB.

Event Records and Comments. Default: Creates one or more event records, with commenting controlled
by your home directory’s .clearcase_profile file (default: −cqe). See ‘‘Comment Handling’’ in the cleartool
manual page. Comments can be edited with chevent.

−−c comment , −−cq , −−cqe , −−nc
Overrides the default with one of ClearCase’s standard comment options.

Naming the Element Types. Default: None.

158 ClearCase Reference Manual

cleartool subcommand mkeltype..
hh

type-name ...
One or more names for the element types to be created. Compose the name(s) according to
these rules:

− It must contain only letters, ideographs, digits, and the special characters underscore (_),
period (.), and hyphen (-). The first character must not be a hyphen.

− It must not be a valid integer or real number. (Be careful with names that begin with
‘‘0x’’, ‘‘0X’’, or ‘‘0’’, the standard prefixes for hexadecimal and octal integers.)

EXAMPLES
g Create an element type named c_source using the predefined text_file element type as the supertype.
% cleartool mkeltype −supertype text_file −nc c_source
Created element type "c_source".

g Create an element type for storing binary data named bin_file, using the predefined file element type as the
supertype.
% cleartool mkeltype −supertype file −nc bin_file
Created element type "bin_file".

g Create an element type based on the user-defined element type bin_file (from previous example) for stor-
ing executable files. Include an attribute list.
% cleartool mkeltype −supertype bin_file −attype Confidence_Level,QAed −nc exe_file
Created element type "exe_file".

g Create a ‘‘directory of include files’’ element type, using the predefined directory element type as the
supertype. Provide a comment on the command line.
% cleartool mkeltype −supertype directory −c "directory type for include files" incl_dir
Created element type "incl_dir".

g Change the checkin default for an existing element type so that it preserves the file modification time. Pro-
vide a comment on the command line.
% cleartool mkeltype −replace −supertype bin_file −ptime \

−c "change archive mod time default" archive
Replaced definition of element type "archive".

SEE ALSO
cleartool subcommands: checkin, chtype, describe, lstype, mkattr, mkattype, mkelem, mkview, rmtype,
rntype
profile_ccase, type_manager

May 1994 159

mkhlink cleartool subcommand
hh

NAME mkhlink − attach a hyperlink to an object

SYNOPSIS
mkhlink [−−uni .dir] [−−tte .xt to-text] [−−fte .xt from-text]

[−−c comment | −−cq | −−cqe | −−nc] hlink-type-name
from-obj-pname [to-obj-pname]

DESCRIPTION
Creates a hyperlink between two objects, each of which may be an element, branch, version, or VOB sym-
bolic link.

Logically, a hyperlink is an ‘‘arrow’’ attached to one or two VOB-database objects:
g A bidirectional hyperlink connects two objects, in the same VOB or in different VOBs, with optional

text annotations at either end. It can be navigated in either direction: ‘‘from-object → to-object’’ or
‘‘to-object → from-object’’.

g A unidirectional hyperlink connects two objects in different VOBs, with optional text annotations at
either end. It can be navigated only in the ‘‘from-object → to-object’’ direction.

g A text-only hyperlink associates one object with a user-defined text string (for example, an element
that implements a particular algorithm with the name of a document that describes it).

g A null-ended hyperlink has only a from-object. Use this kind of hyperlink to suppress hyperlink inheri-
tance (see below).

Contrast with Other Kinds of Meta-Data
Like other kinds of meta-data annotations — version labels, attributes, and triggers — a hyperlink is an
instance of a type object: the mkhlink command creates an instance of an existing hyperlink type object. But
hyperlinks differ from other kinds of meta-data annotations:
g The hyperlink created by mkhlink is also an object in itself. Each hyperlink object has a unique ID (see

next section), and can itself be annotated with attributes. By contrast, a mklabel, mkattr, or mktrigger
command does not create a new object — it simply annotates an existing object.

g You can attach several hyperlinks of the same type to one object, but only one instance of a particular
label, attribute, or trigger type. (For example, you can attach two different DesignFor hyperlinks to
the same object, but not two different ECOnum attributes.)

Hyperlink-IDs
Each new hyperlink object gets a unique identifier, its hyperlink-ID. You can specify any hyperlink by
suffixing its hyperlink-ID to the name of the hyperlink type. For example:
% cleartool describe DesignFor@52179@/vobs/doctn

In this example, ‘‘DesignFor’’ is the name of a hyperlink type, and ‘‘@52179@/vobs/doctn’’ is the
hyperlink-ID. Note that the hyperlink-ID includes a pathname — the VOB-tag of the VOB in which the
hyperlink is created. When specifying a hyperlink, you can use any pathname within the VOB in place of
the VOB-tag pathname:
% cd /vobs

% cleartool describe DesignFor@52179@doctn

160 ClearCase Reference Manual

cleartool subcommand mkhlink
hh

You can omit the pathname altogether if the current working directory is in that VOB:
% cd /vobs/doctn

% cleartool describe DesignFor@52179

A hyperlink-ID is unique in that it is guaranteed to differ from the hyperlink-ID of all other hyperlinks.
But it can change over time — when a VOB’s database is processed with reformatvob, all hyperlink-IDs get
new numeric suffixes:
before ’reformatvob’: @52179@/vobs/doctn
after ’reformatvob’: @8883@/vobs/doctn

Similarly, the VOB-tag part of a hyperlink-ID can change over time, and can even vary from host to host.

Hyperlink Inheritance
By default, a version implicitly inherits a hyperlink attached to any of its ancestor versions, on the same
branch or on a parent branch. Inherited hyperlinks are listed by the describe command only if you use the
−ihlink option.

A hyperlink stops being passed down to its descendents if it is superseded by another hyperlink of the
same type, explicitly attached to some descendent version. You can use a null-ended hyperlink (‘‘from’’
object, but no ‘‘to’’ object) as the superseding hyperlink to effectively cancel hyperlink inheritance.

PERMISSIONS AND LOCKS
Permissions Checking: For each object processed, you must be one of the following: element group
member, element owner, VOB owner, root user. Locks: An error occurs if any of the following objects are
locked: VOB, element type, element, branch type, branch, hyperlink type. See the ‘‘Permissions Check-
ing’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
Unidirectional/Bidirectional. Default: Creates a bidirectional hyperlink. If the objects being linked are in
different VOBs, then a notation is made in the VOB database of the ‘‘to’’ object, making it possible to see
the hyperlink from either VOB.

−−uni .dir Creates a unidirectional hyperlink; no notation is made in the VOB database of the ‘‘to’’ object
(if that object is in a different VOB).

NOTE: In all cases, a single hyperlink object is created, in the VOB of the ‘‘from’’ object.

Text Annotations. Default: The hyperlink has no text annotations.

−−tte .xt to-text
Text associated with ‘‘to’’ end of a hyperlink. If you also specify to-obj-pname, the text is associ-
ated with that object. If you do not specify to-obj-pname, cleartool creates a text-only hyperlink,
originating from from-obj-pname. If you omit both −ttext and to-obj-pname, cleartool creates a
null-ended hyperlink.

−−fte .xt from-text
Text associated with ‘‘from’’ end of a hyperlink.

May 1994 161

mkhlink cleartool subcommand
hh

Event Records and Comments. Default: Creates one or more event records, with commenting controlled
by your home directory’s .clearcase_profile file (default: −nc). See ‘‘Comment Handling’’ in the cleartool
manual page. Comments can be edited with chevent.

−−c comment , −−cq , −−cqe , −−nc
Overrides the default with one of ClearCase’s standard comment options.

Specifying the Hyperlink Type. Default: None.

hlink-type-name
An existing hyperlink type. If the objects being linked are in different VOBs, hlink-type-name
must exist in both VOBs (unless you use the −unidir option).

Objects to be Hyperlinked. Default: None — you must specify at least one object.

from-obj-pname
Pathname of the from-object:

− A standard or view-extended pathname to an element specifies the version selected by
the view.

− A version-extended pathname specifies an element, branch, or version, independent of
view.

− The pathname of a VOB symbolic link.

Examples:
(version of ’foo.c’ selected by current view)foo.c
(version of ’foo.c’ selected by another view)/view/gamma/usr/project/src/foo.c
(version 5 on main branch of ’foo.c’)foo.c@@/main/5
(version of ’foo.c’ with version label ’REL3’)foo.c@@/REL3
(the element ’foo.c’)foo.c@@
(the main branch of element ’foo.c’)foo.c@@/main

to-obj-pname
(optional) Pathname of the to-object, specified in the same way as the from-object. Omitting
this argument creates a text-only hyperlink (if you use −ttext) or a null-ended hyperlink (if
you don’t).

NOTE: An error occurs if you try to make a unidirectional hyperlink whose to-obj-pname is a
checked-out version in another VOB.

EXAMPLES
g Create a hyperlink type; then create a unidirectional, element-to-element hyperlink between an executable

and its GUI counterpart in another VOB.
% cleartool mkhltype −nc gui_tool
Created hyperlink type "gui_tool".

% cleartool mkhlink −unidir gui_tool monet@@ /vobs/gui/bin/xmonet@@
Created hyperlink "gui_tool@1239@/usr/hw".

162 ClearCase Reference Manual

cleartool subcommand mkhlink
hh

g Create a hyperlink of type design_spec connecting the versions of a source file and design document
labeled REL2.
% cleartool mkhlink design_spec util.c@@/REL2 \

/usr/hw/doc/util.doc@@/REL2
Created hyperlink "design_spec@685@/usr/hw".

g Create three hyperlinks of the same type from the same version of a design document; each hyperlink
points to a different source file element.
% cleartool mkhlink design_for sortmerge.doc ../src/sort.c
Created hyperlink "design_for@4249@/vobs/proj".

% cleartool mkhlink design_for sortmerge.doc ../src/merge.c
Created hyperlink "design_for@4254@/vobs/proj".

% cleartool mkhlink design_for sortmerge.doc ../src/sortmerge.h
Created hyperlink "design_for@4261@/vobs/proj".

g Create an element-to-element hyperlink between a source file and a script that tests it. Specify both ‘‘from
text’’ and ‘‘to text’’ for further annotation.
% cleartool mkhlink −ttext "regression A" −ftext "edge effects" \

tested_by cm_add.c@@ edge.sh@@
Created hyperlink "tested_by@714@/usr/hw".

g Create a hyperlink of type fixes between the version of util.c in your view and the element bug.report.21.
Use ‘‘to text’’ to indicate the bug number (‘‘fixes bug 21’’).
% cleartool mkhlink −ttext "fixes bug 21" fixes \

util.c /usr/hw/bugs/bug.report.21@@
Created hyperlink "fixes@746@/usr/hw".

g Create a text only hyperlink of type design_spec to associate the algorithm convolution.c with the third party
document describing that algorithm. Make the hyperlink between the element convolution.c and the ‘‘to
text’’ that describes it.
% cleartool mkhlink −ttext "Wilson: Digital Filtering, p42−50" \

design_spec convolution.c@@
Created hyperlink "design_spec@753@/usr/hw".

SEE ALSO
cleartool subcommands: describe, lstype, mkhltype, rmhlink, rmtype, rntype
xclearcase, profile_ccase

May 1994 163

mkhltype cleartool subcommand
hh

NAME mkhltype − create a hyperlink type object

SYNOPSIS
mkhltype [−−rep.lace] [−−att .ype attr-type[,. . .]] [−−vob pname-in-vob]

[−−c comment | −−cq | −−cqe | −−nc] [−−oma.ster] type-name ...

DESCRIPTION
Creates one or more hyperlink types for future use within a VOB. After creating a hyperlink type, you can
connect pairs of objects with hyperlinks of that type, using mkhlink.

Conceptually, a hyperlink is an ‘‘arrow’’ from one VOB-database object (version, branch, element, or VOB
symbolic link) to another. To enable objects in two different VOBs to be connected, a hyperlink with the
same name must be created in both VOBs.

For example, you might create a hyperlink type named design_spec, for use in linking source code files to
the associated design documents. Later, you might use mkhlink to create a hyperlink of this type between
my_prog.c and my_prog.dsn.

Predefined Hyperlink Type
Each new VOB is created with a hyperlink type named Merge. When you perform a merge of two or
more versions of an element with the merge command, your work is record with one or more merge
arrows. Each merge arrow is actually a hyperlink of type Merge, connecting one of the contributors to the
target version.

PERMISSIONS AND LOCKS
Permissions Checking: For each object processed, you must be one of the following: (with −replace only):
type creator, VOB owner, root user. Locks: An error occurs if any of the following objects are locked:
VOB, hyperlink type (with −replace only). See the ‘‘Permissions Checking’’ section of the cleartool manual
page.

OPTIONS AND ARGUMENTS
Handling of Name Collisions. Default: An error occurs if a hyperlink type named type-name already
exists in the VOB.

−−rep.lace Replaces the existing definition of type-name with a new one. You must specify all options,
even those that you wish to preserve from the old definition. Additional restrictions:

− You cannot replace the predefined hyperlink type Merge.

− When replacing a hyperlink type that was created with the −omaster option, you must
use −omaster again; that is, you cannot convert a hyperlink type from shared to
unshared.

Suggested Attributes. (advisory only, not restrictive) Default: The new hyperlink type has no list of sug-
gested attributes.

−−att .ype attr-type[,. . .]
A comma-separated list (no white space) of existing attribute types. Use this option to inform
users of suggested attributes for use with hyperlinks of the newly created type. (Users can
view the list with describe or lstype -hltype -long.)

164 ClearCase Reference Manual

cleartool subcommand mkhltype
hh

In this release, mkattr attaches attributes only to file system objects, not to hyperlinks.

VOB Specification. Default: The element type is created in the VOB that contains the current working
directory.

−−vob pname-in-vob
Specifies the VOB in which to create the hyperlink type(s). pname-in-vob can be the pathname
of any object within the VOB.

Event Records and Comments. Default: Creates one or more event records, with commenting controlled
by your home directory’s .clearcase_profile file (default: −cqe). See ‘‘Comment Handling’’ in the cleartool
manual page. Comments can be edited with chevent.

−−c comment , −−cq , −−cqe , −−nc
Overrides the default with one of ClearCase’s standard comment options.

Naming the Hyperlink Types. Default: None.

type-name ...
One or more names for the hyperlink types to be created. Compose the name(s) according to
these rules:

− It must contain only letters, ideographs, digits, and the special characters underscore (_),
period (.), and hyphen (-). The first character must not be a hyphen.

− It must not be a valid integer or real number. (Be careful with names that begin with
‘‘0x’’, ‘‘0X’’, or ‘‘0’’, the standard prefixes for hexadecimal and octal integers.)

Mastership of the Hyperlink Type. Attempts to attach hyperlinks of this type will succeed only in the
VOB replica which is the current master of the hyperlink type. The VOB replica in which the new hyper-
link type is created becomes its initial master.

−−oma.ster Hyperlinks of this type can be created in any VOB replica.

EXAMPLES
g Create a hyperlink type named tested_by.
% cleartool mkhltype −nc tested_by
Created hyperlink type "tested_by".

g Create a hyperlink type named design_spec, and provide a comment on the command line.
% cleartool mkhltype −c "source to design document" design_spec
Created hyperlink type "design_spec".

g Create a hyperlink type named test_script, providing a suggested-attribute list.
% cleartool mkhltype −nc −attype run_overnight,error_rate test_script
Created hyperlink type "test_script".

SEE ALSO
cleartool subcommands: describe, lstype, mkattr, mkattype, mkhlink, rmtype, rntype
events_ccase, profile_ccase

May 1994 165

mklabel cleartool subcommand
hh

NAME mklabel − attach version labels to versions of elements

SYNOPSIS
g Attach label to specified versions:

mklabel [−−rep.lace] [−−r .ecurse] [−−ver.sion version-selector]
[−−c comment | −−cq | −−cqe | −−nc] label-type-name pname ...

g Attach label to versions listed in configuration record:

mklabel [−−rep.lace] [−−c comment | −−cq | −−cqe | −−nc]
−−con.fig do-pname [−−sel .ect do-leaf-pattern] [−−ci]
[−−typ.e { f | d } ...] [−−nam.e tail-pattern] label-type-name

DESCRIPTION
Prerequisite: A ’label type’ object, created with ’mklbtype’, must already exist in the VOB(s) containing the ver-
sions to be labeled.

Attaches a version label to one or more versions. You can specify the versions themselves on the command
line, or you can specify a particular derived object. In the latter case, mklabel labels some or all the ver-
sions that were used to build that derived object.

Referencing Labeled Versions
Labeling a version of an element can affect the way the element appears in views. It also provides a new
way to access the version with a version-extended pathname.

Version Selection by Views. A typical ClearCase config spec rule uses version labels to select versions:
element * BASELEVEL_1

If you attach version label BASELEVEL_1 to a version of element foo.c, then any view configured with this
rule will select the labeled version (unless some rule earlier in the config spec matches another version of
foo.c).

Version Labels in Version-Extended Pathnames. Labeling a version effectively adds a new hard link to
the version in ClearCase’s extended namespace. If you attach version label R4.1A to version /main/rls4/12
of element bar.c, then these pathnames are equivalent:
bar.c@@/main/rls4/12
bar.c@@/main/rls4/R4.1A

In addition, a third pathname is usually equivalent:
bar.c@@/R4.1A

This version-extended pathname is valid if it is unambiguous — that is, if no other version of bar.c is
currently labeled R4.1A. (This is usually the case since, by default, label types are restricted to being used
once-per-element. See the description of the −pbranch option in the mklbtype manual page.)

PERMISSIONS AND LOCKS
Permissions Checking: For each object processed, you must be one of the following: element group
member, element owner, VOB owner, root user. Locks: An error occurs if any of the following objects are
locked: VOB, element type, element, branch type, branch, label type. See the ‘‘Permissions Checking’’

166 ClearCase Reference Manual

cleartool subcommand mklabel
hh

section of the cleartool manual page.

OPTIONS AND ARGUMENTS
Moving a Version Label. Default: An error occurs if a version label of this type is already attached to
some other version of the same element.

−−rep.lace Removes an existing label of the same type from another version of the element:

− from another version on the same branch, if label−type−name was created with mklbtype

-pbranch

− from another version anywhere in the element’s version tree, label-type-name was not
created with mklbtype -pbranch

No error occurs if there is no such label to remove.

Specifying the Label Type. Default: None.

label-type-name
A label type, previously created with mklbtype. If the versions to be labeled reside in different
VOBs, the label type must exist in each VOB.

Event Records and Comments. Default: Creates one or more event records, with commenting controlled
by your home directory’s .clearcase_profile file (default: −nc). See ‘‘Comment Handling’’ in the cleartool
manual page. Comments can be edited with chevent.

−−c comment , −−cq , −−cqe , −−nc
Overrides the default with one of ClearCase’s standard comment options.

Directly Specifying the Versions to be Labeled. The options and arguments in this section specify ele-
ments and their versions directly on the command line. Do not use these options and arguments when
using a derived object to provide a list of versions.

pname ... (required) One or more pathnames, indicating versions to be labeled:

− A standard or view-extended pathname to an element specifies the version selected by
the view.

− A version-extended pathname specifies a version, independent of view.

Use −version to override these interpretations of pname.

−−ver.sion version-selector
For each pname, attaches the label to the version specified by version-selector. This option
overrides both version−selection by the view and version−extended naming. See the
version_selector manual page for syntax details.

−−r .ecurse Processes the entire subtree of each pname that is a directory element (including pname itself).
VOB symbolic links are not traversed during the recursive descent into the subtree.

NOTE: mklabel differs from some other commands in its default handling of directory ele-
ment pname arguments: it labels the directory element itself; it does not label the elements
cataloged in the directory.

May 1994 167

mklabel cleartool subcommand
hh

Using a Derived Object to Specify the Versions to be Labeled. The options and arguments in this sec-
tion specify versions by selecting them from the configuration record(s) associated with a particular
derived object. Do not use these options when specifying elements and versions directly on the command
line.

−−con.fig do-pname
(required) Specifies one derived object. A standard pathname or view-extended pathname
specifies the DO that currently appears in a view. To specify a DO independent of view, use
an extended name that includes a DO-ID (for example, hello.o@@24-Mar.11:32.412) or a
version-extended pathname to a DO version.

With the exception of checked-out versions, mklabel labels all the versions that would be
included in a catcr -flat listing of that derived object. Note that this includes any DO
created by the build and subsequently checked in as a DO version.

If the DO’s configuration includes multiple versions of the same element, only the most
recent version is labeled.

Use the following options to modify the list of versions to be labeled.

−−sel .ect do-leaf-pattern
−−ci
−−nam.e tail-pattern
−−typ.e { f | d } ...

Modify the set of versions to be labeled in the same way that these options modify a catcr list-
ing. See the catcr manual page for details, along with the ‘‘Examples’’ section below.

EXAMPLES
g Create a label type named REL6. Then, attach that label to all versions at or below the current working

directory.
% cleartool mklbtype −nc REL6
Created label type "REL6".

% cleartool mklabel −recurse REL6 .
Created label "REL6" on "." version "/main/4".
Created label "REL6" on "./bin" version "/main/1".
Created label "REL6" on "./include" version "/main/1".
Created label "REL6" on "./libs" version "/main/2".
Created label "REL6" on "./lost+found" version "/main/0".
Created label "REL6" on "./release" version "/main/1".
Created label "REL6" on "./src" version "/main/6".
Created label "REL6" on "./libs/libntx.a" version "/main/1".
Created label "REL6" on "./libs/libpvt.a" version "/main/3".
Created label "REL6" on "./src/Makefile" version "/main/2".
Created label "REL6" on "./src/cm_add.c" version "/main/1".
Created label "REL6" on "./src/cm_fill.c" version "/main/2".
Created label "REL6" on "./src/convolution.c" version "/main/4".
Created label "REL6" on "./src/edge.sh" version "/main/1".

...

168 ClearCase Reference Manual

cleartool subcommand mklabel
hh

g Attach label REL1 to the version of msg.c in the view.
% cleartool mklabel REL1 msg.c
Created label "REL1" on "msg.c" version "/main/1".

g Attach label REL2 to version 3 on the rel2_bugfix branch of file util.c.
% cleartool mklabel −version /main/rel2_bugfix/3 REL2 util.c
Created label "REL2" on "util.c" version "/main/rel2_bugfix/3".

g Move label REL2 to a different version of element hello.c, using a version-extended pathname to indicate
that version.
% cleartool mklabel −replace REL2 hello.c@@/main/4
Moved label "REL2" on "hello.c" from version "/main/3" to "/main/4".

g Attach label REL3 to each version that was used to build derived object hello.o. Note that both directories
and files are labeled.
% cleartool mklabel −config hello.o REL3
Created label "REL3" on "/usr/hw/" version "/main/1".
Created label "REL3" on "/usr/hw/src" version "/main/2".
Created label "REL3" on "/usr/hw/src/hello.c" version "/main/3".
Created label "REL3" on "/usr/hw/src/hello.h" version "/main/1".

g Attach label REL5 to each C-language source file version that was used to build derived object hello.
% cleartool mklabel −config hello −name ’*.c’ REL5
Created label "REL5" on "/usr/hw/src/hello.c" version "/main/3".
Created label "REL5" on "/usr/hw/src/util.c" version "/main/1".

g Attach label REL5 to all versions in the VOB mounted at /usr/hw that were used to build derived object
hello. Use interactive mode to enable use of the ClearCase ‘‘...’’ wildcard.
% cleartool

cleartool> mklabel −config hello −name ’/usr/hw/...’ REL5
Created label "REL5" on "/usr/hw/" version "/main/1".
Created label "REL5" on "/usr/hw/src" version "/main/2".
Created label "REL5" on "/usr/hw/src/hello.c" version "/main/3".
Created label "REL5" on "/usr/hw/src/hello.h" version "/main/1".
Created label "REL5" on "/usr/hw/src/util.c" version "/main/1".

SEE ALSO
cleartool subcommands: catcr, lsdo, mklbtype, rmlabel, rmtype, rntype
profile_ccase, version_selector

May 1994 169

mklbtype cleartool subcommand
hh

NAME mklbtype − create a label type object

SYNOPSIS
mklbtype [−−rep.lace] [−−pbr.anch] [−−vob pname-in-vob]

[−−c comment | −−cq | −−cqe | −−nc] [−−oma.ster] type-name ...

DESCRIPTION
Creates one or more label types with the specified names for future use within a VOB. After creating a
label type in a VOB, you can attach labels of that type to versions of that VOB’s elements, using mklabel.

Instance Restrictions
ClearCase can allow the same version label to be attached to multiple versions of the same element. (The
versions must all be on different branches — if there were two versions labeled JOHN_TMP on branch
/main/bugfix, then the version-extended pathname foo.c@@/main/bugfix/JOHN_TMP would be ambigu-
ous.) But there are drawbacks to using the same version label several times in the same element:
g It is potentially confusing.
g In a version-extended pathname, you must always include a full branch pathname along with the ver-

sion label (for example, foo.c@@/main/rs6000_port/JOHN_TMP).

By default, a new label type carries the restriction that it can be used on only one version in an element’s
entire version tree. This allows you to omit the branch pathname portion of a version-extended pathname
(for example, foo.c@@/JOHN_TMP). The −pbranch option relaxes this restriction, allowing the label type
to be used once-per-branch.

Recommended Naming Convention
A VOB cannot contain a branch type and a label type with the same name. For this reason, we strongly
recommend that you adopt this convention:
g Make all letters in names of branch types lowercase (a − z).
g Make all letters in names of label types uppercase (A − Z).

PERMISSIONS AND LOCKS
Permissions Checking: For each object processed, you must be one of the following: (with −replace only):
type creator, VOB owner, root user. Locks: An error occurs if any of the following objects are locked:
VOB, label type (with −replace only). See the ‘‘Permissions Checking’’ section of the cleartool manual
page.

OPTIONS AND ARGUMENTS
Handling of Name Collisions. Default: An error occurs if a label type named type-name already exists in
the VOB.

−−rep.lace Replaces the existing definition of type-name with a new one. You must specify all options,
even those that you wish to preserve from the old definition. Additional restrictions:

− You cannot replace either of the predefined label types LATEST and CHECKEDOUT.

170 ClearCase Reference Manual

cleartool subcommand mklbtype
hh

− If there are existing labels of this type, you cannot replace a less restrictive definition
(−pbranch specified) with a more restrictive definition (the default once-per-element).

− When replacing a label type that was created with the −omaster option, you must use
−omaster again; that is, you cannot convert a label type from shared to unshared.

Instance Restrictions. Default: A label of the new type can be attached to only one version of a given ele-
ment.

−−pbr.anch Relaxes the default restriction, allowing the label type to be used once-per-branch in a given
element’s version tree. ClearCase never allows the same version label to be attached to multi-
ple versions on the same branch.

VOB Specification. Default: The label type is created in the VOB that contains the current working direc-
tory.

−−vob pname-in-vob
Specifies the VOB in which to create the label type(s). pname-in-vob can be the pathname of
any object within the VOB.

Event Records and Comments. Default: Creates one or more event records, with commenting controlled
by your home directory’s .clearcase_profile file (default: −cqe). See ‘‘Comment Handling’’ in the cleartool
manual page. Comments can be edited with chevent.

−−c comment , −−cq , −−cqe , −−nc
Overrides the default with one of ClearCase’s standard comment options.

Naming the Label Types. Default: None.

type-name ...
One or more names for the label types to be created. Compose the name(s) according to these
rules:

− It must contain only letters, ideographs, digits, and the special characters underscore (_),
period (.), and hyphen (-). The first character must not be a hyphen.

− It must not be a valid integer or real number. (Be careful with names that begin with
‘‘0x’’, ‘‘0X’’, or ‘‘0’’, the standard prefixes for hexadecimal and octal integers.)

See ‘‘Recommended Naming Convention’’ above.

Mastership of the Label Type. Attempts to attach or remove labels of this type will succeed only in the
VOB replica which is the current master of the label type. The VOB replica in which the new label type is
created becomes its initial master.

−−oma.ster Mastership of this label type will be ignored in mklabel and rmlabel commands; instead, mas-
tership of the version’s branch will determine whether the command succeeds.

May 1994 171

mklbtype cleartool subcommand
hh

EXAMPLES
g Create a label type that can be used only once-per-element. Provide a comment on the command line.
% cleartool mklbtype −c "Version label for V2.7.1 sources" V2.7.1
Created label type "V2.7.1".

g Create a label type that can be used once-per-branch in any element’s version tree.
% cleartool mklbtype −nc −pbranch REL3
Created label type "REL3".

g Change the usage restriction of an existing label type so that it can be used once-per-branch. Provide a
comment on the command line. (This change does not affect existing labels of this type.)
% cleartool mklbtype −replace −pbranch −c "allow use on multiple branches" V2.7.1
Replaced definition of label type "V2.7.1".

SEE ALSO
cleartool subcommands: describe, lstype, mklabel, rmtype, rntype
events_ccase, profile_ccase

172 ClearCase Reference Manual

cleartool subcommand mkpool
hh

NAME mkpool − create a VOB storage pool or modify its scrubbing parameters

SYNOPSIS
g Create source pool:

mkpool −−sou.rce [−−ln pname] [−−vob pname-in-vob]
[−−c comment | −−cq | −−cqe | −−nc] pool-name ...

g Create derived object pool or cleartext pool:

mkpool { −−der.ived | −−cle .artext } [−−ln pname]
[−−siz .e max-kbytes reclaim-kbytes [−−age hours] [−−ale .rt command]]
[−−vob pname-in-vob] [−−c comment | −−cq | −−cqe | −−nc] pool-name ...

g Update pool parameters:

mkpool −−upd.ate [−−siz .e max-kbytes reclaim-kbytes] [−−age hours]
[−−ale .rt command] [−−vob pname-in-vob]
[−−c comment | −−cq | −−cqe | −−nc] pool-name ...

DESCRIPTION
Creates a source storage pool, derived object storage pool, or cleartext storage pool, and initializes the pool’s
scrubbing parameters. You can also use this command to update the scrubbing parameters of an existing
storage pool.

Storage pools are directories used as physical storage areas for different kinds of ClearCase data:
g A source storage pool stores the data containers that contain versions of elements.
g A derived object storage pool stores shared derived objects — those that are referenced by more than one

view.
g A cleartext storage pool is a cache of text files. If all of an element’s versions are stored in a single data

container (in compressed format or delta format), accessing a particular version involves some pro-
cessing overhead — a type manager program is invoked to extract the cleartext of that version from the
data container. As a performance optimization, ClearCase ‘‘caches’’ the extracted version as a file in a
cleartext storage pool. The next access to that same version uses the cached copy, saving the cost of
extracting the version from the data container again.

Creating a new VOB with the mkvob command automatically creates one default pool of each kind: sdft
(source pool), ddft (derived object pool), and cdft (cleartext pool).

By default, mkpool creates a storage pool as a directory within the VOB storage area. Source pools are
always created within subdirectory s of the VOB storage directory; derived object pools are created
within subdirectory d; cleartext pools are created within subdirectory c. The −ln option allows you to
create pool(s) elsewhere, to be accessed at the standard locations through symbolic links.

May 1994 173

mkpool cleartool subcommand
hh

Pool Allocation and Inheritance
Each file element is assigned to one source pool and one cleartext pool. The source pool provides per-
manent storage, in one or more data container files, for all of the element’s versions. If a single data con-
tainer stores all the versions, the cleartext pool is used to cache extracted versions of that element, as
described above. (If each version is stored in a separate data container, the cleartext pool is not used at
all.)

Each directory element is also assigned to one source pool and one cleartext pool. But directory versions
themselves are not stored in these pools. (They are stored directly in the VOB database.) Rather, a
directory’s pool assignments are used solely for pool inheritance: each element created within the directory
inherits its source and cleartext pool assignments.

Each directory element is also assigned to one derived object pool. All shared derived objects with path-
names in that directory are stored in that pool. A new directory element inherits the derived object pool
of its parent, along with the source and cleartext pools.

The pool inheritance scheme begins at the VOB root directory (top−level directory element) created by
mkvob, which is automatically assigned to the default pools.

You can change any of an element’s pool assignments with the chpool command.

Scrubbing
Scrubbing is the process of reclaiming space in a derived object pool or cleartext pool. (Source pools are
not subject to scrubbing.) This process is performed by the scrubber utility which, by default, is run daily
by a crontab(1) script. mkpool initializes or updates these scrubbing parameters:

maximum size (max-kbytes) maximum pool size
reclaim size (reclaim-kbytes) size to which scrubber should attempt to reduce the pool
age (hours) threshold to prevent premature scrubbing of recently-referenced objects

The default settings for the scrubbing parameters are: max-kbytes = 0, reclaim-kbytes = 0, hours = 96. See
the scrubber manual page for details on how these parameters are interpreted. See the crontab_ccase
manual page for a description of the default automatic scrubbing procedure.

Getting Information on Storage Pools
The lspool command lists a VOB’s storage pools. If you include the −long option, the current settings of
the scrubbing parameters are listed, as well. (The describe -pool command displays the same infor-
mation as lspool -long.)

PERMISSIONS AND LOCKS
Permissions Checking: For each object processed, you must be one of the following: VOB owner, root user.
Locks: An error occurs if any of the following objects are locked: VOB, pool (for −update only). See the
‘‘Permissions Checking’’ section of the cleartool manual page.

174 ClearCase Reference Manual

cleartool subcommand mkpool
hh

OPTIONS AND ARGUMENTS
Specifying the Kind of Storage Pool / Specifying an Update. Default: You must specify the kind of
pool, unless you use −update and name an existing pool. The following options are mutually exclusive.

−−sou.rce Creates a source pool.

−−der.ived Creates a derived object pool.

−−cle .artext Creates a cleartext pool.

−−upd.ate Asserts that the parameters of an existing pool are to be updated. You must also use a −size
and/or −age option.

Specifying New Parameters. Default: For a new derived object or cleartext pool: the maximum size and
reclaim size parameters are set to 0, which enables a special scrubbing procedure. (See the scrubber manual
page.) The age parameter is set to 96 (hours). These parameters are meaningless for a source pool.

When updating an existing pool, you must use at least one of −size and −age.

−−siz .e max-kbytes reclaim-kbytes
Specifies that the pool will be scrubbed if its size exceeds max-kbytes Kb; scrubbing will con-
tinue until the pool reaches the goal size of reclaim-kbytes Kb.

−−age hours Prevents scrubbing of derived objects or cleartext files that have been referenced within the
specified number of hours.

Special Case: -age 0 restores the default age setting (96 hours).

Local vs. Remote Storage. Default: Creates a storage pool as a subdirectory under the VOB storage direc-
tory.

−−ln pname Creates a storage pool directory at pname, and creates pool-name in the VOB storage directory
as a symbolic link to pname. You can create only one pool when using this option.

RESTRICTION: pname must be a full pathname, starting with a slash character (/). It must
also be a global pathname, valid on every host from which users will access the VOB. mkpool
attempts to verify the ‘‘globalness’’ of this pathname, using a simple heuristic. (For example,
a pathname that begins with /net is likely to be global.) If it suspects that pname is not glo-
bal, mkpool proceeds anyway, but displays a warning message:
Warning: Linktext for pool does not appear to be a global path.

This mechanism is independent of the ClearCase network storage registry facility. This, the
pathname to a remote storage pool directory must be truly global, not just global within a
particular network region.

Scrubber Failure Processing. Default: If scrubber fails to scrub a pool below its max-kbytes level, it logs a
warning message in /usr/adm/atria/log/scrubber_log, but takes no other action.

−−ale .rt command
Causes scrubber to run the specified command (typically, a shell script) whenever it fails to
scrub a pool below its max-kbytes level.

May 1994 175

mkpool cleartool subcommand
hh

Event Records and Comments. Default: Creates one or more event records, with commenting controlled
by your home directory’s .clearcase_profile file (default: −cqe). See ‘‘Comment Handling’’ in the cleartool
manual page. Comments can be edited with chevent.

−−c comment , −−cq , −−cqe , −−nc
Overrides the default with one of ClearCase’s standard comment options.

Specifying the VOB. Default: Creates or updates a pool in the VOB containing the current working
directory.

−−vob pname-in-vob
The VOB whose pool is to be created or updated. pname-in-vob can be the pathname of any
object within the VOB.

Specifying the Pool. Default: None.

pool-name ...
One or more names for the storage pools to be created. Compose the name(s) according to
these rules:

− It must contain only letters, ideographs, digits, and the special characters underscore (_),
period (.), and hyphen (-). The first character must not be a hyphen.

− It must not be a valid integer or real number. (Be careful with names that begin with
‘‘0x’’, ‘‘0X’’, or ‘‘0’’, the standard prefixes for hexadecimal and octal integers.)

EXAMPLES
g Create a source pool that uses the default pool parameters.
% cleartool mkpool −source −c "pool for c source files" c_pool
Created pool "c_pool".

g Create a derived object pool with a maximum size of 10000Kb (10Mb) and a reclaim size of 8000Kb (8Mb).
Allow the age parameter to assume its default value.
% cleartool mkpool −derived −nc −size 10000 8000 do1
Created pool "do1".

g Update the derived object pool created in the previous example, so that any derived object referenced
within the last week (168 hours) will not be scrubbed.
% cleartool mkpool −nc −update −age 168 do1
Updated pool "do1".

g Create a non-local cleartext storage pool at the globally-accessible location /usr/vobstore/ccase_pools/c2, to
be accessed as pool cltxt2.
% cleartool mkpool −nc −cleartext −ln /usr/vobstore/ccase_pools/c2 cltxt2
Created pool "cltxt2".

This command creates this symbolic link:

176 ClearCase Reference Manual

cleartool subcommand mkpool
hh

vob-storage-dir-pname/c/cltxt -> /usr/vobstore/ccase_pools/c2

g Create a cleartext pool named my_ctpool that uses the default pool parameters. Then, change all elements
using pool cdft (the default cleartext pool) to use my_ctpool instead.
% cleartool mkpool −cleartext −c "alternate cleartext pool" my_ctpool
Created pool "my_ctpool".

% cleartool find . −all −element ’pool(cdft)’ \
−exec ’cleartool chpool −force my_ctpool $CLEARCASE_PN’

Changed pool for "/usr/hw" to "my_ctpool".
Changed pool for "/usr/hw/bin" to "my_ctpool".
Changed pool for "/usr/hw/bin/hello" to "my_ctpool".
Changed pool for "/usr/hw/bugs" to "my_ctpool".
Changed pool for "/usr/hw/bugs/bug.report.21" to "my_ctpool".
Changed pool for "/usr/hw/doc" to "my_ctpool".
Changed pool for "/usr/hw/doc/util.doc" to "my_ctpool".
Changed pool for "/usr/hw/include" to "my_ctpool".
Changed pool for "/usr/hw/libs" to "my_ctpool".
Changed pool for "/usr/hw/libs/libntx.a" to "my_ctpool".
Changed pool for "/usr/hw/libs/libpvt.a" to "my_ctpool".

...

SEE ALSO
cleartool subcommands: chpool, find, lsdo, lspool, mkelem, mkdir, mkvob
crontab_ccase, profile_ccase, scrubber

May 1994 177

mktag cleartool subcommand
hh

NAME mktag − create a view-tag or a public/private VOB-tag

SYNOPSIS
g Create a view-tag:

mktag −−vie.w −−tag view-tag [−−tco .mment tag-comment] [−−rep.lace] [−−nst .art]
[−−reg.ion network-region]
[−−hos.t hostname −−hpa.th local-pname −−gpa.th global-pname]
view-storage-dir-pname

g Create a VOB-tag:

mktag −−vob −−tag vob-tag [−−tco .mment tag-comment] [−−rep.lace]
[−−opt . ions mount-options] [−−pub.lic [−−pas .sword tag-registry-password]]
[−−reg.ion network-region]
[−−hos.t hostname −−hpa.th local-pname −−gpa.th global-pname]
vob-storage-dir-pname

DESCRIPTION
For an existing view or VOB, creates or replaces an entry in the network’s view_tag or vob_tag registry file.
A view or VOB gets one tag when it is created with mkview or mkvob. The principal use of mktag is to
create additional tags, enabling access from multiple network regions. Each network region needs its own
tag for a view or VOB. A single region cannot have multiple tags for the same view or VOB. However, a
single tag can be assigned to multiple regions with multiple mktag commands. See the registry_ccase
manual page for a discussion of network regions.

Activating the View or VOB
By default, creating a view-tag activates the view on your host, by implicitly performing a startview com-
mand. This does not occur if your host is not in the tag’s assigned network region, or if you use the
−nstart option.

Creating a VOB-tag does not automatically activate the VOB; use cleartool mount for this purpose.

PERMISSIONS AND LOCKS
Only a VOB’s owner can create a private VOB-tag. Locks do not apply to this command.

OPTIONS AND ARGUMENTS
Specifying the Kind of Tag. Default: None.

−−vie.w Creates or updates a view-tag.

−−vob Creates or updates a VOB-tag.

Specifying the Tag. Default: None.

−−tag view-tag
A name for the view, in the form of a simple file name.

178 ClearCase Reference Manual

cleartool subcommand mktag
hh

−−tag vob-tag
A standard full pathname, which specifies the location at which the VOB will be mounted as
a file system of type MVFS.

−−tco .mment tag-comment
Adds a comment to the tag’s entry in the vob_tag or view_tag registry file. Use the −long
option on lsvob or lsview to display the tag comment.

Overwriting an Existing Tag. Default: An error occurs if the view or VOB already has a tag in the target
network region.

−−rep.lace Replaces an existing tag registry entry with a new entry. (No error occurs if the tag does not
currently exist.) The −replace option is provided to convert private VOBs to public and vice
versa, and also to change miscellaneous parameters associated with a tag (tag comment,
access paths, mount options, and startview behavior). You cannot use −replace to change a
tag’s region, or to change an existing tag’s name. To perform either of these operations, you
must first delete the existing tag explicitly with rmtag.

Starting the View. Default: For a view-tag, the view is started on your host, making view-tag appear as a
directory entry in the ClearCase viewroot directory, /view. If necessary, a view_server process is started on
the host where the view storage directory resides.

−−nst .art Suppresses starting of the view.

Specifying a Network Region. Default: Creates a tag in the local host’s network region. (A host’s net-
work region is listed in file /usr/adm/atria/rgy/rgy_region.conf.) See the registry_ccase manual page for a dis-
cussion of network regions.

−−reg.ion network-region
Creates the tag in the specified network region. An error occurs if the region does not already
exist. An error occurs if the view or VOB already has a tag in the specified network region.

Specifying Mount Options. Default: No mount options are included in the VOB registry entry for a new
VOB-tag.

−−opt . ions mount-options
(VOB-tags only; root user only) Specifies mount options to be invoked when the VOB is
activated through this VOB-tag. See the mkvob manual page for syntax details.

Public vs. Private VOB. Default: Creates a private VOB-tag (does not apply to view-tags). An error
occurs if you are not the VOB’s owner.

−−pub.lic Creates a public VOB-tag. See the mkvob manual page for a discussion of public and private
VOBs.

−−pas .sword tag-registry-password
Specifies the VOB−tag password, which is required to create a public VOB−tag. If a mktag

-vob -public command line does not include a password, ClearCase prompts for it. The
password is checked against the (encrypted) contents of file /usr/adm/atria/rgy/vob_tag.sec; an
error occurs if there is no match. See the registry_ccase manual page.

May 1994 179

mktag cleartool subcommand
hh

NOTE: The VOB-tags for a given VOB should all be private, or all be public.

Specifying the Location of the Storage Directory. Default: None. You must specify the location of the
VOB or view storage directory. In rare cases, you must specify the host name and local/global access
path information as well. See the mkview and mkvob manual pages for details.

view-storage-dir-pname
vob-storage-dir-pname
−−hos.t hostname
−−hpa.th local-pname
−−gpa.th global-pname

EXAMPLES
g For the network region europe, assign the new view-tag view5 to an existing view storage area.
% cleartool mktag −view −tag view5 −region europe /net/gw/host3/view_store/view5.vws

g For the network region europe, register an existing VOB with a public VOB-tag.
% cleartool mktag −vob −tag /vobs/us_east1 −region europe −public \

−password tagPword /net/gw/host2/vob_store/vob1.vbs

g Reassign an existing view-tag, proj2, to a different view-storage directory.
% cleartool mktag −view −tag proj2 −replace /net/host3/view_store/proj2.B.vws

g Convert a private VOB to a public VOB, by replacing its private VOB-tag with public one.
% mktag −vob −tag /vobs/publicvob −replace −public −pass tagPword /vobs/private.vbs

SEE ALSO
cleartool subcommands: lsview, lsvob, mkview, mkvob, pwv, rmtag, setview, startview
filesys_ccase, registry_ccase, view_server

180 ClearCase Reference Manual

cleartool subcommand mktrigger
hh

NAME mktrigger − attach a trigger to an element

SYNOPSIS
mktrigger [−−r .ecurse] [−−nin.herit | −−nat . tach] [−−for.ce]

[−−c comment | −−cq | −−cqe | −−nc] trigger-type-name pname ...

DESCRIPTION
Prerequisite: A ’trigger type’ object, created with ’mktrtype −element’, must already exist in the VOB(s) containing
the specified elements.

Attaches a trigger to one or more elements. An attached trigger fires (executes the trigger action) when
the element or any of its versions is involved in an operation specified in the trigger type definition. For
example, if a trigger type is defined to fire on a checkin operation, then the attached trigger fires when the
specified element is checked in. If a VOB operation causes multiple attached triggers to fire, the order of
firing is undefined.

Trigger Inheritance
ClearCase has a trigger inheritance scheme, whereby newly-created elements (but not existing elements)
inherit the triggers that are currently associated with their parent directory element. But a simple inherit-
all-triggers strategy does not suit the needs of many sites. For example:
g You may want some of a directory’s triggers not to propagate to its subtree.
g You may want some triggers to fire only for file elements, not for directory elements.

To enable such flexibility, each directory element has two independent lists of trigger types:
g Its attached list specifies triggers that will fire on operations involving the directory element.
g Its inheritance list specifies triggers to be inherited by elements created within the directory.

By default, attaching a trigger to a directory element updates both lists:
% cleartool mktrigger trig_co proj
Added trigger "trig_co" to inheritance list of "proj".
Added trigger "trig_co" to attached list of "proj".

Each file element has only an attached list:
% cleartool mktrigger trig_co util.c
Added trigger "trig_co" to attached list of "util.c".

You can use the −ninherit and −nattach options to control exactly which triggers on a directory ele-
ment will be inherited. (And you can make adjustments using the −ninherit and −nattach options of
the rmtrigger command.)

PERMISSIONS AND LOCKS
Permissions Checking: For each object processed, you must be one of the following: element group
member, element owner, VOB owner, root user. Locks: An error occurs if any of the following objects are
locked: VOB, element type, element, trigger type. See the ‘‘Permissions Checking’’ section of the cleartool
manual page.

May 1994 181

mktrigger cleartool subcommand
hh

OPTIONS AND ARGUMENTS
Attaching Triggers to an Entire Subdirectory Tree. Default: If a pname argument names a directory ele-
ment, the trigger is attached only to the element itself, not to any of the existing elements within it.

−−r .ecurse Processes the entire subtree of each pname that is a directory element (including pname itself).
VOB symbolic links are not traversed during the recursive descent into the subtree.

Controlling Trigger Inheritance. Default: For a directory element, the specified trigger type is placed
both on the element’s attached list and its inheritance list. (For a file element, the trigger type is placed on
its attached list — its only trigger-related list.) The following options apply to directory elements only.

−−nin.herit The trigger is placed on the element’s attached list only, not on its inheritance list. This
option is useful when you wish to monitor operations on a directory, but not operations on
the files within the directory.

−−nat . tach The trigger is placed on the element’s inheritance list only, not on its attached list. This
option is useful when you wish to monitor operations on the files within a directory, but not
operations on the directory itself.

Observing Element Type Restrictions. Default: If trigger-type-name is defined with a restriction to one or
more element types, mktrigger refuses to process an element of another type.

−−for.ce Attaches a trigger to an element whose type does not match the definition of the trigger type.
Such a trigger will not fire unless you changes the element’s type (chtype) or you redefine the
trigger type (mktrtype -replace).

Event Records and Comments. Default: Creates one or more event records, with commenting controlled
by your home directory’s .clearcase_profile file (default: −nc). See ‘‘Comment Handling’’ in the cleartool
manual page. Comments can be edited with chevent.

−−c comment , −−cq , −−cqe , −−nc
Overrides the default with one of ClearCase’s standard comment options.

Specifying the Trigger Type. Default: None.

trigger-type-name
The name of an existing element trigger type.

Specifying the Elements. Default: None.

pname ... One or more pathnames, specifying elements to which the specified trigger type is to be
attached.

EXAMPLES
g Attach a trigger to element hello.c.
% cleartool mktrigger trig1 hello.c
Added trigger "trig1" to attached list of "hello.c".

g Attach a trigger to element util.c, even if its element type does not appear in the trigger type’s restriction
list.
% cleartool mktrigger −force trig1 util.c
Added trigger "trig1" to attached list of "util.c".

182 ClearCase Reference Manual

cleartool subcommand mktrigger
hh

g Attach a trigger to directory element src.
% cleartool mktrigger trig1 src
Added trigger "trig1" to attached list of "src".
Added trigger "trig1" to inheritance list of "src".

g Add a trigger to the release directory’s inheritance list, but not to its attached list.
% cleartool mktrigger −nattach trig1 release
Added trigger "trig1" to inheritance list of "release".

SEE ALSO
cleartool subcommands: describe, lstype, mktrtype, rmtrigger
profile_ccase

May 1994 183

mktrtype cleartool subcommand
hh

NAME mktrtype − create a trigger type object

SYNOPSIS
g Create element trigger type:

mktrtype −−ele .ment [−−glo.bal] [−−rep.lace] { −−pre.op | −−pos.top } opkind[,. . .]
[restriction-list] [−−nus.ers login-name[,. . .]]
{ −−exe.c command | −−mkl.abel label-type | −−mka.ttr attr-type=value

| −−mkh.link hlink-type,to=pname | −−mkh.link hlink-type,from=pname } ...
[−−pri .nt] [−−c comment | −−cq | −−cqe | −−nc]
[−−vob pname-in-vob] type-name ...

g Create type trigger type:

mktrtype −−typ.e [−−rep.lace] { −−pre.op | −−pos.top } opkind[,. . .] inclusion-list
[−−nus.ers login-name[,. . .]] −−exe.c command [−−pri .nt]
[−−c comment | −−cq | −−cqe | −−nc]
[−−vob pname-in-vob] type-name ...

g A restriction-list contains one or more of:

−−att .ype attr-type[,. . .]
−−brt .ype branch-type[,. . .]
−−elt .ype elem-type[,. . .]
−−hlt .ype hlink-type[,. . .]
−−lbt .ype label-type[,. . .]
−−trt .ype trigger-type[,. . .]
−−rpt .ype replica-type[,. . .]

NOTE: -xxtype aaa,bbb is equivalent to -xxtype aaa -xxtype bbb.

g An inclusion-list contains any of the components of a restriction-list, or one or more of:

−−att .ype attr-type[,. . .] or −−att .ype −−all
−−brt .ype branch-type[,. . .] or −−brt .ype −−all
−−elt .ype elem-type[,. . .] or −−elt .ype −−all
−−hlt .ype hlink-type[,. . .] or −−hlt .ype −−all
−−lbt .ype label-type[,. . .] or −−lbt .ype −−all
−−trt .ype trigger-type[,. . .] or −−trt .ype −−all
−−rpt .ype replica-type[,. . .] or −−rpt .ype −−all

DESCRIPTION
Creates one or more trigger types for use within a VOB. A trigger type defines a sequence of one or more
trigger actions to be performed automatically when a specified ClearCase operation occurs. The set of
operations that initiates each trigger action — ‘‘causes the trigger to fire’’ — can be very limited (for exam-
ple, checkout only) or quite general (for example, any operation that modifies an element). You can use
a restriction list to further limit the circumstances under which a trigger action will be performed.

184 ClearCase Reference Manual

cleartool subcommand mktrtype..
hh

Only a VOB’s owner or the root user can create a trigger type.

There are three kinds of trigger types:
g An element trigger type works like a label type or attribute type: an instance of the type (that is, a

trigger) must be explicitly attached to one or more individual elements with the mktrigger command.
The trigger actions are performed when the specified operation is invoked on any of those elements.

g A variant of the above, called a global element trigger type, is associated with the entire VOB. (Hence,
no mktrigger command is required.) In effect, an instance of the type is implicitly attached to each ele-
ment in the VOB, even those created after this command is executed.

g A type trigger type is associated with one or more type objects. The trigger actions are performed
when any of those type objects is modified or used (including creation and deletion of instances of
those types).

Trigger Firing
Causing a set of trigger actions to be performed is termed firing a trigger. Each trigger action can be:
g Any command (or sequence of commands) that can be invoked from a shell. A command can use

special environment variables (EVs), described below, to retrieve information about the ClearCase
operation.

g Any of several built-in actions defined by mktrtype. The built-in actions attach meta-data annotations
to the object involved in the ClearCase operation.

Trigger actions execute with the user-ID of the process that caused the trigger to fire.

Interactive Trigger Action Scripts. A script executed as (part of) a trigger action can interact with the
user. The clearprompt utility is designed for use in such scripts; it can handle several kinds of CLI-style
and GUI-style user interactions.

Multiple Trigger Firings. A single ClearCase operation can cause any number of triggers to fire. The
firing order of such ‘‘simultaneous’’ triggers is indeterminate. It is also possible for triggers to ‘‘chain’’.
For example, a checkin operation might fire a trigger that attaches an attribute to the checked-in version;
the ‘‘attach attribute’’ operation might, in turn, fire a trigger that sends mail to an administrator.

If a trigger is defined to fire on a hyperlink operation, and the hyperlink connects two elements, then the
trigger will fire twice — once for each end of the hyperlink.

Suppressing Trigger Firing. The firing of a trigger can be suppressed when the associated operation is
performed by certain users. Firing of a global element trigger is suppressed if the trigger type has been
made obsolete. (See the lock manual page).

PRE-OPERATION AND POST-OPERATION TRIGGERS
A pre-operation trigger (−preop option) fires before the corresponding ClearCase operation begins. The
one or more actions you’ve specified (with −exec and/or the options for built-in actions) take place in
their order on the command line.

May 1994 185

mktrtype.. cleartool subcommand
hh

This kind of trigger is useful for enforcing policies:
g If any trigger action returns a non-zero exit status, the ClearCase operation is cancelled.
g If all trigger actions return a zero exit status, the ClearCase operation proceeds.

For example, a pre-operation trigger might prohibit checkin of an element that fails to pass a code-quality
test.

A post-operation trigger (−postop option) fires after completion of the corresponding ClearCase operation.
The one or more actions you’ve specified (with −exec and/or the options for built-in actions) take place
in their order on the command line. This kind of trigger is useful for recording — in the VOB or in the
outside world — the occurrence of the operation. If a post-operation trigger action returns a non-zero exit
status, ClearCase displays a failed exit status warning message, but continues to perform other
trigger actions, if any.

For example, a post-operation trigger on checkin might attach an attribute to the checked-in version and
send a mail message to interested users and/or managers.

RESTRICTION LISTS AND INCLUSION LISTS
You can define an element trigger type or global element trigger type with a restriction list, which limits
the scope of the operation specified with −preop or −postop. The trigger will fire only if the operation
involves particular type objects.

A type trigger type is not associated with element objects, but with one or more type objects. When creat-
ing a type trigger type, you must specify an inclusion list, naming the type objects to be associated with the
new trigger type. (Hence, it is unnecessary to use mktrigger to create the association.) The special key-
word -all allows you to associate a type trigger type with every type object of a particular kind (for
example, all branch type objects), even those objects created after you enter this command.

TRIGGER ENVIRONMENT VARIABLES
When a trigger fires, the trigger action executes in a special environment whose EVs make information
available to −exec routines: what operation caused the trigger to fire, what object was involved in the
operation, and so on. The complete set of EVs is listed in the ‘‘Tables’’ section below.

PERMISSIONS AND LOCKS
Permissions Checking: For each object processed, you must be one of the following: type creator (applies
to −replace only), VOB owner, root user. Locks: An error occurs if any of the following objects are locked:
VOB, trigger type (applies to −replace only). See the ‘‘Permissions Checking’’ section of the cleartool
manual page.

OPTIONS AND ARGUMENTS
Specifying the Kind of Trigger Type. Default: None.

−−ele .ment Creates an element trigger type, which can be attached to individual elements with mktrigger.

−−ele .ment −−glo.bal
Creates a global element trigger type, which is effectively (and automatically) attached to the
entire VOB.

186 ClearCase Reference Manual

cleartool subcommand mktrtype..
hh

−−typ.e Creates a type trigger type, and associates it with specific type objects and/or kinds of type
objects.

Specifying the Operation(s) to be Monitored. Default: None.

−−pre.op opkind[,. . .]
Specifies one or more operations that will cause the trigger to fire before the ClearCase opera-
tion starts. The exit status of the trigger action(s) is significant: for each trigger action, a zero
exit status allows the ClearCase operation to proceed; a non-zero exit status cancels the Clear-
Case operation.

−−pos.top opkind[,. . .]
Specifies one or more operations that will cause the trigger to fire after the ClearCase opera-
tion completes. The exit status of the trigger action is not significant.

For both −preop and −postop, you must specify a comma-separated list of ClearCase operations, any of
which will cause trigger firing. Many of the operation keywords have the same names as cleartool sub-
commands (for example, checkout, unlock). Uppercase keywords (for example, MODIFY_ELEM)
identify groups of operations. See the ‘‘Tables’’ section below for a list of operation keywords.

Element Trigger Types: Specifying a Restriction List. Default: No restrictions — trigger firing will occur
when any of the specified operations occurs, no matter what type objects are involved.

−−att .ype attr-type[,. . .]
−−brt .ype branch-type[,. . .]
−−elt .ype elem-type[,. . .]
−−hlt .ype hlink-type[,. . .]
−−lbt .ype label-type[,. . .]
−−trt .ype trigger-type[,. . .]
−−rpt .ype replica-type[,. . .]

Use one or more of the above options (or multiple options of the same kind) to specify a set of
type objects for the restriction list. The type objects must already exist. Repeated options,
such as −elt text_file −elt c_source, are equivalent to a single option: −elt
text_file,c_source. Wildcarding (-eltype ’*file’) is not supported.

At trigger firing time, the items on the restriction list form a logical condition. If the condition
is met, the trigger fires; otherwise, the trigger does not fire. (NOTE: Suppressing the firing of
a pre-operation trigger means that the ClearCase operation is allowed to proceed.) Here is a
simple condition:

−brtype rel2_bugfix

Fire the trigger only if the operation involves a branch of type rel2_bugfix.

If the list includes multiple type objects, they are combined into a compound condition: type
objects of the same kind are grouped with logical OR; objects (or groups) of different kinds
are then logically ANDed.

May 1994 187

mktrtype.. cleartool subcommand
hh

−brtype rel2_bugfix −eltype text_file,c_source

Fire the trigger only if the operation involves a branch of type rel2_bugfix AND it
involves either an element of type text_file OR of an element of type c_source.

In forming the condition, a type object is ignored if it could not possibly be affected by the
ClearCase operation. (The relevant information is included in the ‘‘Tables’’ section below.)
For example, the restriction list -lbtype REL2,REL2.01 applies only to the ClearCase opera-
tions chtype, mklabel, and rmlabel.

Type Trigger Types: Specifying an Inclusion List. Default: None — you must specify at least one item
for the inclusion list of a type trigger type.

−−att .ype attr-type[,. . .] or −−att .ype −−all
−−brt .ype branch-type[,. . .] or −−brt .ype −−all
−−elt .ype elem-type[,. . .] or −−elt .ype −−all
−−hlt .ype hlink-type[,. . .] or −−hlt .ype −−all
−−lbt .ype label-type[,. . .] or −−lbt .ype −−all
−−trt .ype trigger-type[,. . .] or −−trt .ype −−all
−−rpt .ype replica-type[,. . .] or −−rpt .ype −−all

You must specify at least one existing type object, or at least one kind of type object, using the
special keyword −all. The trigger fires only if the inclusion list contains the type object that
is being modified or used by the ClearCase operation.

Handling of Name Collisions. Default: An error occurs if a trigger type named type-name already exists
in the VOB.

−−rep.lace Replaces the existing definition of type-name with a new one. You must specify all options,
even those that you wish to preserve from the old definition. Additional restriction:

− If an instance of an element trigger type is currently attached to any element, the replace-
ment definition must also be of a (non-global) element trigger type. (You can remove an
existing trigger type and all of its attached instances with a command like cleartool

rmtype -trtype -rmall old_Trigger.)

Suppressing Trigger Firing for Certain Users. Default: Trigger firing occurs no matter who performs the
ClearCase operation.

−−nus.ers login-name[,. . .]
Suppresses trigger firing when any user on the comma-separated login-name list performs the
operation.

Specifying the Trigger Action. Default: None. Specify one or more of the following options to indicate
the action to be performed when the trigger fires; you can use more than one option of the same kind.
With multiple options, the trigger actions will be performed in the specified sequence.

−−exe.c command
Executes the specified command in a Bourne shell when the trigger fires. If command includes
one or more arguments, quote the entire string. Use single-quotes if the command includes
ClearCase environment variables, in order to delay interpretation until trigger firing time.

188 ClearCase Reference Manual

cleartool subcommand mktrtype..
hh

−−mkl.abel label-type
(with −postop only) Attaches the specified version label to the version involved in the opera-
tion that caused trigger firing.

−−mka.ttr attr-type=value
(with −postop only) Attaches the specified attribute name/value pair to the object involved
in the operation that caused trigger firing.

−−mkh.link hlink-type,to=pname
(with −postop only) Creates a hyperlink — from the object involved in the operation that
caused the trigger to fire, to the object specified by pname.

−−mkh.link hlink-type,from=pname
(with −postop only) Creates a hyperlink — from the object specified by pname, to the object
involved in the operation that caused the trigger to fire.

NOTES: With the built-in actions −mklabel, −mkattr, and −mkhlink, you can specify the information
either literally or using environment variables:

(literal)-mklabel RLS_2.3
(depends on value of EV at trigger firing time)-mklabel RLS_$RLSNUM
(depends on value of EV at trigger firing time)-mklabel $THIS_RLS
(literal)-mkattr ECO=437
(depends on value of EV at trigger firing time)-mkattr ECO=$ECONUM

The built-in actions never cause additional triggers to fire. But scripts invoked with −exec may cause
such ‘‘chaining’’ to occur. For example, a mklabel command in a shell script can cause another trigger to
fire, but the corresponding −mklabel trigger action cannot.

Tracing Trigger Execution. Default: At trigger firing time, if environment variable
CLEARCASE_TRACE_TRIGGERS is set to a non-null value in the process that causes the trigger to fire:
(1) A message that includes the trigger type name is sent to stdout when the trigger fires; (2) A similar
message is generated when the trigger action completes.

−−pri .nt Causes the messages to be generated at trigger firing time, whether or not
CLEARCASE_TRACE_TRIGGERS is set.

VOB Specification. Default: The trigger type is created in the VOB that contains the current working
directory.

−−vob pname-in-vob
Specifies the VOB in which to create the trigger type(s). pname-in-vob can be the pathname of
any object within the VOB.

Event Records and Comments. Default: Creates one or more event records, with commenting controlled
by your home directory’s .clearcase_profile file (default: −cqe). See ‘‘Comment Handling’’ in the cleartool
manual page. Comments can be edited with chevent.

−−c comment , −−cq , −−cqe , −−nc
Overrides the default with one of ClearCase’s standard comment options.

May 1994 189

mktrtype.. cleartool subcommand
hh

Naming the Trigger Type. Default: None.

type-name ...
One or more names for the trigger types to be created. Compose the name(s) according to
these rules:

− It must contain only letters, ideographs, digits, and the special characters underscore (_),
period (.), and hyphen (-). The first character must not be a hyphen.

− It must not be a valid integer or real number. (Be careful with names that begin with
‘‘0x’’, ‘‘0X’’, or ‘‘0’’, the standard prefixes for hexadecimal and octal integers.)

TABLES: TRIGGER OPERATIONS AND TRIGGER ENVIRONMENT VARIABLES
Trigger Operations for ’Type’ Trigger Types

Table 1 lists the opkind keywords for use in definitions of type trigger types (mktrtype -type).

Table 1. Operation Keywords for ’Type’ Trigger Types___

MODIFY_TYPE
mktype (see NOTE)
rmtype
rntype
lock
unlock
chevent

NOTE: If you specify mktype, the corresponding inclusion list cannot specify individual type objects; all
relevant options must use the -all keyword. For example,
... -postop mktype -eltype -all -brtype -all ...

Trigger Operations for ’Element’ and ’Global Element’ Trigger Types
Table 2 lists the opkind keywords for use in definitions of element trigger types (−element and −element
-global). See also the events_ccase manual page.

190 ClearCase Reference Manual

cleartool subcommand mktrtype..
hh

Table 2. Operation Keywords for ’Element’ and ’Global Element’ Trigger Types___

Operation Keyword Restrictions Checked When Trigger Fires

MODIFY_ELEM
checkout element type, branch type
reserve element type, branch type
uncheckout element type, branch type
unreserve element type, branch type
MODIFY_DATA

checkin element type, branch type
chevent <see NOTE>
chtype all type objects
lnname element type, branch type
lock <see NOTE>
mkbranch element type, branch type
mkelem element type
mkslink N/A
rmbranch element type, branch type
rmelem element type
rmname N/A
rmver element type, branch type
unlock <see NOTE>

MODIFY_MD
chevent <see NOTE>
mkattr element type, attribute type, branch type
mkhlink element type, hyperlink type, branch type
mklabel element type, label type, branch type
mktrigger element type, trigger type
rmattr element type, attribute type, branch type
rmhlink element type, hyperlink type, branch type
rmlabel element type, label type
rmtrigger element type, trigger type

NOTE: The operation fires a trigger only if the affected object is:
g a branch object or version object (in this case, only element type and branch type restrictions apply)
g an element object (in this case, only element type restrictions apply)
g a type object (in this case, only restrictions on that kind of type object apply)

Trigger Environment Variables
Table 3 lists the EVs that are set in the environment in which a trigger action script runs. The words in
parentheses at the beginning of the description indicate which ClearCase operations cause the EV to be
set to a significant string; for all other operations, the EV is set to the null string.

May 1994 191

mktrtype.. cleartool subcommand
hh

Table 3. Trigger Environment Variables___

CLEARCASE_ATTACH
(mktrigger, rmtrigger) Set to 1 if a non-global element trigger type is on the affected element’s attached
list; Set to 0 if it is on a directory element’s inheritance list. See the mktrigger manual page for a
description of these lists.

CLEARCASE_ATTYPE
(all operations that can be restricted by attribute type) Attribute type involved in operation that
caused the trigger to fire. In an rntype operation, the old name of the renamed attribute type object.

CLEARCASE_BRTYPE
(all operations that can be restricted by branch type) Branch type involved in the operation that
caused the trigger to fire. In an rntype operation, the old name of the renamed branch type object.

CLEARCASE_CI_FPN
(checkin) Pathname in checkin -from.

CLEARCASE_COMMENT
(all operation kinds that support comments) Comment string for the command that caused the
trigger to fire.

CLEARCASE_ELTYPE
(all operations that can be restricted by element type) Element type of the element involved in the
operation that caused the trigger to fire. In an rntype operation, the old name of the renamed element
type object.

CLEARCASE_FTEXT
(mkhlink, rmhlink) Text associated with hyperlink from-object.

CLEARCASE_FVOB_PN
(mkhlink, rmhlink) Pathname of VOB containing hyperlink from-object.

CLEARCASE_FXPN
(mkhlink, rmhlink) VOB-extended pathname of hyperlink from-object.

CLEARCASE_HLTYPE
(all operations that can be restricted by hyperlink type) Hyperlink type involved in operation that
caused the trigger to fire. In an rntype operation, the old name of the renamed hyperlink type object.

CLEARCASE_ID_STR
(checkin, checkout, mkattr, mkbranch, mkhlink, mklabel, rmattr, rmhlink, rmlabel, rmver) Version-ID
of version, or branch pathname of branch, involved in the operation.

CLEARCASE_IS_FROM
(mkhlink, rmhlink) Set to 1 if CLEARCASE_PN contains name of hyperlink from-object; set to 0 if
CLEARCASE_PN contains name of hyperlink to-object.

192 ClearCase Reference Manual

cleartool subcommand mktrtype..
hh

CLEARCASE_LBTYPE
(all operations that can be restricted by label type) Label type involved in the operation that caused
the trigger to fire. In an rntype operation, the old name of the renamed label type object.

CLEARCASE_MTYPE
(all) Kind of type object involved in the operation that caused the trigger to fire: element type,
branch type, and so on.

CLEARCASE_NEW_TYPE
(rntype) New name of the renamed type object.

CLEARCASE_OP_KIND
(all) Operation that caused the trigger to fire.

CLEARCASE_OUT_PN
(checkout) Pathname in checkout -out. (Same as CLEARCASE_PN if −out not used.)

CLEARCASE_PN
(all operations; element triggers only) Name of element, as it was specified in the command that
caused the trigger to fire.

CLEARCASE_PN2
(lnname)

− When a side-effect of a mkelem operation, gets the same value as CLEARCASE_PN.

− When a side-effect of a mv operation, gets the old pathname of the element.

− For creation of a VOB hard link (ln command), gets the already-existing pathname.

CLEARCASE_POP_KIND
(mkelem, mslink, lnname) Parent operation kind. The mkelem and mslink operations both cause an
lnname operation. If lnname happens as a result of either of these ‘‘parent’’ operations,
CLEARCASE_POP_KIND is set to mkelem or mkslink, respectively. Note that both the ‘‘parent’’
operations (mkelem and mkslink) and the ‘‘child’’ operation (lnname) set CLEARCASE_POP_KIND
to the applicable parent operation value — mkelem or mkslink.

CLEARCASE_PPID
(all) Parent Process-ID: the process-ID of the ClearCase client program (for example, cleartool) that
invoked the trigger. This is useful for constructing unique names for temporary files that will pass
data between a pre-operation trigger and a post-operation trigger, or between successive parts of a
multipart trigger action.

CLEARCASE_RPTYPE
(all operations that can be restricted by replica type) Replica type involved in the operation that
caused the trigger to fire. In an rntype operation, the old name of the renamed replica type object.

CLEARCASE_SLNKTXT
(mkslink; that is, the ln -s command) Text of the new VOB symbolic link.

May 1994 193

mktrtype.. cleartool subcommand
hh

CLEARCASE_TRTYPE
(all operations that can be restricted by trigger type) Trigger type involved in the operation that
caused the trigger to fire. In an rntype operation, the old name of the renamed trigger type object.

CLEARCASE_TTEXT
(mkhlink, rmhlink) Text associated with hyperlink to-object.

CLEARCASE_TVOB_PN
(mkhlink, rmhlink) Pathname of VOB containing hyperlink to-object.

CLEARCASE_TXPN
(mkhlink, rmhlink) VOB-extended pathname of hyperlink to-object.

CLEARCASE_USER
(all) The user who issued the command that caused the trigger to fire; derived from the UNIX-level
effective user ID.

CLEARCASE_VAL
(mkattr) String representation of attribute value for CLEARCASE_ATTYPE (for example, "Yes" or
4657).

CLEARCASE_VIEW_TAG
(all) View-tag of the view in which the operation that caused the trigger to fire took place.

CLEARCASE_VOB_PN
(all) VOB-tag of the VOB whose object was involved in the operation that caused the trigger to fire.

CLEARCASE_VTYPE
(mkattr) Value type of the attribute in CLEARCASE_ATTYPE (for example, string or integer).

CLEARCASE_XN_SFX
(all) Extended naming symbol (such as @@) for host on which the operation took place.

CLEARCASE_XPN
(all operations; element triggers only) same as CLEARCASE_ID_STR, but prepended with
CLEARCASE_PN and CLEARCASE_XN_SFX values, to form a complete VOB-extended pathname of
the object involved in the operation.

EXAMPLES
Trigger environment variables typically are to be evaluated when the trigger fires, not when you enter the
mktrtype command. If this is the case, escape the dollar-sign ($) character, either by enclosing it in single-
quotes or by preceding it with a backslash (\). This escaping is not necessary if you enter the command
manually in cleartool’s interactive mode (that is, if it is not interpreted by a shell).

g Create an element type named script, for use with shell-script files. Then, create a global element trigger
type, chmod_a_plus_x, that makes newly-created elements of type script executable. Convert a view-
private file to an element of this type.
% cleartool mkeltype −supertype text_file −c "shell script" script
Created element type "script".

% cleartool mktrtype −element −global −postop mkelem −eltype script −nc \
−exec ’/usr/atria/bin/cleartool protect −chmod a+x $CLEARCASE_PN’ chmod_a_plus_x

194 ClearCase Reference Manual

cleartool subcommand mktrtype..
hh

Created trigger type "chmod_a_plus_x".
% cleartool mkelem −eltype script −ci −nc cleanup.sh
Created element "cleanup.sh" (type "script").
Changed protection on "/usr/hw/src/cleanup.sh".
Checked in "cleanup.sh" version "/main/1".

g Create a global element trigger type, in order to run a script each time a checkin operation takes place.
% cleartool mktrtype −element −global −postop checkin −nc \

−exec /usr/local/bin/notify notify_admin
Created trigger type "notify_admin".

’notify’ script:
mail jones adm <<!
"notify_admin" Trigger:

checkin of "$CLEARCASE_PN"

version: $CLEARCASE_ID_STR
by: $CLEARCASE_USER

comment:
$CLEARCASE_COMMENT
!

g Create a global element trigger type to monitor checkins of elements of type c_source. Firing the trigger
runs a test program on the file being checked it, and may cancel the checkin.
% cleartool mktrtype −element −global −nc −preop checkin \

−exec ’$CLEARCASE_VOB_PN/scripts/metrics_test $CLEARCASE_PN’ \
−eltype c_source metrics_trigger

Created trigger type "metrics_trigger".

Use of environment variable CLEARCASE_VOB_PN causes the test program to be retrieved from a loca-
tion in the current VOB.

g Create a global element trigger type, in order to attach a version label to each new version created on any
element’s main branch.
% cleartool mktrtype −element −global −postop checkin −mklabel REL\$BL_NUM \

−nc −brtype main label_it
Created trigger type "label_it".

Environment variable BL_NUM determines which version label is to be attached. ClearCase evaluates
this EV at trigger firing time, because the $ character is escaped.

g Create a type trigger type, in order to send a mail message each time any new branch type is created.
% cleartool mktrtype −type −nc −postop mktype −brtype −all \

−exec ’$CLEARCASE_VOB_PN/scripts/mail_admin’ new_branch_trigger
Created trigger type "new_branch_trigger".

g Create a type trigger type, in order to monitor the creation of new label types. The trigger script aborts
the label-type-creation operation if the specified name does not conform to standards.
% cleartool mktrtype −type −nc −preop mktype −lbtype −all \

−exec ’$CLEARCASE_VOB_PN/scripts/check_label_name’ check_label_trigger
Created trigger type "check_label_trigger".

May 1994 195

mktrtype.. cleartool subcommand
hh

g Create an element trigger type that, when attached to an element, fires whenever a new version of that
element is checked in. Firing the trigger attaches attribute TestedBy to the version, assigning it the value of
the CLEARCASE_USER environment variable as a double-quoted string.

NOTE: In this example, the single-quotes (1) preserve the double quotes on the string literal, and (2)
suppress environment variable substitution by the shell. ClearCase evaluates the CLEARCASE_USER
environment variable at firing time.
% cleartool mktrtype −element −postop checkin \

−c "set attribute to record which user checked in this version" \
−mkattr ’TestedBy="$CLEARCASE_USER"’ trig_who_didit

Created trigger type "trig_who_didit".

g Create a global element trigger type that prompts for the source of an algorithm when an element of type
c_source is created. Firing the trigger executes a script named hlink_algorithm, which invokes the clear-
prompt utility to obtain the necessary information. The script then creates a ‘‘text only’’ hyperlink between
the newly created element object (for example, foo.c@@) and the specified text. The hlink_algorithm script is
shown immediately after the mktrtype command.
% cleartool mktrtype −element −global −nc −postop mkelem −eltype c_source \

−exec ’$CLEARCASE_VOB_PN/scripts/hlink_algorithm’ describe_algorithm
Created trigger type "describe_algorithm".

hlink_algorithm script:
clearprompt text -outfile /usr/tmp/alg.$CLEARCASE_PPID -multi_line \
-def "Internal Design" -prompt "Algorithm Source Document:"

TOTEXT=‘cat /usr/tmp/alg.$CLEARCASE_PPID‘

cleartool mkhlink -ttext "$TOTEXT" design_spec $CLEARCASE_PN$CLEARCASE_XN_SFX

rm /usr/tmp/alg.$CLEARCASE_PPID

g Use a post-operation trigger to modify the user-supplied comment whenever a new version is created of
an element of type header_file.
% cleartool mktrtype −element −global −nc −postop checkin −eltype header_file \

−exec ’/usr/local/scripts/hdr_comment’ change_header_file_comment
Created trigger type "change_header_file_comment".

hdr_comment script:
analyze change to header file
CMNT=‘/usr/local/bin/analyze_hdr_file $CLEARCASE_PN‘

append analysis to user-supplied checkin comment
cleartool chevent -append -c "$CMNT" $CLEARCASE_PN‘

SEE ALSO
cleartool subcommands: describe, lock, lshistory, lstype, mkattr, mklabel, mkhlink, mktrigger, rmtrigger
clearprompt, events_ccase, profile_ccase

196 ClearCase Reference Manual

cleartool subcommand mkview
hh

NAME mkview − create and register a view

SYNOPSIS
mkview −−tag view-tag [−−tco .mment tag-comment] [−−tmo.de { msdos | unix }]

[−−ln remote-storage-dir-pname]
[−−reg.ion network-region]
[−−hos.t hostname −−hpa.th local-pname −−gpa.th global-pname]
view-storage-dir-pname

DESCRIPTION
Creates a new view by:
g creating a view storage directory at a specified location
g creating a view-tag, the name with which the view will be accessed by developers
g placing entries in the network’s view registry files(/usr/adm/atria/rgy/view_object and

/usr/adm/atria/rgy/view_tag)
g starting a view_server process on the host where the view storage directory physically resides

A view storage directory is the root of a directory tree whose principal contents are a view database, a
config spec, and a private storage area. See the view manual page for details.

The view_server process implements ClearCase’s transparency feature by converting standard file names
and pathnames (for example, util.c) into references to particular versions (for example, util.c@@/main/6).
The view_server also manages view-private objects. Although these objects appear to be located in VOB
directories, they are actually stored in the view’s private storage area.

Text Modes
Operating systems vary in the character sequences they use to terminate lines of text files. Each Clear-
Case view has a text mode, which determines the line terminator sequence for text files in that view. By
default, mkview creates a view with the ‘‘unix’’ text mode; in such views, the line terminator for text files is
a single <NL> character.

For more details, see section ‘‘Text Files, Cleartext, and a View’s Text Mode’’ in the mkeltype manual page.

Activating the View
Creating a view-tag causes an implicit startview command, which automatically activates the view on the
current host (unless the tag’s target network region does not include the local host.) This places an entry
in the host’s viewroot directory. (For example, specifying -tag gamma creates the entry /view/gamma.)
Once activated, the view can be set with the setview command; it can also be accessed with view-extended
naming. (For additional details, see the startview, view, and pathnames_ccase manual pages.)

Access Permissions
Avoid creating views as the root user. This often causes problems with remote access to a view, since the
root user on one host typically becomes nobody (often, user-ID −2) when accessing other hosts.

May 1994 197

mkview.. cleartool subcommand
hh

Your current umask(1) setting determines which users can access the view. For example, a umask value of
2 allows anyone to read data in the view, but only you (the view’s owner) and others in your group can
write data to it — create view-private files, build derived objects, and so on. If your umask value is 22,
only you will be able to write data to the new view.

Reconfiguring a View
A view’s associated view_server process reads a configuration file when it starts up. You can revise this
file — for example, to change the size of the view’s in-memory cache, or to make the view read-only. See
the view_server manual page for details.

Deleting Views
The view storage directory created by this command is the root of a standard directory tree; but a view
should be deleted only with the rmview command, not with standard rm(1). See the rmview manual page
for details.

PERMISSIONS AND LOCKS
Permissions Checking: No special permissions required. Locks: No locks apply. See the ‘‘Permissions
Checking’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
Specifying the View-Tag. Default: None.

−−tag view-tag
Specifies a name for the view, in the form of a simple file name. This name appears in the
local host’s file system as a subdirectory of /view, the viewroot directory (for example, as
/view/experiment).

This view-tag applies only to the local host’s network region. If your network has multiple
regions, use the mktag command to create an additional view-tag for each additional region.

−−tco .mment tag-comment
Adds a comment to the view-tag’s entry in the view_tag registry file. Use lsview -long, or
the graphical view-tag browser, to display the tag comment.

Specifying a Network Region. Default: Creates the view-tag in the local host’s network region, which is
listed in file /usr/adm/atria/rgy/rgy_region.conf. See the registry_ccase manual page for a discussion of net-
work regions.

−−reg.ion network-region
Creates the view-tag in the specified network region. An error occurs if the region does not
already exist.

CAUTION: The view-tag created with mkview must be for the network region to which the
view host belongs. Thus, you should use this option only when you are logged in to a remote
host that is in another region. Moreover, a view-tag for the view’s ‘‘home region’’ must
always exist.

Specifying the Text Mode. Default: A unix mode view is created; the line terminator for text files is a sin-
gle <NL> character.

198 ClearCase Reference Manual

cleartool subcommand mkview..
hh

−−tmo.de unix
Same as default.

−−tmo.de msdos
Creates an msdos mode view; the line terminator for text files is a <CR><NL> sequence.

Remote Private Storage Area. Default: Creates the view’s private storage area as an actual subdirectory of
view-storage-dir-pname. This subdirectory, named .s, will hold checked-out versions, newly-created
derived objects, and other view-private objects.

−−ln remote-storage-dir-pname
Creates the .s directory at another location, remote-storage-dir-pname. A UNIX-level symbolic
link to pname is created at view-storage-dir-pname/.s, providing access to the remote storage
area. Restrictions:

− remote-storage-dir-pname must be a valid pathname on every host (no matter what its net-
work region) from which users will access the view.

− This view cannot be used to export a VOB to a non-ClearCase host. (See the exports_ccase
manual page.)

− Some operations performed by the root user in this view may fail. This is another symp-
tom of the root-becomes-nobody problem explained in the ‘‘Description’’ section.

This mechanism is independent of the ClearCase network storage registry facility. This, the
pathname to a remote storage area must be truly global, not just global within a particular
network region.

Specifying the View’s Location. Default: None — you must specify a location for the new view storage
directory. The host on which this directory physically resides is termed the view host. Using the view-
storage-dir-pname argument, mkview heuristically derives the hostname, local access path, and global
access path information for the view; it stores this information in the network’s view registry.

An unusual network topology and/or a nonstandard network interface may defeat the heuristic, prevent-
ing access by some or all users. In such cases, set the view’s registry information explicitly with the
−host, −hpath, and −gpath options.

view-storage-dir-pname
The location at which a new view storage directory is to be created: full pathname, relative
pathname, or simple subdirectory name. (An error occurs if something already exists at this
pathname.) You can create a view storage directory at any location in the file system where
the standard UNIX permissions allow you to create a subdirectory, except that:

− You cannot create a view storage directory within a VOB, within another view, or within
the viewroot directory.

− view-storage-dir-pname must specify a location on a host where ClearCase has been
installed. This follows from the fact that the view database files must physically reside on
a ClearCase host, to enable access by the view_server process.

May 1994 199

mkview.. cleartool subcommand
hh

−−hos.t hostname
−−hpa.th local-pname
−−gpa.th global-pname

These options must appear as a set. Use them only when required to explicitly set a view’s
registry information. You can use these options when creating a new view, or to update the
view registry information for an existing view. You must specify the location of the view
storage directory in two ways:

− Host-local pathname — The name of a host (−host), along with a standard full pathname
(−hpath) to the desired storage location that is valid on that host. Together, these consti-
tute a host-local pathname, which is reported by some commands in a colon-separated for-
mat:
host3:/view_store/view5.vws

− Global pathname — A standard full pathname (−hpath) to the desired storage location.
This pathname must be valid on all hosts (in the view-tag’s network region) from which
the view will be accessed, including the host where the view storage directory resides.
For example:
/net/host3/view_store/view5.vws

EXAMPLES
g Create a view storage directory and assign it the view-tag mainRel2.
% cleartool mkview −tag mainRel2 /net/host3/view_store/mainRel2.vws
Created view.
Host-local path: host3:/view-store/mainRel2.vws
Global path: /net/host3/view-store/mainRel2.vws
It has the following rights:
User : anne : rwx
Group: dev : rwx
Other: : r-x

g Create a view storage directory named Rel2.vws in the current working directory, but with its private
storage area on a remote host.
% cleartool mkview −tag Rel2 −ln /net/host4/priv_view_store/Rel2.vps Rel2.vws
Created view.
Host-local path: host3:/view-store/Rel2.vws
Global path: /net/host3/view-store/Rel2.vws
It has the following rights:
User : anne : rwx
Group: dev : rwx
Other: : r-x

g Create a view on the local host, then activate the view on a remote host.
% cleartool mkview −tag anneRel2 /view_store/anneRel2.vws
Created view.
Host-local path: host3:/view-store/anneRel2.vws
Global path: /net/host3/view-store/anneRel2.vws
It has the following rights:
User : anne : rwx
Group: dev : rwx

200 ClearCase Reference Manual

cleartool subcommand mkview..
hh

Other: : r-x

% rsh host4 cleartool startview anneRel2

The remote shell command is named remsh on some systems.

SEE ALSO
cleartool subcommands: lsview, rmview, mktag, rmtag, setview, startview, unregister
exports_ccase, registry_ccase, type_manager, pathnames_ccase, view, view_server
umask(1)

May 1994 201

mkvob cleartool subcommand
hh

NAME mkvob − create and register a versioned object base (VOB)

SYNOPSIS
mkvob −−tag vob-tag [−−c comment | −−cq | −−cqe | −−nc] [−−tco .mment tag-comment]

[−−opt . ions mount-options] [−−pub.lic [−−pas .sword tag-registry-password]]
[−−reg.ion network-region]
[−−hos.t hostname −−hpa.th local-pname −−gpa.th global-pname]
vob-storage-dir-pname

DESCRIPTION
Creates a new versioned object base, or VOB, by:
g creating a VOB storage directory at a specified location
g creating a VOB-tag, which specifies the VOB’s mount point — the pathname at which the VOB will be

accessed by users
g placing entries in the network’s VOB registry files (/usr/adm/atria/rgy/vob_object and

/usr/adm/atria/rgy/vob_tag)
g starting a vob_server process on the host where the VOB storage directory physically resides. (Other

server processes for the VOB are started on that host, as needed, when developers start using the
VOB.)

A VOB storage directory is the root of a directory tree whose principal contents are a VOB database and a
set of storage pools. See the vob manual page for details.

mkvob creates exactly one VOB-tag for the newly-created VOB. This tag applies to the local host’s net-
work region. To make additional VOB-tags for other regions, use the mktag command. In general, the
VOB-tags for a given VOB should all be public, or all private.

PUBLIC AND PRIVATE VOBS
ClearCase supports the notion that some VOBs are to be shared, while others are to be used only by their
creators. Accordingly, there are two kinds of VOB-tags: public and private.

Public VOB-Tags
A public VOB-tag specifies a location at which any user can mount the VOB. Furthermore, once a public
VOB is mounted on a host, any user on that host can access it (subject to the standard access permissions).

Typically, all public VOBs are mounted automatically at ClearCase startup time with the command
cleartool mount −all. (To create a public VOB that is not mounted automatically, specify −options
noauto in the mkvob command.)

When creating a public VOB-tag with mkvob or mktag, you must supply the network’s VOB-tag password;
if you don’t use the −password option, you are prompted to type one. See the registry_ccase manual page
for information on how the password is stored.

You need not create a public VOB’s mount-over directory; the cleartool mount command creates it
automatically, if necessary.

202 ClearCase Reference Manual

cleartool subcommand mkvob
hh

Private VOB-Tags
A private VOB-tag specifies a mount point at which only the VOB’s owner (usually, its creator) can
mount the VOB using cleartool — for example:
cleartool mount /vobs/myPrivateVob

The root user can use the standard UNIX mount(1M) command to bypass the ‘‘owner only’’ mount restric-
tion. The command cleartool mount -all does not mount private VOBs.

Once a private VOB is mounted, any user can access it (subject to the standard access permissions). You
must explicitly create the mount-over directory for a private VOB; the cleartool mount command does
not create it automatically.

Private-to-Public Conversion
To convert a private VOB to a public VOB, use a command like this:
% cleartool mktag −vob −tag /vobs/vob3.p −replace −public /usr/vobstore/private3.vbs

This replaces the VOB’s private VOB-tag with a public one. mktag prompts you to enter the VOB-tag
password.

ACTIVATING THE VOB
A VOB cannot be used for development work on a host until it is activated with the cleartool mount

command. This causes the VOB’s storage directory to be mounted on the host at the VOB-tag location, as
a file system of type MVFS. See the ClearCase mount manual page for details.

AUTOMATICALLY-CREATED DIRECTORY ELEMENTS
mkvob automatically creates the following directory elements in a new VOB:
g VOB root directory — A mkdir command is implicitly executed to create a directory element, the

VOB root directory, in the new VOB. Activating a VOB makes its root directory accessible at the path-
name specified by the VOB-tag (that is, at the VOB mount point).

g ’lost+found’ directory — mkvob also creates a special directory element, lost+found, as a subdirectory
of the VOB root directory. ClearCase places elements that are no longer entered in any directory ver-
sion in this special directory.

See the vob manual page for more information on these directories.

DEFAULT STORAGE POOLS
Each VOB storage directory is created with three default storage pool subdirectories:

sdft default source storage pool
cdft default cleartext storage pool
ddft default derived object storage pool

See the vob manual page for details.

ACCESS PERMISSIONS
In considering access permissions, it is important to distinguish these two ‘‘top-level’’ directories:

May 1994 203

mkvob cleartool subcommand
hh

g VOB storage directory — the standard directory created by this command, which is actually at the
top level of a simple directory tree.

g VOB root directory — the ClearCase directory element accessed at the VOB-tag (VOB mount point).

When you create a VOB, your operating system-level UID and GID are assigned to the VOB storage direc-
tory and the default storage pools. The mode of the VOB storage directory is set according to your
current umask(1) setting. This affects which users, and which views, will be able to access the VOB. The
modes of storage pool directories are set to 755, regardless of your current umask setting.

WARNING: Do not use standard permission-setting utilities (for example, chown(1) or chgrp(1)) on a
VOB storage directory. This will create inconsistencies and cause confusion.

The mode of the VOB root directory, by contrast, is derived from your current umask(1) setting. The
mode can changed subsequently with the protect command. Note that the w permission on this directory
(as on any directory element) affects only the creation of view-private objects; changes to the VOB itself
are controlled by ClearCase-level permissions (see below), not those at the operating system level.

ClearCase-Level Access Permissions
ClearCase implements its own access scheme that goes beyond the standard operating system facilities.
When you create a VOB, you become its VOB owner (in effect, the ‘‘superuser’’ for the VOB), and your
group(s) become its group list. These settings control access to many ClearCase operations involving the
VOB; the settings can be changed subsequently with the protectvob command.

The protect command affects access to individual elements and shared derived objects.

PERMISSIONS AND LOCKS
Permissions Checking: No special permissions required. Locks: No locks apply. See the ‘‘Permissions
Checking’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
Specifying the VOB-Tag. Default: None.

−−tag vob-tag
A standard full pathname, which specifies the mount-over directory at which the VOB will be
mounted as a file system of type MVFS. The VOB-tag is entered in the network’s vob_tag
registry file (/usr/adm/atria/rgy/vob_tag).

This VOB-tag applies only to the local host’s network region. If your network has multiple
regions, use the mktag command to create an additional VOB-tag for each region.

If you are creating a private VOB (no −public option), you must also create the mount-over
directory on each host where you will mount the VOB. (The ClearCase mount command
automatically creates mount-over directories for public VOBs.)

Event Records and Comments. Default: Creates one or more event records, with commenting controlled
by your home directory’s .clearcase_profile file (default: −cqe). See ‘‘Comment Handling’’ in the cleartool
manual page. Comments can be edited with chevent.

204 ClearCase Reference Manual

cleartool subcommand mkvob
hh

−−c comment , −−cq , −−cqe , −−nc
Overrides the default with one of ClearCase’s standard comment options.

−−tco .mment tag-comment
Adds a comment to the VOB-tag’s entry in the vob_tag registry file. Use lsvob -long to
display the tag comment.

Specifying Mount Options. Default:

−−opt . ions mount-options
(root user only) Options to be used in mounting the VOB. The following options are valid:

ro, rw, soft, hard, intr, nointr, noac, noauto, nodev, nodnlc, nosuid,
retrans, timeo, acdirmin, acdirmax acregmin, acregmax, actimeo

See the appropriate operating system manual page (for example, mount(1M)) for the mean-
ings of these options. If the mount options list contains white space, enclose it in quotes.

By default, a VOB is mounted in nointr mode. This means that operations on MVFS files
(for example, open(2)) cannot be interrupted by typing the INTR character (typically, <Ctrl-

C>). To enable keyboard interrupts of such operations, use the intr mount option.

Public vs. Private VOB. Default: Creates a private VOB.

−−pub.lic Creates a public VOB. See ‘‘Public and Private VOBs’’ above.

−−pas .sword tag-registry-password
A password is required to create a public tag. If a mkvob -public command line does not
include the VOB-tag password, mkvob prompts for it. The password is checked against the
file /usr/adm/atria/rgy/vob_tag.sec (see the registry_ccase manual page); an error occurs if there
is no match. Note that the VOB does get created in this case, but without a VOB-tag. Use
mktag to supply a public or private VOB-tag.

Specifying a Network Region. Default: Creates the VOB-tag in the local host’s network region, which is
listed in file /usr/adm/atria/rgy/rgy_region.conf. See the registry_ccase manual page for a discussion of net-
work regions.

−−reg.ion network-region
Creates the VOB-tag in the specified network region. An error occurs if the region does not
already exist.

CAUTION: The VOB-tag created with mkvob must be for the network region to which the
VOB host belongs. Thus, you should use this option only when you are logged in to a remote
host that is in another region. Moreover, a VOB-tag for the VOB’s ‘‘home region’’ must
always exist.

Specifying the VOB’s Location. Default: None — you must specify a location for the new VOB storage
directory. The host on which this directory physically resides is termed the VOB host. Using the vob-
storage-dir-pname argument, mkvob heuristically derives the hostname, local access path, and global access
path information for the VOB; it stores this information in the network’s VOB registry.

May 1994 205

mkvob cleartool subcommand
hh

An unusual network topology and/or a nonstandard network interface may defeat the heuristic, prevent-
ing access by some or all users. In such cases, set the VOB’s registry information explicitly with the
−host, −hpath, and −gpath options.

vob-storage-dir-pname
The location at which a new VOB storage directory is to be created: full pathname, relative
pathname, or simple subdirectory name. (An error occurs if something already exists at this
pathname.) You can create a VOB at any location where the operating system allows you to
create a subdirectory, except that:

− You cannot create a VOB within an existing VOB storage directory.

− You cannot create a VOB under an existing VOB-tag (VOB mount point).

− You cannot create a VOB within the viewroot directory (/view).

− vob-storage-dir-pname must specify a location on a host where ClearCase has been
installed. This follows from the fact that the VOB database (located in subdirectory db of
the VOB storage directory) must physically reside on a ClearCase host, where it is
accessed by ClearCase server programs (vob_server, db_server, and vobrpc_server) running
locally.

−−hos.t hostname
−−hpa.th local-pname
−−gpa.th global-pname

These options must appear as a set. Use them only when required to explicitly set a VOB’s
registry information. You can use these options when creating a new VOB, or to update the
registry information for an existing VOB. You must specify the location of the VOB storage
directory in two ways:

− Host-local pathname — The name of a host (−host), along with a standard full pathname
(−hpath) to the desired storage location that is valid on that host. Together, these consti-
tute a host-local pathname, which is reported by some commands in a colon-separated for-
mat:
host2:/usr/vobstore/vob2.vbs

− Global pathname — A standard full pathname (−gpath) to the desired storage location.
This pathname must be valid on all hosts on which the VOB will be accessed, including
the host where the VOB storage directory resides.

EXAMPLES
g Create a private VOB storage directory, project3.vbs, in the /usr/vobstore directory on local host venus, and

give it the VOB-tag /vobs/project3. Then, mount the VOB on the local host.

% cleartool mkvob −tag /vobs/project3 −c "main development sources" /usr/vobstore/project3.vbs
Created versioned object base.
Host-local path: venus:/usr/vobstore/project3.vbs
Global path: /net/venus/usr/vobstore/project3.vbs
VOB ownership:
owner anne
group dev

206 ClearCase Reference Manual

cleartool subcommand mkvob
hh

Additional groups:
group usr
group adm

(create VOB mount point to match the VOB−tag)% mkdir /vobs/project3
(mount VOB as file system of type MVFS)% cleartool mount /vobs/project3

g Create a public VOB, which will be mounted automatically at ClearCase startup time (by all hosts in the
current host’s network region).
% cleartool mkvob −tag /vobs/src1 −public −password tagPword /vobstore/src1.vbs
Created versioned object base.
Host-local path: saturn:/vobstore/src1.vbs
Global path: /net/saturn/vobstore/src1.vbs

...

g Create a public, read-only VOB that will not be mounted automatically at ClearCase startup time (or
whenever cleartool mount -all executes). Supply the VOB-tag password interactively.
% cleartool mkvob −tag /vobs/r1 −public −options ro,noauto /vbs/r1.vbs

(password matches contents of /usr/adm/atria/rgy/vob_tag.sec)Vob tag registry password: <xxx>
Created versioned object base.

...

SEE ALSO
cleartool subcommands: cd, chpool, lshistory, mkpool, mount, protect, rmelem, rmname, rmvob,
uncheckout, umount
crontab_ccase, export_mvfs, exports_ccase, filesys_ccase, mount_mvfs, profile_ccase, registry_ccase, vob
mount(1M), umask(1)

May 1994 207

mount cleartool subcommand
hh

NAME mount − activate a VOB at its VOB-tag directory

SYNOPSIS
g Mount a single VOB:

mount [−−opt . ions mount-options] vob-tag

g Mount all public VOBs:

mount −−a.ll

DESCRIPTION
Prerequisite: The VOB being activated must already have a ’VOB-tag’ in the network’s ’vob_tag’ registry file. See
the ’mkvob’ and ’mktag’ manual pages.

Activates one or more VOBs on the local host by performing UNIX-level mounts of their VOB storage direc-
tories. The mount command invokes a short-lived mntrpc_server process on the VOB host; this process,
running as root, performs the actual mount. A VOB is mounted as a file system of type MVFS
(ClearCase’s multiversion file system type).

Mounting All VOBs
The root user can use cleartool mount -all to mount all public VOBs listed in the VOB registry. This
command executes at ClearCase startup time — see the init_ccase manual page. (It does not mount VOBs
whose tag entries include the mount option noauto.)

Mounting of Public and Private VOBs
A public VOB can be mounted by any user; if the mount-over directory does not already exist, it is created
automatically.

A private VOB can be mounted with cleartool mount only by its owner. The root user can use the stan-
dard mount(1M) command to mount a private VOB; other users cannot mount it at all. The mount-over
directory must already exist.

Only the root user can use −options to specify mount options on the command line, or use −all to
mount all public VOBs.

See the mkvob manual page for a discussion of public and private VOBs.

VOB-TAGS AND THE VOB STORAGE REGISTRY
You reference a VOB by its VOB-tag (the full pathname of its mount point), not by its storage area path-
name. The mount command uses the VOB-tag to retrieve all necessary information from the VOB registry:
pathname of VOB storage area, pathname of mount point, and mount options.

VOB Registry vs. File System Table
The VOB registry is a new feature in ClearCase Release 2.0. It is intended to hold all information pertain-
ing to the network’s ClearCase file systems. If you are upgrading from a previous ClearCase release, we
recommend that:

208 ClearCase Reference Manual

cleartool subcommand mount
hh

g you remove ClearCase-related information from hosts’ standard file system tables
g you discontinue use of the ClearCase-specific file system table, /etc/fstab.mfs

For compatibility, use of these file system tables is still supported in Release 2.0. Support will be with-
drawn in future releases, however.

PERMISSIONS AND LOCKS
Permissions Checking: See ‘‘Mounting of Public and Private VOBs’’ above. Locks: No locks apply.

OPTIONS AND ARGUMENTS
Specifying Mount Options. Default: Mounts each VOB using the -options field in its vob_tag registry
file.

−−opt . ions mount-options
(root user only; mutually exclusive with −all) Ignores the -options field in the vob_tag
registry file entry and uses the specified set of options, which can include:

ro, rw, soft, hard, intr, nointr, noac, noauto, nodev, nodnlc, nosuid,
retrans, timeo, acdirmin, acdirmax acregmin, acregmax, actimeo

See the appropriate operating system manual page (for example, mount(1M)) for the mean-
ings of these options. Enclose this argument in quotes if it contains white space.

If you don’t specify a timeout or retransmission option, a default value is used:

timeo 5 seconds
retrans 7 retries

By default, a VOB is mounted in nointr mode. This means that operations on MVFS files
(for example, open(2)) cannot be interrupted by typing the INTR character (typically, <Ctrl-

C>). To enable keyboard interrupts of such operations, use the intr mount option.

Specifying the VOB(s). Default: None.

vob-tag Mounts the VOB with this VOB-tag, which must be specified exactly as it appears in the
vob_tag registry file.

−−a.ll (root user only; mutually exclusive with −options) Mounts all public VOBs listed in the VOB
registry, using the mount options in their vob_tag registry entries. (Including the mount
option noauto in a VOB−tag’s registry entry prevents the VOB from being mounted by
mount -all.)

IMPLEMENTATION NOTE
mount calls the standard mount(1M) command, which in turn calls the ClearCase−supplied utility
mount_mvfs to perform the actual work.

EXAMPLES
g Mount the VOB storage directory that is registered with VOB-tag /vobs/Rel4.
% cleartool mount /vobs/Rel4

May 1994 209

mount cleartool subcommand
hh

g Mount all VOBs registered with public VOB-tags.
(become ’root’ user)% su
(mount all public VOBs)# cleartool mount -all

SEE ALSO
cleartool subcommands: umount, lsview, lsvob, register, mkview, mkvob, mktag
init_ccase, mount_mvfs, registry_ccase, mount(1M)

210 ClearCase Reference Manual

cleartool subcommand mv
hh

NAME mv − move or rename an element or VOB link

SYNOPSIS
g Rename:

mv [−−c comment | −−cq | −−cqe | −−nc] pname target-pname

g Move to another directory:

mv [−−c comment | −−cq | −−cqe | −−nc] pname [pname ...] target-dir-pname

DESCRIPTION
NOTE: The directory where the element to be moved/renamed resides must be checked-out. If the tar-
get location is another directory, it must be checked-out, also. mv automatically appends an appropriate
line to the checkout comment for all relevant directories.

The mv command relocates — renames or moves — an element or VOB symbolic link. For a file element
that is checked-out to your view, it relocates the checked-out version, also. (That is it moves the view-
private file with the same name as the element.) If the version is checked-out to another view, it just issues
a warning:
cleartool: Warning: Moved element with checkouts to "overview.doc";
view private data may need to be moved.

Moving View-Private Objects
This command is for VOB-database objects; use the standard mv(1) command to rename or move view-
private files.

PERMISSIONS AND LOCKS
Permissions Checking: No special permissions required. Locks: An error occurs if any of the following
objects are locked: VOB. See the ‘‘Permissions Checking’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
Event Records and Comments. Default: Creates one or more event records, with commenting controlled
by your home directory’s .clearcase_profile file (default: −nc). See ‘‘Comment Handling’’ in the cleartool
manual page. Comments can be edited with chevent.

−−c comment , −−cq , −−cqe , −−nc
Overrides the default with one of ClearCase’s standard comment options.

Specifying the Existing Objects. Default: None.

pname One or more pathnames, specifying elements or VOB links. If you specify more than one
pname, then you must specify a directory (target-pname) as the new location.

Specifying the New Location. Default: None.

target-pname
The new location for the single element or VOB link specified by pname. Both pname and
target-pname must specify locations in the same VOB. An error occurs if an object already
exists at target-pname.

May 1994 211

mv cleartool subcommand
hh

target-dir-pname
The pathname of an existing directory element, to which the elements or links are to be
moved. This directory must be located in the same VOB as the objects being moved.

EXAMPLES
NOTE: In all the examples, all directories involved must be checked out.

g Rename a C-language source file from hello.c to hello_old.c.
% cleartool mv hello.c hello_old.c
Moved "hello.c" to "hello_old.c".

g Move all files with a .c suffix into the src directory.
% cleartool mv *.c src
Moved "cm_add.c" to "src/cm_add.c".
Moved "cm_fill.c" to "src/cm_fill.c".
Moved "convolution.c" to "src/convolution.c".
Moved "hello.c" to "src/hello.c".
Moved "hello_old.c" to "src/hello_old.c".
Moved "messages.c" to "src/messages.c".
Moved "msg.c" to "src/msg.c".
Moved "util.c" to "src/util.c".

g Rename a symlink from messages.c to msg.lnk, and show the result with ls.
% cleartool mv messages.c msg.lnk
Moved "messages.c" to "msg.lnk".

% cleartool ls −long msg.lnk
symbolic link msg.lnk --> msg.c

SEE ALSO
cleartool subcommands: checkout, cd, ln, ls
profile_ccase

212 ClearCase Reference Manual

cleartool subcommand protect
hh

NAME protect − change permissions or ownership of an object

SYNOPSIS
protect [−−cho.wn login-name] [−−chg.rp group-name] [−−chm.od permissions]

[−−fil .e | −−d.irectory] [−−r .ecurse]
[−−c comment | −−cq | −−cqe | −−nc] pname ...

DESCRIPTION
Sets a UNIX-level attribute — owner, group, or access mode — for one or more elements or shared
derived objects. This command is similar to the standard UNIX chmod(1), chown(1), and chgrp(1) com-
mands; but instead of modifying a UNIX-level inode, it modifies a VOB database.

The main usage of protect is to control access by standard UNIX programs to an element’s (or shared
derived object’s) data. For example, you might make some elements readable by anyone, while making
others readable only its group members.

Modifying the access mode of an element changes the access modes of all of its source containers and (if
applicable) cleartext containers. That is, the change affects all versions, not just the version selected by the
current view. There is no way to change the access mode of an individual version.

Some forms of protect affect ClearCase-level access. For example, a checkout or checkin is permitted only
if the user is the element’s owner, or is a member of the element’s group.

View-Private Objects
This command affects VOB-database objects only, not view-private objects. For this reason, entering a
protect command sometimes seems to have no effect:
g Changing an element’s protections has no effect on its checked-out version(s). After you checkin the

element, your view selects the checked-in version, thus making the updated protections appear.
g Changing a DO’s protection has no effect on the way the DO appears in the view where it was origi-

nally created, or in the view(s) where it has been winked-in. To have your view use a shared DO with
updated permissions: (1) use rm to remove the DO from your view; (2) use protect to change the per-
missions on the DO in the VOB database; (3) use clearmake or the winkin command to wink-in the DO,
with its new permissions.

You can change the protections on any view-private object (including a checked-out version), with the
standard UNIX commands.

A winked-in DO is not really a view-private object, but it behaves like one (so that users in different views
can build software independently). Moreover, changing the access mode of a winked-in DO actually con-
verts it to a view-private file in your view. See ‘‘Manipulating Derived Objects with Standard Com-
mands’’ in the derived_object manual page.

’Owner’ Setting
The initial owner of an element is the user who creates it with mkelem or mkdir. The initial owner of a
derived object is the user who builds it with clearmake. When the derived object is winked-in to another
view and becomes shared, its data container is promoted to a VOB storage pool. This process preserves the
derived object’s ownership, no matter who performs the build that causes the wink-in.

May 1994 213

protect cleartool subcommand
hh

See the ct_permissions manual page for a list of ClearCase operations that can be performed by an
element’s owner.

’Group’ Setting
The initial group of an element is the principal group of its creator (the group listed in the creator’s pass-
word entry). The new group specified in a protect -chgrp command must be one of the groups on the
VOB’s group list.

See the ct_permissions manual page for a list of ClearCase operations that can be performed by members
of an element’s or derived object’s group.

’Read’ and ’Execute’ Access
The ‘‘read’’ and ‘‘execute’’ access permissions of an element or shared derived object controls access to its
data in the standard UNIX manner. The ‘‘read’’ and ‘‘execute’’ permissions specified in a protect

-chmod command will appear in a standard UNIX ls directory listing of the element or shared derived
object. The permissions are also applied to all its associated data containers.

NOTE: protect sometimes adds ‘‘group-read’’ access to your specification. This ensures that the owner of
an element always retains ‘‘read’’ access to its data container(s).

’Write’ Access
The meaning of the ‘‘write’’ access permission varies with the kind of object:
g For a file element, ‘‘write’’ access settings are ignored. To obtain write access to a file element, you

must check it out.
g For a directory element, ‘‘write’’ access allows view-private files to be created within it. ClearCase-

level permissions control changes to the directory element itself, (See the ct_permissions manual page).
g For a shared derived object, ‘‘write’’ access allows it to be ‘‘overwritten’’ with a new derived object

during a target rebuild. (The shared derived object is not actually affected; rather, the view sees the
new, unshared derived object in its place.)

Set-UID and Set-GID Access
You can turn on a file (but not directory) element’s set-UID bit and/or set-GID bit, using either a symbolic
argument (for example, u+s) or an absolute argument (for example, 4755). These bits are automatically
cleared when a protect chown or protect chgrp command is entered.

PERMISSIONS AND LOCKS
Permissions Checking: For each object processed, you must be one of the following: owner, VOB owner,
root user. Locks: An error occurs if any of the following objects are locked: VOB, element type, element,
pool (non-directory elements only). See the ‘‘Permissions Checking’’ section of the cleartool manual page.

NOTES: With protect -chgrp, you must be a member of the new group, and it must also be in the
VOB’s group list. Only an element’s owner or the root user can turn on its set-UID bit; only a group
member or the root user can turn on an element’s set-GID bit.

OPTIONS AND ARGUMENTS

214 ClearCase Reference Manual

cleartool subcommand protect
hh

Specifying Protection Changes. Default: None.

−−cho.wn login-name
New owner for the element(s), in chown(1) format. The owner may be either a decimal user
ID or a login name found in the passwd(4) file.

−−chg.rp group
New group for the element(s), in chgrp(1) format. The group may be either a decimal group
ID or a group name found in the group(4) file.

−−chm.od permissions
New access rights — owner, group, other (world) — for the element(s), in standard chmod(1)
format. Both symbolic and absolute codes are valid, such as go-x (symbolic) or 666 (abso-
lute).

Specifying the Object(s). Default: None.

−−fil .e Restricts the command to changing file elements only.

−−d.irectory Restricts the command to changing directory elements only.

pname ... One or more pathnames, each of which specifies an element or shared derived object. An
extended pathname to a version or branch is valid — but keep in mind that protect affects the
entire element. Shared derived objects can be referenced by DO-ID.

If you specify multiple pname arguments, but you do not have permission to change the pro-
tections on a particular object, protect quits as soon as it encounters this error.

Processing of Directory Elements. Default: Any pname argument that specifies a directory causes the
directory element itself to be changed.

−−r .ecurse Changes the entire tree of elements including and below any pname argument that specifies a
directory element. VOB symbolic links are not traversed during the recursive descent. (Use
−file or −directory to restrict the changes to one kind of element.)

Event Records and Comments. Default: Creates one or more event records, with commenting controlled
by your home directory’s .clearcase_profile file (default: −nc). See ‘‘Comment Handling’’ in the cleartool
manual page. Comments can be edited with chevent.

−−c comment , −−cq , −−cqe , −−nc
Overrides the default with one of ClearCase’s standard comment options.

EXAMPLES
g Add ‘‘read’’ permission to the file element hello.c, for all users.
% cleartool protect −chmod +r hello.c
Changed protection on "hello.c".

g Change the group ID for all elements in the src directory to user.
% cleartool protect −recurse −chgrp user src
Changed protection on "src".
Changed protection on "src/cm_fill.c".
Changed protection on "src/convolution.c".
Changed protection on "src/hello.c".

May 1994 215

protect cleartool subcommand
hh

Changed protection on "src/msg.c".
Changed protection on "src/util.c".

g Allow users in the same group to ‘‘read/write/execute’’ the shared derived object hello, but disable all
access by the world. Use an absolute permission specification.
% cleartool protect −chmod 770 hello
Changed protection on "hello".

SEE ALSO
cleartool subcommands: mkpool, rmelem
ct_permissions, scrubber, profile_ccase
chgrp(1), chmod(1), chown(1), group(4), passwd(4)

216 ClearCase Reference Manual

cleartool subcommand protectvob
hh

NAME protectvob − change owner or groups of a VOB

SYNOPSIS
protectvob [−−for.ce] [−−cho.wn login-name] [−−chg.rp group-name]

[−−add._group group-name[,. . .]] [−−del .ete_group group-name[,. . .]]
vob-storage-pname ...

DESCRIPTION
Before executing this command, log in to the host where the VOB storage directory resides, as that host’s ’root’ user.
Execute this command only when the VOB is quiescent (no active users); it stops and restarts the associated
’vob_server’ process.

protectvob manages the ownership and group membership of the files and directories in a VOB, by chang-
ing the OS-level permissions on files and directories within the VOB storage area. If the VOB has remote
storage pools, you may need to execute this command on the remote host, as well, in order to complete
the permissions update. See ‘‘VOBs with Remote Storage Pools’’ below.

VOB Owner and VOB Group List
A new VOB, created with mkvob, takes on the identity of its creator:
g the creator becomes the VOB owner
g the creator’s principal group becomes the VOB’s principal group
g the creator’s group list becomes the VOB’s supplementary group list

The VOB owner is a privileged user, who can perform almost any operation involving that VOB (in effect,
the superuser for that VOB). The VOB owner owns all of the VOB’s data containers and storage pools. All
data container manipulations are performed by a vob_server process, which runs with the identity of the
VOB owner (see setuid(2)).

The VOB’s supplementary group list simulates a UNIX feature that enables a user to belong to several
groups. (See the multgrps(1) manual page.)

Groups and Access Control
The VOB’s set of groups controls certain operations:
g Write access — A user’s principal group must be one of the VOB’s groups — principal or supplemen-

tary — in order for the user to create an element or derived object.
g Read access — Any of a user’s groups must be the VOB’s principal group in order for the user to:

− read a version of a text_file element (and any other element type for which cleartext containers are
created)

− perform any other operation that modifies the VOB’s data containers (rmver, rmbranch, rmelem,
chpool, chtype, and so on)

In addition, the group of an element or derived object can be changed with protect -chgrp only if the
new group is on this list.

May 1994 217

protectvob cleartool subcommand
hh

Access Control at the Individual Object Level
A VOB’s owner and group list are VOB-wide settings. Similar settings are maintained at the individual
object level:
g Each element in a VOB has UNIX-level access attributes:

− user (that is, the element’s owner)

− group (just one, not several)

− read-write-execute permissions (access mode)

These attributes control access by standard UNIX programs to the element’s data. For example, some
elements might be made readable by anyone, while others are made readable only by group
members. An element’s UNIX-level attributes automatically apply to all of its versions.

g Similarly, UNIX-level access attributes are maintained for each shared derived object in the VOB
(whose data container is in a VOB storage pool).

The protect command controls the UNIX-level access attributes of elements and shared derived objects.
An element’s access attributes apply to all its source containers and (if applicable) cleartext containers.

The .identity Directory
The cleartool -describe -vob command lists a VOB’s owner and its group list. This information is
recorded in subdirectory .identity of the VOB storage directory. See the vob manual page for a description
of the contents of this subdirectory.

CAUTION: Do not manipulate the .identity directory by any means other than this command. Incon-
sistent settings will cause ClearCase errors.

VOBs with Remote Storage Pools
If any of a VOB’s storage pools physically reside on a remote host (accessed through symbolic links), pro-
tectvob prompts you to run protectvob on the remote host:

...
cleartool: Warning: pool: "/vobstore/vega.vbs/s/s_aux01" is remote.
cleartool: Warning: Login to the remote machine "ccsvr01".
cleartool: Warning: Then run this command again, or run the chown_pool script.

This is necessary because running as the root user, protectvob usually does not have the rights to change
permissions in the remote storage directory. In such cases, update each remote host as follows:

1. Log into the host as root.

2. Enter the protectvob command without specifying any options. (You can specify −force, if you wish.)
You may need to adjust the vob-storage-pname you specify, since it is now a remote location.

In some cases, you may need to run the chown_pool script on the remote host, to update one or more indi-
vidual storage pools there. This script is located in the ClearCase etc directory. See ‘‘Examples’’ below.

PERMISSIONS AND LOCKS
Permissions Checking: For each object processed, you must be one of the following: root user. Locks: An
error occurs if any of the following objects are locked: VOB. See the ‘‘Permissions Checking’’ section of
the cleartool manual page.

218 ClearCase Reference Manual

cleartool subcommand protectvob
hh

OPTIONS AND ARGUMENTS
Confirmation Step. Default: protectvob asks for confirmation before changing the permissions in one or
more storage pools.

−−for.ce Suppresses the confirmation step.

Changing VOB Ownership. Default: None — you can use −chown by itself, or in combination with
−chgrp.

−−cho.wn user
Specifies a new VOB owner. user can be either a login name or a numeric user-ID. That user
becomes the owner of all the VOB’s storage pools and all of the data containers in them.

protectvob rebuilds the .identity subdirectory of the VOB storage directory, reflecting the new
VOB owner’s user-ID, group-ID, and additional groups (if any).

−−chg.rp group
Specifies a new principal group for the VOB. group can be either a group name or a numeric
group-ID.

Maintaining the Secondary Group List. Default: None — you can use −add_group and −delete_group
singly, or together.

−−add._group group[,. . .]
Adds one or more groups to the VOB’s secondary group list. group can be either a group
name or a numeric group-ID.

−−del .ete_group group[,. . .]
group can be either a group name or a numeric group-ID. NOTE: This option can delete only
those groups on the VOB’s secondary group list, not the principal group. You must use the
−chgrp option to change the principal group.

vob-storage-pname
Pathname of a VOB storage directory.

EXAMPLES
g Make user jackson the owner of the VOB whose storage area is /usr/lib/vob.vb.
% cleartool protectvob −chown jackson /usr/lib/vob.vb
This command affects the protection on your versioned object base.
While this command is running, access to the VOB will be limited.
If you have remote pools, you will have to run this command remotely.
Pool "sdft" needs to be protected correctly.
Pool "ddft" needs to be protected correctly.
Pool "cdft" needs to be protected correctly.
Protect versioned object base "/usr/lib/vob.vb"? [no] yes
Do you wish to protect the pools that appear not to need protection? [no] no
Protecting "/usr/lib/vob.vb/s/sdft"...
Protecting "/usr/lib/vob.vb/s/sdft/0"...
Protecting "/usr/lib/vob.vb/s/sdft/1"...
...
Protecting "/usr/lib/vob.vb/d/ddft"...
Protecting "/usr/lib/vob.vb/d/ddft/0"...
...
Protecting "/usr/lib/vob.vb/c/cdft"...

May 1994 219

protectvob cleartool subcommand
hh

Protecting "/usr/lib/vob.vb/c/cdft/2d"...
Protecting "/usr/lib/vob.vb/c/cdft/35"...
...
VOB ownership:
owner jackson
group user

Additional groups:
group doc

g Change the owner and group of a remote VOB storage pool.
rlogin ccsvr01
Password: <enter password>

/usr/atria/etc/chown_pool jackson.user /vobaux/vega_src/s001

g Add one group to a VOB’s group list, and remove another group:
% cleartool protectvob −add_group devel −delete_group doc /usr/lib/vob.vb
This command affects the protection on your versioned object base.
While this command is running, access to the VOB will be limited.
If you have remote pools, you will have to run this command remotely.
Pool "sdft" appears to be protected correctly.
Pool "ddft" appears to be protected correctly.
Pool "cdft" appears to be protected correctly.
Protect versioned object base "/usr/lib/vob.vb"? [no] yes
Do you wish to protect the pools that appear not to need protection? [no] no
VOB ownership:
owner jackson
group user

Additional groups:
group devel

SEE ALSO
cleartool subcommands: chpool, mkpool, mkvob, protect
albd_server, ct_permissions, vob, vob_server, multgrps(1)
ClearCase Administrator´s Manual

220 ClearCase Reference Manual

cleartool subcommand pwd
hh

NAME pwd − print working directory

SYNOPSIS
pwd

DESCRIPTION
Lists the current working directory, just like the standard command pwd(1). This command is intended
for use in interactive cleartool sessions, and in shell scripts that simulate interactive sessions.

In version-extended namespace, the current working directory is listed as a pathname that is both view-
extended and version-extended. It includes the version of each directory element between the current
location and the VOB root directory. For example:
% cd util.c@@/main

% cleartool pwd
/view/akp@@/usr/hw/main/1/src/main/1/util.c/main

PERMISSIONS AND LOCKS
Permissions Checking: No special permissions required. Locks: No locks apply. See the ‘‘Permissions
Checking’’ section of the cleartool manual page.

EXAMPLES
g List the name of the current working directory.
cleartool> pwd
/usr/hw

g Use a view-extended pathname to go to the /usr/hw/src directory in the context of the jackson_old view,
and then list the name of the directory.
cleartool> cd /view/jackson_old/usr/hw/src

cleartool> pwd
/view/jackson_old/usr/hw/src

g Change to a version-extended namespace directory, and list its name. Then change back to the original
directory, and list its name.
cleartool> cd src@@

cleartool> pwd
/view/jackson_vu@@/usr/hw/main/2/src

cleartool> cd /usr/hw/src

cleartool> pwd
/usr/hw/src

SEE ALSO
cleartool subcommands: cd, pwv

May 1994 221

pwv cleartool subcommand
hh

NAME pwv − print working view

SYNOPSIS
pwv [−−s .hort] [−−wdv.iew] [−−set .view]

DESCRIPTION
Lists the view-tag of your current view context, or ** NONE ** if there is none. You can establish or
change your view context by entering a setview command, or by cd’ing to a view-extended pathname. If
you do both, you have two view contexts:
g Your working directory view is used to process simple file names and relative pathnames.
g Your set view is used to process full pathnames, which begin with a slash (/) character.

If you cd to a version-extended pathname, pwv adds the extended naming symbol to the view-tag (see
‘‘Examples’’).

PERMISSIONS AND LOCKS
Permissions Checking: No special permissions required. Locks: No locks apply. See the ‘‘Permissions
Checking’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
Working Directory View vs. Set View. Default: Lists both your working directory view and your set
view, unless you specify −short.

−−wdv.iew Lists your working directory view only.

−−set .view Lists your set view only.

Listing Format. Default: The annotation Working directory view: or Set view: precedes a view’s
view-tag.

−−s .hort Omits the annotation string.

Specifying −short automatically invokes −wdview also, unless you use −setview.

EXAMPLES
g List the current set view and working directory view. In this case, they are the same.
% cleartool pwv
Working directory view: jackson_vu
Set view: jackson_vu

g List the working directory view only.
% cleartool pwv −wdview
Working directory view: jackson_vu

g List the current view after changing the working directory view, but prior to setting a view.
% cd /view/jackson_old/usr/hw/src

% cleartool pwv
Working directory view: jackson_old
Set view: ** NONE **

222 ClearCase Reference Manual

cleartool subcommand pwv
hh

g List the current view after setting a view, and then changing the working directory view.
% cd /view/jackson_old/usr/hw/src

% cleartool pwv
Working directory view: jackson_old
Set view: jackson_vu

g List the current view after changing to a version-extended namespace directory. Use the short format to
list the view name only.
% cd src@@

% cleartool pwv −short
jackson_vu@@

SEE ALSO
cleartool subcommands: cd, setview, startview
pathnames_ccase

May 1994 223

quit cleartool subcommand
hh

NAME quit − quit interactive cleartool session

SYNOPSIS
q.uit

DESCRIPTION
Ends an interactive cleartool session, returning control to the parent process. You can also exit by typing a
UNIX EOF character (typically, <Ctrl-D>) or by entering the exit command.

PERMISSIONS AND LOCKS
Permissions Checking: No special permissions required. Locks: No locks apply. See the ‘‘Permissions
Checking’’ section of the cleartool manual page.

EXAMPLES
g End a cleartool interactive session.
cleartool> quit
%

g End a cleartool interactive session with the quit synonym, exit.
cleartool> exit
%

g End a cleartool interactive session with the UNIX EOF character.
cleartool> <Ctrl−D>
%

224 ClearCase Reference Manual

cleartool subcommand recoverview
hh

NAME recoverview − recover a view database

SYNOPSIS
g Repair a view:

recoverview [−−for.ce] { −−tag view-tag | view-storage-dir-pname }

g Recover files associated with deleted VOB or deleted directory:

recoverview [−−for.ce] { −−vob vob-identifier | −−dir dir-identifier }
{ −−tag view-tag | view-storage-dir-pname }

DESCRIPTION
Repairs a view database and the associated private storage area, typically after a system crash or similar
mishap. If the view does not require recovery, recoverview displays a message and takes no other action.

You may also wish to use this command to regain access to stranded view-private files. (See ‘‘Recovering
View-Private Storage’’ below.)

Automatic Recovery
When necessary, recoverview is invoked automatically by a view’s associated view_server process. Enter
this command yourself if messages in the view log (/usr/adm/atria/log/view_log) suggest view database corr-
uption (for example, INTERNAL VIEW DB ERROR).

Possible Data Loss
recoverview uses reformatview — that is, recovery involves a dump/load of the view database. (See the
view manual page.) (recoverview automatically deletes the old, invalid view database, which reformatview
has renamed to db.dumped.)

Depending on the state of the view database, this process may cause certain information to be lost. After
a view is recovered, consult /usr/adm/atria/log/view_log to investigate possible data loss. The set-UID bit is
always lost on files that are not owned by the view’s owner. See the reformatview manual page for more
information.

RECOVERING VIEW-PRIVATE FILES: VIEW LOST+FOUND DIRECTORY
In normal ClearCase operation, a file in view-private storage is accessed through a VOB pathname. That
is, the file seems to be located in the VOB, but is actually stored in the view. This view-VOB correspon-
dence can be disrupted, however:
g A VOB can become temporarily unavailable — for example, by being unmounted.
g A VOB can become permanently unavailable, by being deleted.
g A particular VOB directory can become permanently unavailable, by being deleted with a rmelem

command.

In all these cases, view-private files that are accessed through the unavailable VOB structure become
stranded — the files cannot be used for normal ClearCase operations, since there are no VOB pathnames
through which they can be accessed. You can resynchronize your view with the available VOBs with
recoverview’s −vob and −dir options. This ‘‘recovers’’ stranded files by moving them into the view’s
lost+found, subdirectory .s/lost+found of the view storage directory. Such recovered files remain

May 1994 225

recoverview.. cleartool subcommand
hh

inaccessible to normal ClearCase operations; you can access them through the view storage directory,
using standard UNIX commands.

PERMISSIONS AND LOCKS
Permissions Checking: No special permissions required. Locks: No locks apply. See the ‘‘Permissions
Checking’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
Confirmation Step. Default: recoverview asks for confirmation before modifying a view.

−−for.ce Suppresses the confirmation step.

Specifying the View. Default: None.

−−tag view-tag
The view-tag of any registered view.

view-storage-dir-pname
The pathname of a view storage directory.

CAUTION: Make sure that the current working directory is not the same as, or anywhere
below view-storage-dir-pname.

Recovering View-Private Storage. The following options take ClearCase-internal identifiers for a VOB or
a VOB directory (vob-identifier and dir-identifier) as arguments. The lsprivate command uses these
identifiers when listing an inaccessible VOB or VOB directory.

−−vob vob-identifier
Moves all view-private files that correspond to the specified VOB to the view’s lost+found
directory.

−−dir dir-identifier
Moves all view-private files that correspond to the specified directory element to the view’s
lost+found directory.

CAUTION: If the VOB or directory is still accessible, using these options is probably incorrect — it will
unsynchronize the view and VOB, not synchronize them.

EXAMPLES
NOTE: recoverview writes status messages to the view_log file in /usr/adm/atria/log; it does not print status
messages on the standard output device.

g Recover the database of a view whose view-tag is jackson_fix.
% cleartool recoverview −tag jackson_fix

g Recover the database of a view whose storage directory is /usr/home/jackson/ccviews/std.vws.
% cleartool recoverview /usr/home/jackson/ccviews/std.vws

SEE ALSO
cleartool subcommands: reformatview
errorlogs_ccase, view

226 ClearCase Reference Manual

cleartool subcommand reformatview
hh

NAME reformatview − update the format of a view database

SYNOPSIS
reformatview [−−dum.p | −−loa.d] { −−tag view-tag | view-storage-dir-pname }

DESCRIPTION
Changes the format (schema) of a view database from the format used in a previous ClearCase release to the
current format. A view database is a set of binary files in the view storage directory. A new release may
use a different database format in order to support new product features, to enhance storage efficiency, or
to improve performance.

View database conversion involves two major steps:
g ‘‘Dumping’’ the existing database to a set of ASCII files. This step invalidates the view database,

which is renamed to db.dumped. You cannot use the view until its database is reloaded.
g ‘‘Loading’’ the ASCII files into a new database that uses the new format.

NOTE: This does not overwrite the old, invalid view database; it remains in the view storage direc-
tory, as db.dumped, until you explicitly delete it with a standard operating system command.

A view’s view_server process automatically detects the need for reformatting, and displays a message to
this effect. reformatview itself writes status messages to /usr/adm/atria/log/view_log, not to stdout or stderr.

You can also use reformatview to move a view storage area between hosts of different architectures — that
is, hosts on which there are differences in the binary files that implement the view database. See the Clear-
Case Administrator´s Manual for a step-by-step procedure.

Possible Data Loss
If the view database requires recovery, some information may be lost in the dump/load process. For
example, if a view-private file is owned by someone other than the owner of the view storage area, refor-
matview always strips its set-UID bit (if the bit is set).

In addition, some view-private files may be moved into the view’s lost+found directory. See the recover-
view manual page for details.

PERMISSIONS AND LOCKS
Permissions Checking: No special permissions required. Locks: No locks apply. See the ‘‘Permissions
Checking’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
Forcing a Dump. Default: If a view’s database does not require reformatting (its schema is up-to-date),
reformatview displays a message and takes no other action; if the schema is out-of-date, reformatview per-
forms a dump, then a load.

−−dum.p performs only the first step — creating an ASCII dump of the view database in file
view_db.dump_file in the view storage directory.

−−loa.d performs only the second step — replacing the old view database with a new one, using the
contents of a previously created ASCII dump file.

May 1994 227

reformatview.. cleartool subcommand
hh

Specifying the View. Default: None.

−−tag view-tag
The view-tag of any registered view.

view-storage-dir-pname
The pathname of a view storage directory.

CAUTION: Make sure that the current working directory is not the same as, or anywhere
below view-storage-dir-pname.

EXAMPLES
g Reformat a view whose view-tag is jackson_old.
% cleartool reformatview −tag jackson_old

g Reformat a view whose storage directory is /home/jackson/ccviews/fix.vws.
% cleartool reformatview /home/jackson/ccviews/fix.vws

SEE ALSO
cleartool subcommands: recoverview
errorlogs_ccase

228 ClearCase Reference Manual

cleartool subcommand reformatvob
hh

NAME reformatvob − update the format (schema) of a VOB database

SYNOPSIS
reformatvob [−−dum.p | −−loa.d] [−−rm] [−−for.ce] [−−to dumpfile-dir-pname]

[−−hos.t hostname −−hpa.th local-pname −−gpa.th global-pname]
vob-storage-dir-pname

DESCRIPTION
Always back up a VOB’s storage directory before entering this command.

This is a ’one-way’ command. It must be allowed to complete both the ’dump’ and ’load’ phases (though these two
phases can take place at different times). You cannot abort and undo a ’reformatvob’ operation after you have
started it; you can only restart and complete the operation.

reformatvob changes the format (schema) of a VOB database from a format used in a previous ClearCase
release to the current format. A new release may use a different database format in order to support new
product features, to enhance storage efficiency, or to improve performance.

You can also use reformatvob:
g when moving a VOB storage directory between hosts of different architectures — hosts with different

binary formats for the files that implement the VOB database
g to ‘‘compact’’ a VOB database, physically deleting records that have been logically deleted by

vob_scrubber.

In these latter cases, the VOB database is already using the current revision of the schema, and reformatvob
locks the VOB before reformatting it. An error occurs if the VOB is already locked.

Dumping and Loading
VOB database reformatting involves two phases:
g ‘‘Dumping’’ the existing VOB database to a set of ASCII files. This phase is performed by the

db_dumper program located within the VOB storage directory. reformatvob evaluates disk-space avai-
lability before beginning its work, and displays a message if your disk space seems to be insufficient.
See ‘‘Working with Limited Disk Space’’ below.

g ‘‘Loading’’ the ASCII files into a new VOB database that uses the new format. This phase is per-
formed by the db_loader program, located in /usr/atria/etc.

By default, both these phases are performed at the same time. The −dump and −load options enable you
to perform them separately.

Both db_dumper and db_loader are setUID-root programs. An invocation of reformatvob will fail if these pro-
grams have the wrong ownership or the wrong access mode:
cleartool: Error: Database dumper "<VOB-pname>/db.reformat/db_dumper"
must be setUID and owned by the super-user.

For more on this topic, see the db_dumper manual page.

May 1994 229

reformatvob.. cleartool subcommand
hh

Registering the VOB (Again)
reformatvob updates (or creates, if necessary) the VOB’s entry in the network’s vob_object registry file.
However, reformatvob does not affect the vob_tag registry file. If the newly reformatted VOB does not
have an appropriate VOB-tag registry entry, reformatvob displays a message advising you to create one or
more VOB−tags with mktag. For more information on VOB−tags and registries, see the mkvob and
registry_ccase manual pages.

Migrating from ClearCase Release 1.1.x to Release 2
The reformatvob command, like all ClearCase Release 2 commands, operates only on registered VOBs.
Therefore, before proceeding, reformatvob first registers a Release 1.1.x VOB in the vob_object registry file.
In general, you need only supply the VOB storage directory pathname, which reformatvob uses to create
the vob_object registry entry and, then, to reformat the VOB. Unless you have already created one or more
VOB-tags for the ‘‘new’’ VOB, reformatvob displays a message advising you to do so. See also ‘‘Updating a
Host’s Existing ClearCase Data’’ in the ClearCase Notebook, and the registry_ccase manual page.

Restrictions
The VOB storage directory must physically reside on the host where you enter this command.

The current working directory must not be at or below the VOB storage directory.

Your shell must not have a view context — neither set view nor working directory view.

Working with Limited Disk Space
Running reformatvob can substantially increase the amount of disk space used by the VOB storage direc-
tory:
g By default, the old VOB database is preserved in a renamed subdirectory of the VOB storage direc-

tory. You can use the −rm option to discard the old VOB database. Alternatively, you can use a stan-
dard rm command at a later time to discard it — for example, after you have mounted the reformat-
ted VOB and verified its accessibility.

g By default, the ASCII dump files are created within the VOB storage directory. You can use the −to
option to create these files in another location.

Following are reformatvob’s disk-space requirements, based on the size of the existing VOB database as the
unit:

Data Structure Space Required Need for Space Eliminated by
existing VOB database 100% −rm
ASCII dump files 100% −to
elbow room 10% (always required)

Thus, if you use neither −rm nor −to, reformatvob’s disk-space needs total approximately 210% of the size
of the VOB database.

Restarting an Interrupted Reformat
There are no ill effects if a reformatvob command is interrupted (for example, by a system crash). Enter the
reformatvob command again to complete the reformatting. If reformatvob is interrupted after the dump
phase completes, a subsequent invocation automatically starts with the load phase.

230 ClearCase Reference Manual

cleartool subcommand reformatvob..
hh

PERMISSIONS AND LOCKS
Permissions Checking: For each object processed, you must be one of the following: VOB owner, root user.
Locks: No locks apply. See the ‘‘Permissions Checking’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
Partial Reformat. Default: Performs a complete reformat, including both the dump and load phases.

−−dum.p Performs only the first phase of the reformatting process — creating an ASCII dump of the
current VOB database.

−−loa.d Performs only the second phase of the reformatting process — creating a new VOB database
using a previously created ASCII dump.

Preserving a Backup of the VOB Database. Default: The original VOB database directory (subdirectory
db of the VOB storage directory) is preserved through renaming. During the dump phase, it is renamed
to db.reformat; during the load phase, it is renamed again, to a name that includes a date stamp (for exam-
ple, db.02.18).

−−rm Deletes the original VOB database during the load phase.

Confirmation Step. Default: Before beginning its work, reformatvob has you confirm that you wish to
reformat the VOB database.

−−for.ce Suppresses the confirmation step.

Alternate Location for ASCII Dump Files. Default: The dump phase creates the ASCII dump files within
the VOB storage directory.

−−to dumpfile-dir-pname
(do not use in conjunction with −load) Creates the ASCII dump files within the specified
directory, which must not already exist.

VOB Registry Options. Default: Using the vob-storage-dir-pname argument, reformatvob creates or updates
the vob_object registry file; it leaves the vob_tag registry file unchanged. The following options update the
VOB-tag entry; see the mkvob manual page for more information.

−−hos.t hostname
−−hpa.th local-pname
−−gpa.th global-pname

Specifying the VOB. Default: None.

vob-storage-dir-pname
The pathname of a VOB storage directory.

See also the descriptions of −host, −hpath, and −gpath above.

EXAMPLES
g Reformat a VOB whose storage directory is /home/jones/tut/tut.vbs.

NOTE: This example shows selected status messages only; reformatvob actually produces much more ver-
bose messages.
% cd

May 1994 231

reformatvob.. cleartool subcommand
hh

% cleartool reformatvob /home/jones/tut/tut.vbs
Reformat versioned object base "/home/jones/tut/tut.vbs"? [no] y
Dumping database...
Dumper done.
Dumped versioned object base "/home/jones/tut/tut.vbs".
Loading database...
Loader done.
Loaded versioned object base "/home/jones/tut/tut.vbs".

SEE ALSO
cleartool subcommands: lsvob, mkvob, mktag, mount, register
db_dumper, registry_ccase, vob, vob_scrubber

232 ClearCase Reference Manual

cleartool subcommand register
hh

NAME register − create an entry in the vob_object or view_object registry file

SYNOPSIS
g Register a VOB:

reg.ister −−vob [−−rep.lace]
[−−hos.t hostname −−hpa.th local-pname −−gpa.th global-pname]
vob-storage-dir-pname

g Register a view:

reg.ister −−view [−−rep.lace]
[−−hos.t hostname −−hpa.th local-pname −−gpa.th global-pname]
view-storage-dir-pname

DESCRIPTION
Creates or replaces an entry in the vob_object registry file or the view_object registry file:
g The vob_object registry file, located at /usr/adm/atria/rgy/vob_object, has an entry for each VOB in the

local area network.
g The view_object registry file, located at /usr/adm/atria/rgy/view_object, has an entry for each view in the

local area network.

ClearCase software uses these registries to determine the physical storage locations of VOBs and views.
In most commands, you reference a VOB or view with its VOB-tag or view-tag. These tags ‘‘point to’’ the
physical storage directories. Note that register has no effect on the vob_tag or view_tag registry files.

Use register to update an existing registry entry, or to re-register a VOB or view that was temporarily
removed from service with unregister.

Other Commands that Affect Storage Registries
The mkview and mkvob commands automatically add an entry to the appropriate registry; the rmview and
rmvob commands remove registry entries. You can use the unregister command to remove an existing
entry.

The reformatvob command updates a VOB’s vob_object registry entry (or creates one, if necessary).

PERMISSIONS AND LOCKS
Permissions Checking: No special permissions required. Locks: No locks apply. See the ‘‘Permissions
Checking’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
View/VOB Specification. Default: None.

−−vob Registers a VOB storage directory.

−−view Registers a view storage directory.

May 1994 233

register.. cleartool subcommand
hh

Overwriting an Existing Entry. Default: An error occurs if the view or VOB storage directory already
has an entry in the registry.

−−rep.lace Replaces an existing registry entry. (No error occurs if there is no pre-existing entry.)

Specifying the Location of the Storage Directory. Default: None. You must specify a VOB or view
storage directory. In rare cases, you may need to specify host-local and global access path information as
well. See the mkvob and mkview manual pages for descriptions of how to use these options and arguments
to specify VOB and view storage directories.

view-storage-dir-pname
vob-storage-dir-pname
−−hos.t hostname
−−hpa.th local-pname
−−gpa.th global-pname

EXAMPLES
g Register a VOB storage directory that was previously unregistered with the command unregister −vob
/vobstore/vob2.vbs

% cleartool register −vob /vobstore/vob2.vbs

g Register a view storage directory.
% cleartool register −view /viewstore/view3.vws

FILES
/usr/adm/atria/rgy/vob_object
/usr/adm/atria/rgy/view_object

SEE ALSO
cleartool subcommands: unregister, mkvob, mkview, mktag, mount, umount
registry_ccase

234 ClearCase Reference Manual

cleartool subcommand reserve
hh

NAME reserve − convert an unreserved checkout to reserved

SYNOPSIS
res .erve [−−c comment | −−cq | −−cqe | −−nc] pname ...

DESCRIPTION
Changes the ‘‘checkout status’’ of a checked−out version of an element to reserved. An reserve checkout

of version event record is written to the VOB database.

PERMISSIONS AND LOCKS
Permissions Checking: For each object processed, you must be one of the following: element group
member, element owner, VOB owner, root user. Locks: An error occurs if any of the following objects are
locked: VOB, element type, element, branch type, branch. See the ‘‘Permissions Checking’’ section of the
cleartool manual page.

OPTIONS AND ARGUMENTS
Specifying the Elements. Default: None.

pname ... One or more pathnames, each of which specifies an element. The checkout in the current
view is changed, unless you use a view-extended pathname to specify another view.

Event Records and Comments. Default: Creates one or more event records, with commenting controlled
by your home directory’s .clearcase_profile file (default: −nc). See ‘‘Comment Handling’’ in the cleartool
manual page. Comments can be edited with chevent.

−−c comment , −−cq , −−cqe , −−nc
Overrides the default with one of ClearCase’s standard comment options.

EXAMPLES
g Change the checkout status of an element to reserved.
% cleartool reserve util.c
Changed checkout to reserved for "util.c" branch "/main".

g Verify that you are the only user with a checkout of a certain file, then convert your checkout from
unreserved to reserved.
% cleartool lscheckout util.c
14-Mar.13:48 drp checkout version "util.c" from /main/3 (unreserved)
"experiment with algorithm for returning time"

% cleartool reserve util.c
Changed checkout to reserved for "util.c" branch "/main".

SEE ALSO
cleartool subcommands: checkin, checkout, lscheckout, uncheckout, unreserve
profile_ccase

May 1994 235

rmattr cleartool subcommand
hh

NAME rmattr − remove an attribute from an object

SYNOPSIS
g Remove attribute from a file system object:

rmattr [−−ver.sion version-selector] [−−c comment | −−cq | −−cqe | −−nc]
attribute-type-name pname ...

g Remove attribute from a hyperlink:

rmattr −−hli .nk [−−c comment | −−cq | −−cqe | −−nc]
attribute-type-name hlink-selector ...

DESCRIPTION
Removes one or more attributes from VOB-database objects. Attributes can be attached to objects by the
mkattr command and by triggers (mktrtype -mkattr). See the mkattr manual page for a list of objects to
which attributes can be attached.

rmattr deletes an instance of an attribute type object. To delete the attribute type object itself, use the
rmtype command.

PERMISSIONS AND LOCKS
Permissions Checking: For each object processed, you must be one of the following: element group
member, element owner, VOB owner, root user. Locks: An error occurs if any of the following objects are
locked: VOB, element type, element, branch type, branch, attribute type. See the ‘‘Permissions Checking’’
section of the cleartool manual page.

OPTIONS AND ARGUMENTS
Specifying the Kind of Object. Default: rmattr interprets command arguments as the names of file sys-
tem objects.

−−hli .nk Indicates that command argument(s) name hyperlink objects, not file system objects.

Specifying a File System Object. Default: None.

pname ... One or more pathnames, indicating objects from which attributes are to be removed. If you
don’t use the −version option, then:

− A standard or view-extended pathname to an element specifies the version selected by
the view.

− A VOB-extended pathname specifies an element, branch, or version, independent of
view.

See the mkattr manual page for examples of pname arguments.

−−ver.sion version-selector
Specifies the version from which the attribute is to be removed. See the version_selector
manual page for syntax details.

236 ClearCase Reference Manual

cleartool subcommand rmattr..
hh

Specifying a Hyperlink Object. Default: None.

hlink-selector
A hyperlink-selector argument takes this form:

hyperlink-type-name@hyperlink-ID[@pname-in-vob]

Hyperlinks are not file system objects — you cannot specify them with shell wildcards. The
final component is required only for a hyperlink in another VOB. Examples:
DesignFor@598f
RelatesTo@58843@/vobs/monet

Specifying the Attribute to be Removed. Default: None.

attribute-type-name
An existing attribute type.

Event Records and Comments. Default: Creates one or more event records, with commenting controlled
by your home directory’s .clearcase_profile file (default: −nc). See ‘‘Comment Handling’’ in the cleartool
manual page. Comments can be edited with chevent.

−−c comment , −−cq , −−cqe , −−nc
Overrides the default with one of ClearCase’s standard comment options.

EXAMPLES
g Remove the Confidence_Level attribute from the version of msg.c in the view.
% cleartool rmattr Confidence_Level msg.c
Removed attribute "Confidence_Level" from "msg.c@@/main/1".

g Remove the attribute TESTED from the most recent version of hello.h on the main branch that has the attri-
bute value "FALSE".
% cleartool rmattr −version ’/main/{TESTED=="FALSE"}’ TESTED hello.h
Removed attribute "TESTED" from "hello.h@@/main/2".

g Remove the Responsible attribute from the main branch of hello.c.
% cleartool rmattr Responsible hello.c@@/main
Removed attribute "Responsible" from "hello.c@@/main".

g Remove the Author attribute from a hyperlink of type DesignDoc.
cleartool rmattr -hlink Author DesignDoc@393@/usr/hw
Removed attribute "Author" from "DesignDoc@393@/usr/hw".

SEE ALSO
cleartool subcommands: lstype, mkattr, mkattype, rmtype, rntype
events_ccase, profile_ccase, version_selector

May 1994 237

rmbranch cleartool subcommand
hh

NAME rmbranch − remove a branch from the version tree of an element

SYNOPSIS
rmbranch [−−for.ce] [−−c comment | −−cq | −−cqe | −−nc] pname ...

DESCRIPTION
This command destroys information irretrievably. Using it carelessly may compromise your organization’s ability
to support old releases.

rmbranch deletes one or more branches from their elements. For each branch, this entails:
g removal from the entire branch structure from the VOB database: branch object and version objects
g removal of all meta-data items (labels, attributes, hyperlinks, and triggers) that were attached to the

deleted objects
g removal of all event records for the deleted objects
g (file elements only) removal of the data container(s) that hold the deleted versions’ file system data

NOTE: If all of an element’s versions are stored in a single data container, the deleted versions are
removed logically, not physically.

A destroy sub-branch event record is created for the parent branch of the deleted branch.

Restrictions: You cannot delete a branch that is checked out. You cannot delete an element’s main branch.

PERMISSIONS AND LOCKS
Permissions Checking: For each object processed, you must be one of the following: branch creator, ele-
ment owner, VOB owner, or root user. Locks: An error occurs if any of the following objects are locked:
VOB, element type, element, branch type, branch, pool (non-directory elements only). See the ‘‘Permis-
sions Checking’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
Confirmation Step. Default: rmbranch prompts for confirmation before deleting anything.

−−for.ce Suppresses the confirmation step.

Event Records and Comments. Default: Creates one or more event records, with commenting controlled
by your home directory’s .clearcase_profile file (default: −nc). See ‘‘Comment Handling’’ in the cleartool
manual page. Comments can be edited with chevent.

−−c comment , −−cq , −−cqe , −−nc
Overrides the default with one of ClearCase’s standard comment options.

Specifying the Branches to be Removed. Default: None.

pname ... One or more VOB-extended pathnames, indicating the branch(es) to be deleted. Examples:
foo.c@@/main/bugfix
/vobs/proj/include/proj.h@@/main/temp_482

238 ClearCase Reference Manual

cleartool subcommand rmbranch
hh

EXAMPLES
g Delete the maintenance branch of element util.c.
% cleartool rmbranch util.c@@/main/maintenance
Branch "util.c@@/main/maintenance" has 0 sub-branches, 2 sub-versions
Remove branch, all its sub-branches and sub-versions? [no] yes
Removed branch "util.c@@/main/maintenance".

g Verify, with the lsvtree command, that element msg.c has a patch2 branch. Then, delete that branch without
prompting for confirmation.
% cleartool lsvtree −branch /main/patch2 msg.c
msg.c@@/main/patch2
msg.c@@/main/patch2/1

% cleartool rmbranch −force msg.c@@/main/patch2
Removed branch "msg.c@@/main/patch2".

SEE ALSO
cleartool subcommands: lsvtree, mkbranch, mkbrtype, rmver
profile_ccase

May 1994 239

rmdo cleartool subcommand
hh

NAME rmdo − remove a derived object from a VOB

SYNOPSIS
g Remove individual derived objects:

rmdo do-pname ...

g Remove collections of derived objects:

rmdo { −−a.ll | −−zer .o } [pname ...]

DESCRIPTION
Deletes one or more derived objects (DOs) from a VOB. The details of this process depend on whether or
not the derived object is shared (as indicated by the lsdo −long command). The overall principle is that
rmdo affects VOB storage only — it does not affect view storage:
g For a shared derived object, whose data container is in VOB storage, rmdo deletes the entry in the VOB

database, and also deletes the data container file (from one of the VOB’s derived object storage pools).
g For an unshared derived object, whose data container is in view-private storage, rmdo deletes the entry

from the VOB database, but does not delete the data container from view storage. The data container
is an ordinary file, which can still be listed, executed, and so on; but it cannot be a candidate for
configuration lookup. The ls -long command lists it with a [no config record] annotation. To
delete the data file, use the UNIX rm(1) command.

In either case, rmdo also deletes the associated configuration record if it is no longer needed — that is, if
both these conditions hold:
g no other sibling derived object (created in the same build script execution) still exists
g the derived object was not a build dependency (subtarget) of another derived object that still exists

Command options enable deletion of groups of derived objects:
g derived objects created at the same UNIX pathname, across all views
g derived objects that are no longer referenced in any view (that is, whose reference counts are zero)
g all derived objects (or all zero-referenced derived objects) in a directory)

rmdo does not delete DO versions — derived objects that have been checked in as versions of elements.
Use rmver for this purpose.

CAUTION
Deleting a shared derived object causes the next UNIX-level access to return an I/O error status. This
may, in turn, cause clearmake to log an INTERNALERROR message to the ClearCase error_log file. The
derived object’s name is removed from the directory by this UNIX-level access; thus, subsequent accesses
return not found errors. To avoid such situations, use the −zero option when you enter an rmdo com-
mand.

240 ClearCase Reference Manual

cleartool subcommand rmdo
hh

SCRUBBING OF DERIVED OBJECTS
ClearCase includes a utility, scrubber, that deletes derived objects — both the entries in the VOB database
and (for shared derived objects) the data containers in the VOB’s storage pools. By default, a crontab(1)
script runs scrubber once each day.

Each derived object pool has scrubbing parameters, which you can modify with the mkpool -update

command.

PERMISSIONS AND LOCKS
Permissions Checking: For each object processed, you must be one of the following: VOB owner, root user.
Locks: An error occurs if any of the following objects are locked: VOB, pool. See the ‘‘Permissions Check-
ing’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
Handling of Like-Named Derived objects. Default: Deletes at most one DO for each file name specified
with command arguments. A file name with a DO-ID (for example, hello.o@@24-Mar.11:32.412),
specifies exactly which DO to delete. A standard or view-extended pathname specifies the DO that
appears in the view.

To determine the DO-IDs of derived objects, use lsdo.

−−a.ll Deletes all derived object(s) at a given pathname, no matter what view they were created in,
or currently appear in.

CAUTION: This can disrupt work taking place in other developers’ views.

−−zer .o Similar to −all, but deletes only those derived objects with zero reference counts.

Specifying Derived Objects. Default: If you use −all or −zero, the default pathname is ‘‘.’’, which
specifies all DO file names in the current working directory. If you use neither of these options, there is
no default — you must supply at least one argument.

do-pname ...
Pathnames of one or more individual derived objects. A name with a DO-ID, such as
foo@@10-Nov.10:14.27672, specifies a particular derived object, irrespective of view. A stan-
dard UNIX pathname or view-extended pathname specifies the derived object that appears in
a view.

pname ... (use with −all or −zero) One or more standard or view-extended pathnames, each of which
can name a file or directory:

− A file name specifies a collection of DOs built at the same pathname.

− A directory name is equivalent to a list of all the file names of DOs built in that directory
— even file names that do not currently appear in the view (perhaps after a make

clean).

May 1994 241

rmdo cleartool subcommand
hh

EXAMPLES
g Delete the derived object hello.o@@24-Mar.11:32.412.
% cleartool rmdo hello.o@@24−Mar.11:32.412
Removed derived object "hello.o@@24-Mar.11:32.412".

g Delete all derived objects named hello in the current working directory.
% cleartool rmdo −all hello
Removed derived object "hello@@23-Mar.14:16.178".
Removed derived object "hello@@23-Mar.19:25.394".

g Delete all zero-referenced derived objects in the hworld directory.
% cleartool rmdo −zero hworld
Removed derived object "hworld/hello.o@@23-Mar.20:42.373".
Removed derived object "hworld/hello.o@@23-Mar.20:36.228".
Removed derived object "hworld/hello@@23-Mar.20:42.382".
Removed derived object "hworld/hello@@23-Mar.20:36.234".
Removed derived object "hworld/util.o@@23-Mar.20:42.376".
Removed derived object "hworld/util.o@@23-Mar.20:36.231".

SEE ALSO
cleartool subcommands: catcr, diffcr, ls, lsdo, mkpool, rmver
clearaudit, crontab(1), rm(1), scrubber, crontab_ccase

242 ClearCase Reference Manual

cleartool subcommand rmelem
hh

NAME rmelem − remove an element from a VOB

SYNOPSIS
rmelem [−−for.ce] [−−c comment | −−cq | −−cqe | −−nc] pname ...

DESCRIPTION
This command destroys information irretrievably. Using it carelessly may compromise your organization’s ability
to support old releases. In many cases, it is better to use the ’rmname’ command.

rmelem completely deletes one or more elements. For each element, this entails:
g removal of the entire version tree structure from the VOB database: element object, branch objects,

and version objects
g removal of all meta-data items (labels, attributes, hyperlinks, and triggers) that were attached to the

deleted objects
g removal of all event records for the deleted objects
g (file elements only) removal of the data container(s) that hold the element’s file system data from its

source storage pool
g removal of all references to the element from versions of the VOB’s directory elements. (This means

that subsequent listings and comparisons of those directory versions will be ‘‘historically inaccurate’’.)

A destroy element event record is created for the element’s VOB.

RESTRICTION: you cannot delete an element if any of its versions are checked out. (But it is not neces-
sary to checkout the parent directory before deleting one of its subdirectories.)

Deleting a Directory Element
Deleting a directory element may cause some other elements to be orphaned: no longer cataloged in any
version of any directory. rmelem displays a message and moves an orphaned element to the VOB’s
lost+found directory:
cleartool: Warning: Object "foo.c" no longer referenced.
cleartool: Warning: Moving object to vob lost+found directory
as "foo.c.a0650992e2b911ccb4bc08006906af65".

(See the mkvob manual page for a description of this directory.)

Each derived object in the deleted directory is also moved to lost+found. The derived object has no data,
but you can use it in such commands as lsdo and catcr.

View-private objects in the deleted directory are temporarily stranded, but can be transferred to the view’s
own lost+found directory:

1. Use lsprivate to locate stranded files and to determine the ClearCase-internal identifier of the deleted
directory element:
% cleartool lsprivate −vob /tmp/david_phobos_hw

...
#<Unavailable-VOB-1>/<DIR-c8051152.e2ba11cc.b4c0.08:00:69:06:af:65>/myfile

May 1994 243

rmelem.. cleartool subcommand
hh

2. Use recoverview to move all the stranded file(s) for the deleted directory:
% cleartool recoverview −dir c8051152.e2ba11cc.b4c0.08:00:69:06:af:65 −tag myview
Moved file /usr/people/david/myview.vws/.s/lost+found/5ECC880E.00A5.myfile

PERMISSIONS AND LOCKS
Permissions Checking: For each object processed, you must be one of the following: element owner, VOB
owner, root user. Locks: An error occurs if any of the following objects are locked: VOB, element type,
element, pool (non-directory elements only). See the ‘‘Permissions Checking’’ section of the cleartool
manual page.

OPTIONS AND ARGUMENTS
Confirmation Step. Default: rmelem prompts for confirmation before deleting anything.

−−for.ce Suppresses the confirmation step.

Event Records and Comments. Default: Creates one or more event records, with commenting controlled
by your home directory’s .clearcase_profile file (default: −nc). See ‘‘Comment Handling’’ in the cleartool
manual page. Comments can be edited with chevent.

−−c comment , −−cq , −−cqe , −−nc
Overrides the default with one of ClearCase’s standard comment options.

Specifying the Elements to be Removed. Default: None.

pname ... One or more pathnames, indicating the element(s) to be deleted. An extended pathname to a
particular version or branch of an element references the element itself.

EXAMPLES
g Delete the file element convolution.c.
% cleartool rmelem convolution.c
Element "convolution.c" has 1 branches, 2 versions, and is entered
in 6 directory versions.
Remove element, all its branches and versions and modify all directory
versions containing element? [no] yes
Removed element "convolution.c".

g Delete the directory element release. Note that an orphaned element, hello, is moved to the VOB’s
lost+found directory.
% cleartool rmelem release
Element "release" has 1 branches, 9 versions, and is entered
in 35 directory versions.
Remove element, all its branches and versions and modify all directory
versions containing element? [no] yes
cleartool: Warning: Object "hello" no longer referenced.
Object moved to vob lost+found directory as

"hello.5d400002090711cba06a080069061935".
Removed element "release".

SEE ALSO
cleartool subcommands: mkelem, mkvob, rmbranch, rmname, rmver
profile_ccase

244 ClearCase Reference Manual

cleartool subcommand rmhlink
hh

NAME rmhlink − remove a hyperlink object

SYNOPSIS
rmhlink [−−c comment | −−cq | −−cqe | −−nc] hlink-selector ...

DESCRIPTION
Removes one or more hyperlinks from VOB-database objects. Hyperlinks can be attached to objects by the
mkhlink command and by triggers (mktrtype -mkhlink). See the mkhlink manual page for a list of objects
to which hyperlinks can be attached.

rmhlink deletes a reference to a hyperlink type object. To delete the hyperlink type object itself, use the
rmtype command.

To list existing hyperlinks, use the describe command, or use the find command with the hltype primi-
tive.

PERMISSIONS AND LOCKS
Permissions Checking: For each object processed, you must be one of the following: element group
member, element owner, VOB owner, root user. Locks: An error occurs if any of the following objects are
locked: VOB, element type, element, branch type, branch, hyperlink type. See the ‘‘Permissions Check-
ing’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
Event Records and Comments. Default: Creates one or more event records, with commenting controlled
by your home directory’s .clearcase_profile file (default: −nc). See ‘‘Comment Handling’’ in the cleartool
manual page. Comments can be edited with chevent.

−−c comment , −−cq , −−cqe , −−nc
Overrides the default with one of ClearCase’s standard comment options.

Specifying the Hyperlink(s) to be Removed. Default: None.

hlink-selector ...
One or more names of hyperlink objects, in this form:

hyperlink-type-name@hyperlink-ID[@pname-in-vob]

Hyperlinks are not file system objects — you cannot specify them with shell wildcards. The
final component is required only for a hyperlink in another VOB. Examples:
DesignFor@598f
RelatesTo@58843@/vobs/monet

EXAMPLES
g Remove a hyperlink of type tested_by from the element cm_add.c. Use describe to determine the hyperlink

selector.
% cleartool describe cm_add.c@@
file element "cm_add.c@@"
created 08-Dec-92.12:12:52 by Chuck Jackson (test user) (jackson.dvt@oxygen)
element type: c_source
source pool: sdft cleartext pool: cltxt2
Hyperlinks:

May 1994 245

rmhlink cleartool subcommand
hh

tested_by@714@/usr/hw /usr/hw/src/cm_add.c@@
"edge effects" -> /usr/hw/src/edge.sh@@ "regression A"

% cleartool rmhlink tested_by@714
Removed hyperlink "tested_by@714".

g Remove two hyperlinks from the src directory. Use describe to determine the hyperlink selectors.
% cleartool describe src
directory version "src@@/main/9"
created 08-Dec-92.12:23:46 by Chuck Jackson (test user) (jackson.dvt@oxygen)
element type: directory
Hyperlinks:
h3@1320@/usr/hw /usr/hw/src@@/main/9 ->
h1@1324@/usr/hw /usr/hw/src/hello@@/main/1 -> /usr/hw/src@@/main/9
h2@1329@/usr/hw /usr/hw/bin@@/main/1 -> /usr/hw/src@@/main/9

% cleartool rmhlink h1@1324 h2@1329
Removed hyperlink "h1@1324".
Removed hyperlink "h2@1329".

SEE ALSO
cleartool subcommands: describe, lshistory, mkhlink, mkhltype, rmtype
xclearcase, profile_ccase

246 ClearCase Reference Manual

cleartool subcommand rmlabel
hh

NAME rmlabel − remove a version label from a version

SYNOPSIS
rmlabel [−−ver.sion version-selector] [−−c comment | −−cq | −−cqe | −−nc]

label-type-name pname ...

DESCRIPTION
Removes one or more version labels from versions of elements. Labels can be attached to versions by the
mklabel command and by triggers (mktrtype -mklabel).

rmlabel deletes a reference to a label type object. To delete the label type object itself, use the rmtype com-
mand.

PERMISSIONS AND LOCKS
Permissions Checking: For each object processed, you must be one of the following: element group
member, element owner, VOB owner, root user. Locks: An error occurs if any of the following objects are
locked: VOB, element type, element, branch type, branch, label type. See the ‘‘Permissions Checking’’ sec-
tion of the cleartool manual page.

OPTIONS AND ARGUMENTS
Specifying the Versions to be Labeled. Default: None.

pname ... One or more pathnames, indicating versions from which the label is to be removed. What
kind of pathname is valid depends on how the label has been used:

− If the label has been used only once in an element’s version tree, you can specify the ele-
ment itself, or any of its branches or versions:

(version selected by view)foo.c
(element itself)foo.c@@
(branch of element)foo.c@@/main/rel2_bugfix

− If the label has been used multiple times, you must specify either the version to which the
label is attached, or the branch on which that version resides.

(version selected by view)foo.c
(version specified by label)foo.c@@/REL1
(version specified by version−ID)foo.c@@/main/rel2_bugfix/3
(branch on which version resides)foo.c@@/main/rel2_bugfix

Using the −version option modifies the way in which this argument is interpreted.

−−ver.sion version-selector
Specifies the version from which the label is to be removed. See the version_selector manual
page for syntax details. Using this option overrides a version-extended pathname. For exam-
ple:

(removes label from version ’REL1’)% cleartool rmlabel XXX util.c@@/REL1
(removes label from version ’/main/3’)% cleartool rmlabel -ver /main/3 XXX util.c@@/REL1

Specifying the Label to be Removed. Default: None.

May 1994 247

rmlabel cleartool subcommand
hh

label-type-name
An existing label type.

Event Records and Comments. Default: Creates one or more event records, with commenting controlled
by your home directory’s .clearcase_profile file (default: −nc). See ‘‘Comment Handling’’ in the cleartool
manual page. Comments can be edited with chevent.

−−c comment , −−cq , −−cqe , −−nc
Overrides the default with one of ClearCase’s standard comment options.

EXAMPLES
g Remove the label REL3 from a version of msg.c without specifying which version. (Assumes the label is

attached to one version only.)
% cleartool rmlabel REL3 msg.c
Removed label "REL3" from "msg.c" version "/main/1".

g Remove the label REL2 from the version of element util.c specified by a version selector.
% cleartool rmlabel −version /main/REL2 REL2 util.c
Removed label "REL2" from "util.c" version "/main/1".

g Remove the label REL1.1 from version 1 on the maintenance branch of file element util.c. Use a version-
extended pathname to indicate the version.
% cleartool rmlabel REL1.1 util.c@@/main/maintenance/1
Removed label "REL1.1" from "util.c" version "/main/maintenance/1".

SEE ALSO
cleartool subcommands: lstype, mklbtype, rmtype, rntype
profile_ccase, version_selector

248 ClearCase Reference Manual

cleartool subcommand rmmerge
hh

NAME rmmerge − remove a merge arrow from an element´s version tree

SYNOPSIS
rmmerge [−−c comment | −−cq | −−cqe | −−nc] from-pname to-pname

DESCRIPTION
Deletes an existing merge arrow (a hyperlink of the predefined type Merge) between two versions of an ele-
ment. Thus, this command is a specialized form of the rmhlink command. The two commands have an
identical result; they differ only in the way you specify the merge arrow:
g With rmhlink, you specify the merge arrow itself, using a hyperlink-selector.
g With rmmerge, you specify the versions linked by the merge arrow.

To list existing merge arrows, use the describe command, or use the find command with the hltype primi-
tive. For example:
% cleartool describe util.c
version "util.c@@/main/3"
created 05-Apr-92.17:01:12 by Allison (akp.user@starfield)
element type: text_file
Hyperlinks:
Merge@148@/usr/tmp/poolwk

/usr/tmp/poolwk/src/util.c@@/main/rel2_bugfix/1 ->
/usr/tmp/poolwk/src/util.c

Renaming the ’Merge’ Hyperlink Type
Renaming the predefined hyperlink type for merge arrows does not defeat rmmerge. You just specify the
element’s versions — rmmerge automatically determines the hyperlink type used for merge arrows in that
element’s VOB.

PERMISSIONS AND LOCKS
Permissions Checking: For each object processed, you must be one of the following: element group
member, element owner, VOB owner, root user. Locks: An error occurs if any of the following objects are
locked: VOB, element type, element, branch type, branch, hyperlink type. See the ‘‘Permissions Check-
ing’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
Specifying the Versions. Default: None.

from-pname, to-pname
Extended pathnames of the versions connected by the merge arrow. The order in which you
specify the versions is important: the source version first, the target version second.

Event Records and Comments. Default: Creates one or more event records, with commenting controlled
by your home directory’s .clearcase_profile file (default: −nc). See ‘‘Comment Handling’’ in the cleartool
manual page. Comments can be edited with chevent.

−−c comment , −−cq , −−cqe , −−nc
Overrides the default with one of ClearCase’s standard comment options.

May 1994 249

rmmerge.. cleartool subcommand
hh

EXAMPLE
g Remove the merge arrow between the latest version on the rel2_bugfix branch and the version of util.c in

the view.
% cleartool rmmerge util.c@@/main/rel2_bugfix/LATEST util.c
Removed merge from "util.c@@/main/rel2_bugfix/1" to "util.c".

SEE ALSO
cleartool subcommands: describe, merge, rmhlink, rntype, xmerge
profile_ccase

250 ClearCase Reference Manual

cleartool subcommand rmname
hh

NAME rmname − remove the name of an element or VOB symbolic link from a directory version

SYNOPSIS
rm.name [−−c comment | −−cq | −−cqe | −−nc] pname ...

DESCRIPTION
NOTE: A name can be removed from a directory only if that directory is checked-out. rmname automati-
cally appends an appropriate line to the directory’s checkout comment.

rmname is analogous to the UNIX unlink(2) system call: it modifies one or more checked-out directories
by removing the names of elements and/or VOB symbolic links. Old versions of the directories remain
unaffected — the names continue to be cataloged in the old versions.

Example: Suppose you checked out version 3 of a directory named a.dir. Only your view sees this direc-
tory version while it is checked out. The command rmname foo.c deletes the name ‘‘foo.c’’ from the
checked-out version of the directory, but leaves references to foo.c in earlier versions (if any) intact. When
you checkin the directory, all views will be able to access the new version 4, which does not include foo.c.

Keep the following points in mind:
g rmname does not delete elements themselves, only references to elements. Use rmelem (very carefully)

to delete elements from their VOBs.
g Removing the last reference to an element name causes the element to be orphaned. Such elements are

automatically moved to the VOB’s lost+found directory. (See the mkvob command for details.)
g Removing the last reference to a VOB symbolic link deletes the link object. (VOB symbolic links do

not migrate to the VOB’s lost+found directory.)

Undoing the ’rmname’ Command
To restore a directory entry for an element that has been removed with rmname, use the ln command to
create a VOB hard link to the element’s entry in any previous version of the directory. For example:

(checkout parent directory)cleartool checkout src
(oops!)cleartool rmname src/msg.c
(restore deleted name)cleartool ln src@@/main/LATEST/msg.c src/msg.c

If there is no such ‘‘old’’ entry, then the element is orphaned; ClearCase will have moved it to its VOB’s
lost+found directory. You can move/rename the element to its proper location with the ClearCase mv
command.

PERMISSIONS AND LOCKS
Permissions Checking: For each object processed, you must be one of the following: (directory must be
checked out; see checkout permissions). Locks: An error occurs if any of the following objects are locked:
VOB. See the ‘‘Permissions Checking’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
Specifying the Names to be Removed. Default: None.

May 1994 251

rmname.. cleartool subcommand
hh

pname ... One or more pathnames, specifying the elements and/or VOB symbolic links whose names
are to be removed from their parent directory. You can specify an element itself, or any of its
branches or versions.

Event Records and Comments. Default: Creates one or more event records, with commenting controlled
by your home directory’s .clearcase_profile file (default: −nc). See ‘‘Comment Handling’’ in the cleartool
manual page. Comments can be edited with chevent.

−−c comment , −−cq , −−cqe , −−nc
Overrides the default with one of ClearCase’s standard comment options.

EXAMPLES
NOTE: Examples assume that the current working directory is checked out.

g Delete the name util.c from the current directory version.
% cleartool rmname util.c
Removed "util.c".

g Delete the last reference to the directory element subd from the current directory version.
% cleartool rmname subd
cleartool: Warning: Object "subd" no longer referenced.
Object moved to vob lost+found as

"subd.5a200007ed11f0d709066505efe922a8".
Removed "subd".

SEE ALSO
cleartool subcommands: ln, mkvob, mv, rmelem, rmver
profile_ccase, unlink(2)

252 ClearCase Reference Manual

cleartool subcommand rmpool
hh

NAME rmpool − remove a VOB storage pool

SYNOPSIS
rmpool [−−c comment | −−cq | −−cqe | −−nc] [−−vob pname-in-vob] pool-name ...

DESCRIPTION
Deletes one or more storage pool directories from a VOB, along with all the data container files stored
within them.

Restrictions
Before removing a storage pool, you must reassign all its currently-assigned elements to a different pool,
using the chpool command. Otherwise, rmpool aborts with an elements using pool error. To list all the
elements in a source or cleartext pool, use a find command. For example:
% cleartool find −all −element ’pool(source_2)’ −print

This command does not work with pools created with the obsolete mkpool -mount command.

This command does not work with derived object pools.

Deleting Derived Object Pools
There is no way to move a shared derived object from one pool to another. Thus, you can delete a
derived object pool only if:
g no directory elements have been assigned to the pool, or ...
g all data containers in the pool have been removed by the scrubber program or rmdo commands, and

each directory element that currently uses the pool has been assigned to a different derived object
pool

OPTIONS AND ARGUMENTS
Specifying the VOB. Default: Removes a pool from the VOB containing the current working directory.

−−vob pname-in-vob
The VOB whose pool is to be removed. pname-in-vob can be the pathname of any object
within the VOB.

Specifying the Pools to be Removed. Default: None.

pool-name ...
One or more names of existing storage pools. Compose the name(s) according to these rules:

− It must contain only letters, ideographs, digits, and the special characters underscore (_),
period (.), and hyphen (-). The first character must not be a hyphen.

− It must not be a valid integer or real number. (Be careful with names that begin with
‘‘0x’’, ‘‘0X’’, or ‘‘0’’, the standard prefixes for hexadecimal and octal integers.)

Event Records and Comments. Default: Creates one or more event records, with commenting controlled
by your home directory’s .clearcase_profile file (default: −nc). See ‘‘Comment Handling’’ in the cleartool
manual page. Comments can be edited with chevent.

May 1994 253

rmpool cleartool subcommand
hh

−−c comment , −−cq , −−cqe , −−nc
Overrides the default with one of ClearCase’s standard comment options.

PERMISSIONS AND LOCKS
Permissions Checking: For each object processed, you must be one of the following: pool creator, VOB
owner, root user. Locks: An error occurs if any of the following objects are locked: VOB, pool. See the
‘‘Permissions Checking’’ section of the cleartool manual page.

EXAMPLES
Change all elements using the c_source_pool to use the default source pool (sdft) instead. Then, delete
c_source_pool.
% cleartool find . −all −element ’pool(c_source_pool)’ \

−exec ’cleartool chpool −force sdft $CLEARCASE_PN’
Changed pool for "/usr/hw/src" to "sdft".
Changed pool for "/usr/hw/src/libutil.a" to "sdft".

...
% cleartool rmpool c_source_pool
Removed pool "c_source_pool".

SEE ALSO
cleartool subcommands: describe, chpool, find, lspool, mkpool, rmdo, rnpool
profile_ccase, scrubber, chmod(1)

254 ClearCase Reference Manual

cleartool subcommand rmtag
hh

NAME rmtag − remove a view-tag or a VOB-tag from the network-wide storage registry

SYNOPSIS
rmtag { −−vie.w | −−vob } [−−reg.ion network-region | −−all] view-or-vob-tag ...

DESCRIPTION
Removes one or more entries from the network’s view_tag registry file or vob_tag registry file. See the
registry_ccase manual page for a discussion of registry files.

Restrictions
You cannot remove a tag that is currently in use:
g A VOB-tag is in use if the VOB is active on any host in the network region. Use the cleartool subcom-

mand umount to deactivate a VOB on all hosts in the region before removing its tag.
g A view-tag is in use if any user process is set to the view specified by this tag, or if any user process

has a current working directory that is a view-extended pathname based on this tag.

A VOB or view must always have a tag in its ‘‘home region’’ — the network region of the host where the
VOB or view storage directory physically resides. If you remove a home-region tag, create a new one
immediately.

PERMISSIONS AND LOCKS
Permissions Checking: No special permissions required. Locks: No locks apply. See the ‘‘Permissions
Checking’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
Specifying the Kind of Tag. Default: None.

−−vie.w Removes one or more view-tags.

−−vob Removes one or more VOB-tags.

Specifying a Network Region. Default: Removes tags that are defined for the local host’s network
region. (A host’s network region is listed in file /usr/adm/atria/rgy/rgy_region.conf.) See the registry_ccase
manual page for a discussion of network regions.

−−reg.ion network-region
Removes a tag defined for the specified network region. An error occurs if the region does not
already exist.

−−all Removes a tag from all network regions for which it is defined.

Specifying the Tag(s). Default: None.

view-tag ... One or more view-tags to be removed.

vob-tag ... One or more VOB-tags to be removed.

May 1994 255

rmtag cleartool subcommand
hh

EXAMPLES
g Remove the view-tag R2alpha from the view registry.
% cleartool rmtag −view R2alpha
%

SEE ALSO
cleartool subcommands: mktag, mkview, mkvob, rmview, rmvob
registry_ccase

256 ClearCase Reference Manual

cleartool subcommand rmtrigger
hh

NAME rmtrigger − remove trigger from an element

SYNOPSIS
rmtrigger [−−r .ecurse] [−−nin.herit | −−nat . tach] [−−c comment | −−cq | −−cqe | −−nc]

trigger-type-name pname ...

DESCRIPTION
Removes an attached trigger from one or more elements. By default, rmtrigger removes the trigger from
both the attached list and the inheritance list (if a directory element). You can modify the default action for
directory elements with the −ninherit and −nattach options.

The specified trigger-type-name is unaffected by rmtrigger. To delete the trigger type, use the rmtype com-
mand. Note that you can remove an attached trigger from an element even if the trigger type is obsolete.

PERMISSIONS AND LOCKS
Permissions Checking: For each object processed, you must be one of the following: element group
member, element owner, VOB owner, root user. Locks: An error occurs if any of the following objects are
locked: VOB, element type, element, trigger type. See the ‘‘Permissions Checking’’ section of the cleartool
manual page.

OPTIONS AND ARGUMENTS
Removing Triggers from an Entire Subdirectory Tree. Default: If a pname argument names a directory
element, the trigger is removed only from the element itself, not from any of the existing elements within
it.

−−r .ecurse Processes the entire subtree of each pname that is a directory element (including pname itself).
VOB symbolic links are not traversed during the recursive descent into the subtree.

Manipulating the Trigger Lists of a Directory Element. Default: The trigger is removed from both of a
directory element’s trigger lists: its attached list and its inheritance list. Be careful when using the following
options — they involve a ‘‘double negative’’.

−−nin.herit (directory element only) The trigger is removed from the directory’s attached list, but
remains on its inheritance list. The trigger will not fire when the monitored operation is per-
formed on the directory itself, but new elements created in that directory will inherit the
trigger.

−−nat . tach (directory element only) The trigger is removed from the directory’s inheritance list, but
remains on its attached list. The trigger will continue to fire when the monitored operation is
performed on the directory itself, but new elements created in that directory will not inherit
the trigger.

Event Records and Comments. Default: Creates one or more event records, with commenting controlled
by your home directory’s .clearcase_profile file (default: −nc). See ‘‘Comment Handling’’ in the cleartool
manual page. Comments can be edited with chevent.

−−c comment , −−cq , −−cqe , −−nc
Overrides the default with one of ClearCase’s standard comment options.

May 1994 257

rmtrigger cleartool subcommand
hh

Specifying the Trigger Type. Default: None.

trigger-type-name
The name of an existing element trigger type.

Specifying the Elements. Default: None.

pname ... One or more pathnames, specifying elements from which triggers (instances of the specified
trigger type) are to be removed.

EXAMPLES
g Remove an attached trigger from hello.c.
% cleartool rmtrigger trig1 hello.c
Removed trigger "trig1" from attached list of "hello.c".

g Remove an attached trigger from the hworld directory’s attached list, but leave it in the inheritance list.
% cleartool rmtrigger −ninherit trig1 src
Removed trigger "trig1" from attached list of "src".

g Remove an attached trigger from the release directory’s inheritance list, but leave it in the attached list.
% cleartool rmtrigger −nattach trig1 release
Removed trigger "trig1" from inheritance list of "release".

SEE ALSO
cleartool subcommands: describe, lock, lstype, mktrigger, mktrtype, rmtype, unlock
profile_ccase

258 ClearCase Reference Manual

cleartool subcommand rmtype
hh

NAME rmtype − remove a type object from a VOB

SYNOPSIS
rmtype { −−elt .ype | −−brt .ype | −−lbt .ype | −−att .ype | −−hlt .ype | −−rpt .ype | −−trt .ype [−−ign.ore] }

[−−rma.ll [−−for.ce]] [−−c comment | −−cq | −−cqe | −−nc]
[−−vob pname-in-vob] type-name ...

DESCRIPTION
Removes one or more type objects from a VOB.

RESTRICTION: You cannot delete a type object if there are any instances of that type. For example, if
any version of any element is labeled REL1, you cannot delete the REL1 label type (unless you specify the
−rmall option).

PERMISSIONS AND LOCKS
Permissions Checking: For each object processed, you must be one of the following: type creator, VOB
owner, root user. Locks: An error occurs if any of the following objects are locked: VOB, type. See the
‘‘Permissions Checking’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
Specifying the Kind of Type Object. Default: None.

−−elt .ype (element type)
−−brt .ype (branch type)
−−lbt .ype (label type)
−−att .ype (attribute type)
−−hlt .ype (hyperlink type)
−−trt .ype (trigger type)
−−rpt .ype (replica type)

(mutually exclusive — exactly one required) Specifies the kind of type object to be deleted.

−−ign.ore (for use with ’−trtype’ only)
Removes a trigger type even if a previously defined pre-operation trigger would otherwise
prevent it from being removed.

Removing Instances of the Type. Default: If there are any instances of a specified type object, rmtype
refuses to remove the type object.

−−rma.ll Removes all instances of a type, and then proceeds to remove the type object itself.

CAUTION: This option potentially destroys a great deal of data.

−−for.ce (for use with ’−rmall’ only)
By default, rmtype prompts for confirmation when you use the −rmall option to request
removal of all instances of a type. The −force option suppresses the confirmation step.

Specifying the VOB. Default: Removes types from the VOB that contains the current working directory.

May 1994 259

rmtype.. cleartool subcommand
hh

−−vob pname-in-vob
The VOB whose type(s) are to be removed. pname-in-vob can be any location within the VOB.

Specifying the Type Objects to be Removed. Default: None.

type-name ...
One or more names of existing type objects, of the specified kind.

Event Records and Comments. Default: Creates one or more event records, with commenting controlled
by your home directory’s .clearcase_profile file (default: −nc). See ‘‘Comment Handling’’ in the cleartool
manual page. Comments can be edited with chevent.

−−c comment , −−cq , −−cqe , −−nc
Overrides the default with one of ClearCase’s standard comment options.

EXAMPLES
g Delete the branch type patch3.
% cleartool rmtype −brtype patch3
Removed branch type "patch3".

g Delete the attribute type QA_date.
% cleartool rmtype −attype QA_date
Removed attribute type "QA_date".

g Delete all branches of type expmnt3 (along with all the versions on those branches and any subbranches);
then delete the expmnt3 branch type itself:
% cleartool rmtype −rmall −brtype expmnt3
There are 1 branches of type "expmnt3".
Remove branches (including all sub-branches and sub-versions)? [no] yes
Removed branches of type "expmnt3".
Removed branch type "expmnt3".

g Delete the hyperlink type design_doc.
% cleartool rmtype −hltype design_doc
Removed hyperlink type "design_doc".

g Remove all instances of the label type REL2, then delete the label type.
% cleartool rmtype −lbtype −rmall REL2
There are 7 labels of type "REL2".
Remove labels? [no] yes
Removed labels of type "REL2".
Removed label type "REL2".

g Delete the trigger type trig1. Use the −ignore option to ensure that the command executes without
interference from a previously defined trigger.
% cleartool rmtype −trtype −ignore trig1
Removed trigger type "trig1".

260 ClearCase Reference Manual

cleartool subcommand rmtype..
hh

SEE ALSO
cleartool subcommands: describe, lshistory, lstype, mkeltype, mklbtype, mkbrtype, mkattype, mktrtype,
mkhltype, rntype
profile_ccase

May 1994 261

rmver cleartool subcommand
hh

NAME rmver − remove a version from the version tree of an element

SYNOPSIS
rmver [−−for.ce] [−−xbr.anch] [−−xla .bel] [−−xat . tr] [−−xhl . ink] [−−dat .a]

[−−ver.sion version-selector | −−vra.nge low-version high-version]
[−−c comment | −−cq | −−cqe | −−nc] pname ...

DESCRIPTION
This command destroys information irretrievably. Using it carelessly may compromise your organization’s ability
to support old releases.

rmver deletes one or more versions from their elements. For each version, this entails:
g removal of the version object from the VOB database
g removal of all meta-data items (labels, attributes, hyperlinks, and triggers) that were attached to the

deleted version
g removal of all event records for the deleted version
g (file elements only) removal of the data container(s) that hold the deleted version’s file system data

NOTE: If an element’s versions are all stored in a single data container, the deleted version is
removed logically, not physically, and no disk space is freed.

A destroy version event record is created for the element.

Restrictions
You cannot delete a version from which someone currently has a checkout. You cannot delete version 0
on a branch, except by deleting the entire branch. (See rmbranch.)

Deleted Version-IDs
ClearCase never reuses the version-ID of a deleted version. There is no way to ‘‘collapse’’ a branch to fill
the holes left by deleted versions. If a deleted version was the last version on a branch (say, version 6),
the next checkin on that branch will create version 7.

A reference to a deleted version produces a not found or no such file or directory error.

PERMISSIONS AND LOCKS
Permissions Checking: For each object processed, you must be one of the following: version creator, ele-
ment owner, VOB owner, root user. Locks: An error occurs if any of the following objects are locked:
VOB, element type, element, branch type, branch, pool (non-directory elements only). See the ‘‘Permis-
sions Checking’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
Confirmation Step. Default: rmver prompts for confirmation before deleting anything.

−−for.ce Suppresses the confirmation step.

Deleting ’Interesting’ Versions. Default: rmver refuses to delete a version to which a version label, attri-
bute, or hyperlink is attached, or at which a branch begins.

262 ClearCase Reference Manual

cleartool subcommand rmver..
hh

−−xbr.anch Deletes a version even if one or more branches begin there. In the process, those branches
(including all their versions and subbranches) are also deleted.

−−xla .bel Deletes a version even if it has one or more version labels.

−−xat . tr Deletes a version even if it has one or more attributes.

−−xhl . ink Deletes a version even if it has one or more hyperlinks. This also destroys the hyperlink
object, thus modifying the other object to which the hyperlink was attached.

CAUTION: Using this option can delete merge arrows (hyperlinks of type Merge) created by
the merge command. This may destroy essential meta-data.

Data-Only Deletion. Default: rmver deletes both (1) the version object in the VOB database along with
associated meta-data, and (2) the corresponding data container in a source storage pool.

−−dat .a Deletes only the data for the specified version, leaving the version object, its subbranches, and
its associated meta-data intact. In particular, this option preserves event records and enables
continued access to the configuration record of a DO version.

CAUTION: Using this option implicitly invokes the −xbranch, −xlabel, −xattr, and
−xhlink options, as well. That is, the data container will be deleted even if the version is
‘‘interesting’’.

Specifying the Versions to be Removed. Default: None.

pname ... (required) One or more pathnames, indicating versions to be removed:

− A standard or view-extended pathname to an element specifies the version selected by
the view.

− A version-extended pathname specifies a version, independent of view.

Use −version or −vrange to override these interpretations of pname.

−−ver.sion version-selector
For each pname, removes the version specified by version-selector. This option overrides both
version-selection by the view and version-extended naming. See the version_selector manual
page for syntax details.

−−vra.nge low-version high-version
For each pname, removes all versions between (but not including) the two specified versions.
low-version and high-version must be on the same branch, and are specified in the same way as
version-selector.

Event Records and Comments. Default: Creates one or more event records, with commenting controlled
by your home directory’s .clearcase_profile file (default: −nc). See ‘‘Comment Handling’’ in the cleartool
manual page. Comments can be edited with chevent.

−−c comment , −−cq , −−cqe , −−nc
Overrides the default with one of ClearCase’s standard comment options.

May 1994 263

rmver.. cleartool subcommand
hh

EXAMPLES
g Delete the version of msg.c in the view.
% cleartool rmver msg.c
Removing these versions of "msg.c":
/main/1

Remove versions? [no] yes
Removed versions of "msg.c".

g Delete version 1 on the rel2_bugfix branch of element util.c, using a version selector to specify the version,
suppressing confirmation prompting.
% cleartool rmver −force −version /main/rel2_bugfix/1 util.c
Removing these versions of "util.c":
/main/rel2_bugfix/1

Removed versions of "util.c".

g Delete version 3 on the main branch of element Makefile, even if it has labels and/or attributes. Use a
version-extended pathname to specify the version.
% cleartool rmver −xlabel −xattr Makefile@@/main/3
Removing these versions of "Makefile":
/main/3 (labels, attributes)

Remove versions? [no] yes
Removed versions of "Makefile".

g Delete all versions between 0 and LATEST on the main branch of element hello.c.
% cleartool rmver −vrange /main/0 /main/LATEST hello.c
Removing these versions of "hello.c":
/main/1
/main/2

Remove versions? [no] yes
Removed versions of "hello.c".

g Delete version 2 on the main branch of util.c, even if there are one or more subbranches off that version.
(The subbranches, if any, are also deleted.)
% cleartool rmver −xbranch util.c@@/main/2
Removing these versions of "util.c":
/main/2 (subbranches)

Remove versions? [no] yes
Removed versions of "util.c".

SEE ALSO
cleartool subcommands: describe, lshistory, lsvtree, rmbranch, rmelem, rmname
profile_ccase, version_selector

264 ClearCase Reference Manual

cleartool subcommand rmview
hh

NAME rmview − remove a view storage directory / remove view-related records from a VOB

SYNOPSIS
g Remove view storage directory tree:

rmview [−−for.ce] { −−tag view-tag | view-storage-dir-pname }

g Remove view-related records from a VOB:

rmview [−−for.ce] [−−vob pname-in-vob] −−uuid view-uuid

DESCRIPTION
The two forms of this command perform different, but related, tasks:
g removing a view storage directory
g purging view-related records from a VOB

Deleting a View-Storage Directory
If you specify a view by naming its view storage directory, rmview removes the entire view storage area.
It also purges checkout records and derived object records relating to that view from all accessible VOBs.
If the view is currently active, its associated view_server process is killed and its entry in the viewroot direc-
tory is removed.

By default, rmview refuses to delete a view storage area if any element is checked out to that view. You
can override this behavior with the −force option.

rmview does not allow you to remove your own view (set view or working directory view). Be sure that the
current working directory is not within the view storage area that you are deleting.

If the view was created with mkview -ln, its view-private objects are stored in a directory tree in an
alternate location. rmview attempts to delete this directory tree; if it does not succeed, an error occurs and
the view storage area remains unaffected.

Purging View-Related Records from a VOB
If you specify a view by its UUID (universal unique identifier — see below), rmview removes all checkout
records and derived object records relating to that view from the VOB containing the current working
directory. Use this form of the command when:
g Complete purging of view-related records from VOBs is not possible. (For example, some of the

VOBs may be off-line at the time you remove the view.)
g A view storage area cannot be deleted with rmview, because it has become unavailable for another

reason: disk crash, accidental deletion with UNIX rm(1), and so on.

You may need to use this form of rmview repeatedly, to delete from multiple VOBs all records relating to
a view that is no longer available.

NOTE: Despite being invoked as ‘‘rmview’’, this form of the command has no effect on any view, only on
a specified VOB.

May 1994 265

rmview.. cleartool subcommand
hh

Caution
Incorrect results occur if a VOB loses synchronization with its views. Accordingly:
g Never remove a view with UNIX rm(1); always use the rmview command.
g If a view still exists, do not use rmview -uuid to delete records relating to it from any VOB. Make

sure that the view need not be used again before using this command.

View UUIDs
Each view has a universal unique identifier, such as:
52000002.4ac711cb.a391.08:00:69:02:18:22

The listing produced by a describe -long -vob command includes the UUIDs of all views for which
the VOB holds checkout records and derived object records.

PERMISSIONS AND LOCKS
Permissions Checking: No special permissions required. Locks: No locks apply. See the ‘‘Permissions
Checking’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
−−for.ce Automatically responds ‘‘yes’’ to confirmation requests that rmview would otherwise make:

− Deleting a view storage directory: confirmation is needed to proceed if some elements
are checked−out to the view. Proceeding has the effect of cancelling the checkouts:
rmview removes the checkout records from the appropriate VOBs.

− Removing view-related records: confirmation is needed to proceed if the view still exists.

−−tag view-tag
view-storage-dir-pname (mutually exclusive)

−−tag specifies the view-tag of any view. In addition to removing the view storage area,
rmview removes all relevant entries from the network’s view registry.

view-storage-dir-pname specifies the top-level directory of the view storage area. Be sure that
the current working directory is not anywhere within this view storage area.

−−vob pname-in-vob
Specifies the VOB from which view-related records are to be removed. pname-in-vob can be
the pathname of any object within the VOB. If you omit this option, cleartool uses the VOB
containing the current working directory.

−−uuid view-uuid
Specifies the view whose records are to be removed from a VOB.

EXAMPLES
g Delete the view storage area at /view_store/Rel2.vws.
% cleartool rmview /view_store/Rel2.vws

g Delete the view storage area whose view-tag is anneRel2.
% cleartool rmview −tag anneRel2

266 ClearCase Reference Manual

cleartool subcommand rmview..
hh

g Delete the checkout and DO records for a deleted view from the current VOB. Suppress the confirmation
prompt.
% cleartool rmview −force −uuid 249356fe.d50f11cb.a3fd.00:01:56:01:0a:4f
Removed references to VIEW "host2:/usr/vobstore/tut/old.vws"

from VOB "/usr/hw".

SEE ALSO
cleartool subcommands: describe, lsview, mkview, mktag, rmtag, unregister
registry_ccase

May 1994 267

rmvob cleartool subcommand
hh

NAME rmvob − remove a VOB storage directory

SYNOPSIS
rmvob [−−for.ce] vob-storage-dir-pname ...

DESCRIPTION
Deletes one or more VOB storage directories. Confirmation for each VOB is required, unless you use the
−force option.

In addition to removing the VOB storage directory, rmvob removes all relevant entries from the network’s
VOB registry. However, rmvob does not unmount the VOB(s). Be sure to warn users and unmount (clear-
tool umount) a VOB before you delete its storage area!

If, before using rmvob, you do not unmount the VOB on all hosts where it is mounted, you must use the
standard operating system commands umount and rmdir to reclaim the VOB mount point on each host.

CAUTION: Be sure that the current working directory is not within the VOB storage area that you are
deleting.

PERMISSIONS AND LOCKS
Permissions Checking: For each object processed, you must be one of the following: VOB owner, root user.
Locks: No locks apply. See the ‘‘Permissions Checking’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
−−for.ce Suppresses the confirmation step.

vob-storage-dir-pname ...
The pathnames of one or more VOB storage directories to be removed.

EXAMPLES
g Unmount and delete the VOB storage area /usr/vobstore/project.vbs mounted on /vobs/project.
% cleartool umount /vobs/project

% cleartool rmvob /usr/vobstore/project.vbs
Remove versioned object base "/usr/vobstore/project.vbs"? [no] yes
Removed versioned object base "/usr/vobstore/project.vbs".

SEE ALSO
cleartool subcommands: mkvob, umount
filesys_ccase, registry_ccase

268 ClearCase Reference Manual

cleartool subcommand rnpool
hh

NAME rnpool − rename a VOB storage pool

SYNOPSIS
rnpool [−−vob pname-in-vob] [−−c comment | −−cq | −−cqe | −−nc]

old-pool-name new-pool-name

DESCRIPTION
Renames a VOB storage pool. No data container in the pool is affected.

NOTE: This command does not work with pools created with the mkpool -mount command (which is no
longer supported).

OPTIONS AND ARGUMENTS
Specifying the VOB. Default: Renames a storage pool in the VOB containing the current working direc-
tory.

−−vob pname-in-vob
The VOB whose pool is to be renamed. pname-in-vob can be the pathname of any object
within the VOB.

Event Records and Comments. Default: Creates one or more event records, with commenting controlled
by your home directory’s .clearcase_profile file (default: −nc). See ‘‘Comment Handling’’ in the cleartool
manual page. Comments can be edited with chevent.

−−c comment , −−cq , −−cqe , −−nc
Overrides the default with one of ClearCase’s standard comment options.

Specifying the Old and New Names. Default: None.

old-pool-name
new-pool-name

The name of an existing storage pool, and a new name for it. Compose the name(s) according
to these rules:

− It must contain only letters, ideographs, digits, and the special characters underscore (_),
period (.), and hyphen (-). The first character must not be a hyphen.

− It must not be a valid integer or real number. (Be careful with names that begin with
‘‘0x’’, ‘‘0X’’, or ‘‘0’’, the standard prefixes for hexadecimal and octal integers.)

PERMISSIONS AND LOCKS
Permissions Checking: For each object processed, you must be one of the following: pool creator, VOB
owner, root user. Locks: An error occurs if any of the following objects are locked: VOB, pool. See the
‘‘Permissions Checking’’ section of the cleartool manual page.

EXAMPLES
g Rename one of the current VOB’s pools from c_pool to c_source_pool.
% cleartool rnpool −c "make pool name clearer" c_pool c_source_pool
Renamed pool from "c_pool" to "c_source_pool".

May 1994 269

rnpool cleartool subcommand
hh

g List existing pools in the current VOB. Then, rename pool do1 to do_staged.
% cleartool lspool −short
c_source_pool
cdft
ddft
do1
my_ctpool
sdft

% cleartool rnpool do1 do_staged
Renamed pool from "do1" to "do_staged".

SEE ALSO
cleartool subcommands: describe, chpool, lspool, mkpool, rmpool
profile_ccase, chmod(1)

270 ClearCase Reference Manual

cleartool subcommand rntype
hh

NAME rntype − rename a type object

SYNOPSIS
rntype { −−elt .ype | −−brt .ype | −−lbt .ype | −−att .ype | −−hlt .ype | −−trt .ype | −−rpt .ype }

[−−vob pname-in-vob] [−−c comment | −−cq | −−cqe | −−nc]
old-type-name new-type-name

DESCRIPTION
Renames a type object in a VOB database. This effectively renames all instances of the type object,
throughout the VOB. For example, renaming a branch type from bugfix to rel1.3_fixes effectively renames
all existing bugfix branches to rel1.3_fixes.

RESTRICTION: A VOB cannot contain a branch type and a label type with the same name.

NOTE: Do not use this command to rename a particular branch of a particular element. For that pur-
pose, use chtype.

PERMISSIONS AND LOCKS
Permissions Checking: For each object processed, you must be one of the following: type creator, VOB
owner, root user. Locks: An error occurs if any of the following objects are locked: VOB, type. See the
‘‘Permissions Checking’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
Specifying the Kind of Type Object. Default: None.

−−elt .ype (element type)
−−brt .ype (branch type)
−−lbt .ype (label type)
−−att .ype (attribute type)
−−hlt .ype (hyperlink type)
−−trt .ype (trigger type)
−−rpt .ype (replica type)

(mutually exclusive) Specifies the kind of type object to be renamed.

Specifying the VOB. Default: Renames a type in the VOB that contains the current working directory.

−−vob pname-in-vob
The VOB whose type object is to be renamed. pname-in-vob can be any location within the
VOB.

Event Records and Comments. Default: Creates one or more event records, with commenting controlled
by your home directory’s .clearcase_profile file (default: −nc). See ‘‘Comment Handling’’ in the cleartool
manual page. Comments can be edited with chevent.

−−c comment , −−cq , −−cqe , −−nc
Overrides the default with one of ClearCase’s standard comment options.

May 1994 271

rntype cleartool subcommand
hh

Specifying the Old and New Names. Default: None.

old-type-name
new-type-name

The name of an existing type object, and a new name for it. For information on valid names,
consult the manual page for the command that creates the type object. For example, consult
the mklbtype manual page when renaming a label type.

EXAMPLES
g Rename a branch type from rel2_bugfix to r2_maint. First, show the version tree for util.c with the lsvtree

command. Then rename the branch type, and show the version tree again.
% cleartool lsvtree −short util.c
util.c@@/main/1
util.c@@/main/rel2_bugfix
util.c@@/main/rel2_bugfix/1
util.c@@/main/3

% cleartool rntype −brtype rel2_bugfix r2_maint
Renamed type from "rel2_bugfix" to "r2_maint".

% cleartool lsvtree −short util.c
util.c@@/main/1
util.c@@/main/r2_maint
util.c@@/main/r2_maint/1
util.c@@/main/3

g Rename the element type of msg.c and hello.c from text_file to source_file. Use grep(1) to extract the element
name/value from the output of the describe command. (Note warning about renaming a predefined type.)
% cleartool describe msg.c hello.c | grep ’element type’
element type: text_file
element type: text_file

% cleartool rntype −eltype text_file source_file
cleartool: Warning: Renaming a predefined object!
Renamed type from "text_file" to "source_file".

% cleartool describe msg.c hello.c | grep ’element type’
element type: source_file
element type: source_file

g Rename an attribute attached to a version of element msg.c from TESTED to QAed. Use describe to show
the name/value association before and after the name change.
% cleartool describe −attr TESTED msg.c
msg.c@@/main/3
Attributes:
TESTED = "TRUE"

% cleartool rntype −attype TESTED QAed
Renamed type from "TESTED" to "QAed".

% cleartool describe −attr QAed msg.c
msg.c@@/main/3
Attributes:
QAed = "TRUE"

272 ClearCase Reference Manual

cleartool subcommand rntype
hh

SEE ALSO
cleartool subcommands: describe, lstype, rmtype
profile_ccase

May 1994 273

setcs cleartool subcommand
hh

NAME setcs − set the config spec of a view

SYNOPSIS
setcs [−−tag view-tag] { −−cur .rent | −−def.ault | file }

DESCRIPTION
Changes the config spec of a view to the contents of a user-specified or system-default file, or causes the
view’s associated view_server(1M) process to flush its caches and reevaluate the current config spec. If the
working directory view differs from the set view (established by the setview command), a warning message
appears and the working directory view is reconfigured. See the pwv manual page for more on view con-
texts. See the config_spec manual page for a complete discussion of config specs.

PERMISSIONS AND LOCKS
Permissions Checking: No special permissions required. Locks: No locks apply. See the ‘‘Permissions
Checking’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
Specifying the Kind of Change. Default: None.

−−cur .rent Causes the view_server to flush its caches and reevaluate the current config spec, which is
stored in file config_spec in the view storage directory. This includes:

− reevaluating time rules with non-absolute specifications (for example, now, Tuesday)

− reevaluating −config rules, possibly selecting different derived objects than previously

− rereading files named in include rules

−−def.ault Resets the view’s config spec to the contents of /usr/atria/default_config_spec, the host’s default
config spec.

file Specifies an ASCII text file whose contents are to become the view’s new config spec.

Specifying the View. Default: Reconfigures the current view.

−−tag view-tag
The view-tag of any view; the view need not be active.

EXAMPLES
g Change the config spec of the current view to the contents of file cspec_REL3.
% cleartool setcs cspec_REL3

g Change the config spec of the view whose view-tag is jackson_vu to the ClearCase default config spec.
% cleartool setcs −tag jackson_vu −default

g Have the view_server of the current view reread its config spec.
% cleartool setcs −current

SEE ALSO
cleartool subcommands: lsview, mkview, mktag, pwv
config_spec, view_server

274 ClearCase Reference Manual

cleartool subcommand setview
hh

NAME setview − create a process that is set to a view

SYNOPSIS
setview [−−log.in] [−−exe.c cmd-invocation] view-tag

DESCRIPTION
Creates a process that is set to the specified view. The new process is said to have a set view context. The
process can execute a shell program (the default) or another program, as specified with a command
option.

If you specify an inactive view — one whose view-tag does not appear in the local host’s viewroot direc-
tory, /view — a startview command is invoked implicitly to activate the view.

Once you set the view, you can take advantage of ClearCase’s transparency feature: using standard path-
names to access version-controlled objects. The associated view_server process automatically resolves a
standard pathname to an element into a reference to one of the element’s versions. See the
pathnames_ccase manual page for further details.

Using ’setview’ in Interactive Mode
The shell command cleartool setview creates a subprocess. If you enter the setview command in
interactive mode (at the cleartool> prompt), the new view is set in the current process. To push to a
subprocess of an interactive cleartool process, use setview -exec cleartool.

View-Extended Naming and Set Views
Whether you have set a view or not, a view-extended pathname is interpreted with respect to the
explicitly-named view. For example, /view/bugfix/usr/project/foo.c always specifies the version of element
foo.c selected by view bugfix.

PERMISSIONS AND LOCKS
Permissions Checking: No special permissions required. Locks: No locks apply. See the ‘‘Permissions
Checking’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
Shell Startup Processing. Default: Does not read any shell startup file when starting a shell process.

−−log.in If a shell process is started by setview, reads in your shell startup file:

SHELL Value Startup Script
/bin/csh .login in your home directory
/bin/sh .profile in your home directory

No error occurs if the startup file is missing. Use this option to gain access to your personal
aliases, environment variable settings, and so on.

Command to Execute in View Context. Default: A shell process is started, as indicated by your SHELL
environment variable. If SHELL has a null value or is undefined, starts a Bourne shell (/bin/sh).

−−exe.c cmd-invocation
Invokes the specified command line in view view-tag, instead of executing a shell. This com-
mand inherits the environment of your current process.

May 1994 275

cleartool subcommand setview
hh

NAME setview − create a process that is set to a view

SYNOPSIS
setview [−−log.in] [−−exe.c cmd-invocation] view-tag

DESCRIPTION
Creates a process that is set to the specified view. The new process is said to have a set view context. The
process can execute a shell program (the default) or another program, as specified with a command
option.

If you specify an inactive view — one whose view-tag does not appear in the local host’s viewroot direc-
tory, /view — a startview command is invoked implicitly to activate the view.

Once you set the view, you can take advantage of ClearCase’s transparency feature: using standard path-
names to access version-controlled objects. The associated view_server process automatically resolves a
standard pathname to an element into a reference to one of the element’s versions. See the
pathnames_ccase manual page for further details.

Using ’setview’ in Interactive Mode
The shell command cleartool setview creates a subprocess. If you enter the setview command in
interactive mode (at the cleartool> prompt), the new view is set in the current process. To push to a
subprocess of an interactive cleartool process, use setview -exec cleartool.

View-Extended Naming and Set Views
Whether you have set a view or not, a view-extended pathname is interpreted with respect to the
explicitly-named view. For example, /view/bugfix/usr/project/foo.c always specifies the version of element
foo.c selected by view bugfix.

PERMISSIONS AND LOCKS
Permissions Checking: No special permissions required. Locks: No locks apply. See the ‘‘Permissions
Checking’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
Shell Startup Processing. Default: Does not read any shell startup file when starting a shell process.

−−log.in If a shell process is started by setview, reads in your shell startup file:

SHELL Value Startup Script
/bin/csh .login in your home directory
/bin/sh .profile in your home directory

No error occurs if the startup file is missing. Use this option to gain access to your personal
aliases, environment variable settings, and so on.

Command to Execute in View Context. Default: A shell process is started, as indicated by your SHELL
environment variable. If SHELL has a null value or is undefined, starts a Bourne shell (/bin/sh).

−−exe.c cmd-invocation
Invokes the specified command line in view view-tag, instead of executing a shell. This com-
mand inherits the environment of your current process.

May 1994 275

setview.. cleartool subcommand
hh

Specifying the View. Default: None.

view-tag Any view-tag registered for the current network region. Use the lsview command to list
registered view-tags.

EXAMPLES
g Create a shell process that is set to view jackson_fix, and run your shell startup script.
% cleartool setview −login jackson_fix

g Create a subprocess that is set to view jackson_fix, and run a script named /myproj/build_all.sh in that pro-
cess. Note that the command string must be enclosed in quotes.
cleartool> setview −exec "/myproj/build_all.sh" jackson_fix

g Set the current view to jackson_old, with the new process permanently in version-extended namespace.
(Assumes jackson_old@@ already exists.)
% cleartool setview jackson_old@@

SEE ALSO
cleartool subcommands: lsview, cd, pwv, mktag, shell, startview
pathnames_ccase, view_server

276 ClearCase Reference Manual

cleartool subcommand shell
hh

NAME shell − create a subprocess to run a shell or other program

SYNOPSIS
sh.ell | ! [command [arg ...]]

DESCRIPTION
Creates a subshell with the same view context as the current process. If the current process is set to one
view, but the working directory view is different, shell uses the working directory view. (See the pwv
manual page for more on this topic.)

The shell command is intended for use in cleartool’s interactive mode, at the cleartool> prompt. If you
are using cleartool in single-command mode, there is no need for this command.

PERMISSIONS AND LOCKS
Permissions Checking: No special permissions required. Locks: No locks apply. See the ‘‘Permissions
Checking’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
Program to Run in Subprocess. Default: Runs the shell program indicated by your SHELL environment
variable (or /bin/sh if your environment does not include SHELL). The shell runs interactively until you
exit from it.

command [arg ...]
Runs a non-interactive shell which, in turn, invokes the program command, (and, optionally,
passes it one or more arguments). The subshell exits immediately after executing command.

EXAMPLES
g Create a subshell that is set to the same view as the cleartool process.
cleartool> shell
%

g Create a subshell, and run a command within it.
cleartool> ! head −2 /etc/passwd
sysadm:*:0:0:System V Administration:/usr/admin:/bin/sh
diag:*:0:996:Hardware Diagnostics:/usr/diags:/bin/csh

SEE ALSO
cleartool subcommands: pwv, setview
csh(1), sh(1)

May 1994 277

space cleartool subcommand
hh

NAME space − report on VOB disk space usage

SYNOPSIS
space [−−a.ll] { −−avo.bs | −−dir .ectory dir-pname ... | pname-in-vob ...

| vob-storage-dir-pname ... }

DESCRIPTION
Reports disk space usage for VOBs, or for non-ClearCase files or directories. The report for a VOB
includes disk-usage information for the VOB database and for each storage pool. It also includes ‘‘extras’’,
such as disk usage of the partition in which the VOB storage directory resides, and statistics on backup
VOB databases left behind by invocations of reformatvob.

The report is organized by disk partition. The VOB’s disk-usage statistics are reported both in absolute
units (Mb) and as a percentage of the capacity of the disk partition containing the VOB storage directory.

Protection Errors
Certain data structures within a VOB storage directory are protected vigorously — for example, the .iden-
tity subdirectory. If you do not have permission to examine a file or subdirectory, space displays a
Permission denied message and does not include that item in its calculations.

PERMISSIONS AND LOCKS
Permissions Checking: No special permissions required. Locks: No locks apply. See the ‘‘Permissions
Checking’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
Report Format. Default: In a report on a VOB storage directory, files whose names begin with a dot (.)
character are not listed; neither are files known to be small. (The contribution of these files is still
included in the disk-usage total.)

−−a.ll Lists dot-files (.identity, .pid, and so on) and small files individually. See ‘‘Protection Errors’’
above.

Specifying the Data Structures. Default: None.

−−avo.bs Reports on all VOBs active (mounted) on the local host. (If environment variable
CLEARCASE_AVOBS is set to a colon-separated list of VOB-tags, this set of VOBs is used
instead.)

pname-in-vob ...
One or more pathnames, each of which specifies a VOB to be included in the report. Any
pathname within the VOB is valid.

vob-storage-dir-pname ...
One or more pathnames of VOB storage directories.

−−dir .ectory dir-pname ...
One or more pathnames, specifying locations that are not under a VOB-tag (VOB mount
point).

278 ClearCase Reference Manual

cleartool subcommand space..
hh

EXAMPLES
g Report on all VOBs currently mounted on the local host.
% cleartool space −avobs
Use(Mb) %Use Directory

1.5 0% VOB database /net/helium/usr1/vobstorage/demo_src_vob/db
0.0 0% cleartext pool /net/helium/usr1/vobstorage/demo_src_vob/c/cdft
0.0 0% derived object pool /net/helium/usr1/vobstorage/demo_src_vob/d/ddft
31.0 3% source pool /net/helium/usr1/vobstorage/demo_src_vob/s/sdft
44.2 4% VOB database /net/helium/usr1/vobstorage/raima_vob/db
2.9 0% cleartext pool /net/helium/usr1/vobstorage/raima_vob/c/cdft
88.7 8% derived object pool /net/helium/usr1/vobstorage/raima_vob/d/ddft
5.5 0% source pool /net/helium/usr1/vobstorage/raima_vob/s/sdft
:
:

13.6 1% source pool /net/helium/usr1/vobstorage/public_vob/s/sdft
12.1 1% VOB database /net/helium/usr1/vobstorage/motif_vob/db
5.6 0% cleartext pool /net/helium/usr1/vobstorage/motif_vob/c/cdft
0.0 0% derived object pool /net/helium/usr1/vobstorage/motif_vob/d/ddft
43.4 4% source pool /net/helium/usr1/vobstorage/motif_vob/s/sdft

-------- ---- ---
555.3 50% Subtotal
919.8 82% Filesystem /tmp_mnt/net/helium/usr1 (capacity 1115.1 Mb)

Use(Mb) %Use Directory
0.0 0% unknown item /net/viewpnt/usr1/vobstorage/atria_vob/event_scrubber_params

214.3 22% old VOB database /net/viewpnt/usr1/vobstorage/atria_vob/db.01.04
363.0 38% VOB database /net/viewpnt/usr1/vobstorage/atria_vob/db
169.1 18% source pool /net/viewpnt/usr1/vobstorage/atria_vob/s/sdft
0.9 0% source pool /net/viewpnt/usr1/vobstorage/atria_vob/s/staged_includes

-------- ---- ---
747.3 78% Subtotal
883.8 92% Filesystem /tmp_mnt/net/viewpnt/usr1 (capacity 961.2 Mb)

:
:

Total usage for vob "/vobs/demo_src" 32.5 Mb
Total usage for vob "/vobs/atria" 1373.3 Mb

:
:

Total usage for vob "/vobs/raima" 141.3 Mb
Total usage for vob "/vobs/design" 4.3 Mb
Total usage for vob "/vobs/doc" 277.3 Mb
Total usage for vob "/vobs/int" 3.6 Mb
Total usage for vob "/vobs/public" 31.1 Mb
Total usage for vob "/vobs2/bob.c++" 0.9 Mb
Total usage for vob "/usr/var/tmp/btest" 2.2 Mb
Total usage for vob "/vobs/scd" 4.3 Mb

g Report space usage for a given VOB showing all files (long report).
% cleartool space −all msg.c
Use(Mb) %Use Directory

0.0 0% unknown item /net/reach/usr/var/tmp/scd/tut.vbs/.identity
0.0 0% VOB identifier /net/reach/usr/var/tmp/scd/tut.vbs/vob_oid
0.0 0% replica identifier /net/reach/usr/var/tmp/scd/tut.vbs/replica_uuid
0.0 0% unknown item /net/reach/usr/var/tmp/scd/tut.vbs/.pid
1.4 0% VOB database /net/reach/usr/var/tmp/scd/tut.vbs/db
0.0 0% cleartext pool /net/reach/usr/var/tmp/scd/tut.vbs/c/cdft
0.0 0% derived object pool /net/reach/usr/var/tmp/scd/tut.vbs/d/ddft

May 1994 279

space.. cleartool subcommand
hh

0.0 0% source pool /net/reach/usr/var/tmp/scd/tut.vbs/s/sdft
-------- ---- ---

1.4 0% Subtotal
161.4 63% Filesystem /usr (capacity 256.3 Mb)

Total usage for vob "msg.c" 1.4 Mb

g Report space usage for a given VOB using the default output.
% cleartool space msg.c
Use(Mb) %Use Directory

1.4 0% VOB database /net/reach/usr/var/tmp/scd/tut.vbs/db
0.0 0% cleartext pool /net/reach/usr/var/tmp/scd/tut.vbs/c/cdft
0.0 0% derived object pool /net/reach/usr/var/tmp/scd/tut.vbs/d/ddft
0.0 0% source pool /net/reach/usr/var/tmp/scd/tut.vbs/s/sdft

-------- ---- ---
1.4 0% Subtotal

161.4 63% Filesystem /usr (capacity 256.3 Mb)

Total usage for vob "msg.c" 1.4 Mb

SEE ALSO
cleartool subcommands: mkvob, reformatvob
env_ccase, df(1M), du(1M)

280 ClearCase Reference Manual

cleartool subcommand startview
hh

NAME startview − start or connect to a view_server process

SYNOPSIS
startview view-tag ...

DESCRIPTION
Prerequisite: The view being started must already have a ’view-tag’ in the network’s ’view_tag’ registry file. See
the ’mkview’ and ’mktag’ manual pages.

Enables processes on the local host to access a view, by:
g Establishing an RPC connection between the local host’s MVFS (ClearCase multiversion file system) and

the view’s view_server process.
g Creating a view-tag entry in the local host’s viewroot directory. If a view_server process is not already

running, startview invokes one on the host where the view storage area physically resides.

The default name of the viewroot directory is /view. (See the init_ccase manual page for more informa-
tion.) Thus, starting a view that has been registered under view-tag main would create directory entry
/view/main. After this directory entry is created, any process on the local host can access the view through
view-extended pathnames.

The view’s view-tag must already be registered, which is accomplished either at view creation time (with
a mkview command) or subsequently (with mktag -view).

When to Use ’startview’
Both mkview and mktag implicitly perform a startview. Furthermore, the setview command also performs a
startview, if necessary. Therefore, it is rarely necessary to invoke startview explicitly. Typically, startview is
used to establish view-extended naming access, without creating a process that is set to the view (as hap-
pens with setview). There are two main cases:
g Because mkview and mktag perform a startview on the local host only, remote users who want only

view-extended naming access to the view must use startview.
g After your system has been stopped and restarted (see ‘‘Examples’’ below), both local and remote

users can use startview to re-establish view-extended naming access to a view.

PERMISSIONS AND LOCKS
Permissions Checking: No special permissions required. Locks: No locks apply. See the ‘‘Permissions
Checking’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
Specifying the View. Default: None.

view-tag ... One or more view-tags currently listed in the local host’s view-tags file.

EXAMPLES
g View anne_Rel2 is registered, but its view_server process went down in a system crash. Restart view

anne_Rel2, and make it the working directory view.
% cleartool startview anne_Rel2

% cd /view/anne_Rel2/usr/hw

May 1994 281

startview.. cleartool subcommand
hh

g Create a view on the local host, and establish view-extended naming access to the view on host3.
% cleartool mkview −tag mainRel2 /view_store/mainRel2.vws
Created view.
Host-local path: host2:/view-store/mainRel2.vws
Global path: /net/host2/view-store/mainRel2.vws
It has the following rights:
User : anne : rwx
Group: dev : rwx
Other: : r-x

% rsh host3 cleartool startview mainRel2

SEE ALSO
cleartool subcommands: lsview, setview, mkview, mktag
filesys_ccase, init_ccase, registry_ccase, view_server

282 ClearCase Reference Manual

cleartool subcommand umount
hh

NAME umount − deactivate a VOB

SYNOPSIS
umount { vob-tag | −−all }

DESCRIPTION
Deactivates one or more VOBs on your host by unmounting them as UNIX-level file systems. A VOB is
activated on a host by mounting it as a file system of type MVFS (ClearCase’s multiversion file system type).
The VOB-tag by which an individual VOB is referenced is the same as the full pathname to its mount
point.

Note that umount has no impact on a VOB’s entries in the vob_object and vob_tag registry files.

Unmounting of Public and Private VOBs
The root user can unmount any VOB, public or private; other users can unmount only the private VOBs
that they, themselves own.

See the mkvob manual page for a discussion of public and private VOBs.

Unmounting All VOBs
The root user can use cleartool umount -all to unmount all public VOBs listed in the VOB registry.

PERMISSIONS AND LOCKS
Permissions Checking: See ‘‘Unmounting of Public and Private VOBs’’ above. Locks: No locks apply.

OPTIONS AND ARGUMENTS
Specifying the VOB(s). Default: None.

vob-tag Unmounts the VOB with this VOB-tag, which you must specify exactly as it appears in the
vob_tag registry file.

−−all (root user only) Unmounts all public VOBs listed in the VOB registry.

IMPLEMENTATION NOTE
umount calls the standard umount(1M) command.

EXAMPLES
g Unmount the VOB storage directory that is registered with VOB-tag /vobs/Rel4.
% cleartool umount /vobs/Rel4

g Unmount all VOBs registered with public VOB-tags.
(become ’root’ user)% su
(unmount all public VOBs)# cleartool umount -all

SEE ALSO
cleartool subcommands: umount, lsview, lsvob, register, mktag, mkview, mkvob,
registry_ccase, umount(1M)

May 1994 283

uncheckout cleartool subcommand
hh

NAME uncheckout − cancel a checkout of an element

SYNOPSIS
uncheck .out | unco [−−kee.p | −−rm] pname ...

DESCRIPTION
Cancels a checkout for one or more elements, deleting the checked-out version. Any meta-data (for
example, attributes) that you attached to a checked-out version is lost. The view reverts to selecting a
checked-in version of each element.

The checkout version event record for each element is removed from its VOB’s database. (There is no
such such thing as an ‘‘uncheckout’’ event record.)

If you checked out a file under an alternate name (checkout -out), you cannot use the alternate name to
uncheckout the file — you must use the element name listed by ls -vob_only.

Cancelling a Checkout in an Inaccessible View
You can cancel another view’s checkout by using a view-extended pathname to the element. But if the
other view is no longer accessible (for example, it was deleted accidentally), a view-extended pathname
will not work. Instead:

1. Use describe -long -vob to determine the view’s unique identifier (uuid).

2. For each VOB that may have been accessed with the view, use the rmview -uuid command to
remove all of that view’s checkout records from the VOB. (There is no way to selectively cancel
checkouts for an inaccessible view.)

Cancelling a Directory Checkout
If you cancel a directory’s checkout after changing its contents, the changes made with rmname, mv, and ln
are lost. Any new elements that were created (with mkelem or mkdir) become orphaned; such elements are
moved to the VOB’s lost+found directory, stored under names of this form:

element-name.UUID

uncheckout displays a message in such cases:
cleartool: Warning: Object "foo.c" no longer referenced.
cleartool: Warning: Moving object to vob lost+found directory as
"foo.c.5f6815a0a2ce11cca54708006906af65".

PERMISSIONS AND LOCKS
Permissions Checking: For each object processed, you must be one of the following: version creator, ele-
ment owner, VOB owner, root user. Locks: An error occurs if any of the following objects are locked:
VOB, element type, element, branch type, branch. See the ‘‘Permissions Checking’’ section of the cleartool
manual page.

OPTIONS AND ARGUMENTS
Handling of the View-Private File. Default: uncheckout prompts you to decide whether to preserve the
checked-out version in a view-private file:
Save private copy of "util.c"? [yes]

284 ClearCase Reference Manual

cleartool subcommand uncheckout
hh

A yes answer is equivalent to specifying the −keep option; a no answer is equivalent to specifying the
−rm option.

−−kee.p Preserves the contents of the checked-out version under a file name of the form element-
name.keep (or, to prevent name collisions, element-name.keep.1, element-name.keep.2, and so
on).

−−rm Does not preserve the contents of the checked-out version. Thus, any edits that had been
made to the checked-out version are lost.

Specifying the Element. Default: None.

pname ... One or more pathnames, each of which specifies an element. The checkout in the current
view is cancelled, unless you use a view-extended pathname to specify another view.

NOTE: Avoid using a version−extended pathname — for example, you cannot use
hello.c@@/main/sub1 to cancel another view’s checkout on the sub1 branch of element
hello.c.

EXAMPLES
g Cancel the checkout of file element util.c.
% cleartool uncheckout util.c
Save private copy of "util.c"? [yes] no
Checkout cancelled for "util.c".

g Cancel the checkout of file hello.h in the jackson_fix view, and delete the view-private copy.
% cleartool uncheckout −rm /view/jackson_fix/usr/hw/src/hello.h
Checkout cancelled for "/view/jackson_fix/usr/hw/src/hello.h".

g Cancel the checkout of directory subd after creating a new element named conv.c. Note that the element is
moved to the VOB’s lost+found directory.
% cleartool uncheckout subd
Object moved to vob lost+found directory as

"conv.c.3d90000112fc11cba70e0800690605d8".
Checkout cancelled for "subd".

SEE ALSO
cleartool subcommands: checkin, checkout, mkview, unreserve

May 1994 285

unlock cleartool subcommand
hh

NAME unlock − unlock an object

SYNOPSIS
g Unlock entire VOB:

unlock [−−c comment | −−cq | −−cqe | −−nc] −−vob { pname-in-vob | vob-storage-dir-pname }

g Unlock VOB storage pool:

unlock [−−c comment | −−cq | −−cqe | −−nc] [−−vob pname-in-vob] −−poo.l pool-name ...

g Unlock element or branch:

lock [−−c comment | −−cq | −−cqe | −−nc] pname ...

g Unlock type object:

lock [−−c comment | −−cq | −−cqe | −−nc]
{ −−elt .ype | −−brt .ype | −−att .ype | −−hlt .ype | −−lbt .ype | −−trt .ype | −−rpt .ype }
[−−vob pname-in-vob] type-name ...

DESCRIPTION
Removes an existing lock from an entire VOB, or from one or more file system objects, type objects, or VOB
storage pools. See the lock manual page for a description of ClearCase locks.

PERMISSIONS AND LOCKS
Kind of Object Users Permitted to Unlock the Object
type object type creator, VOB owner, root user
storage pool VOB owner, root user
VOB VOB owner, root user
element element owner, VOB owner, root user
branch branch creator, element owner, VOB owner, root user

Even if you have permission to execute this command, it fails if an entire-VOB lock has been placed on
the VOB containing the object.

OPTIONS AND ARGUMENTS
See the lock manual page for a description of the options to the unlock command.

EXAMPLES
g Unlock the label types REL1 and REL2.
% cleartool unlock −lbtype REL1 REL2
Unlocked label type "REL1".
Unlocked label type "REL2".

SEE ALSO
cleartool subcommands: lock, lshistory, lslock, lspool, lstype, protect
profile_ccase

286 ClearCase Reference Manual

cleartool subcommand unregister
hh

NAME unregister − remove an entry from the vob_object or view_object registry file

SYNOPSIS
g Unregister a VOB:

unreg.ister −−vob { −−uui .d uuid | vob-storage-dir-pname }

g Unregister a view:

unreg.ister −−view { −−uui .d uuid | view-storage-dir-pname }

DESCRIPTION
Removes the entry for a particular VOB or view from the network’s vob_object registry file or from the
view_object registry file. The unregister command does not affect VOB-tag or view-tag registry entries, and
it does not affect the contents of the physical storage directories. See the registry_ccase manual page for a
discussion of registry files.

Note that removing a VOB or view storage directory with an operating system command (rm -rf, for
example), rather than with rmvob or rmview, fails to unregister the VOB/view. In this case, you must use
the −uuid option to unregister the associated storage directory (and use rmtag to remove relevant tag
entries, if any still exist).

Other Commands that Affect Storage Registries
The mkview and mkvob commands automatically add an entry to the appropriate registry; the rmview and
rmvob commands remove registry entries (and the actual storage directories as well). You can use the
register command to update an existing entry, or to re-register a VOB or view that has been unregistered.

The reformatvob command updates a VOB’s object registry entry (or creates one, if necessary), but does not
affect its tag registry entries.

PERMISSIONS AND LOCKS
Permissions Checking: No special permissions required. Locks: No locks apply. See the ‘‘Permissions
Checking’’ section of the cleartool manual page.

OPTIONS AND ARGUMENTS
View/VOB Specification. Default: None. — you must indicate whether you are unregistering a view or
a VOB, and must specify either its storage directory or its unique identifier (UUID).

−−vob vob-storage-dir-pname
−−vob −−uui .d vob-uuid

Use either of the forms to specify the VOB whose vob_object registry entry is to be deleted.

−−view view-storage-dir-pname
−−view −−uui .d view-uuid

Use either of the forms to specify the view whose view_object registry entry is to be deleted.

May 1994 287

unregister cleartool subcommand
hh

EXAMPLES
g Unregister a VOB storage directory.
% cleartool unregister −vob /vobstore/vob2.vbs

g Unregister a view storage directory.
% cleartool unregister −view /view_store/view5.vws

g Using the −uuid option, unregister a VOB storage directory that was deleted with rm -rf instead of
rmvob. In this example, the VOB replica UUID (do not use the VOB family UUID) is found in the output
from lsvob -long. After unregistering the storage directory, remove the VOB-tag. If the VOB has tag
registry entries for more than one network region, the −all option removes them all.

(find the VOB replica uuid)% cleartool lsvob -long /vobs/src
Tag: /vobs/src
Global path: /net/neptune/vobstore/src.vbs
...

Vob replica uuid: cb4caf2f.f48d11cc.abfc.00:01:53:00:e8:c3

(verify storage directory was removed)% ls /net/neptune/vobstore/src.vbs
UX:ls: ERROR: Cannot access /net/neptune/vobstore/src.vbs: No such file or directory

% cleartool unregister −vob −uuid cb4caf2f.f48d11cc.abfc.00:01:53:00:e8:c3

% cleartool rmtag −vob −all /vobs/src

g As in the previous example, unregister a removed but still registered VOB storage directory. In this exam-
ple, the VOB-tag has already been removed. Therefore, we use the /usr/adm/atria/log/scrubber_log, not lsvob,
to find the VOB replica UUID. (lsvob lists only VOBs that have registered VOB-tags.) The scrubber utility,
which runs nightly by default, reports the required UUID in an error message after failing to find the
registered storage directory.
% cat /usr/adm/atria/log/scrubber_log

...
05/27/94 04:30:58 scrubber: Error: Unable to get VOB tag registry information for
replica uuid "cb4caf2f.f48d11cc.abfc.00:01:53:00:e8:c3": ClearCase object not found

05/27/94 04:30:58 scrubber: Error: unable to access VOB neptune:/vobstore/src.vbs:
ClearCase object not found

05/27/94 04:30:58 scrubber: Warning: skipping VOB neptune:/vobstore/src.vbs due to earlier errors
...

% cleartool unregister −vob −uuid cb4caf2f.f48d11cc.abfc.00:01:53:00:e8:c3

FILES
/usr/adm/atria/rgy/vob_object
/usr/adm/atria/rgy/view_object

SEE ALSO
cleartool subcommands: register, mkvob, mkview, mktag, register, mount, umount
registry_ccase

288 ClearCase Reference Manual

cleartool subcommand unreserve
hh

NAME unreserve − change a reserved checkout to unreserved

SYNOPSIS
unres .erve [−−vie.w view-storage-dir-pname] [−−c comment | −−cq | −−cqe | −−nc] pname ...

DESCRIPTION
Changes the ‘‘checkout status’’ of a checked−out version of an element to unreserved. An unreserve

checkout of version event record is written to the VOB database.

PERMISSIONS AND LOCKS
Permissions Checking: For each object processed, you must be one of the following: element group
member, element owner, VOB owner, root user. Locks: An error occurs if any of the following objects are
locked: VOB, element type, element, branch type, branch. See the ‘‘Permissions Checking’’ section of the
cleartool manual page.

OPTIONS AND ARGUMENTS
Specifying the View. Default: The current view’s checkout is changed (unless you specify an element
with a view-extended pathname).

−−vie.w view-storage-dir-pname
Specifies the view whose checkout is to be changed. The view must be specified in
hostname:pathname form, as listed by lscheckout -l. For example:
-view jupiter:/usr/people/jones/test/jones_view

Specifying the Elements. Default: None.

pname ... One or more pathnames, each of which specifies an element. The checkout in the current
view is changed, unless you use a view-extended pathname to specify another view.

Event Records and Comments. Default: Creates one or more event records, with commenting controlled
by your home directory’s .clearcase_profile file (default: −nc). See ‘‘Comment Handling’’ in the cleartool
manual page. Comments can be edited with chevent.

−−c comment , −−cq , −−cqe , −−nc
Overrides the default with one of ClearCase’s standard comment options.

EXAMPLES
g Change the checkout status of an element to unreserved.
% cleartool unreserve util.c
Changed checkout to unreserved for "util.c" branch "/main".

g Change the checkout status of an element in another view to unreserved. Note that the view’s storage
area is on a remote host.
% cleartool unreserve −view oxygen:/usr/home/jackson/ccviews/fix.vws hello.c
Changed checkout to unreserved for "hello.c" branch "/main".

g Checkout an element, check its status, then change its status to unreserved.
% cleartool co −nc edge.sh
Checked out "edge.sh" from version "/main/1".

May 1994 289

unreserve.. cleartool subcommand
hh

% cleartool lsch edge.sh
08-Dec.12:17 jackson checkout version "edge.sh" from /main/1 (reserved)

% cleartool unreserve edge.sh
Changed checkout to unreserved for "edge.sh" branch "/main".

SEE ALSO
cleartool subcommands: checkin, checkout, lscheckout, reserve, uncheckout
profile_ccase

290 ClearCase Reference Manual

cleartool subcommand winkin
hh

NAME winkin − wink-in one or more derived objects to a view

SYNOPSIS
winkin [−−out pname] DO-pname ...

DESCRIPTION
This command enables you to access the data of any existing DO, even if it does not match your view’s
build configuration (and, thus, would not be winked-in by a clearmake build). Note that you cannot access
a DO’s file system data directly, using a VOB-extended pathname, such as hello@@21-Dec.16:18.397;
instead, you must wink it in to a view, and then access it using that view.

Effect on View-Resident DO Data Containers
If you specify a shared DO while working in the view where it was originally built, and there is still a
view-resident data container for the DO in that view, then the view-resident data container is scrubbed,
and your view will access the shared data container in VOB storage. This is equivalent to executing a
view_scrubber command.

If you specify an unshared DO in your view, it is promoted to the VOB and then winked-in. The view-
resident data container is scrubbed, and your view will access the shared data container in VOB storage.
This is equivalent to executing a view_scrubber -p command.

Note that view_scrubber is more efficient when a large number of DOs are to be processed in this way.

PERMISSIONS AND LOCKS
No special permissions are required at the VOB database level; no locks apply. At the file system level,
you must have ‘‘read’’ permission on the DO to be winked-in. If you are overwriting an existing DO in
your view (perhaps one that was winked-in previously), you must have ‘‘write’’ permission on the exist-
ing DO. See the CLEARCASE_BLD_UMASK discussion in the clearmake manual page.

OPTIONS AND ARGUMENTS
Specifying an Alternative Pathname. Default: A derived object is winked-in to your view at the path-
name you specify with a DO-pname argument, minus any DO-ID. For example, if you specify the DO-
pname ../src/hello@@21-Dec.16:18.397, then by default, it is winked-in at pathname ../src/hello. Any object
at the destination pathname is overwritten, subject to standard permissions-checking. (‘‘Overwriting’’ a
shared DO just decrements its reference count — no file system data is actually deleted.)

−−out pname An alternative pathname at which to wink-in the DO. You must specify exactly one DO in
this case.

− If pname is a directory, then the DO is winked-in to that directory, with the same leaf
name as the original DO.

− Otherwise, pname is treated as a file name.

In either case, an error occurs if an object already exists at the destination.

NOTE: You must use −out if you specify another view’s DO using a view-extended pathname, and you
intend to wink-in the DO to your own view.

May 1994 291

winkin cleartool subcommand
hh

Specifying the Derived Object. Default: None.

DO-pname ...
One or more pathnames that specify derived objects. A standard pathname names a DO in
the current view; you can also use a view-extended pathname and/or a VOB-extended path-
name:

(view−extended pathname)/view/george/usr/hw/hello
(VOB−extended pathname, including DO−ID)hello@@21-Dec.16:18.397
(combination)/view/george/usr/hw/hello@@05-Jan.09:16:788

EXAMPLES
g Wink-in to your view a DO that appears in another view. The −out option is required in this case.
% cleartool winkin −out . /view/george/usr/hw/hello.o
Winked in derived object "hello.o"

g Wink-in a DO, using its DO-ID, and saving it under another file name.
% cleartool lsdo hello
02-Mar.20:02 "hello@@02-Mar.20:02.376"
01-Mar.09:06 "hello@@01-Mar.09:06.365"

% cleartool winkin −out hello.March1 hello@@01−Mar.09:06.365
Promoting unshared derived object "hello@@01-Mar.09:06.365"
Winked in derived object "hello.March1"

g Create a new derived object, then migrate it to VOB storage.
% clearmake

cc -c hello.c
cc -c util.c
cc -o hello hello.o util.o

% cleartool winkin hello
Promoting unshared derived object "hello"
Winked in derived object "hello"

SEE ALSO
clearmake, derived_object, scrubber, view_scrubber

292 ClearCase Reference Manual

cleartool subcommand xdiff
hh

NAME xdiff − compare versions of a text-file element or a directory graphically

SYNOPSIS
xdiff [−−tin .y] [−−hst .ack | −−vst .ack] [−−opt . ions pass-through-opts]

[−−pre.decessor] pname ...

DESCRIPTION
xdiff creates a child process in which xcleardiff, the compare/merge utility in the ClearCase GUI, uses a
separate window to display the differences among the specified files or directories. xdiff waits for the
child process to exit (unlike diff).

xdiff uses type managers in the same way as the diff, except that it invokes the xdiff method (linked to xclear-
diff for all predefined type managers).

Scrolling
You can scroll the individual subwindows (difference panes) of the xcleardiff window either independently
or synchronously. All difference panes have a ‘‘locked/unlock’’ toggle button, which changes back and
forth between L and U when you click it. When you use a vertical or horizontal scrollbar, all locked
panes (with L showing) scroll together. When you click the ‘‘Previous Diff’’, ‘‘Next Diff’’, or ‘‘Current
Diff’’ button, the difference panes resynchronize.

OPTIONS AND ARGUMENTS
The syntax of the xdiff command is the same as that for diff, with these exceptions:
g The −window option is not supported; xdiff always creates a new window.
g The mutually exclusive listing format options −serial_format, −diff_format, and −columns are

not supported.
g The −hstack and −vstack options are added to support horizontal (side by side) and vertical stack-

ing of the difference panes. The default is horizontal.

EXAMPLES
g Display the differences between versions of a source file in two different views.
% cleartool xdiff util.c /view/jackson_old/usr/hw/src/util.c

g Compare a specified version of cm_add.c to its predecessor.
% cleartool xdiff −predecessor cm_add.c@@/main/2

SEE ALSO
cleartool subcommands: diff, merge, xmerge
cleardiff, xcleardiff

May 1994 293

xlsvtree cleartool subcommand
hh

NAME xlsvtree − list version tree of an element graphically

SYNOPSIS
xlsvt .ree [−−a.ll] [−−nco] [−−nme.rge] [−−opt . ions pass-through-options] pname ...

DESCRIPTION
Invokes a vtree browser to display an element’s version tree graphically. cleartool xlsvtree provides an inter-
face to the xlsvtree utility program, which is a restricted version of xclearcase, the main ClearCase graphical
interface program. (The commands xlsvtree and cleartool xlsvtree are functionally identical. The two invo-
cation alternatives are provided as a convenience.)

A separate vtree browser is invoked for each element you specify as an argument.

OPTIONS AND ARGUMENTS
Controlling Which Versions Are Displayed. Default: The vtree browser displays all ‘‘significant’’ ver-
sions: versions with labels, versions that are branchpoints, and versions that are hyperlink endpoints.

−−a.ll Displays all versions of the element. In addition, −all annotates each labeled version with
its complete list of version labels. (By default, only the first five labels are displayed for any
single version, followed by ... when there are more than five.)

−−nco Excludes checked-out versions from the display. The predecessor of a checked-out version is
also excluded, unless there is another reason to include it (for example, it has a version label).

−−nme.rge Excludes versions that have merge arrows.

xclearcase Options. Default: None.

−−options pass-through-options
Specifies one or more xclearcase command options that are not directly supported on the clear-
tool xlsvtree command line. In particular, xclearcase accepts all the standard X Toolkit
command-line options (for example, −display and −geometry), as described in the X(1)
manual page. Quote the option string if it includes white space.

NOTE: When invoking xclearcase directly with xlsvtree (as opposed to cleartool xlsvtree), omit
the −options keyword.

Specifying Elements to Browse. Default: None. You must specify at least one element.

pname ... One or more elements. A vtree browser comes up for each element.

EXAMPLES
g Invoke an xclearcase vtree browser to display a file element’s version tree. Show all versions.
% cleartool xlsvtree −all util.h

SEE ALSO
cleartool subcommands: lsvtree, lshistory
xclearcase, schemes

294 ClearCase Reference Manual

cleartool subcommand xmerge
hh

NAME xmerge − merge versions of a text-file element or a directory graphically

SYNOPSIS
xmerge { −−to contrib-&-result-pname | −−out output-pname } [−−bas .e pname]

[−−nda.ta | −−nar.rows] [−−rep.lace] [−−abo.rt | −−qal . l]
[−−opt . ions pass-through-options] [−−c comment | −−cq | −−cqe | −−nc]
[−−tin .y] [−−hst .ack | −−vst .ack] [−−ins .ert | −−del .ete]
{ −−ver.sion contrib-version-selector ... | contrib-pname ... }

DESCRIPTION
xmerge creates a child process in which xcleardiff, ClearCase’s graphical compare/merge utility, uses a
separate window to perform a merge. xmerge waits for the child process to exit.

xmerge uses type managers in the same way as the merge command, except that it invokes the xmerge
method (linked to xcleardiff for all predefined type managers).

OPTIONS AND ARGUMENTS
The syntax of the xmerge command is the same as that for merge, with these exceptions:
g The −window option is not supported; xmerge always creates a new window.
g The mutually exclusive listing format options −serial_format, −diff_format, and −columns are

not supported.
g The −hstack and −vstack options are added to support horizontal (side by side) and vertical stack-

ing of the merge contributor files. The default is horizontal, with the base contributor on the left.

EXAMPLES
g Merge the version of file msg.c in the current view with the most recent version on the bugfix branch.

Determine the base file automatically, and record the merge with merge arrows.
% cleartool xmerge −to msg.c msg.c@@/main/bugfix/LATEST

g Merge into the version of file util.c in the view the most recent versions on the rel2_bugfix and motif
branches. Suppress the creation of merge arrows.
% cleartool xmerge −to util.c −narrows \

−version /main/rel2_bugfix/LATEST /main/motif/LATEST

SEE ALSO
cleartool subcommands: merge, findmerge, diff, xdiff
xcleardiff, xclearcase

May 1994 295

xmerge.. cleartool subcommand
hh

296 ClearCase Reference Manual

ClearCase administration command non_cleartool_divider
hh

NAME non_cleartool_divider − separator page

DESCRIPTION

FOR POSITION ONLY

THIS PAGE TO BE REPLACED

BY A FULL-PAGE RUBYLITH AND

"Non-cleartool Manual Pages"

May 1994 297

non_cleartool_divider ClearCase administration command
hh

FOR POSITION ONLY

BLANK PAGE WITH A

FULL-PAGE RUBYLITH

298 ClearCase Reference Manual

ClearCase administration command abe
hh

NAME abe − audited build executor / server for ClearCase distributed build

DESCRIPTION
This program is started by ’clearmake’ when needed; it should never be run manually.

abe, the audited build executor, is a server process automatically invoked by clearmake to control and audit
execution of a build script during a distributed build.

The first time it dispatches a build script to a host, clearmake starts an abe process there, using a standard
remote-shell command. Subsequent build scripts dispatched to the same host may get executed by the
same abe process, or by a different one.

Build Hosts File
Hosts for a distributed build are selected from the build hosts file of the user who executes the clearmake
command. (See the bldhost manual page.) A host can be listed several times in the build hosts file, in
which case several independent abe processes are invoked.

BUILD SCRIPT PROCESSING
An abe process starts by setting the same view as the calling clearmake. It executes a build script
dispatched to it in much the same way as clearmake — each command in a separate shell process.

The build script has already had all its make macros expanded by the calling clearmake; but environment
variables are expanded by the shell process in which a build command runs. This environment combines
the abe’s startup environment and the entire environment of the calling clearmake. Where there are
conflicts (for example, SHELL and PATH), the abe setting prevails. To this environment is added:
g Special make macros, such as MAKEFLAGS, MAKEARGS, and (in smake(1) compatibility mode only)

MFLAGS. These are needed in case the build script invokes clearmake recursively.
g Macros assigned in a build options spec (see the clearmake.options manual page) or on the clearmake

command line. These settings are always placed in the build script’s environment; they override, if
necessary, settings in the environment of the calling clearmake and/or settings in the abe startup
environment.

The stdout and stderr output produced by build scripts is sent back to clearmake, which stores it in a tem-
porary file. When the build script terminates, clearmake outputs its accumulated terminal output.

abe returns the exit status of the build script to the calling clearmake, thus indicating if the build succeeded
or failed. In the ‘‘success’’ case, abe creates derived objects and configuration records.

Failure Modes
Certain conditions can interfere with an abe process, causing a target rebuild to fail:
g remote login is disabled on a particular host, preventing an abe process from being started
g clearmake’s view could not be accessed on the remote host

SEE ALSO
clearmake, config_spec, exec(1), rsh(1), setuid(2)
clearmake.options, bldhost, bldserver.control

May 1994 299

albd_server ClearCase administration command
hh

NAME albd_server − location broker daemon / ClearCase master server

SYNOPSIS
invoked by ClearCase startup script at system startup time

DESCRIPTION
Each ClearCase host runs an albd_server process (Atria location broker daemon), which plays a pivotal
role in ClearCase’s client-server architecture. albd_server is a ‘‘master server’’, which starts up and
dispatches messages to other servers:

db_server VOB database server, short-lived

vob_server VOB data storage server, long-lived

vobrpc_server remote-access VOB database and data storage server, long-lived

promote_server derived object data storage server, short-lived

view_server view server, long-lived

A ClearCase client program sends a request to an albd_server process (often, running on another host) to
find the port (socket address) of one of the servers listed above. Thereafter, the client communicates
directly with the specific server. If necessary, albd_server starts up the server before passing its port
number back to the client.

STARTING THE LOCATION BROKER
albd_server is started by the ClearCase startup script at system startup time. (See the init_ccase manual
page for details.) Never invoke albd_server directly — only through the startup script.

SERVICES DATABASE
The ClearCase installation procedure creates an albd_server entry in a host’s local services(4) database,
/etc/services:
Location Broker Server
#
albd 371/udp

(If an NIS services map exists, the installation procedure advises the installer to update this map, if neces-
sary.)

When it begins execution, albd_server looks itself up in its host’s services database (file or NIS map). If the
lookup returns the standard port number, 371, it creates an empty flag file,
/usr/adm/atria/.albd_well_known_port. ClearCase client programs on a host use this flag file to avoid look-
ups in the services database: if the file exists, a client uses the standard port number to contact albd_server
processes throughout the network; otherwise, it must look up the albd service in the services database.
Note that this scheme requires that the albd service be registered at the same port number throughout
the network.

300 ClearCase Reference Manual

ClearCase administration command albd_server
hh

ALBD_SERVER CONFIGURATION FILE
Do not modify this configuration file, except under explicit instructions from Customer Support.

albd_server reads configuration file /usr/atria/config/services/albd.conf during startup, to determine which
services to provide. Lines that begin with # are comments, as are empty lines. All other lines must con-
tain the white-space-separated fields described below. The character - in a field indicates ‘‘not applica-
ble’’ or ‘‘use default’’.

Number RPC program number for the service.

Version RPC version number for the service.

Protocols Comma−separated, no−white−space list of protocols supported by the service (for example,
tcp,udp).

UID User ID (real and effective) for the server process to be started.

- or 0 indicates default: same as the albd_server process.

GID Group ID (real and effective) for the server process to be started.

- or 0 indicates default: same as the albd_server process.

Kind Type of server: unshared, reusable, shared, schedule. (‘‘schedule’’ means ‘‘schedul-
able’’.)

Control A comma-separated, no-white-space list of server control parameters: (1) maximum number
of servers allowed, (2) clients-per-server threshold (for schedulable servers only), (3)
smoothed ‘‘busyness’’ threshold, at which a new instance of the server is created.

Program Pathname of server executable. This may be a full pathname or a pathname relative to
/usr/atria/etc.

Arguments (optional) Special arguments to include when starting a new instance of the server. Do not
use - in this field; leave it blank instead.

Example:
390513 3 udp,tcp - - shared - view_server
390514 3 udp - - shared - vob_server
390515 3 tcp - - reusable - db_server
390516 2 tcp - - shared - promote_server
390518 2 tcp - - schedule 5,0,5000000 vobrpc_server

OTHER CLEARCASE SERVERS
Several ClearCase servers do not run under albd_server control:
g The VOB database lock manager, lockmgr, is started by the same startup script as albd_server, at sys-

tem startup time.
g The audited build executor, abe, is invoked by clearmake, as necessary, using the standard remote-shell

facility.

May 1994 301

albd_server ClearCase administration command
hh

OTHER ALBD_SERVER FUNCTIONS
In addition to its other duties, the albd_server performs these functions:
g On the network-wide license server host, albd_server fields license-verification requests from hosts

throughout the network. In its role as the license server program, albd_server periodically consults the
network’s license database file, which must be availably locally as /usr/adm/atria/license.db.

See the license.db and clearlicense manual pages for more information.
g On the network-wide registry server host, albd_server fields requests for registry information from hosts

throughout the network. In its role as the registry server program, albd_server periodically uses the
network’s storage registry files, which must be available locally in directory /usr/adm/atria/rgy.

See the lsvob, lsview, and registry_ccase manual pages for more information.
g During a distributed build, the albd_server process on a build server host fields load-balancing queries

from the remote clearmake process. Its response to the query either allows the host to be used for
build script execution, or to be bypassed. See the bldserver.control manual page for details.

FILES
/etc/services
/usr/atria/config/services/albd.conf
/usr/adm/atria/license.db

SEE ALSO
cleartool subcommands: register, mktag, lsview, lsvob
abe, clearlicense, cleartool, db_server, init_ccase, lockmgr, promote_server, view_server, vob_server
bldserver.control, license.db, registry_ccase

302 ClearCase Reference Manual

ClearCase data structure bldhost
hh

NAME bldhost − build hosts file / client-side control file for distributed build

SYNOPSIS
g Hosts to be considered for use in distributed build:

hostname-1
hostname-2

.

.

.

g Idleness threshold:

−−idle percentage [%]

g Control manner in which hosts are selected:

−−random

g Include-file facility:

#include pname

DESCRIPTION
A build hosts file is a text file that specifies a list of build server hosts and, optionally, additional control
information. This list is used by clearmake when you invoke it with the −J option, or equivalently, with
the environment variable CLEARCASE_BLD_CONC set. Such a build is typically both parallel (multiple
build scripts are executed concurrently) and distributed (build script execution is dispatched to one or
more hosts in the network).

The build hosts file lists the hostnames, one per line, of machines that clearmake can use in a distributed
build. clearmake dispatches build scripts to some or all these hosts using a load-balancing scheme (see
below). The same host can be listed more than once; more work may be dispatched to such a host —
presumably a multiprocessor or very fast processor that is capable of handling a heavy load. See also the
description of the −power specification in the bldserver.control manual page.

Name of Build Hosts File
You can have several build hosts files, all of which must be stored in your home directory. Having
several files is important for heterogeneous development environments — when building the HP-UX
variant of a program, you probably don’t want to dispatch build scripts to SunOS hosts. You might also
use different build hosts files at different times — during the work day, overnight, over the weekend.

When it begins a distributed build, clearmake examines the environment and uses this file in your home
directory:
.bldhost.$CLEARCASE_BLD_HOST_TYPE

(Your home directory is determined by examining the password database.)

May 1994 303

bldhost ClearCase data structure
hh

LOAD BALANCING
ClearCase’s load-balancing algorithm controls the way in which build scripts are dispatched to hosts.
During the course of a distributed build, your clearmake process creates and updates a list of ‘‘qualified
hosts’’, a subset of the hosts listed in the build hosts file. A host is ‘‘qualified’’ if all these criteria are met:
g The host is at least 50% idle (or your customized setting — see ‘‘Idleness Threshold’’ below).
g Your clearmake process meets the host’s requirements, as specified in its bldserver.control file.
g An abe process can be started on the host.

Whenever it needs to dispatch a build script, clearmake spends some time updating its qualified hosts list,
and then selects one of these hosts. If it cannot find any qualified host, it pauses and then updates the list
again. clearmake keeps trying in this manner until it finds at least one qualified host with which to build.

The selected host is not necessarily the ‘‘best’’ one — for example, the one that is most idle at that particu-
lar moment.

Randomizing Host Selection
The default load-balancing algorithm tends to select hosts near the top of the list more often than those
near the bottom of the list (subject to their availability). For more even-handed selection when the list of
hosts exceeds 20 or so, include this line:

−−random

Note that this also changes the effective location of any #include directives (see below).

Idleness Threshold
By default, your clearmake process will not dispatch a build script to a host unless it is at least 50% idle.
You can adjust this idleness threshold with a line in the build hosts file:

−−idle percentage [%]

percentage can be any integer from 0 to 100.

INCLUDE FILE FACILITY
A build hosts file can include the contents of one or more other build hosts files:

#include pname

If the included file has a −random directive, it applies just to that file’s entries. −idle directives in an
included file are ignored; you must set the idleness threshold at the top level.

Comment Lines
Any line that begins with # (except an #include line) is treated as a comment.

ORDER OF LINES
In any build hosts file, top-level or included, −idle and −random lines must precede all other lines.

304 ClearCase Reference Manual

ClearCase data structure bldhost
hh

EXAMPLES
g Build hosts file that uses a listed hosts only if it is at least 75% idle:

-idle 75
mercury
earth
mars
pluto

g Nesting of build hosts files:
-idle 30
einstein
bohr
fermi
#include /usr/local/lib/planet.hosts

SEE ALSO
‘‘Parallel and Distributed Building’’ in the clearmake manual page
abe, bldserver.control, clearmake.options, makefile_ccase

May 1994 305

bldserver.control ClearCase data structure
hh

NAME bldserver.control − server-side control file for distributed build

SYNOPSIS
g Load-Balancing Rule:

[−−host host-list] [−−user user-list] [−−idle percentage [%]]
[−−time start-time,end-time ...]

g Comparative Power Specifier:

−−power factor

DESCRIPTION
Any ClearCase host can have a build server control file. This text file, /usr/adm/atria/config/bldserver.control,
specifies when, how, and by whom the host can be used as a build server in a distributed build.

During a distributed build, clearmake consults the user’s build hosts file to determine which host(s) to use
for executing build scripts. (See the bldhost manual page for details.) Before actually dispatching a build
script, clearmake queries the albd_server process on the target build host, in essence asking ‘‘May I send you
a build script?’’.

If the host’s build server control file is missing or empty, no restrictions are placed on the use of the
machine for distributed builds. The machine’s albd_server will always send a ‘‘yes’’ response to the clear-
make process controlling a distributed build.

If the host’s build server control file is nonempty, albd_server examines the load-balancing rules one-by-
one:
g If it finds a rule that ‘‘matches’’ the parameters of the current build, albd_server sends a ‘‘yes’’ response

to the originating clearmake, which then uses a remote shell command to dispatch the build script.
g If no rule in the control file provides a match, albd_server sends a ‘‘no’’ response; the controlling clear-

make proceeds to query another host.

For example, suppose this rule occurs in the control file:
-host jupiter -user *.dvt -time 21:00,07:30

This rule ‘‘matches’’ any build invoked on host jupiter between 9PM and 7:30AM, by a user whose princi-
pal group is dvt.

OPTIONS AND ARGUMENTS
Each of the following specifications is optional. A missing specification implies no restriction. The
specifications are logically ANDed to form a test against the parameters of the current build.

−−host host-list
One or more hosts, from which distributed build requests will be honored by this host. host-
list is a comma-separated list (white space allowed); each item on the list is a hostname (as
listed by uname(1)). The asterisk character (*) is a ‘‘wildcard’’ that matches all hostnames.

306 ClearCase Reference Manual

ClearCase data structure bldserver.control
hh

NOTE: Be sure to include the name of this host, if the command to perform a distributed
build is (sometimes) entered here.

−−user user-list
One or more users, whose builds will be permitted to use this host. user-list is a comma-
separated list (white space allowed); each item on the list specifies a user — either by name or
by number, either with a group qualifier or without. Examples of user specifications:

jones User whose login name is jones
jones.dvt User jones, but only if logged in with principal group dvt.
jones.* Equivalent to specifying ‘‘jones’’ without any group qualifier.
566 User with user-ID 566

−−idle percentage [%]
Allows use of this host only when its ‘‘idleness’’ is at least percentage, which must be an
integer between 0 and 100, inclusive. Idleness is negatively correlated with the host’s load
factor, as shown by uptime(1); the approximate correspondence is:

Load Idle Percentage
0.0 100
0.5 68
1.0 47
2.0 22
4.0 almost 0

−−power factor
(must be specified alone, on a separate line) During the computation of the host’s idleness,
divides factor into the percentage specified with −idle (or into the system default). Thus,
these two specifications are equivalent:

Spec 1 Spec 2
−idle 60 −idle 20
−power 3

factor must be a non-negative floating-point number. This option allows you to model a
‘‘powerful’’ host — perhaps a multiprocessor — which is more capable of accepting work at a
given idleness level. You might use -power 3.0 or -power 2.5 for a three-processor build
server host. You can also model a relatively weak host, by assigning it a power value less
than 1.0.

If a build server control file includes multiple −power lines, only the last one takes effect.

May 1994 307

bldserver.control ClearCase data structure
hh

−−time start-time,end-time ...
Specifies one or more intervals during which the host will be available as a build server.
start-time and end-time must be specified in 24-hour format:

hh:mm (hh = 0−23 ; mm = 0−59)

An interval can span midnight; for example, 17:00,8:00 specifies the interval from 5PM one
evening to 8AM the following day.

EXAMPLES
g Allow builds by users jackson and jones, initiated from any host, if the host is at least 75% idle and the time

is between 10PM and 6AM.
-host * -user jackson,jones -idle 75 -time 22:00,06:00

g Allow anyone to use this host for distributed builds between 7PM and 7AM.
-time 19:00,7:00

g Declare this host to be three times as powerful (able to handle distributed build requests) as a standard
host.
-power 3.0

SEE ALSO
clearmake, abe, bldhost

308 ClearCase Reference Manual

ClearCase data structure cc.icon
hh

NAME cc.icon, default.icon − file type to icon mapping rules (graphical interface)

SYNOPSIS
file-type [file-type ...] : icon-name ;

.

.

.

DESCRIPTION
An icon file contains an ordered set of rules that maps file types to names of bitmap files, which contain icon
bitmaps.

In xclearcase, a file browser use a series of lookups to determine how to represent a file system object:

1. It searches one or more magic files to determine the list of file types for the file system object. (See the
cc.magic manual page for details.)

2. It searches one or more icon files for a match with the first file type. Finding a match yields the name
of a bitmap file. For example, this entry maps the file type ‘‘text_file’’ to the icon bitmap file name
‘‘text’’:
text_file : -icon text ;

The semicolon (;) character that terminates an icon rule must be preceded by white space.

If no match can be found for the first file type, xclearcase searches the same set of icon files for a match
with the second file type, and so on through the entire list of file types, if necessary. (If none of the file
types produces a match in any icon file, an error occurs.)

3. Having determined the name of a bitmap file, xclearcase searches for an actual file in one or more
directories containing bitmap files. (If it cannot locate a bitmap file with this name, an error occurs.)

Bitmap file names must have a numeric suffix, indicating the size of the bitmap — for example,
text.60. xclearcase selects that bitmap file whose name begins with the string specified by −icon, and
whose size is appropriate for the current context.

May 1994 309

cc.icon ClearCase data structure
hh

Figure 12 illustrates this process.

file

c
c
c
c

magic file(s)
c
c
c
hhhhhhhhhhhhhhhhhhhhhhh

c
c
chhhhhhhhhhhhhhhhhhhhhhh

c
c
c
c

icon file(s)
c
c
c
hhhhhhhhhhhhhhhhhhhhhhh

c
c
chhhhhhhhhhhhhhhhhhhhhhh

c
c
c
c

bitmap directory(s)
c
c
c
hhhhhhhhhhhhhhhhhhhhhhh

c
c
chhhhhhhhhhhhhhhhhhhhhhh

c
c
c
c

bitmap for display

files in /usr/atria/config/magic

or in directories on $MAGIC_PATH

files in /usr/atria/config/ui/icon

or in directories on $ICON_PATH

files in /usr/atria/config/ui/bitmaps

or in directories on $BITMAP_PATH

file characteristics

ClearCase file type

name of bitmap file

Figure 12. Bitmap Lookup Procedure

If the file system object is selected, this process includes an extra step: xclearcase tries to match a -selected

icon rule for each relevant file type before accepting a bitmap specified by -icon. For example, the fol-
lowing rule specifies both generic and ‘‘when selected’’ icons for use with elements of type text_file:
text_file : -icon text -selected text_selected;

Selecting and deselecting a text_file object from a file browser toggles between the two icons.

Search Paths
ClearCase supports search paths both for icon files and for bitmap files:
g Icon file search path — If ICON_PATH is set in your environment (to a colon-separated list of direc-

tories), xclearcase searches files with a .icon suffix in these directories. In each directory, files are pro-
cessed in alphabetical order. As soon as ClearCase finds a matching rule, the search ends; thus, if
multiple rules match a file type, the first rule encountered wins.

If ICON_PATH is not set, this default search path is used:

home-directory/.icon:${ATRIAHOME:-/usr/atria}/config/ui/icon

g Bitmap file search path — If BITMAP_PATH is set in your environment (to a colon-separated list of
directories), xclearcase searches for bitmap files with a .60 suffix in these directories.

310 ClearCase Reference Manual

ClearCase data structure cc.icon
hh

If BITMAP_PATH is not set, this default search path is used:

home-directory/.bitmaps:${ATRIAHOME:-/usr/atria}/config/ui/bitmaps

ClearCase also supports search paths for magic files; see the cc.magic manual page for details.

EXAMPLES
g For file type c_source, use the icon file named c. When a c_source element is selected, use the icon file

c_select.
c_source : -icon c -selected c_select;

g For file type postscript, use the icon file named ps.
postscript : -icon ps ;

SEE ALSO
cc.magic

May 1994 311

cc.magic ClearCase data structure
hh

NAME cc.magic, default.magic − ClearCase file typing rules

SYNOPSIS
g File-typing rule:

file-type-list : selection-expression ;

g File type list:

file-type [file-type ...]

g Selection expression:

selection-op [arg(s)] [logical-op selection-op [arg(s)]] ...

DESCRIPTION
A magic file contains an ordered set of file-typing rules, which ClearCase uses to determine a list of file types
for an existing file system object, or for one that is about to be created. A rule can use the object’s name,
its file(1) or stat(2) data, or its contents. File-typing involves searching one or more magic files for the first
rule that matches a file system object; finding a match yields a single file type or an ordered list of file
types; failing to find a match produces an error. ClearCase performs file-typing in these situations:
g When you create a new element with mkelem, but you do not specify an element type (with −eltype),

the element’s name is file−typed. (If you are converting a view−private file to an element with mkelem

-ci or mkelem -nco, the file’s contents are also used in the file-typing.) The resulting file type list is
compared with the VOB’s set of element types: the first file type that matches an element type is
chosen as the element type; if no file type matches any existing element type, an error occurs:
cleartool: Error: Can’t pick element type from rules ...

g The ClearCase directory browsers have a graphical mode, in which each file system object is
displayed as an icon. The icon is selected by first file-typing the object, then using one of its file types
to select a bitmap from the ones listed in an icon file. (See the cc.icon manual page.)

Following are examples of file-typing rules:
directory : -stat d ;
c_source source text_file : -printable & -name "*.c" ;
sh_script script text_file : -printable & (-name ".profile" | -name "*.sh") ;
archive library file: !-printable & -name "*.a" ;

Search Path
ClearCase supports a search path for magic files. If MAGIC_PATH is set in your environment (to a
colon-separated list of directories), xclearcase searches files with a .magic suffix in these directories. In each
directory, files are processed in alphabetical order. As soon as ClearCase finds a matching rule, the search
ends; thus, if multiple rules match a file type, the first rule encountered wins.

If MAGIC_PATH is not set, this default search path is used:

home-directory/.magic:${ATRIAHOME:-/usr/atria}/config/magic

312 ClearCase Reference Manual

ClearCase data structure cc.magic
hh

FILE-TYPING RULES
Each file-typing rule has the following format:

file-type-list : selection-expression ;

A single text line can contain multiple rules. Conversely, a single rule can span several lines — each inter-
mediate line must end with a backslash (\) character. A line that begins with a pound-sign (#) character is
a comment.

NOTE: The semicolon (;) character that terminates a rule must be separated from the preceding charac-
ters by white space.

FILE TYPE LIST
A file-type-list is an ordered list of one or more names, separated by white space. Only letters, digits, and
underscore (_) characters are permitted in these names. Depending on the file-typing situation, each
name should match either an element type defined in some VOB, or an icon name specified in an icon file.
To avoid errors, always make the final name one of ClearCase’s predefined element types: file, text_file, or
directory. (These names are also included in the system-default icon file.)

Following are some file-type-list examples:
text_file
backup_dir directory
manual_page text_file
cplusplus_src src_file text_file

Here is a scenario that calls for a lengthy file type list:

Your host mounts several VOBs, in which different sets of element types are defined. Perhaps one VOB
defines element type bshell for Bourne shell scripts, another VOB defines element type shell_script for all
shell scripts, and yet another VOB does not define any special element type for scripts. Your file-typing
rules must be appropriate for all the VOBs. For example:
bshell shell_script text_file : -name "*.sh" ;
shell_script text_file : -name "*.csh" ;

With the above file-typing rules, xclearcase would use the file type text_file to select the same icon for all
shell script files. A user who wished to distinguish Bourne shell scripts from C shell scripts might add a
cshell file type, and create different bitmaps to correspond to the unique file types bshell and cshell.

Magic File:
bshell shell_script text_file : -name "*.sh" ;
cshell shell_script text_file : -name "*.csh" ;

Icon File:
bshell : bourne_shell_icon.bmap ;
cshell : C_shell_icon.bmap ;

SELECTION EXPRESSION
A selection-expression consists of one or more selection operators and their arguments, connected by logical
operators. Examples:
-name "*.c"
-name "*.[ch]

May 1994 313

cc.magic ClearCase data structure
hh

-name "*.c" | -name "*.h"
-printable
!-printable
-stat d

Selection Operators and Arguments
Any abbreviation of a selection operator name is accepted. For example, you can abbreviate −name to −n,
−na, or −nam.

All string arguments must be enclosed in double-quotes. Use \" to include a double-quote character in a
string argument.

In the file system object already exists, any of the selection operators listed below can produce a match. If
you are determining the file type for a non-existent object (for example, one that is about to be created),
only the −name operator can produce a match.

−−name pattern
Matches an object’s simple file name (leaf name) against the specified pattern. pattern is a
double-quoted string, and can include any ClearCase wildcard, except for ellipsis (...). See
the wildcards_ccase manual page for a complete list.

−−stat stat_char
Matches an object against the specified stat(2) file type. stat_char is a single character:

r regular file
d directory
c character device
b block device
f FIFO (named pipe)
s socket
l symbolic link

NOTE: The selection expression -stat l & -stat r is TRUE for a symbolic link that points
to a regular file. In general, however, testing for symbolic links is not particularly useful.
xclearcase displays an icon for the object it finds at the end of a chain of symbolic links.

−−magic byte_offset, data_type, value
−−magic byte_offset, string

Matches an object against a magic value in the UNIX tradition: a number or string at a
specified offset within the object’s first physical block (512 bytes).

byte_offset The byte offset from the beginning of the file.

data_type The architecture-specific data format of the numeric value argument that fol-
lows:

byte value is an 8-bit byte.

l_short value is a little-endian 16-bit shortword.

314 ClearCase Reference Manual

ClearCase data structure cc.magic
hh

b_short value is a big-endian 16-bit shortword.

l_long value is a little-endian 32-bit longword.

b_long value is a big-endian 32-bit longword.

value A numeric magic value, expressed as an integer in hex, octal, or decimal:

0x ... a hexadecimal value

0 ... an octal value

... (any other form) a decimal value

string A non-numeric magic value, expressed as a double-quoted string.

−−printable Matches an object if it is a printable file:

− Its first block must contain only characters evaluating to TRUE by the X/Open isprint and
isspace routines.

− Its first block must have an average line length ≤ 256.

−−token string
Matches an object if the specified double-quoted string occurs in its first physical block (512
bytes).

−−file string Matches an object if the leading characters in its file(1) command output match the specified
double-quoted string.

Logical Operators
File-typing rules can use the following logical operators, listed in decreasing order of precedence:

() parentheses for grouping
! unary NOT
& logical AND
&& logical AND
|| logical OR
|||| logical OR

NOTE: The effect of the unary NOT operator may depend on whether or not an object exists. It cannot
produce a match if the selection operator is ‘‘inappropriate’’ — for example, attempting to stat a non-
existent object:

(produces a match when file−typing the name of an existing directory)! -stat f
(fails to produce a match when file−typing a name for which no object currently exists)! -stat f

EXAMPLES
g Assign the file types source_file and text_file to files whose file name suffix is .c or .h.

source_file text_file : -name "*.c" | -name "*.h" ;

g Assign the file types cplusplus_source and text_file to printable files whose file name suffix is .cxx or c++.
cplusplus_source text_file : -printable & (-name "*.cxx" | -name "*.c++") ;

May 1994 315

cc.magic ClearCase data structure
hh

g Assign the file types csh_script and text_file to printable files that begin with the character string #!, and
whose first block contains the string csh.
csh_script text_file : -printable & -magic 0,"#!" & -token "csh" ;

g Assign the file type directory to all directory objects.
directory : -stat d ;

g Assign the file types cpio and file to objects that the standard UNIX file(1) programs reports as ‘‘cpio
archive’’.
cpio file : -file "cpio archive" ;

FILES
/usr/atria/config/magic/default.magic

SEE ALSO
cleartool subcommands: mkelem, mkeltype
cc.icon, wildcards_ccase, file(1), stat(2)

316 ClearCase Reference Manual

ClearCase user command clearaudit
hh

NAME clearaudit − non-clearmake build and shell command auditing facility

SYNOPSIS
clearaudit [shell_cmd]

DESCRIPTION
Runs an audited shell with the same view and working directory as the current process. MVFS files created
within an audited shell (or any of its children) are derived objects (DOs). When it exits, an audited shell
creates a configuration record (CR) and associates it with each of the newly-created DOs.

The CR and DOs produced by clearaudit are similar to those created by clearmake. They can be listed, com-
pared, and deleted with the same cleartool commands used for other DOs (see below). They can be shared
with other views through explicit winkin commands, but they cannot be winked-in by clearmake. They can
be checked in as DO versions. See the config_record manual page for more on CRs produced by clearaudit.

clearaudit determines which program to run as follows:
g first choice — the value of environment variable CLEARAUDIT_SHELL, which must be the full path-

name of a program ...
g second choice — the value of environment variable SHELL, which must be the full pathname of a

program, or ...
g if neither of the above is set — the Bourne shell, /bin/sh.

The process from which you invoke clearaudit must have a view context: set view or working directory view.
In either case, the audited process is set to that view. An error occurs if the invoking process has no view
context, or if its working directory view differs from its set view. (See the pwv manual page.)

By default, clearaudit creates temporary build audit files in directory /tmp. You can set environment vari-
able CLEARCASE_BLD_AUDIT_TMPDIR to specify an alternate location. All temporary files are deleted
when clearaudit exits. CLEARCASE_BLD_AUDIT_TMPDIR must not name a directory under a VOB-tag;
if it does, clearaudit displays an error message and exits.

Auditing Any Process
clearaudit can be used to document the work performed by any process. For example, you can use clearau-
dit to audit the creation of a tar(1) file, producing a configuration record that describes exactly which files
and/or versions were written to tape. See the ‘‘EXAMPLES’’ section.

Auditing a non-ClearCase ’make’
You can also use clearaudit to produce derived objects and configuration records for software builds per-
formed with another make program, such as UNIX make(1). Follow these guidelines:
g Set SHELL=/usr/atria/bin/clearaudit in the makefile.
g To prevent recursive invocation of clearaudit, set your process’s CLEARAUDIT_SHELL environment

variable to your normal shell (for example, /bin/sh).
g If you want to produce a single CR for each target’s build script, structure your makefiles so that each

build script is a single shell command. Use continuation lines (\), as necessary.

May 1994 317

clearaudit ClearCase user command
hh

Auditing a Shell Script
A shell script that begins with the following line is automatically executed in an audited shell:
#! /usr/atria/bin/clearaudit

Be sure that the process from which the script is invoked has CLEARAUDIT_SHELL set, as described
above.

OPTIONS AND ARGUMENTS
shell_cmd One or more words, which are passed as arguments to $CLEARAUDIT_SHELL (or $SHELL,

or /bin/sh).

EXAMPLES
g Run program myscr in an audited C shell.
% env SHELL=/bin/csh clearaudit myscr

g Run program validation_suite in an audited Korn shell.
% setenv CLEARAUDIT_SHELL /bin/ksh

% clearaudit validation_suite

g Following is a typical CR produced by clearaudit. It describes all files produced by a software build with
UNIX make. View-private files are marked with time-modified stamps.
Target ClearAudit_Shell built by block.user
Host "starfield" running IRIX 4.0.1 (IP6)
Reference Time 16-May-92.10:24:08, this audit started 16-May-92.10:24:08
View was starfield:/usr/people/block/cc_views/view.bl62
Initial working directory was /vobs/doc/reference_man/test

MVFS objects:

/vobs/doc/reference_man/test/hello@@16-May.10:25.16742
/vobs/doc/reference_man/test/hello.c <16-May-92.10:11:34>
/vobs/doc/reference_man/test/hello.o@@16-May.10:25.16740
/vobs/doc/reference_man/test/makefile <16-May-92.10:23:57>

g Run a script that produces a tape backup in an audited shell; create an empty derived object (tar_do)
whose CR will list all of the backed-up objects.
audit_tar /dev/tape /usr/project

Script audit_tar:
#! /usr/atria/bin/clearaudit
#
echo "Audited tar backup of: $2"
tar -cvf $1 $2

echo "Creating derived object ’tar_do’"
echo "" > ./tar_do

exit 0

318 ClearCase Reference Manual

ClearCase user command clearaudit
hh

SEE ALSO
cleartool subcommands: catcr, diffcr, lsdo, pwv, rmdo, setview
clearmake, config_record, scrubber
make(1), sh(1), tar(1)

May 1994 319

clearbug ClearCase user command
hh

NAME clearbug − create problem report for Atria Customer Support

SYNOPSIS
clearbug [−−short | −−s]

DESCRIPTION
clearbug gathers information from your current processing context: date/time, version of operating sys-
tem, versions of ClearCase tools, your UNIX and ClearCase contexts, system error logs, and so on. It
sends this information to stdout, from which you can cut-and-paste it into a problem report for Atria Cus-
tomer Support.

clearbug is self-documenting, displaying detailed instructions as it prompts you for information.

Send the problem report to your ClearCase support organization. The relevant information for the Atria
Customer Support group follows.
g By postal service — Our mailing address is:

Customer Support Department
Atria Software, Inc.
24 Prime Park Way
Natick, MA 01760

g By electronic mail — Our Internet address is:
support@atria.com

OPTIONS AND ARGUMENTS
−−short or −−s

Suppresses the initial explanatory text, and proceeds straight to the first prompt.

320 ClearCase Reference Manual

ClearCase administration command clearcvt_ccase
hh

NAME clearcvt_ccase − copy ClearCase data to a different VOB

SYNOPSIS
clearcvt_ccase [−−I date-time | −−s date-time] [−−r] [−−n] [−−o script-dir-pname]

[−−p file-pname] [−−e file-pname] [source-name ...]

DESCRIPTION
The clearcvt_ccase utility plays a central role in cross-VOB maintenance:
g moving an element from one VOB to another
g moving a directory element, along with all the elements and links cataloged within it, from one VOB

to another
g moving an entire hierarchy of directory elements, file elements, and VOB links from one VOB to

another
g splitting a VOB into two or more VOBs

In all these tasks, clearcvt_ccase does not itself delete any data from the original VOB — it creates conver-
sion scripts that copy data to another location, (presumably) in a different VOB. To complete a move or a
split, you must ‘‘get rid’’ of the original elements:
g Using rmelem on the original data actually removes the data from the VOB. This reclaims disk space

— likely to be the motivation for performing the maintenance. But once elements are removed, you
can no longer regenerate old source configurations that included them, and you cannot rebuild the
corresponding software releases.

g Using rmname on the original data makes it disappear from the directory hierarchy, but does not
reclaim any disk space. This strategy allows old source configurations to be regenerated, and old
releases to be rebuilt.

What Gets Converted / What Does Not
This section describes in detail what aspects of ClearCase objects are converted by clearcvt_ccase. Note
that much, but not all of the associated meta-data is converted.

Directory Elements. clearcvt_ccase does not convert entire directory elements. Rather, it converts the con-
tents of (the elements and links cataloged in) one particular version of a directory — the version selected
by the current view. Thus, even converting an entire VOB might miss some of the VOB’s elements — the
ones that are not included in the VOB namespace, as it is currently configured by the view.

File Elements. For each file element, clearcvt_ccase converts the element itself, along with some or all of its
versions. Command options control which versions are converted.

If the element has a user-defined element type, an error occurs if the conversion script is executed in a
VOB in which that element type is not defined. (No effort is made to verify that the element type is
defined the same way in both VOBs.) Any attributes attached to an element object itself are not con-
verted.

May 1994 321

clearcvt_ccase ClearCase administration command
hh

Versions of File Elements. For each file element version it processes, clearcvt_ccase converts the version’s
contents, its version labels, and its attributes. Checked-out versions are never converted; the conversion
script issues a warning message and otherwise ignores a checked-out version.

Information Not Converted. clearcvt_ccase does not convert hyperlinks or triggers. Exception: hyperlinks
that represent merges (those of type Merge) are converted.

The contents of a VOB’s lost+found are converted only if you make it the current directory before entering
the clearcvt_ccase command.

CONVERSION PROCESS
The conversion process consists of two stages: export and import.

Export Stage
Any user can enter the ’clearcvt_ccase’ command that implements the export stage.

The export stage takes place in the VOB where the data to be moved resides. clearcvt_ccase creates a set of
conversion scripts (Bourne shell scripts), containing commands to create elements, branches, versions, and
associated meta-data.

In the import stage, you will use the master conversion script to invoke all the individual scripts. If any of
the files to be converted reside below (rather than in) the current working directory, the master conver-
sion script also includes commands to create corresponding directory element(s).

For each element it processes, clearcvt_ccase extracts versions and writes a conversion script that either
g creates a new element with the same versions as the original, or
g checks out an existing element (optionally, on a branch) and checks in a new version for each original

version that has not already been converted.

You can execute the master conversion script in the background by ending the command line with an
ampersand character (&). But a failure may occur if you attempt to suspend execution by typing a SUSP
or SWTCH character (typically, <Ctrl-Z>).

Import Stage
Only a VOB’s owner or the root user can run the conversion scripts that implement the import stage (unless
’clearcvt_ccase −n’ option was used to create the scripts).

The import stage takes place within an existing VOB, in a shell whose view uses the ClearCase default
config spec. In this stage, you execute the master conversion script created by clearcvt_ccase, populating
the VOB with new elements and versions. These changes to the VOB are documented with event records:
g Each time an individual script creates a new file element, an import file element event record is

stored in the VOB database, along with the standard create element event record. It is associated
with the parent directory element, not with the new file element itself. Heuristic: the ‘‘import’’ event
record is created only if the object is more than 24 hours old.

322 ClearCase Reference Manual

ClearCase administration command clearcvt_ccase
hh

g Each time a script creates a new version, the standard create version event record is annotated
with the comment from the original version.

g The import file element event record is always stamped with the current time. The create

version and create element event records are timestamped according to the original data (unless
clearcvt_ccase -n was used to create the conversion scripts).

g The event record for the creation of a branch gets the same timestamp as the branch’s first version.
g The event record for the attaching of an attribute gets the same timestamp as the associated version.
g Event records for the creation of directory elements and type objects are stamped with the current

time.

Incremental Conversion and Restartability. The conversion scripts created by clearcvt_ccase can skip cer-
tain versions, or entire elements, during the import stage. This capability enables valuable features:
g You can convert one element to another in several conversion passes. You might use incremental

conversion for time-budgeting reasons (there are too many versions to convert all at once), or because
the original element is still under development.

g If execution of the master conversion script terminates prematurely for any reason, you can restart it;
it will skip versions it has already converted, effectively resuming where it left off.

CAUTION: Conversion scripts created with clearcvt_ccase -n are not restartable.

An import script decides whether to skip an element using a heuristic: if the target branch of the target
element already has a version created at the same time (or later than) the most recent version in the
source element, the source element is skipped. You can suppress this element-skipping algorithm by run-
ning the conversion script in an environment where CVT_UPDATE is set to any non-null string. This
forces the conversion script to consider converting each source version.

For each source version, an import script will decline to create a corresponding version if it already exists
on the target branch — that is, if it has the same time-modified stamp (or a more recent one). But even
when it bypasses version-creation, the import script still updates the new version’s meta-data (for exam-
ple, version labels) using information from the source version.

Background Execution of the Import Stage. You can execute the master conversion script in the back-
ground by ending the command line with an ampersand character (&). But a failure may occur if you
attempt to suspend execution by typing a SUSP or SWTCH character (typically, <Ctrl-Z>).

Special Characters in File Names
clearcvt_ccase can handle file names that include some, but not all, of the characters that are special to the
UNIX shells. Conversion fails for any file name that includes any of these characters:

‘ ’ " <Space> <Tab> [] ? *

For example:

Succeeds Fails
foo&bar foo bar
$MY_LIB yellow’sunset
yellow(Y) dog*bert

May 1994 323

clearcvt_ccase ClearCase administration command
hh

OPTIONS AND ARGUMENTS
Storage Location of Conversion Scripts. Default: Subdirectory cvt_dir is created in the current working
directory, and all the conversion scripts are stored there. An error occurs if ./cvt_dir already exists.

−−o script-dir-pname
Creates the specified directory and stores the conversion scripts there. An error occurs if the
directory already exists.

Handling of Directory Arguments. The source-name argument specifies the version of a directory ele-
ment currently selected by your view. By default: (1) a directory element will be created in the target
VOB for source-name itself; (2) for each file element cataloged in the currently-selected version of source-
name, an individual conversion script is created (3) for each directory element cataloged in the currently-
selected version of source-name, an empty directory element will be created in the target VOB — the con-
tents of such (sub)directory elements are ignored.

−−r clearcvt_ccase descends recursively into all source-name arguments that are directories. The
recursive descent involves only the currently-selected version of each directory element.

Preprocessing / Postprocessing. Default: The import stage consists solely of the execution of the
ClearCase-generated commands in the conversion scripts.

−−p file-pname
Copies the contents of file-pname into the master conversion script. This file must contain one
or more commands executable in a Bourne shell. The command(s) will be executed before
any files are converted.

−−e file-pname
Copies the contents of file-pname into the master conversion script. This file must contain one
or more commands executable in a Bourne shell. The command(s) will be executed after all
files are converted.

Transcription of History Information. Default: clearcvt_ccase extracts historical information from each
element and places it in the element’s conversion script. Thus, new versions will have the same stat(2)
information — user, group, and time-modified stamp — as the original versions. The create version

and create element event records created by the conversion script also get this original information.

−−n Event records and stat information for new elements and versions reflect the ‘‘who’’ and
‘‘when’’ of the execution of the conversion script, not the original data.

CAUTION: Using this option creates conversion scripts that are not restartable.

Selective Conversion of Files. Default: clearcvt_ccase converts entire elements.

−−I date-time Converts ‘‘important’’ versions only, but includes all versions created since the specified time.
Important versions are those with labels, those at which branches were created, and those at
the ends of branches. The time is specified as follows:

date-time := date.time | date | time | now
date := day-of-week | long-date
day-of-week := today | yesterday | Sunday | .. | Saturday | Sun | .. | Sat
long-date := d[d]−−month[−−[yy]yy]

324 ClearCase Reference Manual

ClearCase administration command clearcvt_ccase
hh

month := January | ... | December | Jan | ... | Dec
time := h[h]:m[m][:s[s]]

Specify the time in 24-hour format, relative to the local time zone. If you omit the time, it
defaults to 00:00:00. If you omit the date, it defaults to today. If you omit the century,
year, or a specific date, the most recent one is used. Dates before January 1, 1970 UCT are
invalid.

−−s date-time This option is designed for regular, incremental updating of an element from another one that is still
under development. Be sure to specify a ’date-time’ that covers the entire period since the preceding
update. In other situations, it is probably better to use ’−I’ instead of ’−s’.

Only versions created since the specified time are processed. Exception: a branch created at
an ‘‘old’’ version is converted if one or more ‘‘new’’ versions exist on the branch, or if environ-
ment variable CVT_UPDATE is set to a non-null value.

NOTE: In an incremental updating situation, removal of a label or branch from an imported
version is not propagated to the target element.

Specifying Files to be Converted. Default: The current working directory (equivalent to specifying ‘‘.’’ as
the source-name argument). Each element in the current working directory will be recreated in the target
VOB; a directory element will be created in the target VOB for each subdirectory of the current working
directory.

source-name ...
One or more pathnames, specifying elements and/or directory versions:

− For each specified element, the conversion script will recreate some or all of its versions.

− For each specified directory version, conversion scripts are created for all the elements it
catalogs. Commands are placed in the master conversion script to create a directory ele-
ment for the specified directory itself, and for its subdirectories.

Each source-name must be a simple file or directory name. This enables the conversion scripts
to reliably access the source data when they are executed. Specifying the parent directory (..)
causes an error, as does any pathname that includes a slash (/) character.

Thus, before entering this command, you should change to the directory where (or under
which) the elements to be converted reside.

EXAMPLES
g Create conversion scripts for the entire tree under directory element src, converting only versions created

since the beginning of 1993.
% clearcvt_ccase −r −s 1−Jan−1993 src

g Create conversion scripts for the elements in the current working directory, but not in any subdirectories;
store the scripts in a new subdirectory newcvt, of your home directory.
% clearcvt_ccase −o ˜/newcvt .

May 1994 325

clearcvt_ccase ClearCase administration command
hh

SEE ALSO
cleartool subcommands: chtype, protect, rntype, setview
clearcvt_dsee, clearcvt_rcs, clearcvt_sccs, clearcvt_unix, events_ccase
rcs(1), rsh(1) or remsh(1), sccs(1)

326 ClearCase Reference Manual

ClearCase administration command clearcvt_dsee
hh

NAME clearcvt_dsee − convert DSEE elements to ClearCase elements

SYNOPSIS
clearcvt_dsee [−−I date-time | −−s date-time] [−−r] [−−n] [−−o script-dir-pname]

[−−p file-pname] [−−e file-pname] [−−T translation-file]
[source-name ...]

DESCRIPTION
clearcvt_dsee converts data created by versions 3.3.n and 4.n of the Domain Software Engineering Environ-
ment (DSEE), running under Domain/OS Version SR10.n. clearcvt_dsee is a Domain/OS executable; it can-
not be run on UNIX systems.

The following DSEE constructs are converted directly to the like-named ClearCase constructs: elements,
branches, obsolete branches, versions, and version labels.

CONVERSION PROCESS
The conversion process consists of two stages: export and import.

Export Stage
Any user can enter the ’clearcvt_dsee’ command that implements the export stage.

The export stage takes place in the VOB where the data to be moved resides. clearcvt_dsee creates a set of
conversion scripts (Bourne shell scripts), containing commands to create elements, branches, versions, and
associated meta-data.

In the import stage, you will use the master conversion script to invoke all the individual scripts. If any of
the files to be converted reside below (rather than in) the current working directory, the master conver-
sion script also includes commands to create corresponding directory element(s).

For each DSEE element it processes, clearcvt_dsee extracts versions and writes a conversion script that
either
g creates a new element with the same versions as the original, or
g checks out an existing element (optionally, on a branch) and checks in a new version for each original

version that has not already been converted.

You can execute the master conversion script in the background by ending the command line with an
ampersand character (&). But a failure may occur if you attempt to suspend execution by typing a SUSP
or SWTCH character (typically, <Ctrl-Z>).

May 1994 327

clearcvt_dsee ClearCase administration command
hh

Import Stage
Only a VOB’s owner or the root user can run the conversion scripts that implement the import stage (unless
’clearcvt_dsee −n’ option was used to create the scripts).

The import stage takes place within an existing VOB, in a shell whose view uses the ClearCase default
config spec. In this stage, you execute the master conversion script created by clearcvt_dsee, populating
the VOB with new elements and versions. These changes to the VOB are documented with event records:
g Each time an individual script creates a new file element, an import file element event record is

stored in the VOB database, along with the standard create element event record. It is associated
with the parent directory element, not with the new file element itself. Heuristic: the ‘‘import’’ event
record is created only if the object is more than 24 hours old.

g Each time a script creates a new version, the standard create version event record is annotated
with the comment from the original version.

g The import file element event record is always stamped with the current time. The create

version and create element event records are timestamped according to the original data (unless
clearcvt_dsee -n was used to create the conversion scripts).

g The event record for the creation of a branch gets the same timestamp as the branch’s first version.
g The event record for the attaching of an attribute gets the same timestamp as the associated version.
g Event records for the creation of directory elements and type objects are stamped with the current

time.

Incremental Conversion and Restartability. The conversion scripts created by clearcvt_dsee can skip cer-
tain DSEE versions, or entire DSEE elements, during the import stage. This capability enables valuable
features:
g You can convert a DSEE element to a ClearCase element in several conversion passes. You might use

incremental conversion for time-budgeting reasons (there are too many versions to convert all at
once), or because the DSEE element is still under development.

g If execution of the master conversion script terminates prematurely for any reason, you can restart it;
it will skip versions it has already converted, effectively resuming where it left off.

CAUTION: Conversion scripts created with clearcvt_dsee -n are not restartable.

An import script decides whether to skip an entire DSEE element using a heuristic: if the target branch of
the ClearCase element already has a version created at the same time (or later than) the most recent ver-
sion in the source DSEE element, the DSEE element is skipped. You can suppress this element-skipping
algorithm by running the conversion script in an environment where CVT_UPDATE is set to any non-null
string. This forces the conversion script to consider converting each DSEE version.

For each DSEE version, an import script will decline to create a corresponding version if it already exists
on the target ClearCase branch — that is, if it has the same time-modified stamp (or a more recent one).
But even when it bypasses version-creation, the import script still updates the new version’s meta-data
(for example, version labels) using information from the DSEE version.

328 ClearCase Reference Manual

ClearCase administration command clearcvt_dsee
hh

Background Execution of the Import Stage. You can execute the master conversion script in the back-
ground by ending the command line with an ampersand character (&). But a failure may occur if you
attempt to suspend execution by typing a SUSP or SWTCH character (typically, <Ctrl-Z>).

SPECIAL CHARACTERS IN FILE NAMES
clearcvt_dsee can handle file names that include some, but not all, of the characters that are special to the
UNIX shells. Conversion fails for any file name that includes any of these characters:

‘ ’ " <Space> <Tab> [] ? *

For example:

Succeeds Fails
foo&bar foo bar
$DSEE_LIB yellow’sunset
yellow(Y) dog*bert

TRANSLATION OF BRANCHES AND VERSION LABELS
DSEE allows branches and version labels to have the same names; but a label type cannot have the same
name as a branch type (within the same VOB). If clearcvt_dsee encounters a label-branch naming conflict,
it renames one of them. For example, the DSEE version label rel2 might become the ClearCase label
type rel2___1. Such renaming can introduce inconsistencies over multiple runs of clearcvt_dsee. The
same label might be renamed during conversion of some DSEE libraries, but remain unchanged during
conversion of others. You can enforce consistency by using the same converter translation file in multiple
invocations of clearcvt_dsee. If you name such a file, using the −−T option, clearcvt_dsee uses it to:
g Look up each DSEE label or branch to see how to translate it to a ClearCase label type or branch type.

If a match is found, the DSEE label or branch is translated the same way.
g Record each translation of a new DSEE label or branch, for use in future lookups.

The first time you use clearcvt_dsee, use −T to create a new translation file. On subsequent invocations of
clearcvt_dsee, use −T again, specifying the same translation file, for consistent name translation.

Each line of the translation file has three fields, indicating one DSEE-to-ClearCase translation:

1. the keyword label or branch

2. a DSEE label or branch

3. the corresponding ClearCase label type or branch type

REMOTE ACCESS TO DSEE LIBRARIES
The conversion scripts created by clearcvt_dsee contain commands of this form:

rcp ${CLEARCASE_REMOTE_USER}hostname://hostname/path_to_dseelib/file

In such commands, hostname specifies the host on which the DSEE source library resides. Make sure that
such rcp(1) commands will succeed before running the conversion scripts. Setting the environment vari-
able CLEARCASE_REMOTE_USER may help at sites where Domain/OS hosts have dissimilar password
files. For example, setting this EV to jones@ effectively converts target hostname jupiter to jones@jupiter.

May 1994 329

clearcvt_dsee ClearCase administration command
hh

CAUTION: The rcp command uses the size_cache value for each DSEE version. This value may be
incorrect for versions created with releases prior to DSEE 3.3, causing problems: if the value is too small,
the file is truncated during the copy; if the value is too big, the last blocks of the file are copied multiple
times. Before converting a DSEE library, be sure that all of its elements’ size_cache values are correct. To
fix an incorrect value, use the DSEE command recover library -add_size_cache -force. (This can
be quite time-consuming!)

OPTIONS AND ARGUMENTS
Storage Location of Conversion Scripts. Default: Subdirectory cvt_dir is created in the current working
directory, and all the conversion scripts are stored there. An error occurs if ./cvt_dir already exists.

−−o script-dir-pname
Creates the specified directory and stores the conversion scripts there. An error occurs if the
directory already exists.

Handling of Directory Arguments. The source-name argument specifies the version of a directory ele-
ment currently selected by your view. By default: (1) a directory element will be created in the target
VOB for source-name itself; (2) for each file element cataloged in the currently-selected version of source-
name, an individual conversion script is created (3) for each directory element cataloged in the currently-
selected version of source-name, an empty directory element will be created in the target VOB — the con-
tents of such (sub)directory elements are ignored.

−−r clearcvt_dsee descends recursively into all source-name arguments that are directories. The
recursive descent involves only the currently-selected version of each directory element.

Preprocessing / Postprocessing. Default: The import stage consists solely of the execution of the
ClearCase-generated commands in the conversion scripts.

−−p file-pname
Copies the contents of file-pname into the master conversion script. This file must contain one
or more commands executable in a Bourne shell. The command(s) will be executed before
any files are converted.

−−e file-pname
Copies the contents of file-pname into the master conversion script. This file must contain one
or more commands executable in a Bourne shell. The command(s) will be executed after all
files are converted.

Transcription of History Information. Default: clearcvt_dsee extracts historical information from each
DSEE element and places it in the element’s conversion script. Thus, new versions will have the same
stat(2) information — user, group, and time−modified stamp — as the original versions. The create

version and create element event records created by the conversion script also get this original infor-
mation.

−−n Event records and stat information for new elements and versions reflect the ‘‘who’’ and
‘‘when’’ of the execution of the conversion script, not the original data.

CAUTION: Using this option creates conversion scripts that are not restartable.

330 ClearCase Reference Manual

ClearCase administration command clearcvt_dsee
hh

Handling of Branches and Version Labels. Default: As described above in the section ‘‘Translation of
Branches and Version Labels’’, clearcvt_dsee may automatically rename a branch or label type on import to
avoid naming conflicts.

−−T translation-file
Uses the specified converter translation file to control the mapping from DSEE branches and
version labels to ClearCase branch and label types.

Selective Conversion of Files. Default: clearcvt_dsee converts entire DSEE elements.

−−I date-time Converts ‘‘important’’ versions only, but includes all versions created since the specified time.
Important versions are those with labels, those at which branches were created, and those at
the ends of branches. The time is specified as follows:

date-time := date.time | date | time | now
date := day-of-week | long-date
day-of-week := today | yesterday | Sunday | .. | Saturday | Sun | .. | Sat
long-date := d[d]−−month[−−[yy]yy]
month := January | ... | December | Jan | ... | Dec
time := h[h]:m[m][:s[s]]

Specify the time in 24-hour format, relative to the local time zone. If you omit the time, it
defaults to 00:00:00. If you omit the date, it defaults to today. If you omit the century,
year, or a specific date, the most recent one is used. Dates before January 1, 1970 UCT are
invalid.

−−s date-time This option is designed for regular, incremental updating of a ClearCase element from a DSEE element
that is still under development. Be sure to specify a ’date-time’ that covers the entire period since the
preceding update. In other situations, it is probably better to use ’−I’ instead of ’−s’.

Only DSEE versions created since the specified time are processed. Exception: a branch
created at an ‘‘old’’ version is converted if one or more ‘‘new’’ versions exist on the branch, or
if environment variable CVT_UPDATE is set to a non-null value.

NOTE: In an incremental updating situation, removal of a label or branch from a DSEE ver-
sion is not propagated to the ClearCase element.

Specifying Files to be Converted. Default: The current working directory (equivalent to specifying ‘‘.’’ as
the source-name argument). Each element in the current working directory will be recreated in the target
VOB; a directory element will be created in the target VOB for each subdirectory of the current working
directory.

source-name ...
One or more pathnames, specifying elements and/or directory versions:

− For each specified element, the conversion script will recreate some or all of its versions.

− For each specified directory version, conversion scripts are created for all the elements it
catalogs. Commands are placed in the master conversion script to create a directory ele-
ment for the specified directory itself, and for its subdirectories.

May 1994 331

clearcvt_dsee ClearCase administration command
hh

Each source-name must be a simple file or directory name. This enables the conversion scripts
to reliably access the source data when they are executed. Specifying the parent directory (..)
causes an error, as does any pathname that includes a slash (/) character.

Thus, before entering this command, you should change to the directory where (or under
which) the elements to be converted reside.

EXAMPLES
g Create conversion scripts for a single DSEE element.
% clearcvt_dsee lib.c

g Convert three DSEE elements in the current working directory to elements in VOB directory
/usr/src/project/include; store the conversion scripts in directory cvt_include.
% clearcvt_dsee −o cvt_include lib{1,2,3}.h

% set S = ‘pwd‘

% cd /usr/src/project/include

% $S/cvt_include/cvt_script

SEE ALSO
cleartool subcommands: chtype, protect, setview
clearcvt_ccase, clearcvt_rcs, clearcvt_sccs, clearcvt_unix, events_ccase
rcs(1), rsh(1) or remsh(1), sccs(1)

332 ClearCase Reference Manual

ClearCase administration command clearcvt_rcs
hh

NAME clearcvt_rcs − convert RCS files to ClearCase elements

SYNOPSIS
clearcvt_rcs [−−I date-time | −−s date-time] [−−r] [−−n] [−−o script-dir-pname]

[−−p file-pname] [−−e file-pname] [−−V] [−−T translation-file] [−−S]
[source-name ...]

DESCRIPTION
Any user can create conversion scripts with this utility. If the ’−n’ option is not used to create the scripts, only the
VOB owner or the ’root’ user can run them. We recommend that the VOB owner run the scripts, to minimize the
likelihood of permissions problems in multiple-host conversion situations.

clearcvt_rcs converts Revision Control System (RCS) files into ClearCase elements and versions. The source
data for a conversion can range from a single file an entire directory tree.

clearcvt_rcs ignores most information in RCS files that is not related to version-tree structure. It converts
each RCS symbol, which names a revision or branch, into the appropriate ClearCase construct: version
label or branch. (You can specify a translation file to control this conversion, enforcing consistency over
multiple invocations of clearcvt_rcs.) You can use the −S and −V options to preserve RCS state attributes
and RCS revisions numbers as attributes of the corresponding ClearCase versions.

RCS Files, Working Files, and Locks
clearcvt_rcs works directly with the structured RCS files, which have the ,v file name suffix. It does not
convert the working files created with co and co -l commands; it merely issues warning messages indi-
cating which files are checked-out. Be sure to check in working files with the ci command before running
the converter.

Other than the issuing of warning messages for checked-out files clearcvt_rcs ignores all RCS locks.

RCS files can (but need not) be ‘‘buried’’ in RCS subdirectories; if they are, the subdirectory level is col-
lapsed in the conversion process — for example, RCS file ./proj/RCS/main.c,v becomes element
./proj/main.c.

CONVERSION PROCESS
The conversion process consists of two stages: export and import.

Export Stage
Any user can enter the ’clearcvt_rcs’ command that implements the export stage.

The export stage takes place in the area where the RCS files reside. clearcvt_rcs creates a set of conversion
scripts (Bourne shell scripts), containing commands to create elements, branches, and versions.

In the import stage, you will use the master conversion script to invoke all the individual scripts. If any of
the files to be converted reside below (rather than in) the current working directory, the master conver-
sion script also includes commands to create corresponding directory element(s).

For each RCS file it processes, clearcvt_rcs extracts versions and writes a conversion script that either

May 1994 333

clearcvt_rcs ClearCase administration command
hh

g creates a new element and checks in a version for each RCS revision, or
g checks out an existing element (optionally, on a branch), and checks in a new version for each RCS

revision that has not already been converted

clearcvt_rcs automatically ‘‘chases’’ symbolic links it encounters during the export stage.

Import Stage
Only a VOB’s owner or the root user can run the conversion scripts that implement the import stage (unless
’clearcvt_rcs −n’ option was used to create the scripts).

The import stage takes place within an existing VOB, in a shell whose view uses the ClearCase default
config spec. In this stage, you execute the master conversion script created by clearcvt_rcs, populating the
VOB with new elements and versions. These changes to the VOB are documented with event records:
g Each time an individual script creates a new file element, an import file element event record is

stored in the VOB database, along with the standard create element event record. It is associated
with the parent directory element, not with the new file element itself. Heuristic: the ‘‘import’’ event
record is created only if the object is more than 24 hours old.

g Each time a script creates a new version, the standard create version event record is annotated
with the comment from the RCS revision.

g The import file element event record is always stamped with the current time. The create

version and create element event records are timestamped according to the original RCS data
(unless clearcvt_rcs -n was used to create the conversion scripts).

g The event record for the creation of a branch gets the same timestamp as the branch’s first version.
g The event record for the attaching of an attribute gets the same timestamp as the associated version.
g Event records for the creation of directory elements and type objects are stamped with the current

time.

Incremental Conversion and Restartability. The conversion scripts created by clearcvt_rcs can skip cer-
tain RCS revisions, or entire RCS files, during the import stage. This capability enables valuable features:
g You can convert an RCS file to a ClearCase element in several conversion passes. You might use

incremental conversion for time-budgeting reasons (there are too many revisions to convert all at
once), or because the RCS file is still under development.

g If execution of the master conversion script terminates prematurely for any reason, you can restart it;
it will skip revisions it has already converted, effectively resuming where it left off.

CAUTION: Conversion scripts created with clearcvt_rcs -n are not restartable.

An import script decides whether to skip an entire RCS file using a heuristic: if the target branch of the
ClearCase element already has a version created at the same time (or later than) the most recent revision
in the source RCS file, the element is skipped. You can suppress this element-skipping algorithm by run-
ning the conversion script in an environment where CVT_UPDATE is set to any non-null string. This
forces the conversion script to consider converting each RCS revision.

334 ClearCase Reference Manual

ClearCase administration command clearcvt_rcs
hh

For each RCS revision, an import script will decline to create a corresponding version if it already exists
on the target ClearCase branch — that is, if it has the same time-modified stamp (or a more recent one).
But even when it bypasses version-creation, the import script still updates the version’s meta-data (for
example, version labels) using information from the RCS revision.

Background Execution of the Import Stage. You can execute the master conversion script in the back-
ground by ending the command line with an ampersand character (&). But a failure may occur if you
attempt to suspend execution by typing a SUSP or SWTCH character (typically, <Ctrl-Z>).

SPECIAL CHARACTERS IN FILE NAMES
clearcvt_rcs can handle file names that include some, but not all, of the characters that are special to the
UNIX shells. Conversion fails for any file name that includes any of these characters:

‘ ’ " <Space> <Tab> [] ? *

For example:

Succeeds Fails
foo&bar foo bar
$RCS_LIB yellow’sunset
yellow(Y) dog*bert

HANDLING OF RCS SYMBOLS
An RCS symbol is a (presumably) mnemonic name for a particular revision or branch of an RCS file.
clearcvt_rcs translates the symbols to version labels and branch names (more precisely, to names of label
types and branch types).
g Translation to version labels — Suppose an RCS symbol, RLS_1.3, names a revision, 3.5. In the

conversion script for that revision, clearcvt_rcs places commands to create label type RLS_1.3, and to
assign a label of that type to the ClearCase version created from the RCS revision.

g Translation to branch names — Suppose an RCS symbol, rls_1.3_fixes, names a branch, 3.5.1.
clearcvt_rcs outputs conversion-script commands to create branch type rls_1.3_fixes, and to create a
branch of that type at the ClearCase version created from RCS revision 3.5.

Single-digit symbols that name RCS branches are not converted, since there is no ClearCase concept of a
‘‘subbranch’’ of the main branch. If an RCS symbol includes characters that are not valid in names of label
types or branch types, the offending characters are replaced by dot (.) characters. For example, the RCS
symbol C++ would have C.. as its ClearCase translation.

A label type cannot have the same name as a branch type (within the same VOB). If the same RCS symbol
names both a revision and a branch — not necessarily in the same RCS file — clearcvt_rcs renames one of
them. For example, after converting a symbol FX354, which names a branch, it might encounter the same
symbol as the name of a revision in another RCS file. In this case, it would create and use label type
FX354___1 in the ClearCase element.

Converter Translation File
This renaming of RCS symbols can introduce inconsistencies over multiple runs of clearcvt_rcs. The same
symbol might be renamed during conversion of some RCS files, but remain unchanged during conversion
of other files. You can enforce consistency by using the same converter translation file in multiple

May 1994 335

clearcvt_rcs ClearCase administration command
hh

invocations of clearcvt_rcs. If you name such a file, using the −T option, clearcvt_rcs uses it to:
g Look up each RCS symbol to see how to translate it to a ClearCase label type or branch type. If a

match is found, the symbol is translated the same way.
g Record each translation of a new RCS symbol, for use in future lookups.

The first time you use clearcvt_rcs, use −T to create a new translation file. On subsequent invocations of
clearcvt_rcs, use −T again, specifying the same translation file, for consistent name translation.

Each line of the translation file has three fields, indicating one RCS-to-ClearCase translation:

1. the keyword label or branch

2. an RCS symbol

3. the corresponding ClearCase label type or branch type

VERSION TREE STRUCTURE AFTER CONVERSION
Revisions on the main branch of an RCS file have two-digit identifiers (for example, 1.2). These revi-
sions become versions on the main branch of the ClearCase element, as illustrated in Figure 13.

1.0

1.1

1.2

2.0

3.0

3.1

0

1

2

3

4

5

6

hhhhhhhhhhhhh

hhhhhhhhhhhhh

hhhhhhhhhhhhh

hhhhhhhhhhhhh

hhhhhhhhhhhhh

hhhhhhhhhhhhh

RCS ClearCase

main

Figure 13. Conversion of RCS Revisions

Note that the ‘‘major revision’’ substructure in the RCS revision tree is lost in the translation — all the RCS
revisions become versions on the main branch. (But you can use the −V option to preserve this informa-
tion in the form of attributes attached to the versions.)

336 ClearCase Reference Manual

ClearCase administration command clearcvt_rcs
hh

Revisions on subbranches of an RCS file have four-digit identifiers (for example, 1.2.1.5). These revi-
sions become versions on subbranches of the ClearCase element, as illustrated in Figure 14.

1.2

1.2.1.1

1.2.1.2

1.2.1.3

1.2.1.4

3 hhhhhhhhhhhh1.2.1 0

1

2

3

4

hhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhh

RCS ClearCase

main

Figure 14. Conversion of RCS Subbranches

The conversion script creates branch types with three-digit names (1.2.1 in the example above). Thus,
RCS revision 1.2.1.3 becomes version 3 on branch 1.2.1.

OPTIONS AND ARGUMENTS
Storage Location of Conversion Scripts. Default: Subdirectory cvt_dir is created in the current working
directory, and all the conversion scripts are stored there. An error occurs if ./cvt_dir already exists.

−−o script-dir-pname
Creates the specified directory and stores the conversion scripts there. An error occurs if the
directory already exists.

Handling of Directory Arguments. Default: If a UNIX directory is specified as a source-name argument:
(1) the RCS files in that directory are converted; (2) a directory element is created for source-name and for
each of its subdirectories; (3) the contents of the subdirectories are ignored.

−−r clearcvt_rcs descends recursively into all source-name arguments that are directories.

Preprocessing / Postprocessing. Default: The import stage consists solely of the execution of the
ClearCase-generated commands in the conversion scripts.

−−p file-pname
Copies the contents of file-pname into the master conversion script. This file must contain one
or more commands executable in a Bourne shell. The command(s) will be executed before
any files are converted.

May 1994 337

clearcvt_rcs ClearCase administration command
hh

−−e file-pname
Copies the contents of file-pname into the master conversion script. This file must contain one
or more commands executable in a Bourne shell. The command(s) will be executed after all
files are converted.

Transcription of History Information. Default: clearcvt_rcs extracts historical information from each RCS
file and places it in the conversion script. (It also makes some system calls, such as getgrgid(3), to supple-
ment this information.) Thus, the corresponding ClearCase version will have the same stat(2) information
— user, group, and time−modified stamp — as the original RCS revision. The create version and
create element event records created by the conversion script also get this original information.

−−n Event records and stat information for new elements and versions reflect the ‘‘who’’ and
‘‘when’’ of the execution of the conversion script, not the original data.

CAUTION: Using this option creates conversion scripts that are not restartable.

Handling of Branches and Labels. Default: As it converts RCS symbols to version labels and branch
names, clearcvt_rcs does not enforce consistency over multiple source files. This means, for example, that
the same symbol in two RCS files might be converted to different version labels in the ClearCase ele-
ments.

−−T translation-file
Uses the specified converter translation file to control and record the conversion of RCS sym-
bols to version labels and branch names. See the ‘‘Converter Translation File’’ section above.

Selective Conversion of Files. Default: clearcvt_rcs converts all RCS revisions it finds.

−−I date-time Converts ‘‘important’’ revisions only, but includes all revisions created since the specified
time. Important revisions are those with labels, those at which branches were created, and
those at the ends of branches. The time is specified as follows:

date-time := date.time | date | time | now
date := day-of-week | long-date
day-of-week := today | yesterday | Sunday | .. | Saturday | Sun | .. | Sat
long-date := d[d]−−month[−−[yy]yy]
month := January | ... | December | Jan | ... | Dec
time := h[h]:m[m][:s[s]]

Specify the time in 24-hour format, relative to the local time zone. If you omit the time, it
defaults to 00:00:00. If you omit the date, it defaults to today. If you omit the century,
year, or a specific date, the most recent one is used. Dates before January 1, 1970 UCT are
invalid.

−−s date-time This option is designed for regular, incremental updating of an element from an RCS file that is still
under development. Be sure to specify a ’date-time’ that covers the entire period since the preceding
update. In other situations, it is probably better to use ’−I’ instead of ’−s’.

Only RCS revisions created since the specified time are processed. Exceptions: a label
attached to an ‘‘old’’ revision is converted; a branch created at an ‘‘old’’ revision is converted if
one or more ‘‘new’’ revisions exist on the branch, or if environment variable CVT_UPDATE is
set to a non-null value.

338 ClearCase Reference Manual

ClearCase administration command clearcvt_rcs
hh

NOTE: In an incremental updating situation, removal of a label or branch from an RCS revi-
sion is not propagated to the ClearCase element.

Specifying Files to be Converted. Default: The current working directory (equivalent to specifying ‘‘.’’ as
the source-name argument). Each RCS file in the current working directory will be converted; a directory
element will be created for each subdirectory of the current working directory (except one named RCS).

source-name ...
One or more pathnames, specifying RCS files and/or directories:

− For each specified RCS file, a script is created to convert some or all of its RCS revisions
to ClearCase versions.

− For each specified directory, conversion scripts are created for all the RCS files it contains.
Commands are placed in the master conversion script to create a directory element for
the specified directory itself, and for its subdirectories (except one named RCS).

Each source-name must be a simple file or directory name. This enables the conversion scripts
to reliably access the source data when they are executed. Specifying the parent directory (..)
causes an error, as does any pathname that includes a slash (/) character.

Thus, before entering this command, you should change to the directory where (or under
which) the RCS files to be converted reside. If the RCS files reside in RCS subdirectories, use
the −r option to enable clearcvt_rcs to find them.

Preservation of RCS Information as Attributes. Default: No attributes are attached to versions con-
verted from RCS revisions.

−−V Attaches an attribute of type RCS_REVISION to each newly-created version. The string value
of the attribute is the RCS revision number of the converted revision. (The conversion script
creates attribute type RCS_REVISION, if necessary.)

Each attribute requires about 1Kb of storage in the VOB database.

−−S If an RCS revision’s state is not the default (Exp), attaches an attribute of type RCS_REVISION
to the newly-created version. The string value of the attribute is the RCS state attribute of the
converted revision.

EXAMPLES
g Create conversion scripts for a single RCS file.
% clearcvt_rcs myprogram.c,v

g Convert three RCS files in the current working directory to elements in VOB directory
/usr/src/project/include; store the conversion scripts in directory cvt_include, and discard the RCS files’ his-
tory information.
% clearcvt_rcs −o cvt_include −n bgr{1,2,3}.h,v

% set S = ‘pwd‘

% cd /usr/src/project/include

% $S/cvt_include/cvt_script

May 1994 339

clearcvt_rcs ClearCase administration command
hh

SEE ALSO
cleartool subcommands: chtype, protect, rntype, setview
clearcvt_ccase, clearcvt_dsee, clearcvt_sccs, clearcvt_unix, rcs(1), rsh(1) or remsh(1), sccs(1)

340 ClearCase Reference Manual

ClearCase administration command clearcvt_sccs
hh

NAME clearcvt_sccs − convert SCCS files to ClearCase elements

SYNOPSIS
clearcvt_sccs [−−I date-time | −−s date-time] [−−r] [−−n] [−−o script-dir-pname]

[−−p file-pname] [−−e file-pname] [−−B branch-id] [−−V]
[−−T translation-file]
[source-name ...]

DESCRIPTION
Any user can create conversion scripts with this utility. If the ’−n’ option is not used to create the scripts, only the
VOB owner or the ’root’ user can run them. We recommend that the VOB owner run the scripts, to minimize the
likelihood of permissions problems in multiple-host conversion situations.

clearcvt_sccs converts Source Code Control System (SCCS) files into ClearCase elements and versions. The
source data for a conversion can range from a single file to an entire directory tree.

clearcvt_sccs ignores information in SCCS files that is not related to version-tree structure; this includes
flags, id keywords, user lists, and Modification Request numbers. You can use the −V option to preserve
SCCS-IDs as attributes of the corresponding ClearCase versions.

S-Files, G-Files, and P-Files
clearcvt_sccs works directly with the structured SCCS s-files, which have the s. file name prefix. It does
not convert the g-files created with get and get -e commands; it merely issues warning messages indi-
cating which files are checked out. Be sure to check in such files with the delta command before running
the converter.

Other than the issuing of warning messages for checked-out files, clearcvt_sccs ignores the p-files created
by get -e.

The s-files can (but need not) be ‘‘buried’’ in SCCS subdirectories; if they are, the subdirectory level is col-
lapsed in the conversion process — for example, SCCS file ./proj/SCCS/s.main.c becomes element
./proj/main.c.

Multiple-Pass Conversion
You can convert an SCCS file in several passes. For example, you might use clearcvt_sccs to convert major
revision level 1, and subsequently use clearcvt_sccs again to convert major revision level 2. On the subse-
quent passes, the conversion scripts will update an existing element correctly if that element has not be
modified in the interim.

CONVERSION PROCESS
The conversion process consists of two stages: export and import.

Export Stage
Any user can enter the ’clearcvt_sccs’ command that implements the export stage.

The export stage takes place in the area where the SCCS files reside. clearcvt_sccs creates a set of conversion
scripts (Bourne shell scripts), containing commands to create elements, branches, and versions.

May 1994 341

clearcvt_sccs ClearCase administration command
hh

In the import stage, you will use the master conversion script to invoke all the individual scripts. If any of
the files to be converted reside below (rather than in) the current working directory, the master conver-
sion script also includes commands to create corresponding directory element(s).

For each SCCS s-file it processes, clearcvt_sccs extracts versions and writes a conversion script that either
g creates a new element and checks in a version for each SCCS revision, or
g checks out an existing element (optionally, on a branch) and checks in new version for each SCCS

revision that has not already been converted

clearcvt_sccs automatically ‘‘chases’’ symbolic links it encounters during the export stage.

Import Stage
Only a VOB’s owner or the root user can run the conversion scripts that implement the import stage (unless
’clearcvt_sccs −n’ option was used to create the scripts).

The import stage takes place within an existing VOB, in a shell whose view uses the ClearCase default
config spec. In this stage, you execute the master conversion script created by clearcvt_sccs, populating the
VOB with new elements and versions. These changes to the VOB are documented with event records:
g Each time an individual script creates a new file element, an import file element event record is

stored in the VOB database, along with the standard create element event record. It is associated
with the parent directory element, not with the new file element itself. Heuristic: the ‘‘import’’ event
record is created only if the object is more than 24 hours old.

g Each time a script creates a new version, the standard create version event record is annotated
with the comment from the SCCS revision.

g The import file element event record is always stamped with the current time. The create

version and create element event records are timestamped according to the original SCCS data
(unless clearcvt_sccs -n was used to create the conversion scripts).

g The event record for the creation of a branch gets the same timestamp as the branch’s first version.
g The event record for the attaching of an attribute gets the same timestamp as the associated version.
g Event records for the creation of directory elements and type objects are stamped with the current

time.

Incremental Conversion and Restartability. The conversion scripts created by clearcvt_sccs can skip cer-
tain SCCS revisions, or entire SCCS files, during the import stage. This capability enables valuable
features:
g You can convert an SCCS file to a ClearCase element in several conversion passes. You might use

incremental conversion for time-budgeting reasons (there are too many revisions to convert all at
once), or because the SCCS file is still under development.

g If execution of the master conversion script terminates prematurely for any reason, you can restart it;
it will skip revisions it has already converted, effectively resuming where it left off.

342 ClearCase Reference Manual

ClearCase administration command clearcvt_sccs
hh

CAUTION: Conversion scripts created with clearcvt_sccs -n are not restartable.

An import script decides whether to skip an entire SCCS file using a heuristic: if the target branch of the
ClearCase element already has a version created at the same time (or later than) the most recent revision
in the source SCCS file, the element is skipped. You can suppress this element-skipping algorithm by
running the conversion script in an environment where CVT_UPDATE is set to any non-null string. This
forces the conversion script to consider converting each SCCS revision.

For each SCCS revision, an import script will decline to create a corresponding version if it already exists
on the target ClearCase branch — that is, if it has the same time-modified stamp (or a more recent one).
But even when it bypasses version-creation, the import script still updates the version’s meta-data (for
example, version labels) using information from the SCCS revision.

Background Execution of the Import Stage. You can execute the master conversion script in the back-
ground by ending the command line with an ampersand character (&). But a failure may occur if you
attempt to suspend execution by typing a SUSP or SWTCH character (typically, <Ctrl-Z>).

SPECIAL CHARACTERS IN FILE NAMES
clearcvt_sccs can handle file names that include some, but not all, of the characters that are special to the
UNIX shells. Conversion fails for any file name that includes any of these characters:

‘ ’ " <Space> <Tab> [] ? *

For example:

Succeeds Fails
foo&bar foo bar
$SCCS_LIB yellow’sunset
yellow(Y) dog*bert

VERSION TREE STRUCTURE AFTER CONVERSION
Revisions on the main branch of an SCCS file have two-digit identifiers (for example, 1.2). These revi-
sions become versions on the main branch of the ClearCase element, as illustrated in Figure 15.

May 1994 343

clearcvt_sccs ClearCase administration command
hh

1.0

1.1

1.2

2.0

3.0

3.1

0

1

2

3

4

5

6

hhhhhhhhhhhhh

hhhhhhhhhhhhh

hhhhhhhhhhhhh

hhhhhhhhhhhhh

hhhhhhhhhhhhh

hhhhhhhhhhhhh

SCCS ClearCase

main

Figure 15. Conversion of SCCS Revisions

Note that the ‘‘major revision’’ substructure in the SCCS revision tree is lost in the translation — all the
SCCS revisions become versions on the main branch. (But you can use the −V option to preserve this
information in the form of attributes attached to the versions.)

Revisions on subbranches of an SCCS file have four-digit identifiers (for example, 1.2.1.5). These revi-
sions become versions on subbranches of the ClearCase element, as illustrated in Figure 16.

344 ClearCase Reference Manual

ClearCase administration command clearcvt_sccs
hh

1.2

1.2.1.1

1.2.1.2

1.2.1.3

1.2.1.4

3 hhhhhhhhhhhh1.2.1 0

1

2

3

4

hhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhh

SCCS ClearCase

main

Figure 16. Conversion of SCCS Subbranches

The conversion script creates branch types with three-digit names (1.2.1 in the example above). Thus,
SCCS revision 1.2.1.3 becomes version 3 on branch 1.2.1.

Branches Off Branches
Although it is not illustrated in the example above, clearcvt_sccs can handle SCCS files that include
branches off branches.

CONVERTER TRANSLATION FILE
You can use a converter translation file to control the names of ClearCase branches created from SCCS
branches. If you name such a file, using the −−T option, clearcvt_sccs uses it to:
g Look up each SCCS branch-id to see how to translate it to the name of a branch type. If a match is

found, the branch-id is translated the same way.
g Record each translation of a new SCCS branch-id, for use in future lookups.

The first time you use clearcvt_sccs, use −T to create a new translation file. On subsequent invocations of
clearcvt_sccs, use −T again, specifying the same translation file, for consistent name translation.

Each line of the translation file has three fields, indicating one SCCS-to-ClearCase translation:

1. the keyword branch (Translation files for use with some other converters can also have the keyword
version.)

2. an SCCS branch-id

3. the corresponding ClearCase branch type

Thus, you might create a translation file containing the following line to have all SCCS ‘‘3.0.1’’ branches
become ClearCase phoenix_proj branches:
branch 3.0.1 phoenix_proj

May 1994 345

clearcvt_sccs ClearCase administration command
hh

OPTIONS AND ARGUMENTS
Storage Location of Conversion Scripts. Default: Subdirectory cvt_dir is created in the current working
directory, and all the conversion scripts are stored there. An error occurs if ./cvt_dir already exists.

−−o script-dir-pname
Creates the specified directory and stores the conversion scripts there. An error occurs if the
directory already exists.

Handling of Directory Arguments. Default: If a UNIX directory is specified as a source-name argument:
(1) the s-files in that directory are converted; (2) a directory element is created for source-name and for each
of its subdirectories; (3) the contents of the subdirectories are ignored.

−−r clearcvt_sccs descends recursively into all source-name arguments that are directories.

Preprocessing / Postprocessing. Default: The import stage consists solely of the execution of the
ClearCase-generated commands in the conversion scripts.

−−p file-pname
Copies the contents of file-pname into the master conversion script. This file must contain one
or more commands executable in a Bourne shell. The command(s) will be executed before
any files are converted.

−−e file-pname
Copies the contents of file-pname into the master conversion script. This file must contain one
or more commands executable in a Bourne shell. The command(s) will be executed after all
files are converted.

Transcription of History Information. Default: clearcvt_sccs extracts historical information from each s-
file and places it in the conversion script. (It also makes some system calls, such as getgrgid(3), to supple-
ment this information.) Thus, the corresponding ClearCase version will have the same stat(2) information
— user, group, and time−modified stamp — as the original SCCS revision. The create version and
create element event records created by the conversion script also get this original information.

−−n Event records and stat information for new elements and versions reflect the ‘‘who’’ and
‘‘when’’ of the execution of the conversion script, not the original data.

CAUTION: Using this option creates conversion scripts that are not restartable.

Branch Name Translation. Default: As described above in the section ‘‘Version Tree Structure after
Conversion’’, clearcvt_sccs creates ClearCase branch names based on the SCCS revision IDs.

−−T translation-file
Uses the specified converter translation file to control the mapping between SCCS branches
and ClearCase branches. See the ‘‘Converter Translation File’’ section above.

Selective Conversion of Files. Default: clearcvt_sccs converts all SCCS revisions it finds.

−−I date-time Converts ‘‘important’’ revisions only, but includes all revisions created since the specified
time. Important revisions are those with labels, those at which branches were created, and
those at the ends of branches. The time is specified as follows:

date-time := date.time | date | time | now

346 ClearCase Reference Manual

ClearCase administration command clearcvt_sccs
hh

date := day-of-week | long-date
day-of-week := today | yesterday | Sunday | .. | Saturday | Sun | .. | Sat
long-date := d[d]−−month[−−[yy]yy]
month := January | ... | December | Jan | ... | Dec
time := h[h]:m[m][:s[s]]

Specify the time in 24-hour format, relative to the local time zone. If you omit the time, it
defaults to 00:00:00. If you omit the date, it defaults to today. If you omit the century,
year, or a specific date, the most recent one is used. Dates before January 1, 1970 UCT are
invalid.

−−s date-time This option is designed for regular, incremental updating of an element from an SCCS file that is still
under development. Be sure to specify a ’date-time’ that covers the entire period since the preceding
update. In other situations, it is probably better to use ’−I’ instead of ’−s’.

Only SCCS revisions created since the specified time are processed. Exception: a branch
created at an ‘‘old’’ revision is converted if one or more ‘‘new’’ revisions exist on the branch,
or if environment variable CVT_UPDATE is set to a non-null value.

NOTE: In an incremental updating situation, removal of a branch from an SCCS revision is
not propagated to the ClearCase element.

Specifying Files to be Converted. Default: The current working directory (equivalent to specifying ‘‘.’’ as
the source-name argument). Each s-file in the current working directory will be converted; a directory ele-
ment will be created for each subdirectory of the current working directory (except one named SCCS).

source-name ...
One or more pathnames, specifying s-files and/or directories:

− For each specified s-file, a script is created to convert some or all of its SCCS revisions to
ClearCase versions.

− For each specified directory, conversion scripts are created for all the s-files it contains.
Commands are placed in the master conversion script to create a directory element for
the specified directory itself, and for its subdirectories (except one named SCCS).

Each source-name must be a simple file or directory name. This enables the conversion scripts
to reliably access the source data when they are executed. Specifying the parent directory (..)
causes an error, as does any pathname that includes a slash (/) character.

Thus, before entering this command, you should change to the directory where (or under
which) the s-files to be converted reside. If the s-files reside in SCCS subdirectories, use the −r
option to enable clearcvt_sccs to find them.

Selection of SCCS Data to be Converted. Default: All SCCS revisions in an s-file are converted to Clear-
Case versions.

−−B branch-id
Converts only the specified branch of an SCCS file, along with all the ancestor revisions of
that branch. You can specify a ‘‘true’’ branch with a three−digit branch−id. For example, −B
2.0.1 would convert all revisions 2.0.1.1, 2.0.1.2, and so on, along with revision 2.0 (where

May 1994 347

clearcvt_sccs ClearCase administration command
hh

the branch was created) and all ancestors of revision 2.0 on the main branch of the s-file.

Alternatively, you can specify a one-digit major revision number as the branch-id. For exam-
ple, -B 3 converts the subset of versions on the main branch whose major revision number is
3.

A conversion script created with this option locks the main branch of an element after updat-
ing it. This prevents potential conflicts on the main branch if you subsequently import the
entire SCCS file.

Preservation of SCCS-IDs as Attributes. Default: No attributes are attached to versions converted from
SCCS revisions.

−−V Attaches an attribute of type SCCS_ID to each newly-created version. The string value of the
attribute is the SCCS-ID of the converted SCCS revision. (The conversion script creates attri-
bute type SCCS_ID, if necessary.)

Each attribute requires about 1Kb of storage in the VOB database.

EXAMPLES
g Create conversion scripts for a single SCCS file.
% clearcvt_sccs s.myprogram.c

g Convert three SCCS files in the current working directory to elements in VOB directory
/usr/src/project/include; store the conversion scripts in directory cvt_include, and discard the SCCS files’ his-
tory information.
% clearcvt_sccs −o cvt_include −n s.bgr{1,2,3}.h

% set S = ‘pwd‘

% cd /usr/src/project/include

% $S/cvt_include/cvt_script

SEE ALSO
cleartool subcommands: chtype, protect, rntype, setview
clearcvt_ccase, clearcvt_dsee, clearcvt_rcs, clearcvt_unix, events_ccase, rcs(1), rsh(1) or remsh(1), sccs(1)

348 ClearCase Reference Manual

ClearCase administration command clearcvt_unix
hh

NAME clearcvt_unix − convert UNIX files to versions of ClearCase elements

SYNOPSIS
clearcvt_unix [−−s date-time] [−−r] [−−n] [−−L] [−−i] [−−o script-dir-pname]

[−−t temp-dir-pname] [−−p file-pname] [−−e file-pname]
[−−b target-branch [−−v version-id]] [source-name ...]

DESCRIPTION
Any user can create conversion scripts with this utility. But only the VOB owner or the ’root’ user can add ele-
ments and versions to a VOB using the conversion scripts. We recommend that the VOB owner run the scripts, to
minimize the likelihood of permissions problems in multiple-host conversion situations.

clearcvt_unix can convert standard UNIX files into ClearCase elements, and can use files to update existing
elements. The source data for a conversion can range from a single file to an entire directory tree.

NOTE: By default, clearcvt_unix converts every file in the current working directory, including ‘‘invisible’’
files (such as .exrc). Be sure to clean up text-editor backup files and other detritus before entering this
command.

CONVERSION PROCESS
The conversion process consists of two stages: export and import.

Export Stage
Any user can enter the ’clearcvt_unix’ command that implements the export stage.

The export stage takes place in the area where the original UNIX files reside. clearcvt_unix creates a set of
conversion scripts (Bourne shell scripts), containing commands to create elements, versions, and VOB sym-
bolic links. In the import stage, you will use the master conversion script to invoke all the individual
scripts. If any of the files to be converted reside below (rather than in) the current working directory, the
master conversion script also includes commands to create corresponding directory element(s).

For each file it processes, clearcvt_unix writes a conversion script that either
g creates a new element and checks in its first version, or
g checks out an existing element (optionally, on a branch) and checks in a new version

For each UNIX symbolic link it processes, clearcvt_unix places commands in the master conversion script
to create a VOB symbolic link. (Alternatively, you can use the −L option to have clearcvt_unix ‘‘chase
links’’.)

Import Stage
Only a VOB’s owner or the root user can run the conversion scripts that implement the import stage (unless
’clearcvt_unix −n’ option was used to create the scripts).

The import stage takes place within an existing VOB, in a shell whose view uses the ClearCase default
config spec. In this stage, you execute the master conversion script created by clearcvt_unix, populating
the VOB with new elements, versions, and links. These changes to the VOB are documented with event
records:

May 1994 349

clearcvt_unix ClearCase administration command
hh

g Each time an individual script creates a new file element, an import file element event record is
stored in the VOB database, along with the standard create element event record. It is associated
with the parent directory element, not with the new file element itself. Heuristic: the ‘‘import"’’ event
record is created only if the object is more than 24 hours old.

g Each time a script creates a new version, the standard create version event record is annotated
with the comment made from unix file. (You can specify another comment string with environ-
ment variable CVT_REPLACE_COMM.)

g Each time a script creates a new VOB symbolic link, a standard create symbolic link event record
is created.

g The import file element event record is always stamped with the current time. The create

version and create element event records are timestamped according to the original file data
(unless clearcvt_unix -n was used to create the conversion scripts).

g The event record for the creation of a branch gets the same timestamp as the branch’s first version.
g Event records for the creation of directory elements are stamped with the current time.

Restartability and Interruptibility
If the master conversion script was invoked previously but terminated prematurely, it attempts to resume
working where it left off. On a subsequent run, a file is converted to a version only if its time-modified
stamp is later than all existing versions on the target branch.

CAUTION: Conversion scripts created with clearcvt_unix -n create ClearCase versions that are
‘‘newer’’ than all the original files to be converted; thus, such scripts are not restartable.

You can execute the master conversion script in the background by ending the command line with an
ampersand character (&). But a failure may occur if you attempt to suspend execution by typing a SUSP
or SWTCH character (typically, <Ctrl-Z>).

SPECIAL CHARACTERS IN FILE NAMES
clearcvt_unix can handle file names that include some, but not all, of the characters that are special to the
UNIX shells. Conversion fails for any file name that includes any of these characters:

‘ ’ " <Space> <Tab> [] ? *

For example:

Succeeds Fails
foo&bar foo bar
$UNIX_LIB yellow’sunset
yellow(Y) dog*bert

OPTIONS AND ARGUMENTS
Storage Location of Conversion Scripts. Default: Subdirectory cvt_dir is created in the current working
directory, and all the conversion scripts are stored there. An error occurs if ./cvt_dir already exists.

350 ClearCase Reference Manual

ClearCase administration command clearcvt_unix
hh

−−o script-dir-pname
Creates the specified directory and stores the conversion scripts there. An error occurs if the
directory already exists.

Conversion of UNIX Symbolic Links. Default: Each UNIX symbolic link is converted to a VOB symbolic
link with the same link text.

−−L (‘‘chase the link’’) Converts the object to which a UNIX symbolic link points, instead of con-
verting the link itself.

Creation of Identical Successor Versions. Default: clearcvt_unix refuses to create a new version that is
identical to its predecessor.

−−i Creates a new version, even if it is identical to its predecessor.

Directory for Temporary Files. Default: clearcvt_unix and its conversion scripts use /tmp for temporary
files.

−−t temp-dir-pname
Specifies an alternate temporary file directory. This sets the value of
CVT_TEMP_DIRECTORY in the master conversion script, cvt_script. As an alternative to
using this option, edit cvt_script before running it, and change the value of this variable.

Creating New Version on a Branch. Default: New versions of a file or directory element are created on
the element’s main branch.

−−b target-branch [−−v version-id]
Converts each file to a version on branch target-branch of the new or existing element. When-
ever file conversion creates a new element in the target VOB, the parent directory element is
also revised on branch target-branch.

If branch type target-branch does not already exist in the target VOB, the conversion script
creates it. If an existing element already has a branch of this type, the new version will extend
this branch; otherwise, the conversion script will create a new branch at version
/main/LATEST (/main/0 for new elements), unless you also use −v to specify another location.

Handling of Directory Arguments. Default: If a UNIX directory is specified as a source-name argument:
(1) the files in that directory are converted; (2) a directory element is created for source-name and for each
of its subdirectories; (3) the contents of the subdirectories are ignored.

−−r clearcvt_unix descends recursively into all source-name arguments that are directories.

Preprocessing / Postprocessing. Default: The import stage consists solely of the execution of the
ClearCase-generated commands in the conversion scripts.

−−p file-pname
Copies the contents of file-pname into the master conversion script. This file must contain one
or more commands executable in a Bourne shell. The command(s) will be executed before
any files are converted.

May 1994 351

clearcvt_unix ClearCase administration command
hh

−−e file-pname
Copies the contents of file-pname into the master conversion script. This file must contain one
or more commands executable in a Bourne shell. The command(s) will be executed after all
files are converted.

Transcription of ’stat’ Information. Default: The conversion scripts create versions with the stat informa-
tion of the original file: user, group, and time-modified stamp. The create version, create element,
and create symbolic link event records created by the conversion script also get this original informa-
tion.

−−n Event records and stat information for new elements and versions reflect the ‘‘who’’ and
‘‘when’’ of the execution of the conversion script, not the original UNIX link.

The stat information for new VOB symbolic links is always taken from the run-time environ-
ment, not from the original data.

CAUTION: Using this option creates conversion scripts that are not restartable.

Selective Conversion of Files. Default: clearcvt_unix converts all files it encounters.

−−s date-time Only files modified since the specified moment are processed.

date-time := date.time | date | time | now
date := day-of-week | long-date
day-of-week := today | yesterday | Sunday | .. | Saturday | Sun | .. | Sat
long-date := d[d]−−month[−−[yy]yy]
month := January | ... | December | Jan | ... | Dec
time := h[h]:m[m][:s[s]]

Specify the time in 24-hour format, relative to the local time zone. If you omit the time, it
defaults to 00:00:00. If you omit the date, it defaults to today. If you omit the century,
year, or a specific date, the most recent one is used. Dates before January 1, 1970 UCT are
invalid.

Specifying Files to be Converted. Default: The current working directory (equivalent to specifying ‘‘.’’ as
the source-name argument). Each file and symbolic link in the current working directory will be con-
verted; a directory element will be created for each subdirectory of the current working directory.

source-name ...
One or more pathnames, specifying UNIX files, symbolic links, and/or directories:

− For each specified file, a script is created to convert it to a ClearCase version.

− For each specified directory, conversion scripts are created for all the files and symbolic
links it contains. Commands are placed in the master conversion script to create a direc-
tory element for the specified directory itself, and for its subdirectories.

Each source-name must be a simple file or directory name. This enables the conversion scripts
to reliably access the source data when they are executed. Specifying the parent directory (..)
causes an error, as does any pathname that includes a slash (/) character.

352 ClearCase Reference Manual

ClearCase administration command clearcvt_unix
hh

Thus, before entering this command, you should change to the directory where (or under
which) the standard UNIX files to be converted reside. To convert all the files in a single
directory, you can change either to that directory, or to its immediate parent.

EXAMPLES
Convert the standard UNIX directory tree /scratch/exper to a subdirectory of existing VOB directory
/src/proj.

Export Stage:
(go to parent of standard directory tree to be converted)% cd /scratch
(create the conversion script)% clearcvt_unix -r exper

clearcvt_unix -r gui
VOB directory element ".".
VOB directory element "exper".
Converting element "exper/ar.c" ...
Extracting element history ...
Completed.
Converting element ...
Creating element ...

...
Converting element ...
Creating element ...
Element "exper/util.c" completed.
Creating script file cvt_dir/cvt_script ...

Import Stage:
(become ’root’)% su
(set a view that has default config spec)# cleartool setview defvu
(go to VOB directory where data is to be imported)# cd /src/proj
(run the master conversion script)# /scratch/exper/cvt_dir/cvt_script

Converting files from /scratch/exper .
You are using the default config_spec
Checked out "./." from version "/main/18".
Created directory element "./exper".
Checked out "./exper" from version "/main/0".
Created element "./exper/ar.c" (type "text_file").
Changed protection on "./exper/ar.c".

...
Making version one of ./exper/ar.c

...
Checked out "./gui/browse.c" from version "/main/0".

...
Checked in "./exper" version "/main/1".
Checked in "./." version "/main/19".

SEE ALSO
cleartool subcommands: chtype, protect, rntype, setview
clearcvt_ccase, clearcvt_dsee, clearcvt_rcs, clearcvt_sccs, rcs(1), rsh(1) or remsh(1), sccs(1)

May 1994 353

cleardiff ClearCase user command
hh

NAME cleardiff − compare or merge text files

SYNOPSIS
g Compare files:

cleardiff [−−win.dow | −−tin .y] [−−dif .f_format | −−ser . ial_format | −−col .umns n]
[−−hea.ders_only | −−qui .et | −−sta . tus_only] [−−b.lank_ignore] pname1 pname2 ...

g Merge files:

cleardiff −−out output-pname [−−bas .e pname] [−−qal . l | −−abo.rt]
[−−win.dow | −−tin .y] [−−dif .f_format | −−ser . ial_format | −−col .umns n]
[−−hea.ders_only | −−qui .et | −−sta . tus_only] [−−b.lank_ignore] pname1 pname2 ...

DESCRIPTION
cleardiff is a line-oriented file comparison and merge utility with a character-based user interface. It can
process up to 32 files.

Alternative interfaces: cleardiff can be invoked with the cleartool diff subcommand to perform a file
comparison, or with the cleartool merge subcommand to perform a merge. ClearCase also includes a
corresponding GUI tool, xcleardiff. This tool can be invoked through cleartool, with the xdiff and xmerge
subcommands, and through xclearcase.

NOTE: You cannot compare directory versions with cleardiff; you must use diff or xdiff. (These com-
mands first analyze the directory versions, then call on cleardiff, using the type manager mechanism.)

See the diff and merge manual pages for discussions of how files are compared and merged.

OPTIONS AND ARGUMENTS
−−win.dow
−−tin .y (mutually exclusive)

−window creates a child process, which displays a side-by-side report in a separate 120-
character difference window. The diff command returns immediately. To exit the difference
window, type a UNIX INTR character (typically, <Ctrl-C>).

−tiny is the same as −window, but uses a smaller font in a 165-character difference window.

−−dif .f_format
−−ser . ial_format
−−col .umns n (mutually exclusive)

−diff_format reports both headers and differences in the same style as UNIX diff, and
suppresses the file summary from the beginning of the report.

−serial_format reports differences with each line containing output from a single file,
instead of using a side-by-side format.

−columns establishes the overall width of a side-by-side report. The default width is 80 (that
is, only the first 40 or so characters of corresponding difference lines appear). If n does not
exceed the default width, this option is ignored.

354 ClearCase Reference Manual

ClearCase user command cleardiff
hh

−−hea.ders_only
−−qui .et
−−sta . tus_only (mutually exclusive)

NOTE: Any of these options can be invoked with cleartool diff -options.

−headers_only lists only the header line of each pairwise difference. The difference lines
themselves are omitted.

−quiet suppresses the file summary from the beginning of the report.

−status_only suppresses all output, returning just an exit status: a 0 status indicates that no
differences were found; a 1 status indicates that one or more differences were found. This
option is useful in shell scripts.

−−out output-pname
Stores the output of a merge in file output-pname. This file is not used for input, and must not
already exist.

−−bas .e pname
Makes file pname the base file for the merge. If you omit this option, the pname1 argument
becomes the base file, and a merge automatically runs with the −qall option invoked.

−−abo.rt
−−qal . l (mutually exclusive)

−abort is intended for use with scripts or batch jobs that involve merges. It allows com-
pletely automatic merges to proceed, but aborts any merge that would require user interac-
tion.

−qall turns off automatic acceptance of changes in which only one contributor file differs
from the base file. cleardiff prompts for confirmation of such changes, just as it does when
two or more contributors differ from the base file.

−−b.lank_ignore
Causes cleardiff to ignore extra white space characters in text lines: leading and trailing white
space is ignored altogether; internal runs of white space characters are treated like a single
<Space> character.

pname1 pname2 ...
The pathnames of files to compare or merge. These can be view-extended or version-
extended pathnames. Only one such argument is required if you also specify a file with the
−base option.

EXAMPLES
g Compare the current version of an element with a scratch copy in your home directory.
% cleardiff msg.c ˜/msg.c.tmp

<<< file 1: msg.c
>>> file 2: /net/neptune/vobs/proj/src/msg.c.tmp

-------------[changed 5]--------|-----------[changed to 5]------------

static char msg[256]; | static char msg[BUFSIZ];

May 1994 355

cleardiff ClearCase user command
hh

-|-
------------[changed 9-11]------|-----------[changed to 9]------------

env_user(), | env_user(), env_home(), e+
env_home(), |-
env_time()); |

-|

g Compare the same files, this time in a separate window and using a small font.
% cleardiff −tiny msg.c ˜/msg.c.tmp

g Compare the most recent versions on two branches of an element.
% cleardiff util.c@@/main/LATEST util.c@@/main/rel2_bugfix/LATEST

SEE ALSO
cleartool subcommands: diff, merge, xdiff, xmerge
xcleardiff, type_manager, diff(1)

356 ClearCase Reference Manual

ClearCase user command clearlicense
hh

NAME clearlicense − monitor and control ClearCase license database

SYNOPSIS
clearlicense [−−hos.tid | −−rel .ease [username | user-ID] ...]

DESCRIPTION
NOTE: Some ClearCase hosts do not use the Atria-provided licensing scheme.

Reports the status of ClearCase’s user licensing facility. You can also use this command to release (revoke)
one or more users’ licenses, making them available to other users.

HOW CLEARCASE LICENSING WORKS
ClearCase implements an ‘‘active user’’ floating license scheme. To use ClearCase, you must obtain a
license, which grants you the privilege to use ClearCase commands and data on any number of hosts in
the local area network. When you run any ClearCase program, it attempts to obtain a license for you. If
you get one, you can keep it for an extended period: entering any ClearCase command automatically
renews it; but if you don’t enter any ClearCase command for a substantial period — by default, 60
minutes — another user can take your license. (Think of this as ‘‘use it or lose it’’.)

One or more hosts in the local area network are designated as ClearCase license server hosts. Each of these
hosts has a license database file, named /usr/adm/atria/license.db, which contains one or more license entries.
Each license entry defines a specified number of licenses, allowing that number of ClearCase users to be
active at the same time. See license.db for a description of the license database file format.

When you first attempt to use ClearCase software on any host in the network, a license-verification check
is made:

1. ClearCase software on your host reads the name of a license server host from file
/usr/adm/atria/config/license_host. (The administration directory is /var/adm on some platforms.)

2. It makes an RPC call to the ‘‘license server’’ process on that license server host, to verify your right to
use ClearCase. (The license server process is actually albd_server, performing these duties in addition
to its other tasks.)

3. The license server process determines your rights, and sends back an appropriate message.

4. Depending on the message sent by the license server, your command either proceeds or is aborted.

Subsequently, similar license-verification checks are performed on a periodic basis. The sections below
describe in detail how users get and lose licenses.

License Priorities
Each user can (but need not be) assigned a license priority in the license database file. Each user specified
in a −−user line gets a priority number: the first user gets priority 1 (highest priority), the second user gets
priority 2, and so on. All users who are not specified in any −−user line share the lowest priority.

May 1994 357

clearlicense ClearCase user command
hh

Getting a License
When you first run a ClearCase tool, or first enter a UNIX command to access VOB data though a view, a
license-verification request is made. In either of the following cases, you get a license and become an
active user:
g The current number of active users is less than the maximum number specified by the entry (or

entries) in the license database file. In this case, you are simply granted a license.
g All licenses are currently in use, but there is a user whose license priority is lower than yours. In this

case, you are allowed to bump that other user, getting his or her license.

Losing a License
When you get a license, its timeout period is set to 60 minutes. (A shorter timeout interval can be
configured in the license database file.) As you continue to use ClearCase commands and data, your
license is periodically refreshed (the timeout period is set to one hour again). If you do nothing
ClearCase-related for an hour, you lose your license — it becomes available to other users.

You can also lose your license before the one-hour timeout:
g As described above, a user with a higher license priority can ‘‘bump’’ you.
g You or another user can explicitly release (revoke) your license, using clearlicense -release.

It is perfectly possible to regain a license immediately after losing it.

License Expiration
Each license entry can have an expiration date. (The expiration time is at 00:00 hours on that date.) After
the expiration time, attempts to use a license from that license entry will succeed — with a warning mes-
sage — during a 24-hour grace period. After that, attempts to use those licenses will fail.

THE CLEARLICENSE REPORT
Following is a typical clearlicense report:
License server on host "neptune".
Running since Monday 4/04/94 15:53:13.

LICENSES:
Max-Users Expires Password [status]

19 none 2aae4b60.b4ac4f0f.02 [Valid]

Maximum active users allowed: 19
Current active users: 6
Available licenses: 13

ACTIVE users:
User Priority Time-out in
smith 2 59 minutes (at 10:44:20)
jones none 49 minutes (at 10:34:08)
akp 3 28 minutes (at 10:13:04)
adm 1 26 minutes (at 10:10:45)

jackson none 23 minutes (at 10:07:27)

License Usage Statistics:
2 licenses revoked today 4/14/94.
0 license requests denied.
0 active users bumped by preferred user.

358 ClearCase Reference Manual

ClearCase user command clearlicense
hh

The following sections explain the parts of this report.

License Server Field
The license server is the albd_server process on the license server host (neptune in the example above).
The report lists the time at which this process first processed a license-verification request.

Licenses
The information in this section is gathered from the license entry line(s) in the license database file,
/usr/adm/atria/license.db. Each such -license line generates a separate line in this report. The status value
can be:

Valid The expiration date (if any) for this set of licenses has not yet arrived.

Grace You are now in the 24-hour grace period following the expiration time.

Expired The grace period is over, and this set of licenses has expired.

The current active users number summarizes the information in the next section of the report.

Active Users
Each line in this section describes one active user. The priority none indicates that the user is not specified
in any −−user entry and, thus, has the lowest license priority.

License Usage Statistics
This section lists licensing activity statistics, compiled since the time the license server (albd_server) started
execution:
g the number of explicit license revocations that have occurred today (with −release)
g the number of times a user failed to get a license at all
g the number of times a license was automatically transferred to a higher priority user (bumping)

OPTIONS AND ARGUMENTS
Default: A report on licenses and user activity is displayed, in the format described above.

−−hos.tid Displays the local host’s machine identifier. Use this option when you wish to add licenses to
this host’s existing license database file, or when you wish to make this host an additional
license server host. Enter the output of this command as the ‘‘license server host ID’’ on the
License Registration Form to be FAXed to Atria Customer Support.

−−rel .ease [username | user-ID] ...
Specifies users (by username or by numeric user-ID) whose licenses are to be revoked. Using
−release without an argument causes your own license to be revoked. To discourage license
battles among users, albd_server prevents this option from being used an excessive number of
times during any single day.

May 1994 359

clearlicense ClearCase user command
hh

LICENSING ERRORS
This section describes errors typically encountered in ClearCase licensing.

Problems with License Host File
If the file /usr/adm/atria/config/license_host does not exist or is empty, this message appears:
mvfs: ERROR: view view-tag not licensed!
command-name: .: I/O error

In addition, error messages are displayed or are logged to /usr/adm/atria/log/view_log:
Error: You do not have a license to run ClearCase.

Error: Unable to open file "/usr/adm/atria/config/license_host":
No such file or directory.

Error: Your license server is not specified.
Create "/usr/adm/atria/config/license_host" and put the license server hostname in it.

Error: You do not have a license to run ClearCase.

Problems with License Server Host
If the license server host specified in the license_host file cannot be contacted, this message appears:
mvfs: ERROR: view view-tag not licensed!
command-name: .: I/O error

In addition, error messages are displayed or are logged to /usr/adm/atria/log/view_log:
Error: Cannot contact license server host "hostname"
defined in file /usr/adm/atria/config/license_host.

Error: You do not have a license to run ClearCase.

Losing a License
If you lose your license while a view is active, this message appears when you try to use ClearCase:
mvfs: ERROR: view shtest - all licenses in use!

SEE ALSO
albd_server, license.db

360 ClearCase Reference Manual

ClearCase user command clearmake
hh

NAME clearmake − ClearCase build utility / maintain, update, and regenerate groups of programs

SYNOPSIS
clearmake [−−f makefile ...] [−−ukinservdp]

[−−OTFUVMN] [−−C mode] [−−J num]
[−−A BOS-file] ...
[macro=value ...] [target_name ...]

DESCRIPTION
clearmake is ClearCase’s variant of the UNIX make(1) utility. It includes most of the features of UNIX Sys-
tem V make(1). It also features compatibility modes, which enable you to use clearmake with makefiles that
were constructed for use with other popular make variants.

clearmake features a number of ClearCase-specific extensions:
g Configuration Lookup — a build-avoidance scheme that is more sophisticated than the standard

scheme based on the time-modified stamps of built objects. It includes automatic dependency detection.
For example, this guarantees correct build behavior as C-language header files change, even if the
header files are not listed as dependencies in the makefile.

g Derived Object Sharing — developers working in different views can share the files created by clear-
make builds

g Creation of Configuration Records — ‘‘software bill-of-materials’’ records that fully document a
build and support rebuildability

Related Manual Pages
The following manual pages include information related to clearmake operations and results:

clearaudit Alternative to clearmake for performing audited builds.

clearmake.options Describes the use of build options specification files (BOS files).

makefile_ccase Describes clearmake-specific makefile facilities.

bldhost Describes the use of a build hosts file to control a distributed build.

bldserver.control Describes the server-side control facilities for a distributed build.

abe Describes the audited build executor server program that runs on a remote host in a
distributed build.

config_record Describes the configuration records created by clearmake or clearaudit.

derived_object Describes the derived objects created by clearmake or clearaudit.

lsdo cleartool subcommand to list derived objects created by clearmake or clearaudit.

catcr, diffcr cleartool subcommands to display and compare configuration records created by
clearmake or clearaudit.

May 1994 361

clearmake ClearCase user command
hh

rmdo cleartool subcommand to remove a derived object from a VOB.

View Context Required
For a build that uses the data in one or more VOBs, the shell from which you invoke clearmake must have
a view context — either a set view or a working directory view. If you have a working directory view, but it
differs from your set view, an error occurs.

You can build objects in a standard directory, without a view context, but this disables many of
clearmake’s special features.

CLEARMAKE AND MAKEFILES
clearmake is designed to read makefiles in a way that is compatible with other make variants. For details,
including discussions of areas in which the compatibility is not absolute, see the makefile_ccase manual
page.

HOW BUILDS WORK
In many ways, ClearCase builds adhere closely to the standard make paradigm:

1. You invoke clearmake, optionally specifying the names of one or more targets. (Such explicitly-
specified targets are termed goal targets.)

2. clearmake reads zero or more makefiles each of which contains targets and their associated build scripts.
It also reads one or more build options specification (BOS) files, which supplement the information in
the makefile(s).

3. clearmake supplements the makefile-based software build instructions with its own built-in rules. (And
when it runs in a compatibility mode, clearmake also reads a file that defines built-in rules specific to
that mode.)

4. For each target, clearmake performs build avoidance, determining whether it actually needs to execute
the associated build script (‘‘perform a target rebuild’’). It takes into account both source dependencies
(‘‘have any changes occurred in source files used in building the target?’’) and build dependencies
(‘‘must other targets be updated before this one?’’).

5. If it decides to perform a target rebuild, clearmake executes its build script.

The following sections describe special clearmake build features in more detail. Figure 17 illustrates the
associated data flow.

362 ClearCase Reference Manual

ClearCase user command clearmake
hh

source

data

filescc
c
c
c
hhhhhhhhhhhhh

cc
c
c
chhhhhhhhhhhhh

existing

configuration

recordscc
c
c
c
hhhhhhhhhhhhh

cc
c
c
chhhhhhhhhhhhh

build

options

spec filecc
c
c
c
hhhhhhhhhhhhh

cc
c
c
chhhhhhhhhhhhh

build

hosts

filecc
c
c
c
hhhhhhhhhhhhh

cc
c
c
chhhhhhhhhhhhh

makefile(s)

cc
c
c
c
hhhhhhhhhhhhh

cc
c
c
chhhhhhhhhhhhh

environment

variables
cc
c
c
c
hhhhhhhhhhhhh

cc
c
c
chhhhhhhhhhhhh

c
c
c

c
c
c

c
c
c

c
c
c

c
c
c

c
c
c

clearmake
hh

hh

new

configuration

recordscc
c
c
c
hhhhhhhhhhhhh

cc
c
c
chhhhhhhhhhhhh

new

derived

objectscc
c
c
c
hhhhhhhhhhhhh

cc
c
c
chhhhhhhhhhhhh

c
c
c

c
c
c

Figure 17. Data Flow in a clearmake Build

CONFIGURATION RECORDS AND DERIVED OBJECTS
In conjunction with the MVFS file system, clearmake audits the execution of all build scripts, keeping track
of file usage at the OS-system-call level. For each execution of a build script, it creates a configuration
record (CR), which includes the versions of files and directories used in the build, the build script, build
options, (for example, macro assignments) and other related information. A copy of the CR is stored in
the VOB database of each VOB in which the script has built new objects.

A file created within a VOB by a build script is called a derived object (DO). Each time a derived object is
built by some user working in some view, a corresponding VOB database object is also created. This
‘‘central accounting’’ scheme enables any view to access and possibly share — subject to access permis-
sions — any derived object, no matter what view it was originally created in.

For each build script execution, ClearCase logically associates each DO just created with the build script’s
CR.

You can suppress the creation of CRs and derived objects with the −F option. See config_record and
derived_object for details.

(Files created in non-VOB directories are not derived objects — see section ‘‘MVFS Files and Non-MVFS
Objects’’ below.)

Configuration Record Hierarchies
A typical makefile has a hierarchical structure. Thus, a single invocation of clearmake to build a ‘‘high-
level’’ target can cause multiple build scripts to be executed and, accordingly, multiple CRs to be created.
See config_record for more on configuration record hierarchies.

CONFIGURATION LOOKUP AND WINK-IN
For directory targets, clearmake uses standard make logic.

May 1994 363

clearmake ClearCase user command
hh

When a target names a file in a VOB, clearmake (by default) uses configuration lookup to determine whether
a build is required. This involves a comparison of the CRs of existing derived objects with the current
build configuration:
g the versions of elements selected by the view’s config spec
g the build options to be applied, as specified on the clearmake command line, in the environment, in

makefile(s), or in build options specification file(s) — see ‘‘Build Options Specification File’’ below
g the build script to be executed

In performing configuration lookup, clearmake considers a DO version (a derived object that has been
checked in as a version of an element) only if the version was created ‘‘in place’’. That is, the element’s
pathname must be the same as the original derived object’s.

clearmake first tries to avoid rebuilding by reusing a DO in the current view; this succeeds only if the CR of
the candidate DO matches the current build configuration. clearmake can also avoid rebuilding by finding
another DO, built in another view, whose CR matches the current build configuration. In this case, it will
wink-in that derived object, causing it to be shared among views. Other derived objects created by the
same build script (termed siblings) are winked-in at the same time. clearmake rebuilds a target only if it is
unable to locate any existing derived object that matches the current build configuration.

Promotion of Data Containers
The first time a derived object is winked-in, clearmake invokes the promote_server utility to copy the
derived object’s data (its data container file) from view-private storage to a derived object storage pool.

Suppressing Configuration Lookup
You can override the default configuration lookup behavior with command options and ClearCase-
specific special targets. For example, −T turns off configuration lookup, basing rebuild decisions on
time-modified stamps.

MVFS FILES AND NON-MVFS OBJECTS
All files with pathnames below a VOB-tag (VOB mount point) are termed MVFS files:
g checked-in versions of file elements (data stored in VOB)
g checked-out versions of file elements (data stored in view)
g other view-private files
g derived objects

Conversely, a non-MVFS object is any file, directory, or link whose pathname is not under a VOB-tag; such
objects are not version controlled. By default, non-MVFS objects are not audited during clearmake builds.
A CR will include information on a non-MVFS object used by a build script only if:
g the object appears as an explicit dependency in the makefile, or
g the object can be inferred to be a dependency through clearmake’s suffix rules

This kind of dependency is referred to as a makefile dependency. For example:
src.o : /usr/include/stdio.h

364 ClearCase Reference Manual

ClearCase user command clearmake
hh

Non-MVFS Files in Configuration Lookup
During configuration lookup, clearmake examines each non-MVFS file that is listed in the CR of a candi-
date DO. The CR entry includes: (1) the non-MVFS file’s size; (2) its time-modified stamp; (3) its check-
sum. The ‘‘current version’’ of the non-MVFS file must match the CR entry in one of these ways:
g first check: file size and time-modified stamp
g second check: file size and checksum

OPTIONS AND ARGUMENTS
clearmake supports the options below. In general, ‘‘standard’’ make options are lowercase characters; clear-
make extensions are uppercase. Options that do not take arguments can be ‘‘ganged’’ on the command
line (for example, −rOi).

−−f makefile Use makefile as the input file. If you omit this option, clearmake looks for input files named
makefile and Makefile (in that order) in the current working directory. You can use more than
one −f makefile argument pair. Multiple input files are effectively concatenated.

−−u (unconditional) Rebuild all goal targets specified on the command line, along with the recur-
sive closure of their dependencies, regardless of whether or not they need to be rebuilt. (See
also −U.)

−−k Abandon work on the current entry if it fails, but continue on other targets that do not
depend on that entry.

−−i Ignore error codes returned by commands.

−−n (no-execute) List command lines from the makefile for targets which need to be rebuilt, but
do not execute them. Even lines beginning with an at-sign (@) character are listed. See ‘‘Com-
mand Echoing and Error Handling’’ in the makefile_ccase manual page.

EXCEPTION: A command containing the string $(MAKE) is always executed.

−−s (silent) Do not list command lines before executing them.

−−e Environment variables override macro assignments within the makefile. (But macro=value
assignments on the command line or in a build options spec override environment variables.)

−−r Do not use the built-in rules in file /usr/atria/etc/builtin.mk.

−−v (verbose) Slightly more verbose than the default output mode. Particularly useful features of
verbose mode include:

− listing of why clearmake does not reuse a DO that already appears in your view (for exam-
ple, because its CR does not match your build configuration, or because your view does
not have a DO at that pathname)

− listing of the names of DOs being created

−−d (debug) Quite verbose; appropriate only for debugging makefiles.

May 1994 365

clearmake ClearCase user command
hh

−−p Lists all target descriptions and all macro definitions, including target-specific macro
definitions and implicit rules.

−−C mode (compatibility) Invokes one of clearmake’s compatibility modes. (Alternatively, you can use
environment variable CLEARCASE_MAKE_COMPAT to specify a compatibility mode.)
mode can be:

sgismake Emulates smake(1) on IRIX-5 systems. Reads file /usr/include/make/system.mk
instead of /usr/atria/etc/builtin.mk to define built-in make rules.

sgipmake Emulates pmake(1) on IRIX-5 systems. Reads file /usr/include/make/system.mk
instead of /usr/atria/etc/builtin.mk to define built-in make rules.

sun Emulates the standard make(1) on SunOS systems. Reads file
/usr/include/make/default.mk (SunOS-4) or /usr/share/lib/make/make.rules (SunOS-5)
instead of /usr/atria/etc/builtin.mk to define built-in make rules.

gnu Emulates the Free Software Foundation’s Gnu make program. The Gnu make
built-in rules (which are hard-coded) take effect instead of the rules in file
/usr/atria/etc/builtin.mk.

std Invokes the ‘‘standard’’ clearmake — with no compatibility mode enabled. Use
this option to nullify a setting of the environment variable
CLEARCASE_MAKE_COMPAT.

For details on compatibility mode features, see ‘‘Compatibility of clearmake with Other Vari-
ants of make’’ in the ClearCase User´s Manual.

−−O
−−T
−−F (mutually exclusive)

−O compares only the names and versions of objects listed in the targets’ CRs; it does not com-
pare build scripts or build options. This is useful when this extra level of checking would
force a rebuild that you do not want. Examples:

− The only change from the previous build is the setting or cancelling of a ‘‘compile-for-
debugging’’ option.

− A target was built using a makefile in the current working directory. Now, you wish to
reuse it in a build to be performed in the parent directory, where a different makefile
builds the target (with a different script, which typically references the target using a dif-
ferent pathname).

−T makes rebuild decisions using the standard algorithm, based on time-modified stamps;
configuration lookup is disabled. (A CR is still created for each build script execution.)

NOTE: This causes both view-private files and derived objects to be used for build
avoidance. The CR hierarchy created for a hierarchical build will have a ‘‘hole’’ wherever
clearmake reuses a view-private file for a subtarget — the view-private file does not have a CR
to be included in the CR hierarchy.

366 ClearCase Reference Manual

ClearCase user command clearmake
hh

−F works like −T, but also suppresses creation of configuration records. All MVFS files
created during the build will be view-private files, not derived object.

−−U Unconditionally builds goal targets only — subtargets undergo build avoidance. If you don’t
specify any target on the command line, the default target is the goal. (The −u option uncon-
ditionally builds both goal targets and build dependencies.)

−−V Restricts configuration lookup to the current view only. Wink-in of DOs from other views is
disabled.

−−M Restricts dependency checking to makefile dependencies only — those dependencies declared
explicitly in the makefile or inferred from a suffix rule. All detected dependencies are ignored.
For ‘‘safety’’, this automatically disables wink-in of DOs from other views; it is quite likely
that other views select different versions of detected dependencies.

For example, a derived object in your view may be reused even if it was built with a different
version of a header file than is currently selected by your view.

−−J num Enables clearmake’s distributed building and parallel building capabilities. The maximum
number of concurrent target rebuilds is set to the integer num. Special cases:

− If num=0, both distributed and parallel building are disabled. (This is equivalent to not
specifying a −J option at all.)

− If num=1, distributed building is enabled, but only one build script will be dispatched at a
time (that is, serial building, not parallel building).

Alternatively, you can specify num as the value of environment variable
CLEARCASE_BLD_CONC. (See ‘‘Parallel and Distributed Building’’ below.)

−−N Disables the default procedure for reading one or more BOS files. See the clearmake.options
manual page for a discussion of the default procedure.

−−A BOS-file ...
You can use this option one or more times to specify BOS files to be read instead of, or just
after, the ones that are read by default. Using −N along with this option specifies ‘‘instead
of’’; omitting −N causes clearmake to read the −A file(s) after reading the standard BOS files.

Alternatively, you can specify a colon-separated list of BOS file pathnames as the value of
environment variable CLEARCASE_BLD_OPTIONS_SPECS.

MAKE MACROS AND ENVIRONMENT VARIABLES
String-valued variables called make macros can be used anywhere in a makefile: in target lists, in depen-
dency lists, and/or in build scripts. For example, the value of make macro CFLAGS can be incorporated
into a build script as follows:
cc -c $(CFLAGS) msg.c

Environment variables (EVs) can also be used in a makefile, but only in a build script. For example:
print:

print_report -style $$PRT_STYLE -dest $${PRT_DEST}.rpt

May 1994 367

clearmake ClearCase user command
hh

clearmake converts the double-dollar-sign ($$) to a single dollar sign; the EV is expanded in the shell in
which the build script executes. (Programs invoked by the build script can also read their environment,
using the standard getenv(2) system call.)

Conflict Resolution
Conflicts can occur in specifications of make macros and environment variables. For example, the same
make macro might be specified both in a makefile and on the command line; or the same name might be
specified both as a make macro and as an environment variable.

clearmake resolves such conflicts similarly to other make variants:
g Make macros specified on the command line or in a BOS file override any other settings.
g Make macros specified in a makefile have the next highest priority.
g EVs have the lowest priority.

Using the −e option switches the lower two levels — EVs get higher priority than make macros specified
in a makefile.

Conflict Resolution Details. The following discussion treats this topic more precisely (but less con-
cisely).

clearmake starts by converting all EVs in its environment to make macros. (SHELL is an exception — see
below.) These EVs will also be placed in the environment of the shell process in which a build script exe-
cutes. Then, it adds in the make macros declared in the makefile. If this produces name conflicts, they are
resolved as follows:
g If clearmake was not invoked with the −e option, the make macro ‘‘wins’’: the macro value overwrites

the EV value in the environment.
g If clearmake was invoked with the −e option, the EV ‘‘wins’’: the EV value becomes the value of the

make macro.

Finally, clearmake adds make macros specified on the command line or in a BOS file; these settings are also
added to the environment. These assignments always override any others that conflict. (A command-line
assignment overrides a BOS setting of the same macro.)

SHELL Environment Variable
clearmake does not use the SHELL environment variable to select the shell program in which to execute
build scripts. It uses a Bourne shell (/bin/sh), unless you specify another program with a SHELL macro: on
the command line, in the makefile, or in a build options spec.

MAKEFLAGS Environment Variable
The MAKEFLAGS environment variable provides an alternative (or supplementary) mechanism for
specifying clearmake command options. It can contain a string of keyletters, the same letters used for
command-line options.

For example, these are equivalent:

368 ClearCase Reference Manual

ClearCase user command clearmake
hh

options set in environment% setenv MAKEFLAGS ei
% clearmake foo

options set on command line% clearmake -ei foo

clearmake combines the value of the environment variable MAKEFLAGS with the options specified on the
command line (if any). The combined string of keyletters becomes the value of the macro MAKEFLAGS,
available to build scripts.

This is very useful for build scripts that involve recursive invocations of clearmake. When clearmake -n

is applied to such a build script, all the nested invocations of clearmake pick up the ‘‘no-execute’’ option
from the value of MAKEFLAGS. Thus, no target rebuilds actually take place, even though many levels of
clearmake command may be executed. This is one way of debugging all of the makefiles for a software
project, without actually doing anything.

Option letters that take arguments are not allowed in a MAKEFLAGS string; neither are the −v and −d
options. You can use special EVs, described next, to specify options that are not supported through
MAKEFLAGS.

Special Environment Variables
The environment variables described below are also read by clearmake at startup. In some cases, as noted,
you can also specify the information as a make macro — on the command line, in a makefile, or in a BOS
file.

CLEARCASE_BLD_AUDIT_TMPDIR
Sets the directory where clearmake creates temporary build audit files. If this variable is not set, clear-
make creates these files in /tmp. All temporary files are deleted when clearmake exits.
CLEARCASE_BLD_AUDIT_TMPDIR must not name a directory under a VOB−tag; if it does, clear-
make prints an error message and exits.

CLEARCASE_BLD_CONC
Sets the concurrency level. This EV takes the same values as the −J option. Specifying a −J option
on the command line overrides the setting of this EV.

CLEARCASE_BLD_HOST_TYPE
Determines the name of the build hosts file to be used during a distributed build (−J option): file
.bldhost.$CLEARCASE_BLD_HOST_TYPE in your home directory. (Your home directory is deter-
mined by examining the password database.)

C SHELL USERS: Set this EV in your .cshrc file, not in your .login file. The distributed build facility
invokes a remote shell, which does not read the .login file.

CLEARCASE_BLD_HOST_TYPE can also be coded as a make macro.

CLEARCASE_BLD_OPTIONS_SPECS
A colon-separated list of pathnames, each of which specifies a BOS file to be read. You can use this
EV instead of specifying BOS files on the command line with one or more −A options.

CLEARCASE_BLD_SHELL_FLAGS
Specifies command options to be passed to the subshell program that executes a build script com-
mand. Default: -e.

May 1994 369

clearmake ClearCase user command
hh

CLEARCASE_BLD_UMASK
Sets the umask(1) value to be used for newly-created derived objects. It may be advisable to have this
EV be more permissive than your standard umask — for example, CLEARCASE_BLD_UMASK = 2
where umask = 22. The reason to create DOs that are more accessible than other files is wink-in: a
winked-in file retains its original ownership and permissions. For example, when another user
winks-in a file that you originally built, the file is still owned by you, is still a member of your princi-
pal group, and still has the permissions with which you created it. (NOTE: You can use the standard
chmod command to change the permissions of a DO after you create it.)

CLEARCASE_BLD_UMASK can also be coded as a make macro.

CLEARCASE_BLD_VERBOSITY
Sets the clearmake message logging level, as follows:

1 equivalent to using −v on the command line

2 equivalent to using −d on the command line

0 or undefined equivalent to standard message logging level

If you also specify −v or −d on the command line, the higher value prevails.

CLEARCASE_INCLUDE_CXX_RULES
Expands to an include statement that reads in file $(CLEARCASE_MAKE_CONFIG_DIR)/cxx.mk.
This file contains definitions that are used in a C++ environment to handle parameterized types (tem-
plates).

CLEARCASE_MAKE_COMPAT
Specifies one of clearmake’s compatibility modes. This EV takes the same values as the −C option.
Specifying a −C option on the command line overrides the setting of this EV.

CLEARCASE_MAKE_CONFIG_DIR
Expands to the full pathname of the clearmake configuration directory in the ClearCase installation
area — typically /usr/atria/config/clearmake.

ADDITIONAL CLEARMAKE EXTENSIONS
The following sections describe additional ClearCase-specific features supported by clearmake.

Build Options Specification File
A build options specification (BOS) file is a text file containing macro definitions and/or ClearCase-specific
special targets. We recommend that you place nonpermanent option specifications (for example, a macro
that specifies ‘‘compile for debugging’’) in a BOS file, instead of on the clearmake command line. This
minimizes the likelihood of having clearmake perform a rebuild ‘‘unexpectedly’’ (for example, because you
specified -g on the command line last time, but forgot to specify it this time).

See clearmake.options for details.

Parallel and Distributed Building
clearmake supports parallel building (execution of several build scripts concurrently) and distributed building
(use of one or more remote hosts to execute build script). Most often, these features are used in combina-
tion — for example, performing a hierarchical build by running build scripts on many hosts at the same
time.

370 ClearCase Reference Manual

ClearCase user command clearmake
hh

These features are enabled by the −J option, which specifies the parallelism (concurrency) level, and the
build hosts file, which lists hosts where build scripts can be dispatched.

Use these features as follows:

1. Make sure that CLEARCASE_BLD_HOST_TYPE is set, as described in section ‘‘Special Environment
Variables’’ above.

2. Create the appropriate build hosts file in your home directory, containing the names of hosts to be used
in a distributed build. For example, you might create file .bldhost.irix5 with a list of hosts to be used
when building the IRIX-5 variant of a target. The administrator of a build host machine can control
and limit its accessibility. See bldhost and bldserver.control for details.

3. Use the −J option to set the maximum number of target rebuilds to be executed concurrently.

Before starting a parallel build, clearmake determines what work needs to be done, organizing it as a
sequence of target rebuilds. It then dispatches build scripts to hosts, using a load balancing scheme. By
default, a host will be used only if it is at least 50% ‘‘idle’’. You can adjust this idleness threshold with a
−idle specification in your build hosts file. See bldhost and bldserver.control for details.

Parallel building can be suppressed for all of a makefile’s targets with the special .NOTPARALLEL target.
See makefile_ccase for details.

Remote Build Environment. clearmake dispatches a build script to a remote host by invoking a remote
shell there. This shell, in turn, runs an audited build executor (abe) process which executes the build script.
abe runs in a minimal environment — the remote shell command does not export the current environment
to the remote host. You can use make macros on the command line, but not environment variables, to
control remote execution of build scripts. Example:
env A=xxx clearmake foo B=yyy C=zzz

When executed on a remote host, the build script for target foo will always see the settings of B and C; but
it will not see the setting of A if this variable is also set in the shell’s startup environment on the remote
host. For example, you cannot set the build script’s search path on the remote host like this:
env PATH=... clearmake foo

The preferred way to pass such settings is in a BOS file. (See the abe and clearmake.options manual page for
more.)

Terminal Output. In a serial build (-J not specified or -J 1), a target’s build script is connected to stdout
directly. Output appears as soon as it is produced by the script’s commands. In a parallel build (-J
specified with an argument ≥ 2), the standard output of each build script is accumulated in a temporary
file by clearmake. When the build script finishes, clearmake sends it to stdout all at once.

Disabling of Parallel Distributed Building. Any of the following conditions disables parallel distri-
buted building, causing target rebuilds to be performed serially on the local host only:
g You do not specify the −J option on the clearmake command line.
g Environment variable CLEARCASE_BLD_HOST_TYPE is not set when you invoke clearmake.

May 1994 371

clearmake ClearCase user command
hh

g Your build hosts file (.bldhost.$CLEARCASE_BLD_HOST_TYPE in your home directory) cannot not be
read.

A particular host will not be used during a distributed build if your current view cannot be used on that
host. (Perhaps the host cannot access the view storage directory.) Likewise, a host will not be used if its
abe cannot be successfully started.

Build Reference Time
clearmake takes into account the fact that software builds are not instantaneous. As your build progresses,
other developers can continue to work on their files, and may check in new versions of elements that your
build uses. If your build takes an hour to complete, you would not want build scripts executed early in
the build to use version 6 of a header file, and scripts executed later to use version 7 or 8. To prevent such
inconsistencies, clearmake ‘‘locks out’’ any version that meets both these conditions:
g The version was checked in after the moment that the build began — the build reference time.
g The version is now selected by a config spec rule that involves the LATEST version label.

This reference-time facility applies to checked-in versions of elements only; it does not lock out changes to
checked-out versions, other view-private files, and non-MVFS objects. clearmake automatically adjusts for
the fact that the system clocks on different hosts in a network may be somewhat out of sync (clock skew).

The ‘‘Build Sessions’’ section below includes additional information regarding build reference time.

Build Sessions
A ‘‘top-level’’ invocation of clearmake or clearaudit starts a build session. The time at which the build session
begins becomes the build reference time for the entire build session.

A build session can have any number of subsessions, all of which inherit the reference time of the build
session. A subsession corresponds to a ‘‘nested build’’ or ‘‘recursive make’’, started when a clearmake or
clearaudit process is invoked in the process family of a higher−level clearmake or clearaudit. Examples of
clearmake invocations that start subsessions:
g entering a clearmake command in a shell started with clearaudit
g including a clearmake command in a makefile build script executed by clearmake

A typical subsession begins while a higher-level session is in the process of performing target rebuilds,
each of which has its own build audit. The subsession conducts its own build audit(s), independently of
the audit(s) of the higher-level session — the audits are not nested or related in any way, other than that
they share the same build reference time.

Following are some important ramifications of this architecture:

Element Versions Created During a Build Session. Any version created during a build session and
selected by a LATEST config spec rule will not be visible in that build session. For example, a build might
checkin a derived object it has created; subsequent commands in the same build session will not ‘‘see’’ the
checked-in version, unless it is selected by a config spec rule that does not involve the version label
LATEST.

372 ClearCase Reference Manual

ClearCase user command clearmake
hh

Coordinating Reference Times of Several Builds. Different build sessions have different reference
times. The ‘‘best’’ way to have a series of builds share the same reference time is to structure them as sub-
targets of a single build target in a makefile. An alternative approach is to run all the builds within the
same clearaudit session. For example, you might write a shell script, multi_make, that includes several
invocations of clearmake (along with other commands). Running the script as follows ensures that all the
clearmake builds will be subsessions that share the same reference time:
clearaudit -c multi_make

Objects Written at More than One Level. Undesirable results occur when the same file is written at two
or more session levels (for example, a top-level build session and a subsession): the build audit for the
higher-level session does not contain complete information about the file system operations that affected
the file. Example:
clearaudit -c "clearmake shuffle > logfile"

The file logfile may be written both:
g during the clearaudit build session, by the shell program invoked from clearaudit
g during the clearmake subsession, when the clearaudit build session is suspended

In this case, clearaudit issues this error message:
Unable to create derived object "logfile"

To work around this limitation, ‘‘postprocess’’ the derived object at the higher level with a copy com-
mand:
clearaudit -c "clearmake shuffle > log.tmp"
cp log.tmp logfile
rm log.tmp

No Automatic Creation of Configuration Record Hierarchy. CRs created during a build session and its
subsessions are not automatically linked into a single configuration record hierarchy. The config_record
manual page presents techniques for accomplishing such linkage.

EXIT STATUS
clearmake returns a zero exit status if all goal targets are successfully processed. It returns a nonzero exit
status in two cases:
g clearmake itself detects an error, such as a syntax error in the makefile. In this case, the error message

includes the string ‘‘clearmake’’.
g A makefile build script terminates with a nonzero exit status (for example, a compiler error). In this

case, the error message includes the name of the program that encountered the error, such as ‘‘cc’’.

EXAMPLES
g Unconditionally build the default target in a particular makefile, along with all its dependent targets.
% clearmake −u −f project.mk

g Build target hello without checking build scripts or build options during configuration lookup. Be
moderately verbose in generating status messages.
% clearmake −v −O hello

May 1994 373

clearmake ClearCase user command
hh

g Build the default target in the default makefile, with a particular value of make macro INCL_DIR. Base
rebuild decisions on time-modified comparisons instead of performing configuration lookup, but still
produce CRs.
% clearmake −T INCL_DIR=/usr/src/include_test

g Perform a parallel, distributed build of target bgrs, using up to five of the hosts listed in file .bldhost.solaris
in your home directory.
% setenv CLEARCASE_BLD_HOST_TYPE solaris

% clearmake −J 5 bgrs

g Build target bgrs, restricting configuration lookup to the current view only. Have environment variables
override makefile macro assignments.
% clearmake −e −V bgrs

g Build the default target in Sun compatibility mode.
% clearmake −C sun

FILES
/usr/atria/etc/builtin.mk

SEE ALSO
‘‘Building Software with ClearCase’’ chapter in the ClearCase Concepts Manual
ClearCase User´s Manual
abe, bldhost, bldserver.control, clearaudit, cleartool, clearmake.options, config_spec, derived_object,
makefile_ccase promote_server, scrubber
umask(1)

374 ClearCase Reference Manual

ClearCase data structure clearmake.options
hh

NAME clearmake.options − clearmake build options specification file (BOS)

SYNOPSIS
One or more files read by ’clearmake’, specifying make macros and special targets

DESCRIPTION
A build options specification (BOS) file is an ASCII file containing macro definitions and/or ClearCase-
specific special targets. We recommend that you place ‘‘temporary’’ macros (such as CFLAGS=-g and
others not to be included in a makefile permanently) in a BOS file, rather than specifying them on the
clearmake command line.

By default, clearmake reads one or more BOS files in this order:
g the file .clearmake.options in your home directory (as indicated in the password database) — the place

for macros to be used every time you execute clearmake
g ‘‘local’’ BOS file(s), each of which corresponds to one of the makefiles specified with a −f option, or

read automatically by clearmake. Each BOS file has a name in this form:

makefile-name.options

Examples:
makefile.options
Makefile.options
project.mk.options

Multiple local BOS files are read in the same order as the −f options. If a macro is defined in multiple
BOS files read by clearmake, the last definition wins. No error occurs if a particular BOS file does not exist.
You can override this default behavior with the clearmake command-line options −N and/or −A, or with
the environment variables MAKEFLAGS and CLEARCASE_BLD_OPTIONS_SPECS. clearmake displays
the names of the BOS files it reads if you specify the −v or −d option, or if
$CLEARCASE_BLD_VERBOSITY ≥ 1.

The following sections describe the various kinds of BOS file entries.

Standard Macro Definitions
A standard macro definition has the same form as a make macro defined in a makefile:

macro_name = string

For example:
CDEBUGFLAGS = -g

Target-Dependent Macro Definitions
A target-dependent macro definition takes this form:

target-list := macro_name = string

Any standard macro definition can follow the := operator; the definition takes effect only when targets in
target-list and their dependencies are processed. Targets in the target-list must be separated by white
space. For example:
foo.o bar.o := CDEBUGFLAGS=-g

May 1994 375

clearmake.options ClearCase data structure
hh

Two or more higher-level targets can have a common dependency. If the targets have different target-
dependent macro definitions, the dependency is built using the macros for the first higher−level target
clearmake considered building (whether or not it actually built it).

Shell Command Macro Definitions
A shell command macro definition replaces a macro name with the output of a shell command:

macro_name :sh = string

This defines the value of macro_name to be the output of string, an arbitrary shell command. In command
output, all <NL> characters are replaced by <Space> characters. For example:
BUILD_DATE :sh = date

Special Targets
These ClearCase-specific special targets can be used in a build options spec:

.NO_CONFIG_REC .NO_CMP_SCRIPT .NO_WINK_IN .NO_CMP_NON_MF_DEPS

See the ‘‘Special Targets’’ section of the makefile_ccase manual page for descriptions of these targets.

Include Directives
To include one BOS file in another, use the include or sinclude (‘‘silent include’’) directive. For exam-
ple:
include /usr/local/lib/aux.options

sinclude $(OPTS_DIR)/clearmake.options

Comments
A BOS file can contain comment lines, which begin with a pound sign (#) character.

MAKE MACROS AND ENVIRONMENT VARIABLES
Make macros set in a BOS file override make macro definitions in a makefile, and also override environ-
ment variables. But macros specified on the clearmake command line override those set in a BOS file. All
BOS file macros (except those overridden on the command line) are placed in the build script’s environ-
ment. If a build script recursively invokes clearmake:
g The higher-level BOS file setting (now transformed into an EV) will be overridden by a make macro

set in the lower-level makefile; but if the recursive invocation used the clearmake’s −e option, the BOS
file setting prevails.

g If another BOS file (associated with another makefile) is read at the lower level, its make macros over-
ride those from the higher-level BOS file.

SEE ALSO
clearmake, abe, makefile_ccase, bldhost, bldserver.control

376 ClearCase Reference Manual

ClearCase user command clearprompt
hh

NAME clearprompt − prompt for user input

SYNOPSIS
g Prompt for text:

clearprompt text −−pro.mpt prompt_string −−out .file pname [−−mul.ti_line]
[−−def.ault string | −−dfi . le pname] [−−pre.fer_gui]

g Prompt for pathname:

clearprompt file −−pro.mpt prompt_string −−out .file pname [−−def.ault filename | −−dfi . le pname]
[−−pat . tern match_pattern] [−−dir .ectory dir_path] [−−pre.fer_gui]

g Prompt for continue-processing choice:

clearprompt proceed −−pro.mpt prompt_string [−−typ.e type] [−−def.ault choice]
[−−mas.k choice[,choice]] [−−pre.fer_gui]

g Prompt for yes-no choice:

clearprompt yes_no −−pro.mpt prompt_string [−−typ.e type] [−−def.ault choice]
[−−mas.k choice[,choice]] [−−pre.fer_gui]

proceed choice is one of: proceed, abort

yes_no choice is one of: yes, no, abort

type is one of: ok, warning, error

DESCRIPTION
Prompts the user for input, then either stores the input in a file or returns an appropriate exit status. clear-
prompt is designed for use in trigger action scripts. (See the mktrtype manual page.) Another use for clear-
prompt is in scripts that are called from xclearcase group files (see also ‘‘Customizing the Graphical Inter-
face’’ in the ClearCase User´s Manual).

clearprompt can interact with the user either through stdin and stdout (CLI mode), or through a pop-up win-
dow (GUI mode). It uses the latter style automatically when a trigger fires on an operation invoked
through the GUI program xclearcase.

A trigger action script (or any other script) can use the exit status of clearprompt proceed or
clearprompt yes_no to perform conditional processing:

User selects Exit status
yes 0
proceed 0
no 1
abort 2

May 1994 377

clearprompt ClearCase user command
hh

If an error occurs in clearprompt itself, the exit status is an integer greater than 9.

OPTIONS AND ARGUMENTS
text [−−mul.ti_line]
file
proceed
yes_no (mutually exclusive) Specifies the kind of user input to be prompted for:

text prompts for a single text line (with no trailing <NL> character). text -multi_line

works just like cleartool comment input: the user can enter any number of lines, ending with
.<Return> or <Ctrl-D>.

file prompts for a file name or, if −prefer_gui is specified, pops up a File Browser win-
dow.

proceed prompts for a choice between the alternatives proceed and abort.

yes_no prompts for a choice among the alternatives yes, no, and abort.

−−pro.mpt prompt_string
Specifies a message to be displayed, presumably explaining the nature of the interaction.

−−out .file pname
Specifies the file to which the user’s input will be written.

−−def.ault string
Specifies the text to be written to the −outfile file if the user simply presses <Return> (in
CLI mode) or clicks the ‘‘Ok’’ button (in GUI mode).

−−dfi . le pname
A variant of −default: reads the default text from a file instead of the command line.

−−def.ault choice
Specifies the choice made if the user simply presses <Return> (in CLI mode) or clicks the
‘‘Ok’’ button (in GUI mode). Be sure to include choice in the −mask list, as well.

−−typ.e type Specifies the severity level: ok, warning, or error. The only effect is in the way the user is
prompted for input.

−−mas.k choice[,choice]]
Restricts the universe of choices for a proceed or yes_no interaction. For example, the fol-
lowing command restricts a yes_no interaction to the choices yes and abort (no is
excluded):
clearprompt yes_no -mask yes,abort ...

−−pat . tern match_pattern
−−dir .ectory dir_path

When clearprompt file executes in GUI mode, the File Browser window contains a path-
name filter. By default, this window displays the names of all files in the current working
directory. You can use the −directory and/or −pattern option to specify a different direc-
tory and/or a file name pattern (for example, *.c) to restrict which file names are displayed.
You can change the filter after the File Browser appears.

378 ClearCase Reference Manual

ClearCase user command clearprompt
hh

−−pre.fer_gui
Causes clearprompt to try to work in GUI mode; but if the attempt to pop up an interaction
window fails, falls back to CLI mode.

EXCEPTION: If clearprompt is invoked by a trigger firing on an xclearcase (not cleartool) opera-
tion, GUI mode is forced. If an interaction window cannot be created, an error occurs.

EXAMPLES
NOTE: See the mktrtype manual page for additional examples.

g Prompt the user to enter a name, writing the user’s input to file uname. Use the value of the USER
environment variable if the user simply presses <Return>.
% clearprompt text −outfile uname −default $USER −prompt "Enter User Name:"

g Ask a question and prompt for a yes/no response, using a separate window if possible. Make the default
response ‘‘no’’.
% clearprompt yes_no −prompt "Do You Want to Continue?" \

−default no −mask yes,no −prefer_gui

g Prompt for a file name, using a separate window if possible. Restrict the choices to files with a .c suffix,
and write the user’s selection to a file named myfile.
% clearprompt file −prompt "Select File From List" \

−outfile myfile −pattern ’*.c’ −prefer_gui

SEE ALSO
cleartool subcommands: mktrigger, mktrtype
xclearcase

May 1994 379

config_ccase ClearCase data structure
hh

NAME config_ccase − ClearCase configuration files

SYNOPSIS
files in /usr/adm/atria (or a subdirectory therein), used by ClearCase server processes to configure system opera-
tion

DESCRIPTION
ClearCase processes create and consult the files described in the sections below.

Files in /usr/adm/atria
Anyone can the information in this directory, but only the root user can modify it.

.albd_well_known_port
An empty flag file created by a host’s albd_server process when it is first started. This file is
created if, and only if, the host’s services database (file /etc/services or NIS map services) lists
the albd service at the standard port number, 371.

If the flag file exists on a host, a ClearCase client program running on the host uses this stan-
dard port number to contact albd_server programs throughout the network; otherwise, the
client must look up the port number of the albd service in the services database. Note that
this scheme requires that the albd service be registered at the same port number throughout
the network.

almd_times
almd_startup_time

These files are used by ClearCase Release 2.0 and later to support usage of VOBs created with
earlier releases.

license.db (license server host only) The license database file, which defines a set of ClearCase licenses.
See the license.db manual page.

no_mvfs_tag
A flag file created during ClearCase installation; the ClearCase startup/shutdown script uses
this file to determine whether to perform operations involving the MVFS (multiversion file
system).

Files in /usr/adm/atria/config
Anyone can read and write information in this directory, in order to configure the local host.

config/alternate_hostnames
If a host has two or more network interfaces (two or more separate lines in the /etc/hosts file or
the hosts NIS map), you must create a file with this name on that host to record its multiple
entries. For example, suppose that the /etc/hosts file includes these entries:
159.0.10.16 widget sun-005 wid
159.0.16.103 widget-gtwy sun-105

In this case, the alternate_hostnames file should contain:
widget
widget-gte

380 ClearCase Reference Manual

ClearCase data structure config_ccase
hh

Note that only the first hostname in each hosts entry need be included in the file. The file
must list each alternative hostname of a separate line. There is no commenting facility; all
lines are significant. If a host does not have multiple network interfaces, this file should not
exist at all.

config/automount_prefix
By default, automount(1M) mounts directories under /tmp_mnt. If another location is used for
a host’s automatic mounts (for example, you use automount -M, or you use an alternative
auto-mount program), then you must specify it in file /usr/adm/atria/automount_prefix. For
example, if your automatic mounts take place within directory /autom, create an
automount_prefix file containing this line:
/autom

config/bldserver.control
Controls the way in which a host is used during distributed builds. See the bldserver.control
manual page.

config/license_host
(required for each ClearCase host) Contains the name of the host that acts as the ClearCase
license server host for the local host

Files in /usr/adm/atria/cache
Information written and used by local server processes.

cache/Clearcase_check
A subdirectory, populated with zero-length files, used for ClearCase licensing.

cache/clearcase_specdev
A symbolic link that points to the device on which the MVFS performs ioctl(2) system calls.
This file is created by mount_mvfs when the viewroot directory (by default, /view) is mounted;
it is deleted when the viewroot is unmounted. If this link is missing or points to the wrong
place, commands will display this error message:
cleartool: Error: Unable to open file "viewroot": ClearCase object not found.

cache/scrubber_fs_info A cache of file system usage statistics maintained by the scrubber utility.
This file is used to implement scrubber’s free-space-analysis heuristic.

SEE ALSO
albd_server, bldserver.control, license.db, mount_mvfs

May 1994 381

config_record ClearCase data structure
hh

NAME config_record − bill-of-materials for clearmake build or clearaudit shell

DESCRIPTION
A configuration record (CR) is a meta-data item that contains information gathered in a ClearCase build
audit. The clearmake build utility performs a build audit — in conjunction with the multiversion file system
(MVFS) on a ClearCase client host — during execution of a target rebuild. Typically, this involves execu-
tion of a single build script; for a ‘‘double-colon’’ target, the rebuild may involve execution of multiple
build scripts.

clearaudit enables build auditing during the execution of an arbitrary program — typically a shell.

One CR is written to a VOB database each time a target rebuild creates one or more derived objects within
that VOB. (If a build script creates derived objects in multiple VOBs, a copy of the CR is written to each
VOB database.) A configuration record is logically associated, and can be accessed through, all the
derived objects created during the build audit.

MVFS OBJECTS AND NON-MVFS OBJECTS
In a configuration record, two kinds of file system objects are distinguished.
g An MVFS object is a file or directory ‘‘in a VOB’’ — one whose pathname is below a VOB-tag (VOB

mount point).
g A non-MVFS object is an object not accessed through a VOB (compiler, system-supplied header file,

temporary file, and so on).

CONTENTS OF A CONFIGURATION RECORD
A configuration record both provides a build’s ‘‘bill of materials’’ and documents its ‘‘assembly pro-
cedure’’. A CR can include several sections; if created by clearaudit, it does not include sections related to
build scripts.

Header Section
The Header section of a CR includes five lines; we use an example to describe these lines:

Target util.o built by akp.dvt

The makefile target associated with the build script (ClearAudit_Shell for a CR produced
by clearaudit); the user who started the build.

Host ’neptune’ running IRIX 5.x (IP12)

The host on which the build script was executed, along with some uname(2) information.

Reference Time 15-Sep-93.08:18:56, this audit started 15-Sep-93.08:19:00

A timestamp indicating the build’s reference time: the time at which clearmake or clearaudit
began execution. In a hierarchical build, involving execution of multiple build scripts, all the
resulting CRs share the same reference time. (For more on reference time, see the clearmake
manual page.)

This line also includes a timestamp indicating when the build script for this particular CR
began execution.

382 ClearCase Reference Manual

ClearCase data structure config_record
hh

View was neptune:/usr/people/akp/views/930825.vws

The view in which the build took place, identified by the location of the view storage direc-
tory.

Initial working directory was /usr/hw/src

The current working directory at the time build script execution (or clearaudit execution)
began.

MVFS Objects Section
The MVFS Objects section of a CR includes:
g Each MVFS file or directory read during the build — both versions of elements and view-private files

used as build input. It includes checked-out versions of file elements.
g Each derived object produced by the target rebuild.

Non-MVFS Objects Section
The Non-MVFS Objects section of a CR includes each non-MVFS file that appears as an explicit depen-
dency in the makefile, identified by DTM stamp.

If there are no such files, this section is omitted. It is always omitted from a CR produced by clearaudit.

Variables and Options Section
The Variables and Options section of a CR lists the values of make macros defined during the build. If no
make macros were defined, this section is omitted.

This section is omitted from a CR produced by clearaudit.

Build Script Section
The Build Script section of a CR lists the script that was read from a makefile and executed by clearmake.

This section is omitted from a CR produced by clearaudit.

CONFIGURATION RECORD HIERARCHIES
A typical makefile has a hierarchical structure. Thus, a single invocation of clearmake to build a ‘‘high-
level’’ target can cause multiple build scripts to be executed and, accordingly, multiple CRs to be created.
Such a set of CRs can form a configuration record hierarchy, which reflects the structure of the makefile.

For example, consider the makefile in Figure 18.

May 1994 383

config_record ClearCase data structure
hh

hello: hello.o msg.o libhello.a

cc -o hello hello.o util.o msg.o

date > /tmp/flag.hello

hello.o:

cc -c hello.c

msg.o:

cc -c msg.c

libhello.a: user.o env.o

ar r libhello.a user.o env.o

user.o:

cc -c user.c

env.o:

cc -c env.c

top-level target

cc
c
c
c
c
c
c
c

second-level targets

c
c
c
c
c

third-level targets

Figure 18. Hierarchical Makefile

A complete build of target hello produces the CR hierarchy shown in Figure 19.

hello
hhhhhhhhhhh

hhhhhhhhhhh

libhello.a
hhhhhhhhhhh

hhhhhhhhhhh
hello.o

hhhhhhhhhhh

hhhhhhhhhhh
msg.o

hhhhhhhhhhh

hhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhh
c
c
c

user.o
hhhhhhhhhhh

hhhhhhhhhhh
env.o

hhhhhhhhhhh

hhhhhhhhhhh

hhhhhhhhhh

Figure 19. CR Hierarchy Created by Complete Build: ’clearmake hello’

An individual ‘‘parent-child’’ link in a hierarchy is established in either of these ways:
g In a target/dependencies line — For example, the following target/dependencies line declares

derived objects hello.o, msg.o, and libhello.a to be build dependencies of derived object hello:
hello: hello.o msg.o libhello.a

...

Accordingly, the CR for hello is the parent of the CRs for the .o files and the .a file.
g In a build script — For example, in the following build script, derived object libhello.a in another

directory is referenced in the build script for derived object hello:
hello: $(OBJS)

cd ../lib ; $(MAKE) libhello.a
cc -o hello $(OBJS) ../lib/libhello.a

384 ClearCase Reference Manual

ClearCase data structure config_record
hh

Accordingly, the CR for hello is the parent of the CR for libhello.a.

NOTE: The recursive invocation of clearmake in the first line of this build script produces a separate
CR hierarchy, which is not necessarily linked to the CR for hello. It is the second line of the build script
that links the CR for ../lib/libhello.a with that of hello.

PHYSICAL STORAGE OF CONFIGURATION RECORDS
Logically, a configuration record is stored in some VOB database (and, sometimes, with additional copies
in other VOB databases). But the actual contents of a CR migrates from view storage to VOB storage,
along with the data container(s) of its associated derived object(s). (See ‘‘Physical Storage of Data Con-
tainers / Promotion’’ in the derived_object manual page.)

When a derived object is first created in some view, both its data container and its associated
configuration record are stored in the view’s private storage area. The CR is stored in the view database,
in compressed format. To speed configuration lookup during subsequent builds in this view, a
compressed copy of the CR is also cached in a view-private file, .cmake.state, located in the directory that
was current when the build started.

When the DO is winked-in to another view, or is checked in as a DO version:
g promote_server is invoked to copy the data container to a VOB storage pool.
g The configuration record is moved from the view’s private storage area to the VOB database.

The process of winking-in an entire set of sibling DOs may involve making copies of the CR in multiple
VOB databases.

SEE ALSO
cleartool subcommands: catcr, diffcr, lsdo
clearmake, clearaudit, derived_object, makefile_ccase, view_scrubber

May 1994 385

config_spec ClearCase data structure
hh

NAME config_spec − rules for selecting versions of elements to appear in a view

SYNOPSIS
g Standard Rule:

scope pattern version-selector [optional-clause]

g Time Rule:

time date-time

g File-Inclusion Rule:

include config-spec-pname

DESCRIPTION
A view’s config spec (short for ‘‘configuration specification’’) contains an ordered set of rules for selecting
versions of ClearCase elements. The view’s associated view_server process ‘‘populates’’ a view with ver-
sions by dynamically evaluating the config spec rules. Each time a reference is made to a file or directory
element — either by ClearCase software or by standard programs — the view_server uses the config spec
to select a particular version of the element. (In practice, a variety of caching techniques and optimiza-
tions reduce the computational requirements.)

Config Spec Storage / Default Config Spec
Each view is created with a copy of the system-wide default config spec, /usr/atria/default_config_spec:

For any element, select the checked out version, if any, ...element * CHECKEDOUT
... or else, select most recent version on the ’main’ branchelement * /main/LATEST

Modifying this file changes the config spec that newly-created views will get, but does not affect any
existing view.

An individual view’s config spec is stored in its view storage directory, in two forms:
g ’Source’ format — The ‘‘user-visible’’ version, config_spec, contains just the series of config spec rules.
g ’Compiled’ format — A modified version, .compiled_spec, which includes ClearCase-internal account-

ing information. This version is created and used by the view_server process.

Do not modify either of these files directly; instead, use the commands listed below. Different views’
config specs are independent: they might contain the same set of rules, but changing one view’s config
spec never affects any other view.

Commands for Maintaining Config Specs
ClearCase commands for manipulating config specs include:

catcs List a view’s config spec.

setcs Make a specified file a view’s config spec.

386 ClearCase Reference Manual

ClearCase data structure config_spec
hh

edcs Revise the current config spec of a view.

HOW A CONFIG SPEC MAKES OBJECTS VISIBLE
For each element, the following procedure determines which version, if any, appears in the view.

1. The view’s associated view_server process tries to find a version of the element that matches the first
rule in the config spec:

− If such a version exists, that version appears in the view.

− If multiple versions match the rule, an error occurs, and no version of the element appears in the
view. ClearCase commands that access the element will get errors like this:
cleartool: Error: Trouble looking up element "util.c" in directory ".".

Standard commands that access the element will get errors like this:
UX:cat: ERROR: Cannot open util.c: I/O error

− If no version matches the first rule, the search continues.

2. If no matching version was found for the first rule, the view_server tries to find a version that matches
the second rule.

3. The view_server continues in this way until it finds a match, or until it reaches the last rule.

Order is Important
Because the rules in a config spec are processed in order, varying the order may affect version selection.
For example, suppose this rule appears near the beginning of a config spec:
element * /main/LATEST

Any subsequent rules in the config spec will never be used, because the rule will always provide a match
— every element has a most-recent version on its main branch.

Failure to Select Any Version
If no version of an element matches any rule in the config spec, then:
g The element’s data will not be accessible through the view. The standard ls command and other stan-

dard programs will get a not found error when attempting to access the element.
g The ClearCase ls command will list the element with a [no version selected] annotation. You can

specify the element in commands that access the VOB database only, such as describe, lsvtree, and
mklabel.

View-Private Files
A view’s config spec has no effect on the private objects in a view, such as view-private files, links, direc-
tories, or derived objects. View-private objects are always visible.

EXCEPTION: If a config spec lacks a ‘‘CHECKEDOUT’’ rule, the view-private file that is a file element’s
checked-out version will not be visible. See section "Special Version Selectors" below.

OVERALL SYNTAX GUIDELINES
Each config spec rule must be contained within a single physical text line; you cannot use a backslash (\)
character to continue a rule onto the next line. Multiple rules can be placed on a single line, separated by
semicolon (;) characters.

May 1994 387

config_spec ClearCase data structure
hh

Lines that begin with a pound sign (#) character are comments.

Extra white space (<Space>, <Tab>, vertical-tab, and form-feed) characters are ignored, except within the
version selector. If a version selector includes white space, enclose it in single-quote (’) characters.

STANDARD RULES
A standard version-selection rule takes this form:

scope pattern version-selector [optional-clause]

The following subsections describe these components.

Scope
The scope specifies that the rule applies to all elements, or restricts the rule to a particular type of element.

element The rule applies to all elements.

element −−file
The rule applies to file elements only. This includes any element created with a mkelem com-
mand that omits -eltype directory (or a user-defined element type derived from direc-
tory).

element −−directory
The rule applies to directory elements only. This includes any element created wit mkdir or
mkelem -eltype directory (or a user-defined element type derived from directory).

element −−eltype element-type
The rule applies only to elements of the specified element type (predefined or user-defined).
This mechanism is not hierarchical: if element type aaa is a supertype of element type bbb, the
scope element -eltype aaa does not include elements whose type is bbb. To specify multi-
ple element types, you must use multiple rules:
element -type aaa RLS_1.2
element -type bbb RLS_1.2

Selecting Versions of VOB Symbolic Links. There is no ‘‘VOB symbolic link’’ scope. A VOB symbolic
link is cataloged (listed) in one or more versions of a directory element. The link appears in a view if:
g One of those directory versions is selected by the view’s config spec, and ...
g The config spec includes any ‘‘element’’ rule — even a −none rule.

Pattern
A pathname pattern, which can include any ClearCase wildcard — see the wildcards_ccase manual page for
a complete list. Examples:

* Matches all element pathnames.

*.c Matches all element pathnames with a .c suffix.

src/util.c

Matches any element named util.c that resides in any directory named src.

388 ClearCase Reference Manual

ClearCase data structure config_spec
hh

/vobs/project/include/util.h

Matches one particular element.

src/.../util.c

Matches any element named util.c that resides anywhere within the subtree of a directory
named src (including in src itself).

src/.../*.[ch]

Matches all elements with .c and .h suffixes located in or below any directory named src.

src/... Matches the entire directory tree (file elements and directory elements) under any directory
named src.

NOTE: In non-config-spec contexts, the ... pattern matches directory names only.

Restrictions:
g A view-extended pathname pattern is not valid.
g A relative pathname pattern must start below the VOB-tag (VOB mount point, VOB root directory).

For example, if the VOB-tag is /vobs/project, then project/include/utility.h is not a valid pattern.
g A full pathname pattern must specify a location beneath a valid VOB-tag. The setcs or edcs command

fails if it encounters an invalid location in any config spec rule:
cleartool: Error: Cannot locate vob mount directory: "..."

Version Selector
You can use a version label, version−ID, or any other standard ClearCase version selector. See the
version_selector manual page for a complete list. Examples:

/main/4 Version 4 on an element’s main branch.

REL2 The version to which version label REL2 has been attached. An error occurs if more than one
version of an element has this label.

.../mybranch/LATEST

The most recent version on a branch named mybranch; this branch can occur anywhere in the
element’s version tree.

/main/REL2

The version on the main branch to which version label REL2 has been attached.

{QA_Level>3}

The version to which attribute QA_Level has been attached with a value greater than 3. An
error occurs if more than one version satisfies this query.

.../mybranch/{QA_Level>3}

The most recent version on a branch named mybranch satisfying the attribute query.

Standard version selectors cannot select checked-out versions in a config spec rule. (They can in other
ClearCase contexts, such as the find command.) Instead, you must use the special version selector,
CHECKEDOUT, described below.

May 1994 389

config_spec ClearCase data structure
hh

Special Version Selectors. The following special version selectors are valid only in a config spec rule, not
in any other ClearCase version-selection context:

CHECKEDOUT
Matches the checked-out version of an element, if this view has a pending checkout. It
doesn’t matter where (on which branch of the element) the checkout occurred; there is no
possibility of ambiguity, since only one version of an element can be checked out to a particu-
lar view.

This special version selector actually matches the ‘‘checkout-out version’’ object in the VOB
database, which is created by the checkout command.

For file elements, standard commands access the view-private file created by checkout at the
same pathname as the element.

−−config do-pname [−−select do-leaf-pattern] [−−ci]
This special version selector replicates the configuration of versions used in a particular clear-
make build. It selects versions listed in one or more configuration records associated with a par-
ticular derived object: the same set of versions as would be listed by a catcr -flat com-
mand. See the catcr manual page for explanations of the specifications that follow the
−config keyword.

During execution of a setcs or edcs command, the view_server resolves the do-pname with
respect to the view’s pre-existing config spec, not based on any preceding rules in the config
spec being evaluated.

If the configuration record(s) list several versions of the same element, the most recent ver-
sion is selected to appear in the view. A warning message is displayed in such cases (at the
time the config spec is set).

−−none Causes an ENOENT (No such file or directory) error to occur when a standard UNIX
program references the element. In particular:

− No error occurs when a standard ls command lists the element’s entire parent directory;
the element is included in such a listing. This also applies to other readdir() situations,
such as expansion of wildcard characters and emacs file name completion.

− An error does occur when a standard ls command names the element explicitly (perhaps
after wildcard expansion), or whenever the name is processed with stat(2): in an ls -F

command, when the entire directory is listed with ls -l, and so on.

− The ClearCase ls command always lists the element, annotating it with no version

selected.

− In ClearCase commands, the element’s standard pathname refers to the element itself.
(−none suppresses ClearCase’s transparency mechanism — translation of an element’s
standard pathname into a reference to a particular version.)

390 ClearCase Reference Manual

ClearCase data structure config_spec
hh

−−error Like −none, except that the annotation generated by the ClearCase ls command is error on

reference.

Optional Clause
Some config spec rules can include an additional clause, which modifies the rule’s meaning.

−−time date-time
Modifies the meaning of the special version label LATEST: the rule selects from a branch the
last version that was created before a particular time. The date-time argument is specified in
the standard ClearCase format:

date-time := date.time | date | time | now
date := day-of-week | long-date
day-of-week := today | yesterday | Sunday | .. | Saturday | Sun | .. | Sat
long-date := d[d]−−month[−−[yy]yy]
month := January | ... | December | Jan | ... | Dec
time := h[h]:m[m][:s[s]]

Specify the time in 24-hour format, relative to the local time zone. If you omit the time, it
defaults to 00:00:00. If you omit the date, it defaults to today. If you omit the century,
year, or a specific date, the most recent one is used. Dates before January 1, 1970 UCT are
invalid.

The creation times of the versions on the branch are looked up in their create version

event records. (No error occurs if you use a −time clause in a rule that does not involve the
version label LATEST; the clause has no effect.)

The −time clause in a particular rule overrides any general time rule currently in effect. (See
section ‘‘Time Rules’’ below.)

Restriction: −time must precede any other optional clauses.

Examples:

/main/LATEST −time 10−Jul.19:00
Most recent version on main branch, as of 7 PM on July 10.

.../bugfix/LATEST −time yesterday

Most recent version on a branch named bugfix (which can be at any branching
level), as of the beginning of yesterday (12 AM).

/main/bugfix/LATEST −time Wed.12:00

Most recent version on subbranch bugfix of the main branch, as of noon on the
most recent Wednesday.

−time 5−Dec.13:00
December 5, at 1 PM

−time 11:23:00

Today, at 11:23 AM

May 1994 391

config_spec ClearCase data structure
hh

−time 12−jun−92
June 12, 1992, at 00:00 AM

−time now Today, at this moment.

The date/time specification is evaluated on each execution of setcs or edcs. Thus, the meaning
of a relative specification, such as today, changes from execution to execution.

−−nocheckout
Disables checkouts of elements selected by the rule.

−−mkbranch branch-type-name
Implements ClearCase’s auto-make-branch facility. When a version selected by this rule is
checked out:

1. A branch of type branch-type-name is created at that version.

2. Version 0 on the new branch is checked out, instead of the originally-selected version.

(This is a slight oversimplification. See section ‘‘Multiple-Level Auto-Make-Branch’’ below.)
A mkelem command invokes the auto-make-branch facility if the config spec includes a
‘‘/main/LATEST’’ rule with a −mkbranch clause.

Restrictions: You cannot use −mkbranch in combination with −none or −error.

Multiple-Level Auto-Make-Branch
A config spec can include a ‘‘cascade’’ of auto-make-branch rules, causing checkout to create multiple
branching levels at once. checkout keeps performing auto-make-branch until version 0 on the newly-
created branch is not selected by a rule with a −mkbranch clause; then, it checks out that version. For
example:

(1)element * CHECKEDOUT
(2)element * .../br2/LATEST
(3)element * .../br1/LATEST -mkbranch br2
(4)element * MYLABEL -mkbranch br1
(5)element * /main/LATEST

If you checkout an element in a view that currently selects the version labeled MYLABEL:

1. A branch of type br1 is created at the MYLABEL version (Rule 4).

2. Rule 3 now selects the newly-created version .../br1/0, so a branch of type br2 is created at that version.

3. Version .../br1/br2/0 is checked out. The checked-out version has the same contents as the MYLABEL
version, and is selected by Rule 1. When you edit and checkin a new version, .../br1/br2/1, the view
will select it with Rule 2.

392 ClearCase Reference Manual

ClearCase data structure config_spec
hh

TIME RULES
A time rule takes this form:

time date-time

It is analogous to the optional −time clause described above. A time rule modifies the meaning of the
special version label LATEST in subsequent rules, except that:
g An optional −time clause in a particular rule overrides any general time rule currently in effect.
g A subsequent time rule cancels and replaces an earlier one.

FILE-INCLUSION RULES
A file-inclusion rule takes this form:

include config-spec-pname

The argument specifies a text file containing one or more config spec rules (possibly other include rules).
Include files are re-read on each execution of setcs or edcs.

EXAMPLES
g Include a standard set of rules to be used by every user on a particular project:

include /proj/cspecs/v1_bugfix_rules

g Modify the meaning of ‘‘most recent’’ to mean ‘‘as of 7PM on July 10’’.
time 10-Jul.19:00
element /vobs/atria/lib/* .../new/LATEST
element * /main/LATEST

g Select version 3 on the main branch of a particular header file.
element /usr/project/include/utility.h /main/3

g Select the most recent version on the main branch for all elements with a .c file name suffix
element *.c /main/LATEST

g Select the most recent version on the bugfix branch.
element * .../bugfix/LATEST

g Select versions of elements from a particular development branch, or with a related label.
element * CHECKEDOUT

If no checked−out version, select latest version on the ’maint’ branch, which may or may not be
a direct subbranch of ’main’element * .../maint/LATEST
Else, select version labeled ’BL2.6’ from any branchelement * BL2.6

element * /main/LATEST

g Select versions of C language source files (.c file extension) based on the value of an attribute. A config
spec such as this might be used by a developer to select versions of files for which he is responsible.

May 1994 393

config_spec ClearCase data structure
hh

element * CHECKEDOUT
For any ’.c’ file, select latest version on main branch for which ’jpb’ is responsible

element -file *.c /main/{RESPONSIBLE=="jpb"}
Else, select version labeled BL2.6 on main branch from /project/utils directory, or any of its
subdirectories

element -file /project/utils/.../*.c /main/BL2.6
element * /main/LATEST

g Use the −mkbranch qualifier to create a new BL3 branch automatically. Create the branch off the version
labeled BL2.6, or the latest version on the main branch if no version is labeled BL2.6.
element * CHECKEDOUT

If no version is checked out, select latest version on ’bl3_bugs’ branchelement * .../bl3_bugs/LATEST
Else, select version labeled ’BL2.6’ and create new ’bl3_bugs’ branch on
checkoutelement -file * BL2.6 -mkbranch bl3_bugs

Else, select latest version on ’main’ branch and create new branch on checkout
element -file * /main/LATEST -mkbranch bl3_bugs
element * /main/LATEST

g Select the version labeled REL3 for all elements, preventing any checkouts to this view:
element * REL3 -nocheckout

g Select the most recent version on the bug_fix_v1.1.1 branch, making sure that this is a subbranch of
bug_fix_v1.1, which is itself a subbranch of bug_fix_v1.
element * CHECKEDOUT
element * .../bug_fix_v1.1.1/LATEST
element * .../bug_fix_v1.1/LATEST -mkbranch bug_fix_v1.1.1
element * .../bug_fix_v1/LATEST -mkbranch bug_fix_v1.1
element * /main/LATEST -mkbranch bug_fix_v1

When a user checks out an element for which none of these branches yet exist, a ‘‘cascade’’ of auto-make-
branch activity takes place:
% cleartool checkout −nc .
Created branch "bug_fix_v1" from "." version "/main/0".
Created branch "bug_fix_v1.1" from "." version "/main/bug_fix_v1/0".
Created branch "bug_fix_v1.1.1" from "." version "/main/bug_fix_v1/bug_fix_v1.1/0".
Checked out "." from version "/main/bug_fix_v1/bug_fix_v1.1/bug_fix_v1.1.1/0".

FILES
/usr/atria/default_config_spec
view-storage-directory/config_spec
view-storage-directory/.compiled_spec

SEE ALSO
cleartool subcommands: catcr, catcs, checkout, checkin, edcs, ls, mkbranch, mkbrtype, mkelem, mkeltype,
setcs
clearmake, query_language, version_selector, view_server, wildcards_ccase
csh(1)

394 ClearCase Reference Manual

ClearCase administration command crontab_ccase
hh

NAME crontab_ccase − ClearCase crontab scripts

SYNOPSIS
scripts installed during ClearCase installation and executed periodically by cron(1M)

DESCRIPTION
ClearCase uses the UNIX cron(1) utility to perform periodic maintenance of various system files and data
structures on each host. crontab(1M) scripts are provided for the maintenance of:
g the local host’s ClearCase error log files
g the cleartext and derived object storage pools of each VOB that resides on the local host
g the collection of event records stored in the database of each VOB that resides on the local host

ClearCase installation creates or updates directory /usr/atria/config/cron, with the files described in the fol-
lowing sections.

NOTE: If you modify ccase_cron.day or ccase_cron.wk, it will be moved aside to a file name with the .O

(old) extension the next time you install ClearCase.

Crontab Entries for ’root’ User
ClearCase installation creates file crontab.root, and also appends its contents to the crontab(1) file of the root
user. The crontab entries invoke daily and weekly ClearCase maintenance scripts.

NOTE: If ClearCase is not installed at /usr/atria on your host, revise root’s crontab file after installation to
correct the pathnames.

Daily Processing: ccase_cron.day
The script ccase_cron.day is run daily from the root user’s crontab. It, in turn, invokes these other scripts:

scrubber_day.sh Runs the scrubber utility on all VOBs that reside on the local host. This reclaims disk
space from VOB cleartext and derived object storage pools, by deleting unneeded
data container files. (The definition of ‘‘unneeded’’ is pool-specific; see the scrubber
and mkpool manual pages.)

ccase_local.day Use this file to customize daily crontab processing. If the file exists, it is executed as a
Bourne shell script. It is neither created nor modified during ClearCase installation.

Weekly Processing: ccase_cron.wk
The script ccase_cron.wk is run weekly from the root user’s crontab. It, in turn, invokes these other scripts:

cleanlogs.sh Moves each existing log file to logfile_name.old, and creates a new, empty file, named
logfile_name, in its place. (See the errorlogs_ccase manual page.)

vob_scrubber.sh Invokes the vob_scrubber utility to remove unwanted event records from VOBs that
reside on the local host. See the vob_scrubber manual page for descriptions of the
configuration files that control event-record scrubbing.

ccase_local.wk Use this file to customize weekly crontab processing. If the file exists, it is executed as
a Bourne shell script. It is neither created nor modified during ClearCase installation.

May 1994 395

crontab_ccase ClearCase administration command
hh

LOCAL CRONTAB SCRIPTS AND INSTALLATION OPTIONS
ClearCase may be installed on your host in such a way that directory /usr/atria/config/cron is not local:
g It may be accessed through a symbolic link to the network-wide release host.
g It may be in a remote file system that is mounted on your host.

In such cases, the ccase_local.day and ccase_local.wk scripts may be shared among several hosts. You may
wish to use these ‘‘shared local’’ scripts to invoke ‘‘truly local’’ scripts. For example, you might place this
code in ccase_local.day:
if [-d /usr/adm/atria/cron] ; then

for SCRIPT in /usr/adm/atria/cron/*.day ; do
/bin/sh $SCRIPT

done
fi

FILES
/usr/atria/config/cron/crontab.root
/usr/atria/config/cron/ccase_cron.day
/usr/atria/config/cron/scrubber_day.sh
/usr/atria/config/cron/ccase_local.day
/usr/atria/config/cron/ccase_cron.wk
/usr/atria/config/cron/cleanlogs.sh
/usr/atria/config/cron/vob_scrubber.sh
/usr/atria/config/cron/ccase_local.wk
/etc/rc

SEE ALSO
cleartool subcommands: mkpool
cron(1), crontab(1M), errorlogs_ccase, init(1M), rc(8), scrubber, vob_scrubber, view_server

396 ClearCase Reference Manual

ClearCase administration command db_dumper, db_loader
hh

NAME db_dumper, db_loader − dump/load a VOB database schema

SYNOPSIS
invoked as needed by cleartool’s ’reformatvob’ subcommand

DESCRIPTION
These programs are called by the reformatvob command to update the schema of a VOB database:
g The db_dumper program converts binary VOB database files to ASCII files.
g The db_loader program reads the ASCII files, creating a new VOB database that uses the up-to-date

schema.

reformatvob invokes a VOB’s own copy of db_dumper: when the VOB is created with mkvob, a db_server
running on the VOB host copies file /usr/atria/etc/db_dumper into the new VOB’s database subdirectory,
and changes its access mode to 4555. The db_server runs as root; thus, the VOB’s copy of db_dumper
becomes a setUID-root program.

By contrast, loading does not involve a VOB-specific program. No matter what VOB is being processed,
reformatvob invokes the same program: /usr/atria/etc/db_loader. This is also a setUID-root program. (Run-
ning site_prep on the network-wide release host sets the permissions on the original; installation on an
individual host preserves the permissions; see the ClearCase Notebook for details.)

’db_dumper’ PERMISSIONS PROBLEMS
Entering a reformatvob command may fail with a message that the copy of db_dumper stored within the
VOB storage directory has the wrong permissions and/or ownership:
cleartool: Error: Database dumper "[VOB-STORAGE-DIR]/db.reformat/db_dumper"
must be setUID and owned by the super-user.

Note that the pathname to db_dumper is a location within the VOB’s database subdirectory, which has
been renamed by reformatvob to db.reformat. Enter the following commands to fix the problem; be sure to
enter the pathname of the db_dumper program exactly as it appears in the error message.
% su
Password: <enter root password>

#chown root [VOB−STORAGE−DIR]/db.reformat/db_dumper

#chmod 4555 [VOB−STORAGE−DIR]/db.reformat/db_dumper

#exit

’db_loader’ PERMISSIONS PROBLEMS
The db_loader program will not be setUID-root, and thus will not work correctly, if:
g file /usr/atria/etc/db_loader is actually located on a remote host, and
g the local host accesses this program through a file system mount that uses a nosuid option.

SEE ALSO
cleartool subcommands: reformatvob
ClearCase Notebook

May 1994 397

db_server ClearCase administration command
hh

NAME db_server − ClearCase database server program

SYNOPSIS
invoked as needed by the ’albd_server’ program

DESCRIPTION
A host’s db_server processes handle VOB database transactions on that host, in response to requests from
ClearCase client processes throughout the network: cleartool, xclearcase, clearmake, or abe. These program
do not access VOB databases directly. Instead, they send database transaction requests to a db_server pro-
cess, which runs on the host where the VOB storage area resides (the VOB host). The db_server process,
running as the root user, performs the actual database access. Database transactions include:
g creating and modifying meta-data (such as attaching a label to a version)
g reading meta-data (such as finding the labels attached to a version)
g writing event records (such as the one that records a checkout command)
g writing configuration records
g reading event records and configuration records

Each db_server process services a single client (at a time), but can operate on any number of VOBs. A
client establishes a connection to a db_server with the help of the albd_server on the VOB host. The connec-
tion is made either with an available db_server, or with a newly created one. The connection is broken
when the client exits (or fails to make a database transaction over an extended period). At that point, the
db_server becomes available for use by another client; eventually, an unconnected db_server is terminated
by albd_server.

ERROR LOG
The db_server sends warning and error messages to /usr/adm/atria/log/db_server_log.

SEE ALSO
abe, albd_server, init_ccase, scrubber, view_server, clearmake, cleartool, nfsd(1M)

398 ClearCase Reference Manual

ClearCase data structure derived_object
hh

NAME derived_object − file built by clearmake or clearaudit, with an associated configuration record

DESCRIPTION
In their everyday work, developers think of a derived object as a file created within a VOB directory dur-
ing clearmake’s execution of a build script (or a file created within a VOB directory during execution of an
audited shell invoked with clearaudit).

This manual page uses terminology more rigorously, distinguishing a derived object from its data con-
tainer:
g A derived object (DO) is a VOB database object created by clearmake or clearaudit to record the creation

of a new file within a VOB directory.
g A derived object has an associated data file, its data container, which holds the development data writ-

ten to the file during clearmake/clearaudit execution. The data container is an ordinary file, not a VOB
database object.

DERIVED OBJECT CONTENTS
A derived object in a VOB database contains this information:

file name and VOB directory
The simple file name under which the data file was created, along with an internal identifier
for the directory element in which the file was created. If the derived object was built in a
view-private subdirectory — for example, sun5/util.o — its location is recorded by a relative
pathname, not a simple file name.

If hard links were made to the derived object during the build, the additional file-
name/VOB-directory pairs are also recorded in the VOB database.

DO-ID A unique identifier, which distinguishes this DO from others created (in other views and/or
at other times) at the same pathname. A DO−ID includes the extended naming suffix (default:
@@), a timestamp, and a numeric suffix that guarantees uniqueness. Examples:
@@14-Sep.09:54.418
@@13-Sep.09:30.404
@@02-Sep.16:23.353

storage location of data container

− for an unshared DO, a pointer to the view where the data container is stored

− for a shared DO, a pointer to its derived object storage pool, along with a relative path-
name within that pool

pointer to configuration record
Shared DO only: an internal pointer to the derived object’s associated configuration record
(CR), a meta-data item stored in the same VOB database. (The CR of an unshared derived
object is stored in the view where it was built.)

reference count
The number of times the derived object appears in ClearCase views throughout the network
(along with identifiers for those views). A DO’s reference count is incremented when it is
created, and whenever the DO is winked-in to another view; it is also incremented when a

May 1994 399

derived_object ClearCase data structure
hh

view-private hard link is made to the DO. (For example, the command ln hello hw incre-
ments the reference count of derived object hello.)

Shared and Unshared DOs
When a derived object is first created by a process running in some view:
g It appears only in that view (reference count = 1)
g Its data container is a file in the view’s private storage area.

Such a derived object is termed an unshared DO.

The first time a derived object is winked-in to another view, its status changes from unshared to shared:
g It now appears in two views (and has a reference count of 2).
g Its data container is promoted to a VOB storage pool. (See ‘‘Physical Storage of Data Containers / Pro-

motion’’ below.)

Thereafter, the derived object remains shared, no matter how many times it is winked-in to additional
views, and even if subsequent rebuilds or deletion commands cause it to appear in only one view.

Physical Storage of Data Containers / Promotion
When an unshared derived object is winked-in to another view, clearmake invokes promote_server to copy
(not move) the DO’s data container from view storage to VOB storage. The view to which the DO is
winked-in uses the data container in VOB storage, as will all other views to which the DO is subsequently
winked-in. But the original view continues to use the data container in view storage. (The view_scrubber
utility removes this ‘‘asymmetry’’, causing all views to use the data container in VOB storage.)

Uniqueness of DO-IDs
A derived object’s identifier (DO-ID) is unique in that it is guaranteed to differ from the DO-ID of all
other derived objects. But it can change over time:
g When a DO passes its first birthday, the timestamp in its DO-ID changes, to indicate the year it was

created:
when first created: util.o@@15-Jul.8896
after a year: util.o@@15-Jul-1992.8896

g When a VOB’s database is processed with reformatvob, all DO-IDs get new numeric suffixes:
before ’reformatvob’: util.o@@15-Jul.8896
after ’reformatvob’: util.o@@15-Jul.734

Thus, preserving DO-IDs in files or scripts may be of limited use. A derived object gets a truly permanent
identifier when it is checked in as a version of an element. See ‘‘DO Versions’’ below.

MANIPULATING DERIVED OBJECTS WITH STANDARD COMMANDS
Modifying a derived object in any way using a standard command or program converts it from a DO to a
view-private file:

(’msg.o’ is a derived object)% cleartool ls msg.o
msg.o@@10-Mar.15:33.333

400 ClearCase Reference Manual

ClearCase data structure derived_object
hh

(use standard command to modify the file)% touch msg.o
(’msg.o’ is no longer a derived object in this view; reference count decre-
mented)% cleartool ls msg.o

msg.o

DELETION OF DERIVED OBJECTS AND DATA CONTAINERS
Derived objects and their data containers can be deleted independently.

Removal of Data Containers
The standard rm(1) command works on a derived object in a natural way: the DO disappears from the
view. The effect of physical data storage is as follows:
g If the DO’s data container is in the view’s private storage area, rm deletes that data container
g If the DO’s data container is in a VOB storage pool, the data container remains unaffected.

In either case, the derived object in the VOB database is not deleted. The only change to the derived
object is the decrementing of its reference count.

A build that overwrites an unshared DO works similarly. The operating system thinks it is merely
overwriting an existing file; actually, the MVFS removes the old data container from the view’s private
storage area, and creates a new one there.

Removal of Derived Objects
The rmdo command removes a derived object from the VOB database. The effect of physical data storage
is as follows:
g If the DO’s data container is in the view’s private storage area, it is not deleted. The data file contin-

ues to be visible, and will be listed by ClearCase’s ls command with a [no config record] annota-
tion.

g If the DO’s data container is in a VOB storage pool, it is deleted along with the DO itself.

Scrubbing of Derived Objects and Data Containers
The scrubber utility removes derived objects from a VOB database and data containers from VOB storage
pools. The view_scrubber utility removes data containers from a view’s private storage area.

Degenerate Derived Objects
A derived object is ‘‘complete’’ if the DO itself, its data container, and its configuration record (CR) are all
accessible. This may not be the case, however, given that these entities exist independently. A derived
object can become incomplete, or degenerate, in these situations:
g Data file deleted — An unshared DO is removed with rm or by a target rebuild. The derived object

continues to exist in the VOB database (with a zero reference count), but the data container no longer
exists. Such DOs are usually ignored by lsdo, but can be listed with the −zero option. The scrubber
utility deletes zero-referenced DOs.

g DO deleted from VOB database — An unshared DO is removed from its VOB database with rmdo.
The data container continues to be visible:
% cleartool rmdo Vhelp.log
Removed derived object "Vhelp.log@@14-Sep.72783".

% cleartool ls Vhelp.log
Vhelp.log [no config record]

May 1994 401

derived_object ClearCase data structure
hh

g CR unavailable — As described in the config_record manual page, a newly-created CR is stored in the
view where its associated DO(s) were built. If that view becomes unavailable (for example, it is inad-
vertently destroyed or its host is temporarily down), the DO continues to exist in the VOB database,
but operations that must access the CR will fail:
cleartool: Error: Unable to find view ’mercury:/viewstore/pink.vws’

from albd: error detected by ClearCase subsystem
cleartool: Error: See albd_log on host mercury
cleartool: Error: Unable to contact View - error detected by ClearCase subsystem

DO VERSIONS
Subject to data-type restrictions imposed by the element type, you can checkin a derived object as a ver-
sion of an element — a DO version. Other versions of such an element can also be, but need not be,
derived objects. A DO version behaves both like a version and like a derived object:
g It has a version-ID, which can be used to reference it both as a VOB database object and as a data file.
g It can be assigned a version label, and can be referenced with that label.
g It has a configuration record, which can be used by catcr and diffcr. (These commands bypass the CR

of a DO version, unless you use the −ci option.)
g It can be winked-in during a clearmake build, but only if it has been checked in at the same pathname

where it was originally built.
g You can wink it in with a winkin command.
g It is listed by the describe command as a derived object version. (But it is not listed by the lsdo

command at all.)

When you checkout a DO version, it is winked-in to your view. You can use a standard pathname to
access the DO’s file system data. But note that VOB-database access is handled in an idiosyncratic
fashion:
g A standard pathname to the DO references the version in the VOB database from which the checkout

was made:
(wink−in derived object ’hello’)% cleartool checkout -nc hello

Checked out "hello" from version "/main/3".
(using standard pathname ...% cleartool mklabel EXPER hello
... accesses version from which checkout was made)Created label "EXPER" on "hello" version "/main/3".

g To access the CHECKEDOUT placeholder version, you must use an extended pathname:
% cleartool mklabel −replace EXPER hello@@/main/CHECKEDOUT
Moved label "EXPER" on "hello" from version "/main/3" to "/main/CHECKEDOUT".

If you process a checked-out DO version as described in ‘‘Manipulating Derived Objects with Standard
Commands’’ above, ClearCase reverts to its usual handling of checked-out versions: a standard path-
name references the placeholder version in the VOB database.

COMMANDS FOR WORKING WITH DERIVED OBJECTS
ClearCase includes commands for working with derived objects and their associated configuration
records:

402 ClearCase Reference Manual

ClearCase data structure derived_object
hh

lsdo, describe Lists a VOB’s derived objects. lsdo does not list DO versions; describe does.

rmdo Deletes derived objects and their data containers.

scrubber Deletes derived objects and their data containers.

catcr Lists the CR associated with a derived object.

diffcr Lists the differences between two CRs.

mklabel -config
mkattr -config Attaches labels and attributes to the versions listed in a CR.

-config rule in config spec
Configures a view to select the versions listed in a CR.

UNIX HARD LINKS AND DERIVED OBJECTS
You cannot make a VOB hard link to a derived object. You can make one or more view-private hard links
to a derived object, using the UNIX ln command, with these restrictions:
g The derived object must be visible in the view where the view-private hard link is to be created —

that is, it must appear in a standard UNIX ls listing. (You can use the winkin command satisfy this
requirement.)

g The pathname of the hard link must be within the same VOB as the original derived object.

All hard links to a derived object appear with the same DO-ID in a ClearCase ls listing; if there are two or
more links in the same directory, they are all listed. For example:
% ln hello hw

% cleartool ls hello hw
hello@@19-May.19:15.232
hw@@19-May.19:15.232

All the hard links are equivalent to the catcr and describe commands, but lsdo ‘‘sees’’ a derived object only
at its original name. Likewise, a derived object can be winked-in only at its original pathname.

SPECIAL CASE: If a hard link is created by the same build script as the derived object itself, then the
hard link becomes an additional ‘‘original’’ name for the DO. lsdo will list the hard link, and clearmake will
be able to perform wink-in at the hard link’s pathname.

Each additional hard link increments a derived object’s reference count. An lsdo -l listing includes the
reference counts and the views in which the references exist. The (2) in this example shows that view
old.vws has two references to hello:
% cleartool lsdo −long hello
08-Dec-92.12:06:19 Chuck Jackson (test user) (jackson.dvt@oxygen)
create derived object "hello@@08-Dec.12:06.234"
references: 2 => oxygen:/usr/vobstore/tut/old.vws (2)

SEE ALSO
cleartool subcommands: ls, lsdo, rmdo, catcr, diffcr
clearmake, clearaudit, config_record, makefile_ccase, scrubber, view_scrubber

May 1994 403

env_ccase ClearCase miscellany
hh

NAME env_ccase − ClearCase environment variables

DESCRIPTION
This manual page describes the environment variables (EVs) used by ClearCase commands, programs,
utilities, and software installation scripts. It includes both ClearCase-specific EVs and standard UNIX EVs
that are particularly important for ClearCase usage.

Omitted are the EVs used by triggers and by the find commands; see the mktrtype, find, and findmerge
manual pages for listings.

ATRIAHOME
Installation directory for ClearCase software. Set this EV before running the install_release script to
specify a non−standard installation location. On such hosts, user’s shell startup scripts should use
$ATRIAHOME/bin to specify the pathname of the ClearCase executables.

Default: /usr/atria.

ATRIA_LICENSE_HOST
(HP-UX only) Hostname of the license server host. You must set this environment variable before
running the update(1M) utility to install ClearCase for HP-UX.

Default: none.

ATRIA_LINK_HOME
(HP-UX only) Local pathname of the ClearCase installation area on the link host; for example,
/net/neptune/usr/atria. You must be set this environment variable before running the update(1M) utility
to perform a LINK-mode installation of ClearCase for HP-UX.

Default: none.

ATRIA_NO_BOLD
A flag variable: if defined with a non−zero value, it suppresses generation of boldface characters in
cleartool and clearmake output.

Default: undefined.

ATRIA_RGY_HOST
(HP-UX only) Hostname of the registry server host. You must set this environment variable before
running the update(1M) utility to install ClearCase for HP-UX.

Default: none.

ATRIA_RGY_REGION
(HP-UX only) The network region of the local host. You must set this environment variable before
running the update(1M) utility to install ClearCase for HP-UX.

Default: none.

BITMAP_PATH
Bitmap file search path. The icons that an xclearcase directory browser displays for file system objects
are stored in bitmap files. It searches in directories on this colon-separated search path for such bit-
map files.

404 ClearCase Reference Manual

ClearCase miscellany env_ccase
hh

Default: home-directory/.bitmaps:${ATRIAHOME:-/usr/atria}/config/ui/bitmaps . See also:
ICON_PATH.

CLEARAUDIT_SHELL
The program that clearaudit runs in an audited shell. You must set this environment variable to the
program’s full pathname; for example, /bin/csh or /usr/home/myscript.

Default: clearaudit runs the program specified by the SHELL environment variable or, if SHELL is
undefined, a Bourne shell (/bin/sh). See also: SHELL.

CLEARCASE_ABE_PN
The full pathname with which clearmake invokes the Audited Build Executor on a local or remote host
during a distributed build.

Default: /bin/abe.

CLEARCASE_AVOBS
A colon-separated list of full pathnames, each of which specifies a VOB storage directory. Certain
commands use the value of this variable when they are invoked with the ‘‘all VOBS’’ option (−avobs).

All the VOBS that are currently mounted on the local host.

CLEARCASE_BLD_AUDIT_TMPDIR
The directory where clearmake and clearaudit create temporary build audit files. It must be a non-
MVFS directory (that is, not below a VOB-tag).

Default: /tmp.

CLEARCASE_BLD_CONC
Sets the concurrency level in a clearmake build. This EV takes the same values as the −J option.
Specifying a −J option on the clearmake command line overrides the setting of this EV.

Default: none.

CLEARCASE_BLD_HOST_TYPE
The suffix of the build hosts file, which specifies hosts to be used for a distributed build (clearmake
-J). The pathname of this file must have the form .bldhost.suffix, and must reside in your home direc-
tory. (Your home directory is determined by examining the password database.)

Default: none.

CLEARCASE_BLD_OPTIONS_SPECS
A colon-separated list of pathnames, each of which specifies a BOS file to be read by clearmake. You
can use this EV instead of specifying BOS files on the clearmake command line with one or more −A
options.

Default: undefined.

CLEARCASE_BLD_SHELL_FLAGS
Specifies clearmake command options to be passed to the subshell program that executes a build script
command.

May 1994 405

env_ccase ClearCase miscellany
hh

Default: -e.

CLEARCASE_BLD_UMASK
Sets the umask(1) value to be used for newly-created derived objects. It may be advisable to have this
EV be more permissive than your standard umask — for example, CLEARCASE_BLD_UMASK = 2
where umask = 22. The reason is to create DOs that are more accessible than other files is wink-in: a
winked-in file retains its original ownership and permissions. For example, when another user
winks-in a file that you originally built, the file is still owned by you, is still a member of your princi-
pal group, and still has the permissions with which you created it. (NOTE: You can use the standard
chmod command to change the permissions of a DO after you create it.)

CLEARCASE_BLD_UMASK can also be coded as a make macro.

Default: Same as current umask.

CLEARCASE_BLD_VERBOSITY
An integer that specifies the clearmake message logging level, from 0 (least verbose) to 2 (most ver-
bose). Setting this EV to 1 is equivalent to specifying clearmake -v. Setting this EV to 2 is
equivalent to specifying clearmake -d. Specifying −v or −d on the clearmake command line over-
rides the setting of this EV.

Default: 0.

CLEARCASE_DBG_GRP
Set this variable to a non-zero value to force xclearcase to print debugging information when executing
button and menu commands in the graphical interface.

Default: none.

CLEARCASE_INCLUDE_CXX_RULES
In a makefile read by clearmake, expands to an include statement that reads in file
$(CLEARCASE_MAKE_CONFIG_DIR)/cxx.mk. This file contains definitions that are used in a C++
environment to handle parameterized types (templates).

CLEARCASE_MAKE_COMPAT
clearmake’s make-compatibility mode. This EV takes the same values as clearmake’s −C option. Speci-
fying −C on the command line overrides the setting of this EV.

Default: none.

CLEARCASE_MAKE_CONFIG_DIR
In a makefile read by clearmake, expands to the full pathname of the clearmake configuration directory
in the ClearCase installation area — typically /usr/atria/config/clearmake.

CLEARCASE_MSG_PROTO
Enables one-way message forwarding between ClearCase and an interprogram messaging system
(for example, ToolTalk). This feature allows ClearCase to notify the messaging system that an opera-
tion succeeded (for example, a checkout) without going through an encapsulator. For example, set
this environment variable to ToolTalk to enable one-way message forwarding for the ToolTalk
Broadcast Message Server. One-way message forwarding succeeds only if all programs involved
have the same value for the DISPLAY environment variable.

406 ClearCase Reference Manual

ClearCase miscellany env_ccase
hh

Default: none. Supported values: ToolTalk, SoftBench. See also: DISPLAY, WINEDITOR.

CLEARCASE_PROFILE
The file containing your ClearCase user profile, which includes rules that determine the comment
option default for one or more cleartool commands. This setting must be a full pathname.

Default: .clearcase_profile in your home directory.

CLEARCASE_REMOTE_USER
Specifies the Domain/OS user account to be used by clearcvt_dsee when importing a DSEE source
library. The import script produced by clearcvt_dsee includes commands of the form:

rcp ${CLEARCASE_REMOTE_USER}hostname:/path_to_dseelib/file

For example, setting CLEARCASE_REMOTE_USER to jones@ causes the rcp command to use
jones@hostname in its source address.

Default: none.

CLEARCASE_ROOT
The full pathname of the root directory of a set view process — a process created by the setview com-
mand. For example, the command setview bugfix creates a shell in which CLEARCASE_ROOT is
set to /view/bugfix.

Default: not set in a process that was not created by setview.

CLEARCASE_TAB_SIZE
Specifies the tab width for output produced by cleardiff, xcleardiff, and source lines listed by the clear-
tool subcommand annotate.

Default: 8.

CLEARCASE_TRACE_TRIGGERS
A flag variable: if defined with a non-zero value, it causes all triggers to behave as if they were
defined with the −print option when they fire.

Default: undefined.

CVT_REPLACE_COMM
A character string used by conversion scripts created by clearcvt_unix as the comment for create

version event records.

Default: made from unix file.

CVT_TEMP_DIRECTORY
The directory where clearcvt_unix stores temporary files.

Default: /tmp.

CVT_UPDATE
When set to any non-null string, forces a conversion script created by one of the ClearCase conversion
utilities (for example, clearcvt_rcs) to consider source revisions individually as candidates for conver-
sion. Default: not set, enabling a heuristic algorithm that can skip conversion of an entire source file.

May 1994 407

env_ccase ClearCase miscellany
hh

Default: undefined.

DISPLAY
The X Window System display to use for ClearCase’s GUI utilities (and all other X applications). If
you are using an inter-program messaging system (for example, ToolTalk), all your tools must have
the same DISPLAY value.

Default: undefined.

EDITOR
VISUAL

The pathname of a text editor. The edcs subcommand invokes the editor specified by the environment
variable WINEDITOR (first choice), or VISUAL (second choice), or EDITOR (third choice). xclearcase
invokes the editor specified by the environment variable WINEDITOR (first choice) or EDITOR
(second choice).

Default: vi. See also: WINEDITOR.

GRP_PATH
A colon-separated list of files and directories to be searched for group files when you start xclearcase.
Default: home-directory/.grp:${ATRIAHOME:-/usr/atria}/config/ui/grp.

HOME
Not used — ClearCase programs determine your home directory by reading the password database,
not by using this environment variable.

ICON_PATH
A colon-separated list of directories to be searched for icon files. xclearcase directory browsers use the
bitmap images in such files as icons for file system objects.

Default: home-directory/.icon:${ATRIAHOME:-/usr/atria}/config/ui/icon
See also: BITMAP_PATH.

MAGIC_PATH
A colon-separated list of directories to be searched for magic files. Various ClearCase programs con-
sult magic files to perform file-typing on file system objects.

Default: home-directory/.magic:${ATRIAHOME:-/usr/atria}/config/magic

MAKEFLAGS
Provides an alternative (or supplementary) mechanism for specifying clearmake command options.
MAKEFLAGS can contain the same string of key letters used for command-line options, except that f
and r are not allowed. Options on the clearmake command line override the setting of this environ-
ment variable if there is a conflict.

Default: none.

MANPATH
A colon-separated list of directories in which the UNIX man(1) command searches for manual pages.
(The cleartool man command does not use MANPATH, but always searches in ${ATRIAHOME:-
/usr/atria}/doc/man.) Default: varies with operating system.

408 ClearCase Reference Manual

ClearCase miscellany env_ccase
hh

PATH
The standard UNIX program search path. To access ClearCase executables, change your search path
to include directory $ATRIAHOME/bin.

Default: set by your shell program; typically modified in shell startup script.

SCHEMESEARCHPATH
A colon-separated list of directories to be searched for scheme files, which contain X Window System
resource settings.
Default: /usr/lib/X11/Schemes:${ATRIAHOME:-/usr/atria}/config/ui/Schemes.

SHELL
The default shell program to be run by various ClearCase commands and programs, including the
shell and setview commands, and the clearaudit utility (if the environment variable
CLEARAUDIT_SHELL is undefined).
Default: set by your shell program.

TERM
The kind of terminal for which output is to be prepared. Certain cleartool commands produce output
that use special terminal capabilities. For example, catcr uses boldface to highlight information in a
configuration record. To see bold characters in an xterm, set TERM to xterm, and provide a bold font
with the X Toolkit option −fb, or with the X resource xterm*boldFont. To prevent the control charac-
ters that enable bolding from appearing in an emacs shell, set TERM to emacs in your emacs startup
script, or set ATRIA_NO_BOLD.

Default: none; typically set in shell startup script.

WINEDITOR
An X Window System text editor application (for example, xedit(1)), which is invoked by xclearcase on
a browser item. If WINEDITOR is undefined, xclearcase creates a terminal window, and runs the pro-
gram specified by the EDITOR environment variable. If neither of these variables are defined, no edi-
tor is invoked.

Default: none.

SEE ALSO
cleartool subcommands: edcs, find, findmerge, man, mktrtype, setview, shell
cc.icon, cc.magic, clearaudit, clearcvt_unix, clearencap_sb, clearencap_tt, clearmake, profile_ccase,
schemes, xcleardiff, xclearcase

May 1994 409

errorlogs_ccase ClearCase data structure
hh

NAME errorlogs_ccase − ClearCase error log files

SYNOPSIS
/usr/adm/atria/log/logfile_name

DESCRIPTION
ClearCase ‘‘log’’ files are located on each ClearCase host in the directory /usr/adm/atria/log. Log files
record error and status information from various ClearCase server programs and user programs, and
include:

albd_log used by the Location Broker Daemon (albd_server)

db_server_log used by VOB database server, db_server

error_log general-purpose error log, used by ClearCase user-programs, such as cleartool

event_scrubber_log used by event_scrubber program

export_mvfs_log used by export_mvfs program (not included in ClearCase for OSF/1)

install_log used by install_release (ClearCase installation script)

lockmgr_log used by lockmgr program

mntrpc_server_log used by mntrpc_server program, which performs MVFS-file-system mounts
requested by cleartool subcommand mount

promote_log used by promote_server

scrubber_log used by scrubber program

view_log used by view_server

vob_log used by vob_server

vob_scrubber_log used by vob_scrubber program

vobrpc_server_log used by vobrpc_server

Error log files are standard ASCII files. They can be edited, grep’ed, cat’ed, and so forth. A typical entry
includes the date and time of the error, the software module in which the error occurred, the current user,
and an error-specific message. The following is a typical example from the view_log file:
01/05/92 13:07:49 view_server(19314): Error: Set configuration
spec of .compiled_spec failed

As errors accumulate, the error log files grow. A ClearCase crontab(1M) script periodically renames error
log files to logfile_name.old, and creates empty ‘‘template’’ files in their place. See the crontab_ccase manual
page for details.

SEE ALSO
crontab_ccase

410 ClearCase Reference Manual

ClearCase miscellany events_ccase
hh

NAME events_ccase − ClearCase operations and event records

DESCRIPTION
ClearCase creates an event record in the VOB database for nearly every operation that modifies the VOB.
For example, if you create a new element, attach a version label, or lock the VOB, an event record marks
the change.

Event records are attached to specific objects in VOB databases. Thus, each object (including the VOB
object itself) accumulates a chronological event history, which you can display with the command lshistory.

In addition, you can:
g customize event history reports with lshistory -fmt (see the fmt_ccase manual page)
g scrub ‘‘minor’’ event records from the VOB database to save space; see the vob_scrubber manual page.
g assign triggers to many event-causing operations (mkelem, checkout, and mklabel, for example); see the

mktrtype manual page
g change the comment stored with an event; see the chevent manual page.

Contents of an Event Record
An event record stores ‘‘who, what, when, where, and why?’’ information for various ClearCase opera-
tions:

obj-name the object(s) affected

obj-kind the kind of object (file element, branch, or label type, for example)

user-name the user who changed the VOB database

host-name the client host from which the VOB database was changed

operation the ClearCase operation that caused the event (usually a cleartool command like checkout or
mklabel)

date-time when the operation occurred (reported relative to the local time zone).

event-kind a description of the event, derived from a combination of the operation and obj-kind fields

comment a text string — generated automatically by ClearCase, provided by user-name, or a combina-
tion of both

May 1994 411

events_ccase ClearCase miscellany
hh

VOB Objects and Event Histories
The following kinds of VOB-database objects have event histories, which you can display with lshistory:

VOB
VOB storage pool
Element
Branch
Version
VOB symbolic link
Hyperlink
Derived Object (no creation event)
Replica
Type

Attribute type
Branch type
Element type
Hyperlink type
Label type
Trigger type
Replica type

Each time an object from any of these categories is created, it begins its own event history with a creation
event. (Derived objects are an exception; ClearCase stores a DO’s creation time in its config record, not in
an event record.) As time passes, some objects — VOBs and elements, in particular — can accumulate
lengthy event histories.

Do not confuse type objects (created with mkattype, mkbrtype, mkeltype, mkhltype, mklbtype, and mktrtype)
with the instances of those types (created with mkattr, mkbranch, mkelem, mkhlink, mklabel, and mktrigger).
The type objects are VOB-database objects, with their own event histories. Individual branches, elements,
and hyperlinks are also VOB-database objects. However, individual attributes, labels, and triggers are
not and, therefore, do not have their own event histories. (Their create and delete events (mkattr/rmattr,
mklabel/rmlabel, and mktrigger/rmtrigger) are recorded on the objects to which these meta-data items are
attached.)

Operations that Cause Event Records to be Written
The following kinds of operations cause event records to be written to the VOB database.
g Create or import a new object.
g Destroy (remove) an object.
g Checkout a branch.
g Modify or delete version data.
g Modify a directory version’s list of names.

412 ClearCase Reference Manual

ClearCase miscellany events_ccase
hh

g Attach or remove an attribute, label, hyperlink, or trigger.
g Lock or unlock an object.
g Change the name or definition of a type or storage pool.
g Change a branch or element’s type.
g Change an element’s storage pool.
g Change the protections for an element or derived object.

Table 4 lists event-causing operations as you might see them in lshistory output that has been formatted
with the −fmt option’s %o (‘‘operation’’) specifier. Note that most operations correspond exactly to clear-
tool subcommands.

Table 4. Operations that Generate Event Records___

Symbol Notes on the Operation or Its Event Records
M Causes a "minor" event (see lshistory -minor)
T Can have a trigger (see mktrtype)
S Resulting event records can be scrubbed (see vob_scrubber)
C Generates a comment automatically (see ‘‘Comment Handling’’ in the cleartool manual page)

Operation that
Generates the
Event Record

Notes
(see key
above)

Commands that
Always Cause the
Operation

Commands that
May Cause the
Operation

Object To Which the
Event Record
is Attachedii

checkin, mkelem,
mkbranch

newly created versioncheckin T

iii
findmerge,
mkelem,
mkbranch

checked-out branch (event
deleted automatically at checkin
or uncheckout)

checkout T checkout

iii
chpool M S C chpool elementiii
chtype M T S C chtype element or branchiii

imported element or typeimport clearcvt_*iii
ln, ln -s, mkelem,
mkdir, mv

lnname M T S C directory version

iii
locked object (type, pool, VOB,
elem, or branch)

lock T S C lock (various)

iii
element, branch, version, hlink,
or VOB symlink

mkattr M T S C mkattr mkhlink

iii
mkbranch T mkbranch, mkelem checkout new branchiii
mkelem T C mkelem, mkdir new element

May 1994 413

events_ccase ClearCase miscellany
hh

iii
hyperlink object and ‘‘from’’
object, and for bidirectional
hyperlinks, ‘‘to’’ object (unless
cross-VOB hyperlink)

mkhlink M T S C mkhlink merge, findmerge

iii
mklabel M T S C mklabel versioniii
mkpool mkpool storage pool objiii
mkslink T ln -s directory versioniii
mktrigger M T S mktrigger elementiii

newly created type objectmktype T mk**typeiii
mkvob (causes
numerous creation
events)

mkvob VOB

iii
modpool M S C mkpool -update storage pooliii
modtype M S C mk**type -replace type objectiii
protect M S C protect element or DOiii
reformatvob reformatvob VOBiii

checked-out versionreserve M T reserveiii
rmattr M T S rmattr (see mkattr)iii
rmbranch T S C rmbranch parent branchiii
rmelem T S C rmelem VOBiii

‘‘from’’ object, ‘‘to’’ object (unless
cross-VOB, unidirectional), VOB

rmhlink M T S C rmhlink, rmmerge

iii
rmlabel M T S rmlabel versioniii
rmname M T S C rmname, rmelem, mv directory version(s)iii
rmpool S C rmpool VOBiii
rmtrigger M T S rmtrigger elementiii
rmtype T S C rmtype VOBiii
rmver M T S C rmveriii
rnpool M C rnpool storage pooliii
rntype M T C rntype type objectiii
unlock T S unlock (various) unlocked objectiii

checked-out versionunreserve M T unreserveiii

Operations and Triggers
Each of the following "super-operations" represents a group of the above event-causing operations. See
mktrtype for information on how to use the following keywords to write triggers for groups of operations.

MODIFY_TYPE MODIFY_DATA
MODIFY_ELEM MODIFY_MD

414 ClearCase Reference Manual

ClearCase miscellany events_ccase
hh

Table 4 omits the triggerable operations uncheckout and chevent, as these operations do not cause event
records to be stored in the VOB database.

Event Visibility
This section describes where, directly or indirectly, you might encounter event record contents. The fol-
lowing commands include event history information in their output, which can be formatted with the
−fmt option:

Command Relevant VOB Objects Event Information Reported
describe all creation or checkout event
lscheckout branch checkout event
lshistory all controlled by command options
lslock VOB, element, branch, lock event

pool, type object
lspool pools creation event
lstype -long type objects creation event

Comments and Event Records. The set of ClearCase commands named in the above table of event-
causing operations matches almost exactly the set of commands that accept user comments as input.
(reformatvob, which takes no comment, is the only exception.) When you supply comments to a ClearCase
command, your comment becomes part of an event record.

Some cleartool commands create a comment automatically, even if you do not provide one. These gen-
erated comments describe the operation in general terms, such as ‘‘modify meta-data’’ or ‘‘create dir ele-
ment’’. User comments, if any, are appended to generated comments. For a complete description of
comment-related command options and comment processing, see ‘‘Comment Handling’’ in the cleartool
manual page.

SEE ALSO
cleartool subcommands: chevent, lshistory, mktrtype
fmt_ccase, vob_scrubber, "Comment Handling" in cleartool manual page

May 1994 415

export_mvfs ClearCase administration command
hh

NAME export_mvfs − export and unexport VOBs to NFS clients (non-ClearCase access)

SYNOPSIS
/usr/etc/export_mvfs [−−a] [−−v] [−−i] [−−u] [−−o options] [pname]

g SunOS-5 only: pathname is /usr/atria/etc/export_mvfs

DESCRIPTION
No ’export_mvfs’ utility is supplied with ClearCase for OSF/1. See the ’exports_osf1’ manual page for details on
exporting VOBs on OSF/1 systems.

export_mvfs is the ClearCase counterpart of the exportfs(1M) command (SunOS−4, IRIX−5, HPUX−9) or
share(1M) command (SunOS-5) for file systems of type MVFS. This utility enables non-ClearCase access; it
makes a local VOB available for mounting over the network by hosts on which ClearCase is not installed.

export_mvfs is normally invoked at system startup by the ClearCase startup script. It uses information in
file /etc/exports.mvfs to export one or more VOBs through view−extended pathnames. You can run
export_mvfs manually to export or unexport an individual VOB.

With no options or arguments, export_mvfs lists the VOBs currently exported by the host.

OPTIONS AND ARGUMENTS
−−a (all) Exports all pathnames listed in /etc/exports.mvfs; with −u, unexports all currently

exported VOBs.

−−v (verbose) Displays each pathname as it is exported or unexported.

−−i Ignores the options in /etc/exports.mvfs. By default, export_mvfs consults /etc/exports.mvfs for
the options associated with each pathname to be exported.

−−u Unexports the specified pathnames; with −a, unexports all currently exported VOBs.

−−o options A comma−separated list of optional characteristics for the pathnames being exported. See the
exports_ccase manual page for a list of supported options.

pathname A view-extended pathname to the VOB-tag (mount point) of the VOB to be exported.

FILES
/etc/exports.mvfs
/usr/etc/export_mvfs (all but SunOS-5)
/usr/atria/etc/export_mvfs (SunOS-5 only)

SEE ALSO
exports_ccase, filesys_ccase, init_ccase
exportfs(1M), exports(4), share(1M)

416 ClearCase Reference Manual

ClearCase data structure exports_ccase
hh

NAME exports_ccase − list of VOBs to be accessed by non-ClearCase hosts

DESCRIPTION
ClearCase VOBs can be exported through particular views, for access by non-ClearCase hosts in the local
network. The mechanisms for exporting VOBs are architecture-specific. Consult the following manual
pages:

SunOS-4 exports_sun4
SunOS-5 exports_sun5
HPUX-9 exports_hpx9
IRIX-5 exports_irx5
OSF/1 V2 exports_osf1

May 1994 417

exports (HPUX-9) ClearCase data structure
hh

NAME exports__arch_ − list of VOBs to be accessed by non-ClearCase hosts (exporting from HPUX-9)

SYNOPSIS
g Exports table entry:

VOB-tag [options] [netgroup] [hostname ...]

g Standard options:

ro, rw, anon, root, access
Default options: rw, anon=nobody

DESCRIPTION
A host that has not installed ClearCase can still access any VOB, using NFS. Several steps are involved in
providing such non-ClearCase access to a VOB:
g A ClearCase client host — one whose kernel includes the MVFS — activates (mounts) the VOB.
g The host starts an export view, through which the VOB will be accessed by non-ClearCase hosts.
g The host uses a ClearCase-specific exports file to export a view-extended pathname to the VOB-tag

(mount point) — for example, /view/exp_vu/vobs/proj.
g One or more non-ClearCase hosts in the network perform an NFS mount of the exported pathname.

The file /etc/exports.mvfs is the ClearCase counterpart of the standard UNIX /etc/exports file. (You cannot
use /etc/exports to export a VOB.) At system startup, the ClearCase startup script invokes the export_mvfs
utility to process the entries in /etc/exports.mvfs. Each entry in this file enables access to one VOB by non-
ClearCase hosts.

A VOB-export entry has the format shown in the ‘‘Synopsis’’ section, above. Export options, hostnames,
and comments are processed as described in the exports(4) manual page. If you use an NFS ‘‘soft mount’’
to access the VOB, allow enough time for successful mounting by:
g setting the timeout (timeo) parameter to a value ≥ 30
g setting the NFS retransmission (retrans) parameter to a value ≥ 5

To improve performance, use the −access option to restrict the export to a particular set of hosts and/or
netgroups (see example below).

418 ClearCase Reference Manual

ClearCase data structure exports (HPUX-9)
hh

RESTRICTIONS
When setting up non-ClearCase access, you must observe these restrictions:
g Any VOB to be exported at system startup must be listed in the ClearCase storage registry as a public

VOB.
g The VOB-tag (VOB mount point) must be a specified as a view-extended pathname. Examples:

/view/gamma/vobs/proj
/view/alpha/vobs/vega rw=mercury:venus:jupiter

g The view storage directory must be located on the local host.

We strongly recommend that you observe these additional restrictions:
g The view storage directory and VOB storage directory involved in the export reside on the same host.
g The data storage for both the view and the VOB must be local — no remote storage pools for the

VOB; no remote private storage area for the view.

If you do not wish to (or cannot) observe these additional restrictions, consult ‘‘Setting Up an Export View
for Non-ClearCase Access’’ in the ClearCase Administrator´s Manual.

EXAMPLES
g A ClearCase host, saturn, wishes to export a VOB mounted at /vobs/proj, as seen through view beta. This

line exports the VOB to all hosts in the network:
/view/beta/vobs/proj

A non-ClearCase host soft-mounts the VOB with this file system table entry:
saturn:/view/beta/vobs/proj /ccase_vobs/proj nfs rw,noauto,soft,timeo=300,retrans=10 0 0

Another host hard-mounts the VOB with this file system table entry:
saturn:/view/beta/vobs/proj /vobs/proj nfs rw,hard 0 0

g Export a VOB to netgroup pcgroup, and also to individual host newton. In addition, specify the export
option rw.
/view/beta/vobs/proj -rw,access=pcgroup:newton

NOTES
The ClearCase installation procedure creates a template /etc/exports.mvfs, all of whose lines are com-
mented out.

FILES
/etc/exports.mvfs
/etc/rc.atria

SEE ALSO
cleartool, exports_ccase, filesys_ccase, export_mvfs, exports(4), fstab(4), netgroup(4)
‘‘Setting Up an Export View for Non-ClearCase Access’’ in the ClearCase Administrator´s Manual

May 1994 419

exports (IRIX-5) ClearCase data structure
hh

NAME exports__arch_ − list of VOBs to be accessed by non-ClearCase hosts (exporting from IRIX-5)

SYNOPSIS
g Exports table entry:

VOB-tag [options] [netgroup] [hostname ...]

g Standard options:

ro, rw, anon, root, access
Default options: rw, anon=nobody

DESCRIPTION
A host that has not installed ClearCase can still access any VOB, using NFS. Several steps are involved in
providing such non-ClearCase access to a VOB:
g A ClearCase client host — one whose kernel includes the MVFS — activates (mounts) the VOB.
g The host starts an export view, through which the VOB will be accessed by non-ClearCase hosts.
g The host uses a ClearCase-specific exports file to export a view-extended pathname to the VOB-tag

(mount point) — for example, /view/exp_vu/vobs/proj.
g One or more non-ClearCase hosts in the network perform an NFS mount of the exported pathname.

The file /etc/exports.mvfs is the ClearCase counterpart of the standard UNIX /etc/exports file. (You cannot
use /etc/exports to export a VOB.) At system startup, the ClearCase startup script invokes the export_mvfs
utility to process the entries in /etc/exports.mvfs. Each entry in this file enables access to one VOB by non-
ClearCase hosts.

A VOB-export entry has the format shown in the ‘‘Synopsis’’ section, above. Export options, hostnames,
and comments are processed as described in the exports(4) manual page. If you use an NFS ‘‘soft mount’’
to access the VOB, allow enough time for successful mounting by:
g setting the timeout (timeo) parameter to a value ≥ 30
g setting the NFS retransmission (retrans) parameter to a value ≥ 5

To improve performance, use the −access option to restrict the export to a particular set of hosts and/or
netgroups (see example below).

420 ClearCase Reference Manual

ClearCase data structure exports (IRIX-5)
hh

RESTRICTIONS
When setting up non-ClearCase access, you must observe these restrictions:
g Any VOB to be exported at system startup must be listed in the ClearCase storage registry as a public

VOB.
g The VOB-tag (VOB mount point) must be a specified as a view-extended pathname. Examples:

/view/gamma/vobs/proj
/view/alpha/vobs/vega rw=mercury:venus:jupiter

g The view storage directory must be located on the local host.

We strongly recommend that you observe these additional restrictions:
g The view storage directory and VOB storage directory involved in the export reside on the same host.
g The data storage for both the view and the VOB must be local — no remote storage pools for the

VOB; no remote private storage area for the view.

If you do not wish to (or cannot) observe these additional restrictions, consult ‘‘Setting Up an Export View
for Non-ClearCase Access’’ in the ClearCase Administrator´s Manual.

EXAMPLES
g A ClearCase host, saturn, wishes to export a VOB mounted at /vobs/proj, as seen through view beta. This

line exports the VOB to all hosts in the network:
/view/beta/vobs/proj

A non-ClearCase host soft-mounts the VOB with this file system table entry:
saturn:/view/beta/vobs/proj /ccase_vobs/proj nfs rw,noauto,soft,timeo=300,retrans=10 0 0

Another host hard-mounts the VOB with this file system table entry:
saturn:/view/beta/vobs/proj /vobs/proj nfs rw,hard 0 0

g Export a VOB to netgroup pcgroup, and also to individual host newton. In addition, specify the export
option rw.
/view/beta/vobs/proj -rw,access=pcgroup:newton

NOTES
The ClearCase installation procedure creates a template /etc/exports.mvfs, all of whose lines are com-
mented out.

FILES
/etc/exports.mvfs
/etc/init.d/atria

SEE ALSO
cleartool, exports_ccase, filesys_ccase, export_mvfs, exports(4), fstab(4), netgroup(4)
‘‘Setting Up an Export View for Non-ClearCase Access’’ in the ClearCase Administrator´s Manual

May 1994 421

exports (OSF/1) ClearCase data structure
hh

NAME exports__arch_ − list of VOBs to be accessed by non-ClearCase hosts (exporting from OSF/1)

SYNOPSIS
g Exports table entry:

VOB-tag [options] [netgroup] [hostname ...]

g Standard options:

ro, rw, anon, root, access
Default options: rw, anon=nobody

DESCRIPTION
A host that has not installed ClearCase can still access any VOB, using NFS. Several steps are involved in
providing such non-ClearCase access to a VOB:
g A ClearCase client host — one whose kernel includes the MVFS — activates (mounts) the VOB.
g The host starts an export view, through which the VOB will be accessed by non-ClearCase hosts.
g The host uses the standard exports file to export a view-extended pathname to the VOB-tag (mount

point) — for example, /view/exp_vu/vobs/proj.
g One or more non-ClearCase hosts in the network perform an NFS mount of the exported pathname.

VOBs are exported to non-ClearCase hosts using the standard /etc/exports file. At system startup, the
ClearCase startup script invokes showmount(8), which causes mountd(8) to export the entries in /etc/exports.
Each ClearCase-related entry in this file enables access to one VOB by non-ClearCase hosts.

NOTE: Exports sometimes fail due to a timing error. You can enter the command touch /etc/exports

(as root) to re-export the VOBs.

A VOB-export entry has the format shown in the ‘‘Synopsis’’ section, above. Export options, hostnames,
and comments are processed as described in the exports(4) manual page. If you use an NFS ‘‘soft mount’’
to access the VOB, allow enough time for successful mounting by:
g setting the timeout (timeo) parameter to a value ≥ 30
g setting the NFS retransmission (retrans) parameter to a value ≥ 5

To improve performance, use the −access option to restrict the export to a particular set of hosts and/or
netgroups (see example below).

Caution
VOBs exported through this mechanism should all be public VOBs. The ClearCase startup script mounts
all public VOBs automatically. If a VOB is not mounted at the time the export operation is attempted, the
NFS mount daemon exits and the export fails.

422 ClearCase Reference Manual

ClearCase data structure exports (OSF/1)
hh

RESTRICTIONS
When setting up non-ClearCase access, you must observe these restrictions:
g Any VOB to be exported at system startup must be listed in the ClearCase storage registry as a public

VOB.
g The VOB-tag (VOB mount point) must be a specified as a view-extended pathname. Examples:

/view/gamma/vobs/proj
/view/alpha/vobs/vega rw=mercury:venus:jupiter

g The view storage directory must be located on the local host.

We strongly recommend that you observe these additional restrictions:
g The view storage directory and VOB storage directory involved in the export reside on the same host.
g The data storage for both the view and the VOB must be local — no remote storage pools for the

VOB; no remote private storage area for the view.

If you do not wish to (or cannot) observe these additional restrictions, consult ‘‘Setting Up an Export View
for Non-ClearCase Access’’ in the ClearCase Administrator´s Manual.

EXAMPLES
g A ClearCase host, saturn, wishes to export a VOB mounted at /vobs/proj, as seen through view beta. This

line exports the VOB to all hosts in the network:
/view/beta/vobs/proj

A non-ClearCase host soft-mounts the VOB with this file system table entry:
saturn:/view/beta/vobs/proj /ccase_vobs/proj nfs rw,noauto,soft,timeo=300,retrans=10 0 0

Another host hard-mounts the VOB with this file system table entry:
saturn:/view/beta/vobs/proj /vobs/proj nfs rw,hard 0 0

g Export a VOB to netgroup pcgroup, and also to individual host newton. In addition, specify the export
option rw.
/view/beta/vobs/proj -rw,access=pcgroup:newton

FILES
/sbin/init.d/atria

SEE ALSO
cleartool, exports_ccase, filesys_ccase, showmount(8), mountd(8), exports(4), fstab(4), netgroup(4)
‘‘Setting Up an Export View for Non-ClearCase Access’’ in the ClearCase Administrator´s Manual

May 1994 423

exports (SunOS-4) ClearCase data structure
hh

NAME exports__arch_ − list of VOBs to be accessed by non-ClearCase hosts (exporting from SunOS-4)

SYNOPSIS
g Exports table entry:

VOB-tag [options] [netgroup] [hostname ...]

g Standard options:

ro, rw, anon, root, access
Default options: rw, anon=nobody

DESCRIPTION
A host that has not installed ClearCase can still access any VOB, using NFS. Several steps are involved in
providing such non-ClearCase access to a VOB:
g A ClearCase client host — one whose kernel includes the MVFS — activates (mounts) the VOB.
g The host starts an export view, through which the VOB will be accessed by non-ClearCase hosts.
g The host uses a ClearCase-specific exports file to export a view-extended pathname to the VOB-tag

(mount point) — for example, /view/exp_vu/vobs/proj.
g One or more non-ClearCase hosts in the network perform an NFS mount of the exported pathname.

The file /etc/exports.mvfs is the ClearCase counterpart of the standard UNIX /etc/exports file. (You cannot
use /etc/exports to export a VOB.) At system startup, the ClearCase startup script invokes the export_mvfs
utility to process the entries in /etc/exports.mvfs. Each entry in this file enables access to one VOB by non-
ClearCase hosts.

A VOB-export entry has the format shown in the ‘‘Synopsis’’ section, above. Export options, hostnames,
and comments are processed as described in the exports(4) manual page. If you use an NFS ‘‘soft mount’’
to access the VOB, allow enough time for successful mounting by:
g setting the timeout (timeo) parameter to a value ≥ 30
g setting the NFS retransmission (retrans) parameter to a value ≥ 5

To improve performance, use the −access option to restrict the export to a particular set of hosts and/or
netgroups (see example below).

424 ClearCase Reference Manual

ClearCase data structure exports (SunOS-4)
hh

RESTRICTIONS
When setting up non-ClearCase access, you must observe these restrictions:
g Any VOB to be exported at system startup must be listed in the ClearCase storage registry as a public

VOB.
g The VOB-tag (VOB mount point) must be a specified as a view-extended pathname. Examples:

/view/gamma/vobs/proj
/view/alpha/vobs/vega rw=mercury:venus:jupiter

g The view storage directory must be located on the local host.

We strongly recommend that you observe these additional restrictions:
g The view storage directory and VOB storage directory involved in the export reside on the same host.
g The data storage for both the view and the VOB must be local — no remote storage pools for the

VOB; no remote private storage area for the view.

If you do not wish to (or cannot) observe these additional restrictions, consult ‘‘Setting Up an Export View
for Non-ClearCase Access’’ in the ClearCase Administrator´s Manual.

EXAMPLES
g A ClearCase host, saturn, wishes to export a VOB mounted at /vobs/proj, as seen through view beta. This

line exports the VOB to all hosts in the network:
/view/beta/vobs/proj

A non-ClearCase host soft-mounts the VOB with this file system table entry:
saturn:/view/beta/vobs/proj /ccase_vobs/proj nfs rw,noauto,soft,timeo=300,retrans=10 0 0

Another host hard-mounts the VOB with this file system table entry:
saturn:/view/beta/vobs/proj /vobs/proj nfs rw,hard 0 0

g Export a VOB to netgroup pcgroup, and also to individual host newton. In addition, specify the export
option rw.
/view/beta/vobs/proj -rw,access=pcgroup:newton

NOTES
The ClearCase installation procedure creates a template /etc/exports.mvfs, all of whose lines are com-
mented out.

FILES
/etc/exports.mvfs
/etc/rc.atria

SEE ALSO
cleartool, exports_ccase, filesys_ccase, export_mvfs, exports(4), fstab(4), netgroup(4)
‘‘Setting Up an Export View for Non-ClearCase Access’’ in the ClearCase Administrator´s Manual

May 1994 425

exports (SunOS-5) ClearCase data structure
hh

NAME exports__arch_ − list of VOBs to be accessed by non-ClearCase hosts (exporting from SunOS-5)

SYNOPSIS
g Exports table entry:

VOB-mount-point [ro] [ro=client[:client]...] [rw] [rw=client[:client]...]
[anon=uid] [root=host[:host]...]

g Standard options:

ro, rw, anon, root, access
Default options: rw, anon=nobody

DESCRIPTION
A host that has not installed ClearCase can still access any VOB, using NFS. Several steps are involved in
providing such non-ClearCase access to a VOB:
g A ClearCase client host — one whose kernel includes the MVFS — activates (mounts) the VOB.
g The host starts an export view, through which the VOB will be accessed by non-ClearCase hosts.
g The host uses a ClearCase-specific exports file to export a view-extended pathname to the VOB-tag

(mount point) — for example, /view/exp_vu/vobs/proj.
g One or more non-ClearCase hosts in the network perform an NFS mount of the exported pathname.

The file /etc/exports.mvfs is the ClearCase counterpart of the standard UNIX /etc/dfs/dfstab file. (You cannot
use /etc/dfs/dfstab to export a VOB.) At system startup, the ClearCase startup script invokes the
export_mvfs utility to process the entries in /etc/exports.mvfs. Each entry in this file enables access to one
VOB by non-ClearCase hosts.

A VOB-export entry has the format shown in the ‘‘Synopsis’’ section, above. Export options, hostnames,
and comments are processed as described in the dfstab(4) manual page. If you use an NFS ‘‘soft mount’’ to
access the VOB, allow enough time for successful mounting by:
g setting the timeout (timeo) parameter to a value ≥ 30
g setting the NFS retransmission (retrans) parameter to a value ≥ 5

To improve performance, use the −access option to restrict the export to a particular set of hosts and/or
netgroups (see example below).

426 ClearCase Reference Manual

ClearCase data structure exports (SunOS-5)
hh

RESTRICTIONS
When setting up non-ClearCase access, you must observe these restrictions:
g Any VOB to be exported at system startup must be listed in the ClearCase storage registry as a public

VOB.
g The VOB-tag (VOB mount point) must be a specified as a view-extended pathname. Examples:

/view/gamma/vobs/proj
/view/alpha/vobs/vega rw=mercury:venus:jupiter

g The view storage directory must be located on the local host.

We strongly recommend that you observe these additional restrictions:
g The view storage directory and VOB storage directory involved in the export reside on the same host.
g The data storage for both the view and the VOB must be local — no remote storage pools for the

VOB; no remote private storage area for the view.

If you do not wish to (or cannot) observe these additional restrictions, consult ‘‘Setting Up an Export View
for Non-ClearCase Access’’ in the ClearCase Administrator´s Manual.

EXAMPLES
g A ClearCase host, saturn, wishes to export a VOB mounted at /vobs/proj, as seen through view beta. This

line exports the VOB to all hosts in the network:
/view/beta/vobs/proj

A non-ClearCase host soft-mounts the VOB with this file system table entry:
saturn:/view/beta/vobs/proj /ccase_vobs/proj nfs rw,noauto,soft,timeo=300,retrans=10 0 0

Another host hard-mounts the VOB with this file system table entry:
saturn:/view/beta/vobs/proj /vobs/proj nfs rw,hard 0 0

g Export a VOB to netgroup pcgroup, and also to individual host newton. In addition, specify the export
option rw.
/view/beta/vobs/proj -rw,access=pcgroup:newton

NOTES
The ClearCase installation procedure creates a template /etc/exports.mvfs, all of whose lines are com-
mented out.

FILES
/etc/exports.mvfs
/etc/init.d/atria

SEE ALSO
cleartool, exports_ccase, filesys_ccase, export_mvfs, dfstab(4), vfstab(4), netgroup(4)
‘‘Setting Up an Export View for Non-ClearCase Access’’ in the ClearCase Administrator´s Manual

May 1994 427

filesys_ccase ClearCase data structure
hh

NAME filesys_ccase − file system table entries for VOBs: fstab.mvfs

DESCRIPTION
Each VOB is mounted as a file system of type MVFS. A host’s viewroot directory is also mounted as a file
system of type MVFS. The file system tables that specify these mounts are architecture-specific. Consult
the following manual pages:

SunOS-4 filesys_sun4, mount_sun4
SunOS-5 filesys_sun5, mount_sun5
HPUX-9 filesys_hpx9, mount_hpx9
IRIX-5 filesys_irx5, mount_irx5
OSF/1 V2 filesys_osf1, mount_osf1

428 ClearCase Reference Manual

ClearCase data structure filesys (HPUX-9)
hh

NAME filesys_hpx9 − file system table entries for VOBs: fstab.mvfs (HPUX-9)

SYNOPSIS
g VOB mount entry:

VOB-storage-pathname VOB-mount-point mvfs options frequency pass

g Non-standard file system type:

mvfs

g VOB mount options:

ro, rw, soft, hard, intr, nointr, noac, timeo, retrans,
acregmin, acregmax, acdirmin, acdirmax

g ‘‘Obsolete’’ script for automatically mounting VOBs (root only):

/usr/atria/etc/clearcase_domounts { file filesys-table-pname | nis NIS-map-name }

DESCRIPTION
The functionality described in this manual page has been rendered obsolete by the ClearCase VOB registry and the
’cleartool mount’ subcommand. Support for this functionality is included in this release, but will be withdrawn in a
future release.

To enable access by developers, a versioned object base (VOB) must be mounted on a directory as a file sys-
tem of type MVFS (multiversion file system). VOB mount entries can be placed in your host’s standard file
system table, /etc/checklist, or in the ClearCase-specific table, /etc/fstab.mvfs. After a VOB has been
mounted on a host, it can be accessed through any view that is active on that host.

NOTE: The fstab.mvfs file is known only to ClearCase software. It can be processed with the script
/usr/atria/etc/clearcase_domounts, which is described below. The standard UNIX utilities mount and umount
do not process this file at all.

Viewroot Directory
Each host running ClearCase client software must also mount an MVFS file system called the viewroot
directory (standard name: /view). The ClearCase startup script performs this task — see the init_ccase
manual page. There is no way to mount the viewroot directory through an entry in fstab.mvfs.

VOB MOUNT ENTRIES
The format of an entry for mounting a VOB closely resembles that for mounting a local file system:

VOB-storage-pathname VOB-mount-point mvfs options frequency pass

VOB-storage-pathname
Specifies an existing VOB storage directory, (created with mkvob). You cannot specify a sub-
directory within the VOB; nor can you specify an ancestor directory (such as /usr/src). This
must be a local pathname; a hostname:pathname specification is invalid. See ‘‘Mounting a
Remote VOB’’ below.

May 1994 429

filesys (HPUX-9) ClearCase data structure
hh

VOB-mount-point
Specifies the mount point, which may be any directory. (Typically, it is an empty one.) It
must not be the same as the VOB-storage-pathname specification.

mvfs The file system type must be mvfs (multiversion file system).

options All standard UNIX file system table options are supported. See the standard mount(1M)
manual page for a listing of the default settings; and see ‘‘Notes on Mount Options’’ below.

frequency
pass These parameters have their standard meanings.

Notes on Mount Options
A VOB can be mounted read-write (rw option), or read-only (ro option).

By default, a VOB is mounted in nointr mode. This means that operations on MVFS files (for example,
open(2)) cannot be interrupted by typing the INTR character (typically, <Ctrl-C>). To enable keyboard
interrupts of such operations, use the intr option in the VOB’s file system table entry.

Using the soft option (recommended) causes ClearCase to return an error if a view_server process access-
ing the VOB goes down and cannot be restarted. Specifying hard causes the system to hang in such cir-
cumstances.

For VOB mounts, if you don’t specify a timeout or retransmission option, a default value is used:

timeo 5 seconds
retrans 7 retries

MOUNTING A REMOTE VOB
A host running ClearCase software can access a VOB that is stored on another ClearCase host in the net-
work. The file system in which the VOB storage directory physically resides must be NFS-mounted on
the local host; it does not matter if the NFS mount occurs before or after the associated MVFS mount.
Typically, the NFS mount is handled by a file system table entry; however, it could also be auto-mounted.

As with all NFS mounts, the file system containing the VOB storage directory must be listed in its host’s
/etc/exports file (see exports(4)).

Example:

A VOB storage directory proj.vbs is created in the file system /usr/src.export on remote host venus. The fol-
lowing file system table entry on the local host, saturn, provides a path to the VOB storage directory:
venus:/usr/src.export /usr/src.import nfs rw,soft

This entry mounts the VOB as a type-MVFS file system:
/usr/src.import/proj.vbs /usr/src/proj mvfs rw,soft 0 0

CENTRAL ADMINISTRATION OF VOB MOUNT POINTS
An efficient way for a group of hosts in a network to share a set of VOBs is to use a Network Information
Services (NIS) map. When it reads the ClearCase-specific file system table fstab.mvfs, the mount_mvfs util-
ity recognizes a line in the following form as a reference to an NIS map:

+map-name

430 ClearCase Reference Manual

ClearCase data structure filesys (HPUX-9)
hh

In effect, the entire contents of the map replaces the line. Such NIS map references can occur any number
of times in the fstab.mvfs file. Moreover, such references can be nested — a map can reference other maps,
using lines in the same form.

Example:
#
vob mnt FS FS
path path type options
#
/usr/src/project.vbs /usr/src/project mvfs rw,soft
#
Use the NIS map "clearcase_vobs" for all other VOB mounts
#
+clearcase_vobs

NIS Map Format
Lines in the NIS map have a slightly different format from lines in the file system table. The first two
fields are reversed: in the NIS map, the first field specifies the mount point, and the second field specifies
the VOB storage area.

The following example shows both the reverse field order and the use of a nested NIS map:
#
mount pt vob storage FS FS
path path type options
#
/vobs/public /net/saturn/usr/vobstore/public mvfs rw,soft
/vobs/design /net/saturn/usr/vobstore/design mvfs rw,soft
#
NIS sub-map
#
+current_test_vobs

NOTE: The viewroot mount should not be specified in an NIS map. This restriction is for reliability:
when NIS services are unavailable, you will still want to be able to use views on your host. Be sure to
place the viewroot mount entry in your host’s standard file system table.

THE CLEARCASE_DOMOUNTS SCRIPT
The clearcase_domounts script processes VOB-mount entries, either in a specified ASCII file or in a
specified NIS map:
g Use the argument file to specify the pathname of an ASCII file
g Use the argument NIS to specify the name of an NIS map.

The file or NIS map must be in the format described in section ‘‘VOB Mount Entries’’ above.

The clearcase_domounts script uses the ‘‘new awk’’ program, and can use environment variable NAWK to
determine the location of this program. If there is no program named nawk on your search path, use the
EV to specify its full pathname. For example:
env NAWK=/usr/bin/awk /usr/atria/etc/clearcase_domounts file /etc/fstab.mvfs

May 1994 431

filesys (HPUX-9) ClearCase data structure
hh

EXAMPLES
g Soft-mounted VOB entry in file system table:

/usr/src/lib/vob /vobs/lib mvfs rw,soft 0 0

g Viewroot mount command with non-default extended naming symbol:
mount -t mvfs -o viewroot,xnsuffix=%% /view /view

FILES
/etc/checklist
/etc/fstab.mvfs
/etc/rc.atria

SEE ALSO
cleartool subcommands: mktag, mkview, mkvob, mount, setview, startview, umount
albd_server, init_ccase, exports_ccase, mount(1M), mount(1M)

432 ClearCase Reference Manual

ClearCase data structure filesys (IRIX-5)
hh

NAME filesys_irx5 − file system table entries for VOBs: fstab.mvfs (IRIX-5)

SYNOPSIS
g VOB mount entry:

VOB-storage-pathname VOB-mount-point mvfs options frequency pass

g Non-standard file system type:

mvfs

g VOB mount options:

ro, rw, soft, hard, intr, nointr, noac, timeo, retrans,
acregmin, acregmax, acdirmin, acdirmax

g ‘‘Obsolete’’ script for automatically mounting VOBs (root only):

/usr/atria/etc/clearcase_domounts { file filesys-table-pname | nis NIS-map-name }

DESCRIPTION
The functionality described in this manual page has been rendered obsolete by the ClearCase VOB registry and the
’cleartool mount’ subcommand. Support for this functionality is included in this release, but will be withdrawn in a
future release.

To enable access by developers, a versioned object base (VOB) must be mounted on a directory as a file sys-
tem of type MVFS (multiversion file system). VOB mount entries can be placed in your host’s standard file
system table, /etc/fstab, or in the ClearCase-specific table, /etc/fstab.mvfs. After a VOB has been mounted on
a host, it can be accessed through any view that is active on that host.

NOTE: The fstab.mvfs file is known only to ClearCase software. It can be processed with the script
/usr/atria/etc/clearcase_domounts, which is described below. The standard UNIX utilities mount, umount,
and mountall do not process this file at all.

Viewroot Directory
Each host running ClearCase client software must also mount an MVFS file system called the viewroot
directory (standard name: /view). The ClearCase startup script performs this task — see the init_ccase
manual page. There is no way to mount the viewroot directory through an entry in fstab.mvfs.

VOB MOUNT ENTRIES
The format of an entry for mounting a VOB closely resembles that for mounting a local file system:

VOB-storage-pathname VOB-mount-point mvfs options frequency pass

VOB-storage-pathname
Specifies an existing VOB storage directory, (created with mkvob). You cannot specify a sub-
directory within the VOB; nor can you specify an ancestor directory (such as /usr/src). This
must be a local pathname; a hostname:pathname specification is invalid. See ‘‘Mounting a
Remote VOB’’ below.

May 1994 433

filesys (IRIX-5) ClearCase data structure
hh

VOB-mount-point
Specifies the mount point, which may be any directory. (Typically, it is an empty one.) It
must not be the same as the VOB-storage-pathname specification.

mvfs The file system type must be mvfs (multiversion file system).

options All standard UNIX file system table options are supported. See the standard mount(1M)
manual page for a listing of the default settings; and see ‘‘Notes on Mount Options’’ below.

frequency
pass These parameters have their standard meanings.

Notes on Mount Options
A VOB can be mounted read-write (rw option), or read-only (ro option).

By default, a VOB is mounted in nointr mode. This means that operations on MVFS files (for example,
open(2)) cannot be interrupted by typing the INTR character (typically, <Ctrl-C>). To enable keyboard
interrupts of such operations, use the intr option in the VOB’s file system table entry.

Using the soft option (recommended) causes ClearCase to return an error if a view_server process access-
ing the VOB goes down and cannot be restarted. Specifying hard causes the system to hang in such cir-
cumstances.

For VOB mounts, if you don’t specify a timeout or retransmission option, a default value is used:

timeo 5 seconds
retrans 7 retries

MOUNTING A REMOTE VOB
A host running ClearCase software can access a VOB that is stored on another ClearCase host in the net-
work. The file system in which the VOB storage directory physically resides must be NFS-mounted on
the local host; it does not matter if the NFS mount occurs before or after the associated MVFS mount.
Typically, the NFS mount is handled by a file system table entry; however, it could also be auto-mounted.

As with all NFS mounts, the file system containing the VOB storage directory must be listed in its host’s
/etc/exports file (see exports(4)).

Example:

A VOB storage directory proj.vbs is created in the file system /usr/src.export on remote host venus. The fol-
lowing file system table entry on the local host, saturn, provides a path to the VOB storage directory:
venus:/usr/src.export /usr/src.import nfs rw,soft

This entry mounts the VOB as a type-MVFS file system:
/usr/src.import/proj.vbs /usr/src/proj mvfs rw,soft 0 0

CENTRAL ADMINISTRATION OF VOB MOUNT POINTS
An efficient way for a group of hosts in a network to share a set of VOBs is to use a Network Information
Services (NIS) map. When it reads the ClearCase-specific file system table fstab.mvfs, the mount_mvfs util-
ity recognizes a line in the following form as a reference to an NIS map:

+map-name

434 ClearCase Reference Manual

ClearCase data structure filesys (IRIX-5)
hh

In effect, the entire contents of the map replaces the line. Such NIS map references can occur any number
of times in the fstab.mvfs file. Moreover, such references can be nested — a map can reference other maps,
using lines in the same form.

Example:
#
vob mnt FS FS
path path type options
#
/usr/src/project.vbs /usr/src/project mvfs rw,soft
#
Use the NIS map "clearcase_vobs" for all other VOB mounts
#
+clearcase_vobs

NIS Map Format
Lines in the NIS map have a slightly different format from lines in the file system table. The first two
fields are reversed: in the NIS map, the first field specifies the mount point, and the second field specifies
the VOB storage area.

The following example shows both the reverse field order and the use of a nested NIS map:
#
mount pt vob storage FS FS
path path type options
#
/vobs/public /net/saturn/usr/vobstore/public mvfs rw,soft
/vobs/design /net/saturn/usr/vobstore/design mvfs rw,soft
#
NIS sub-map
#
+current_test_vobs

NOTE: The viewroot mount should not be specified in an NIS map. This restriction is for reliability:
when NIS services are unavailable, you will still want to be able to use views on your host. Be sure to
place the viewroot mount entry in your host’s standard file system table.

THE CLEARCASE_DOMOUNTS SCRIPT
The clearcase_domounts script processes VOB-mount entries, either in a specified ASCII file or in a
specified NIS map:
g Use the argument file to specify the pathname of an ASCII file
g Use the argument NIS to specify the name of an NIS map.

The file or NIS map must be in the format described in section ‘‘VOB Mount Entries’’ above.

The clearcase_domounts script uses the ‘‘new awk’’ program, and can use environment variable NAWK to
determine the location of this program. If there is no program named nawk on your search path, use the
EV to specify its full pathname. For example:
env NAWK=/usr/bin/awk /usr/atria/etc/clearcase_domounts file /etc/fstab.mvfs

May 1994 435

filesys (IRIX-5) ClearCase data structure
hh

EXAMPLES
g Soft-mounted VOB entry in file system table:

/usr/src/lib/vob /vobs/lib mvfs rw,soft 0 0

g Viewroot mount command with non-default extended naming symbol:
mount -t mvfs -o viewroot,xnsuffix=%% /view /view

FILES
/etc/fstab
/etc/fstab.mvfs
/etc/init.d/atria

SEE ALSO
cleartool subcommands: mktag, mkview, mkvob, mount, setview, startview, umount
albd_server, init_ccase, exports_ccase, mount(1M), fstab(4)

436 ClearCase Reference Manual

ClearCase data structure filesys (OSF/1)
hh

NAME filesys_osf1 − file system table entries for VOBs: fstab.mvfs (OSF/1)

SYNOPSIS
g VOB mount entry:

VOB-storage-pathname VOB-mount-point mvfs options frequency pass

g Non-standard file system type:

mvfs

g VOB mount options:

ro, rw, soft, hard, intr, nointr, noac, timeo, retrans,
acregmin, acregmax, acdirmin, acdirmax

g ‘‘Obsolete’’ script for automatically mounting VOBs (root only):

/usr/atria/etc/clearcase_domounts { file filesys-table-pname | nis NIS-map-name }

DESCRIPTION
The functionality described in this manual page has been rendered obsolete by the ClearCase VOB registry and the
’cleartool mount’ subcommand. Support for this functionality is included in this release, but will be withdrawn in a
future release.

To enable access by developers, a versioned object base (VOB) must be mounted on a directory as a file sys-
tem of type MVFS (multiversion file system). VOB mount entries must be placed in the ClearCase-specific
table, /etc/fstab.mvfs. After a VOB has been mounted on a host, it can be accessed through any view that is
active on that host.

NOTE: The fstab.mvfs file is known only to ClearCase software. It can be processed with the script
/usr/atria/etc/clearcase_domounts, which is described below. The standard UNIX utilities mount and umount
do not process this file at all.

Viewroot Directory
Each host running ClearCase client software must also mount an MVFS file system called the viewroot
directory (standard name: /view). The ClearCase startup script performs this task — see the init_ccase
manual page. There is no way to mount the viewroot directory through an entry in fstab.mvfs.

VOB MOUNT ENTRIES
The format of an entry for mounting a VOB closely resembles that for mounting a local file system:

VOB-storage-pathname VOB-mount-point mvfs options frequency pass

VOB-storage-pathname
Specifies an existing VOB storage directory, (created with mkvob). You cannot specify a sub-
directory within the VOB; nor can you specify an ancestor directory (such as /usr/src). This
must be a local pathname; a hostname:pathname specification is invalid. See ‘‘Mounting a
Remote VOB’’ below.

May 1994 437

filesys (OSF/1) ClearCase data structure
hh

VOB-mount-point
Specifies the mount point, which may be any directory. (Typically, it is an empty one.) It
must not be the same as the VOB-storage-pathname specification.

mvfs The file system type must be mvfs (multiversion file system).

options All standard UNIX file system table options are supported. See the standard mount(1M)
manual page for a listing of the default settings; and see ‘‘Notes on Mount Options’’ below.

frequency
pass These parameters have their standard meanings.

Notes on Mount Options
A VOB can be mounted read-write (rw option), or read-only (ro option).

By default, a VOB is mounted in nointr mode. This means that operations on MVFS files (for example,
open(2)) cannot be interrupted by typing the INTR character (typically, <Ctrl-C>). To enable keyboard
interrupts of such operations, use the intr option in the VOB’s file system table entry.

Using the soft option (recommended) causes ClearCase to return an error if a view_server process access-
ing the VOB goes down and cannot be restarted. Specifying hard causes the system to hang in such cir-
cumstances.

For VOB mounts, if you don’t specify a timeout or retransmission option, a default value is used:

timeo 5 seconds
retrans 7 retries

MOUNTING A REMOTE VOB
A host running ClearCase software can access a VOB that is stored on another ClearCase host in the net-
work. The file system in which the VOB storage directory physically resides must be NFS-mounted on
the local host; it does not matter if the NFS mount occurs before or after the associated MVFS mount.
Typically, the NFS mount is handled by a file system table entry; however, it could also be auto-mounted.

As with all NFS mounts, the file system containing the VOB storage directory must be listed in its host’s
/etc/exports file (see exports(4)).

Example:

A VOB storage directory proj.vbs is created in the file system /usr/src.export on remote host venus. The fol-
lowing file system table entry on the local host, saturn, provides a path to the VOB storage directory:
venus:/usr/src.export /usr/src.import nfs rw,soft

This entry mounts the VOB as a type-MVFS file system:
/usr/src.import/proj.vbs /usr/src/proj mvfs rw,soft 0 0

CENTRAL ADMINISTRATION OF VOB MOUNT POINTS
An efficient way for a group of hosts in a network to share a set of VOBs is to use a Network Information
Services (NIS) map. When it reads the ClearCase-specific file system table fstab.mvfs, the mount_mvfs util-
ity recognizes a line in the following form as a reference to an NIS map:

+map-name

438 ClearCase Reference Manual

ClearCase data structure filesys (OSF/1)
hh

In effect, the entire contents of the map replaces the line. Such NIS map references can occur any number
of times in the fstab.mvfs file. Moreover, such references can be nested — a map can reference other maps,
using lines in the same form.

Example:
#
vob mnt FS FS
path path type options
#
/usr/src/project.vbs /usr/src/project mvfs rw,soft
#
Use the NIS map "clearcase_vobs" for all other VOB mounts
#
+clearcase_vobs

NIS Map Format
Lines in the NIS map have a slightly different format from lines in the file system table. The first two
fields are reversed: in the NIS map, the first field specifies the mount point, and the second field specifies
the VOB storage area.

The following example shows both the reverse field order and the use of a nested NIS map:
#
mount pt vob storage FS FS
path path type options
#
/vobs/public /net/saturn/usr/vobstore/public mvfs rw,soft
/vobs/design /net/saturn/usr/vobstore/design mvfs rw,soft
#
NIS sub-map
#
+current_test_vobs

NOTE: The viewroot mount should not be specified in an NIS map. This restriction is for reliability:
when NIS services are unavailable, you will still want to be able to use views on your host. Be sure to
place the viewroot mount entry in your host’s standard file system table.

THE CLEARCASE_DOMOUNTS SCRIPT
The clearcase_domounts script processes VOB-mount entries, either in a specified ASCII file or in a
specified NIS map:
g Use the argument file to specify the pathname of an ASCII file
g Use the argument NIS to specify the name of an NIS map.

The file or NIS map must be in the format described in section ‘‘VOB Mount Entries’’ above.

The clearcase_domounts script uses the ‘‘new awk’’ program, and can use environment variable NAWK to
determine the location of this program. If there is no program named gawk (Gnu awk) on your search
path, use the EV to specify its full pathname. For example:
env NAWK=/usr/bin/awk /usr/atria/etc/clearcase_domounts file /etc/fstab.mvfs

May 1994 439

filesys (OSF/1) ClearCase data structure
hh

EXAMPLES
g Soft-mounted VOB entry in file system table:

/usr/src/lib/vob /vobs/lib mvfs rw,soft 0 0

g Viewroot mount command with non-default extended naming symbol:
mount -t mvfs -o -o=viewroot,-o=xnsuffix=%% /view /view

FILES
/etc/fstab
/etc/fstab.mvfs
/sbin/init.d/atria

SEE ALSO
cleartool subcommands: mktag, mkview, mkvob, mount, setview, startview, umount
albd_server, init_ccase, exports_ccase, mount(1M), fstab(4)

440 ClearCase Reference Manual

ClearCase data structure filesys (SunOS-4)
hh

NAME filesys_sun4 − file system table entries for VOBs: fstab.mvfs (SunOS-4)

SYNOPSIS
g VOB mount entry:

VOB-storage-pathname VOB-mount-point mvfs options frequency pass

g Non-standard file system type:

mvfs

g VOB mount options:

ro, rw, soft, hard, intr, nointr, noac, timeo, retrans,
acregmin, acregmax, acdirmin, acdirmax

g ‘‘Obsolete’’ script for automatically mounting VOBs (root only):

/usr/atria/etc/clearcase_domounts { file filesys-table-pname | nis NIS-map-name }

DESCRIPTION
The functionality described in this manual page has been rendered obsolete by the ClearCase VOB registry and the
’cleartool mount’ subcommand. Support for this functionality is included in this release, but will be withdrawn in a
future release.

To enable access by developers, a versioned object base (VOB) must be mounted on a directory as a file sys-
tem of type MVFS (multiversion file system). VOB mount entries can be placed in your host’s standard file
system table, /etc/fstab, or in the ClearCase-specific table, /etc/fstab.mvfs. After a VOB has been mounted on
a host, it can be accessed through any view that is active on that host.

NOTE: The fstab.mvfs file is known only to ClearCase software. It can be processed with the script
/usr/atria/etc/clearcase_domounts, which is described below. The standard UNIX utilities mount and umount
do not process this file at all.

Viewroot Directory
Each host running ClearCase client software must also mount an MVFS file system called the viewroot
directory (standard name: /view). The ClearCase startup script performs this task — see the init_ccase
manual page. There is no way to mount the viewroot directory through an entry in fstab.mvfs.

VOB MOUNT ENTRIES
The format of an entry for mounting a VOB closely resembles that for mounting a local file system:

VOB-storage-pathname VOB-mount-point mvfs options frequency pass

VOB-storage-pathname
Specifies an existing VOB storage directory, (created with mkvob). You cannot specify a sub-
directory within the VOB; nor can you specify an ancestor directory (such as /usr/src). This
must be a local pathname; a hostname:pathname specification is invalid. See ‘‘Mounting a
Remote VOB’’ below.

May 1994 441

filesys (SunOS-4) ClearCase data structure
hh

VOB-mount-point
Specifies the mount point, which may be any directory. (Typically, it is an empty one.) It
must not be the same as the VOB-storage-pathname specification.

mvfs The file system type must be mvfs (multiversion file system).

options All standard UNIX file system table options are supported. See the standard mount(1M)
manual page for a listing of the default settings; and see ‘‘Notes on Mount Options’’ below.

frequency
pass These parameters have their standard meanings.

Notes on Mount Options
A VOB can be mounted read-write (rw option), or read-only (ro option).

By default, a VOB is mounted in nointr mode. This means that operations on MVFS files (for example,
open(2)) cannot be interrupted by typing the INTR character (typically, <Ctrl-C>). To enable keyboard
interrupts of such operations, use the intr option in the VOB’s file system table entry.

Using the soft option (recommended) causes ClearCase to return an error if a view_server process access-
ing the VOB goes down and cannot be restarted. Specifying hard causes the system to hang in such cir-
cumstances.

For VOB mounts, if you don’t specify a timeout or retransmission option, a default value is used:

timeo 5 seconds
retrans 7 retries

MOUNTING A REMOTE VOB
A host running ClearCase software can access a VOB that is stored on another ClearCase host in the net-
work. The file system in which the VOB storage directory physically resides must be NFS-mounted on
the local host; it does not matter if the NFS mount occurs before or after the associated MVFS mount.
Typically, the NFS mount is handled by a file system table entry; however, it could also be auto-mounted.

As with all NFS mounts, the file system containing the VOB storage directory must be listed in its host’s
/etc/exports file (see exports(4)).

Example:

A VOB storage directory proj.vbs is created in the file system /usr/src.export on remote host venus. The fol-
lowing file system table entry on the local host, saturn, provides a path to the VOB storage directory:
venus:/usr/src.export /usr/src.import nfs rw,soft

This entry mounts the VOB as a type-MVFS file system:
/usr/src.import/proj.vbs /usr/src/proj mvfs rw,soft 0 0

CENTRAL ADMINISTRATION OF VOB MOUNT POINTS
An efficient way for a group of hosts in a network to share a set of VOBs is to use a Network Information
Services (NIS) map. When it reads the ClearCase-specific file system table fstab.mvfs, the mount_mvfs util-
ity recognizes a line in the following form as a reference to an NIS map:

+map-name

442 ClearCase Reference Manual

ClearCase data structure filesys (SunOS-4)
hh

In effect, the entire contents of the map replaces the line. Such NIS map references can occur any number
of times in the fstab.mvfs file. Moreover, such references can be nested — a map can reference other maps,
using lines in the same form.

Example:
#
vob mnt FS FS
path path type options
#
/usr/src/project.vbs /usr/src/project mvfs rw,soft
#
Use the NIS map "clearcase_vobs" for all other VOB mounts
#
+clearcase_vobs

NIS Map Format
Lines in the NIS map have a slightly different format from lines in the file system table. The first two
fields are reversed: in the NIS map, the first field specifies the mount point, and the second field specifies
the VOB storage area.

The following example shows both the reverse field order and the use of a nested NIS map:
#
mount pt vob storage FS FS
path path type options
#
/vobs/public /net/saturn/usr/vobstore/public mvfs rw,soft
/vobs/design /net/saturn/usr/vobstore/design mvfs rw,soft
#
NIS sub-map
#
+current_test_vobs

NOTE: The viewroot mount should not be specified in an NIS map. This restriction is for reliability:
when NIS services are unavailable, you will still want to be able to use views on your host. Be sure to
place the viewroot mount entry in your host’s standard file system table.

THE CLEARCASE_DOMOUNTS SCRIPT
The clearcase_domounts script processes VOB-mount entries, either in a specified ASCII file or in a
specified NIS map:
g Use the argument file to specify the pathname of an ASCII file
g Use the argument NIS to specify the name of an NIS map.

The file or NIS map must be in the format described in section ‘‘VOB Mount Entries’’ above.

The clearcase_domounts script uses the ‘‘new awk’’ program, and can use environment variable NAWK to
determine the location of this program. If there is no program named nawk on your search path, use the
EV to specify its full pathname. For example:
env NAWK=/usr/bin/awk /usr/atria/etc/clearcase_domounts file /etc/fstab.mvfs

May 1994 443

filesys (SunOS-4) ClearCase data structure
hh

EXAMPLES
g Soft-mounted VOB entry in file system table:

/usr/src/lib/vob /vobs/lib mvfs rw,soft 0 0

g Viewroot mount command with non-default extended naming symbol:
mount -t mvfs -o viewroot,xnsuffix=%% /view /view

FILES
/etc/fstab
/etc/fstab.mvfs
/etc/rc.atria

SEE ALSO
cleartool subcommands: mktag, mkview, mkvob, mount, setview, startview, umount
albd_server, init_ccase, exports_ccase, mount(1M), fstab(5)

444 ClearCase Reference Manual

ClearCase data structure filesys (SunOS-5)
hh

NAME filesys_sun5 − file system table entries for VOBs: fstab.mvfs (SunOS-5)

SYNOPSIS
g VOB mount entry:

VOB-storage-pathname VOB-mount-point mvfs options frequency pass

g Non-standard file system type:

mvfs

g VOB mount options:

ro, rw, soft, hard, intr, nointr, noac, timeo, retrans,
acregmin, acregmax, acdirmin, acdirmax

g ‘‘Obsolete’’ script for automatically mounting VOBs (root only):

/usr/atria/etc/clearcase_domounts { file filesys-table-pname | nis NIS-map-name }

DESCRIPTION
The functionality described in this manual page has been rendered obsolete by the ClearCase VOB registry and the
’cleartool mount’ subcommand. Support for this functionality is included in this release, but will be withdrawn in a
future release.

To enable access by developers, a versioned object base (VOB) must be mounted on a directory as a file sys-
tem of type MVFS (multiversion file system). VOB mount entries can be placed in your host’s standard file
system table, /etc/vfstab, or in the ClearCase-specific table, /etc/fstab.mvfs. After a VOB has been mounted
on a host, it can be accessed through any view that is active on that host.

NOTE: The fstab.mvfs file is known only to ClearCase software. It can be processed with the script
/usr/atria/etc/clearcase_domounts, which is described below. The standard UNIX utilities mount, umount,
and mountall do not process this file at all.

Viewroot Directory
Each host running ClearCase client software must also mount an MVFS file system called the viewroot
directory (standard name: /view). The ClearCase startup script performs this task — see the init_ccase
manual page. There is no way to mount the viewroot directory through an entry in fstab.mvfs.

VOB MOUNT ENTRIES
The format of an entry for mounting a VOB closely resembles that for mounting a local file system:

VOB-storage-pathname VOB-mount-point mvfs options frequency pass

VOB-storage-pathname
Specifies an existing VOB storage directory, (created with mkvob). You cannot specify a sub-
directory within the VOB; nor can you specify an ancestor directory (such as /usr/src). This
must be a local pathname; a hostname:pathname specification is invalid. See ‘‘Mounting a
Remote VOB’’ below.

May 1994 445

filesys (SunOS-5) ClearCase data structure
hh

VOB-mount-point
Specifies the mount point, which may be any directory. (Typically, it is an empty one.) It
must not be the same as the VOB-storage-pathname specification.

mvfs The file system type must be mvfs (multiversion file system).

options All standard UNIX file system table options are supported. See the standard mount(1M)
manual page for a listing of the default settings; and see ‘‘Notes on Mount Options’’ below.

frequency
pass These parameters have their standard meanings.

Notes on Mount Options
A VOB can be mounted read-write (rw option), or read-only (ro option).

By default, a VOB is mounted in nointr mode. This means that operations on MVFS files (for example,
open(2)) cannot be interrupted by typing the INTR character (typically, <Ctrl-C>). To enable keyboard
interrupts of such operations, use the intr option in the VOB’s file system table entry.

Using the soft option (recommended) causes ClearCase to return an error if a view_server process access-
ing the VOB goes down and cannot be restarted. Specifying hard causes the system to hang in such cir-
cumstances.

For VOB mounts, if you don’t specify a timeout or retransmission option, a default value is used:

timeo 5 seconds
retrans 7 retries

MOUNTING A REMOTE VOB
A host running ClearCase software can access a VOB that is stored on another ClearCase host in the net-
work. The file system in which the VOB storage directory physically resides must be NFS-mounted on
the local host; it does not matter if the NFS mount occurs before or after the associated MVFS mount.
Typically, the NFS mount is handled by a file system table entry; however, it could also be auto-mounted.

As with all NFS mounts, the file system containing the VOB storage directory must be listed in its host’s
/etc/dfs/dfstab file (see exports(4)).

Example:

A VOB storage directory proj.vbs is created in the file system /usr/src.export on remote host venus. The fol-
lowing file system table entry on the local host, saturn, provides a path to the VOB storage directory:
venus:/usr/src.export /usr/src.import nfs rw,soft

This entry mounts the VOB as a type-MVFS file system:
/usr/src.import/proj.vbs /usr/src/proj mvfs rw,soft 0 0

CENTRAL ADMINISTRATION OF VOB MOUNT POINTS
An efficient way for a group of hosts in a network to share a set of VOBs is to use a Network Information
Services (NIS) map. When it reads the ClearCase-specific file system table fstab.mvfs, the mount_mvfs util-
ity recognizes a line in the following form as a reference to an NIS map:

+map-name

446 ClearCase Reference Manual

ClearCase data structure filesys (SunOS-5)
hh

In effect, the entire contents of the map replaces the line. Such NIS map references can occur any number
of times in the fstab.mvfs file. Moreover, such references can be nested — a map can reference other maps,
using lines in the same form.

Example:
#
vob mnt FS FS
path path type options
#
/usr/src/project.vbs /usr/src/project mvfs rw,soft
#
Use the NIS map "clearcase_vobs" for all other VOB mounts
#
+clearcase_vobs

NIS Map Format
Lines in the NIS map have a slightly different format from lines in the file system table. The first two
fields are reversed: in the NIS map, the first field specifies the mount point, and the second field specifies
the VOB storage area.

The following example shows both the reverse field order and the use of a nested NIS map:
#
mount pt vob storage FS FS
path path type options
#
/vobs/public /net/saturn/usr/vobstore/public mvfs rw,soft
/vobs/design /net/saturn/usr/vobstore/design mvfs rw,soft
#
NIS sub-map
#
+current_test_vobs

NOTE: The viewroot mount should not be specified in an NIS map. This restriction is for reliability:
when NIS services are unavailable, you will still want to be able to use views on your host. Be sure to
place the viewroot mount entry in your host’s standard file system table.

THE CLEARCASE_DOMOUNTS SCRIPT
The clearcase_domounts script processes VOB-mount entries, either in a specified ASCII file or in a
specified NIS map:
g Use the argument file to specify the pathname of an ASCII file
g Use the argument NIS to specify the name of an NIS map.

The file or NIS map must be in the format described in section ‘‘VOB Mount Entries’’ above.

The clearcase_domounts script uses the ‘‘new awk’’ program, and can use environment variable NAWK to
determine the location of this program. If there is no program named nawk on your search path, use the
EV to specify its full pathname. For example:
env NAWK=/usr/bin/awk /usr/atria/etc/clearcase_domounts file /etc/fstab.mvfs

May 1994 447

filesys (SunOS-5) ClearCase data structure
hh

EXAMPLES
g Soft-mounted VOB entry in file system table:

/usr/src/lib/vob /vobs/lib mvfs rw,soft 0 0

g Viewroot mount command with non-default extended naming symbol:
mount -t mvfs -o viewroot,xnsuffix=%% /view /view

FILES
/etc/vfstab
/etc/fstab.mvfs
/etc/init.d/atria

SEE ALSO
cleartool subcommands: mktag, mkview, mkvob, mount, setview, startview, umount
albd_server, init_ccase, exports_ccase, mount(1M), vfstab(4)

448 ClearCase Reference Manual

ClearCase miscellany fmt_ccase
hh

NAME fmt_ccase − format strings for cleartool command output

SYNOPSIS
g −fmt option syntax:

cleartool subcommand −−fmt format-string other-subcommand-options-and-args

g subcommand is one of various reporting commands (annotate, describe, lshistory, lscheckout, and so on)

g format-string is a quoted character string, composed of alphanumeric characters, conversion
specifications, and escape sequences.

Conversion specifications:

%a attributes (modifiers: N, S, [attr-type])
%c comment string (modifiers: N)
%d date (modifiers: S, V, DA, MA, BA, OA)
%e event description
%h host name
%l labels (modifiers: C, N)
%n name of object (modifiers: E, L, S, PS, V, PV, X)
%m object kind (version, derived object, and so on)
%o operation kind (checkin, lock, mkelem, and so on)
%u user/group information (modifiers: F, G, L)
%% % character

Escape sequences:

\n <NL>

\t <Tab>

\’ single quote
\\ literal backslash
\nnn character specified by octal code

DESCRIPTION
Many cleartool subcommands read information from a VOB database, format the data, and send it to stan-
dard output. (In most cases, the information is stored in event records, written by cleartool when it creates
or modifies an object in a VOB. See the events_ccase manual page.) Some of these subcommands have a
−fmt option, which you can use to format simple reports on VOB contents. Note that −fmt is a mutually
exclusive alternative to the −short and −long options.

The following example shows how output-formatting options affect an lshistory command.
% cleartool lshistory −since 1−Feb util.c
10-Feb.11:21 anne create version "util.c@@/main/rel2_bugfix/1"
"fix bug: extra NL in time string"

10-Feb.11:21 anne create version "util.c@@/main/rel2_bugfix/0"
10-Feb.11:21 anne create branch "util.c@@/main/rel2_bugfix"

May 1994 449

fmt_ccase ClearCase miscellany
hh

% cleartool lshistory −short −since 1−Feb util.c
util.c@@/main/rel2_bugfix/1
util.c@@/main/rel2_bugfix/0
util.c@@/main/rel2_bugfix

% cleartool lshistory −fmt "\tElement: %−13.13En Version: %Vn\n" −since 1−Feb util.c
Element: util.c Version: /main/rel2_bugfix/1
Element: util.c Version: /main/rel2_bugfix/0
Element: util.c Version: /main/rel2_bugfix

(A \t escape sequence tabs output to the next tab stop. Tab stops occur at eight-character intervals,
except as described in the annotate manual page.)

The ’describe’ Command and -fmt
The describe subcommand has its own output-formatting options: −predecessor, −alabel, −aattr,
and −ahlink. With one or more of these options, describe replaces its standard output format with:
g A ‘‘header line’’, which lists the object’s name.
g The predecessor version-ID, version labels, attribute values, and/or names of hyperlinked objects, as

specified by the options.

If you combine −fmt with any of these options, describe uses the format-string to construct and display the
header line.

CONVERSION SPECIFICATIONS
A conversion specification identifies a particular data item to display and specifies its display format.

Syntax
%[min][.max][MODIFIER [, ...]]keyletter

The conversion specification format closely resembles that of the C-language function printf(3):
g percent character (%)
g optionally, a minimum and/or maximum field display width specifier, of the form min.max (see

‘‘Specifying Field Width’’ below)
g optionally (for some conversion specs), one or more modifier characters (uppercase) that specify one

or more variants, and/or, a bracket-enclosed parameter (see %a)
g a keyletter (lowercase), which indicates the kind of data to display

Unlike printf(3) specifiers, conversion specifications are not replaced by arguments supplied elsewhere on
the command line; they are replaced automatically by cleartool, usually with field values extracted from
event records.

450 ClearCase Reference Manual

ClearCase miscellany fmt_ccase
hh

The conversion specifications are:

%n Name of object — for a file system object, the extended pathname (including the version-ID
for versions, and the DO-ID for derived objects); for a type object, its name. Variants:

%En Element name — for a file system object, its standard file or element name, or its
pathname; for a type object, its name.

%Ln Leaf name — for any named object, its simple name. The terminal node of a
pathname. This modifier can be combined with others.

%Sn Short name — for a version, a short form of the version-ID: branch/version. The
null string otherwise.

%PSn Predecessor Short name — for a version, a short form of the predecessor
version’s version-ID: branch/version. The null string otherwise.

%Vn Version ID — for a version or derived object, the version-ID; the null string oth-
erwise.

%PVn Predecessor Version ID — for a version, the predecessor version’s version-ID;
the null string otherwise.

%Xn Extended name — same as default %n output, but for checked-out versions,
append the extension @@/branch/CHECKEDOUT.

%a Attributes — for elements, branches, or versions, all attached attributes; the null string other-
wise. Attributes are listed as attr=value pairs. These pairs are enclosed in parentheses and
separated by a comma-space combination (,<SP>). Variants:

%Na No commas — suppress the parentheses and commas in attribute list output;
separate multiple attributes with spaces only.

%Sa Value only — display attribute values only (rather than attr=value pairs).

%[attype]a This attribute only — display only the specified attribute, if it has been attached
to the object.

%c Comment string — the user-supplied or system-generated comment stored in an event
record. A newline character is appended to the comment string for display purposes only.
Variant:

%Nc No newline — do not append a newline character to the comment string.

May 1994 451

fmt_ccase ClearCase miscellany
hh

%d Date/Time — the timestamp of the operation or event, in date.time format. Variants:

%Sd (short) Date only.

%Vd (very long) Day of week, date, and time.

%DAd Age in days.

%MAd Age in months.

%BAd Age as a bar graph (longer bars for more recent events). A bar graph is drawn as
a sequence of 0-5 # characters, representing the elapsed time since the reported
operation as follows:
less than a week
less than a month
less than a three months
less than six months
less than a year

more than a year

%OAd Age as a bar graph (longer bars for older events). A bar graph is drawn as a
sequence of 0-5 # characters, representing the elapsed time since the reported
operation as follows:

more than a year
less than a year
less than six months
less than three months
less than a month

less than a week

%h Host name — as reported by uname -n.

%l Labels — for versions, all attached labels; the null string otherwise. Labels are output as a
comma-separated list, enclosed in parentheses. A <Space> character follows each comma.
Variants:

%Cl Max labels — specify the maximum number of labels to display with the max-
field-width parameter (see ‘‘Specifying Field Width’’ below). If there are more
labels, ‘‘...’’ is appended to the output. If no max-field-width is specified, the max-
imum defaults to three.

%Nl No commas — suppress the parentheses and commas in label list output;
separate labels with spaces only.

%m Object kind — the kind of object involved in the operation, for example:
file element
branch
version
derived object
branch type
label type

452 ClearCase Reference Manual

ClearCase miscellany fmt_ccase
hh

%o Operation kind — the ClearCase operation that caused the event to take place; commonly,
the name of a cleartool subcommand. For example:
mkelem
mklabel
checkin
checkout

See the events_ccase manual page for a complete list of operations and the commands that
cause them.

%e Event kind — a brief description of the event. The event kind is derived programmatically
from an event record’s name, object kind, and operation kind fields. Sample event kinds:
create version
create branch
make hyperlink "Merge" on version
make label "REL2" on version
lock branch type

%u User information — the login name of the user associated with the event or object. Variants:

%Fu Full name — the user’s full name, extracted from the password database.

%Gu Group name — only the user’s group name.

%Lu Long name — the user login name and group (user.group).

%% Percent character (%).

Specifying Field Width
A conversion specification can include an optional field width specifier, which assigns a minimum and/or
maximum width, in characters, to the data field display. For example, the conversion specifier %10.15Lu

will display, for each output line, the user’s login name and group with a minimum of 10 characters
(space padded if necessary) but not more than 15.

Usage rules:
g A single number is interpreted as a minimum width.
g To supply only a maximum width, precede the number with a decimal point (for example, %.10En)

or with a zero and decimal point (%0.10En).
g To specify a constant display width, set the minimum and maximum widths to the same value

(%20.20c).
g Values smaller than the specified minimum width are right justified (padded left). A negative

minimum width value (%-20.20c) left justifies short values.
g Values longer than the specified maximum width are truncated from the right. A negative maximum

width value (%15.-15Sn) truncates long values from the left.
g A maximum width specifier has special meaning when used with the %Cl specifier. For example,

%.5Cl prints a version’s first five labels only, followed by ‘‘...’’.

May 1994 453

fmt_ccase ClearCase miscellany
hh

EXAMPLES
g Format the output from lsco -cview.
% cleartool lsco −cview −fmt "\t%−10.10n (from %8.8PVn) %d %u\n"

util.c (from /main/23) 24-Jun-94.14:12:48 anne
main.c (from /main/46) 23-Jun-94.18:42:33 anne
msg.c (from ugfix/11) 23-Jun-94.10:45:13 anne
msg.h (from bugfix/3) 22-Jun-94.14:51:55 anne

g Format the event history of a file element. (The command line, including the quoted format sting, consti-
tutes a single input line. The input line below is broken to improve readability. Spaces are significant.)
% cleartool lshistory −fmt "OBJ−NAME: %−20.20n\n USER: %−8.8u\n DATE: %d\n

OPERATION:\t%−12.12o\n OBJ−TYPE:\t%−15.15m\n EVENT:\t%e\n
COMMENT: %c\n" util.c

OBJ-NAME: util.c@@/main/3
USER: anne
DATE: 10-May-94.09:24:38
OPERATION: checkin
OBJ-TYPE: version
EVENT: create version

COMMENT: fix bug r2-307

OBJ-NAME: util.c@@/main/2
USER: anne
DATE: 10-May-94.09:09:29
OPERATION: checkin
OBJ-TYPE: version
EVENT: create version

COMMENT: ready for code review
...

g Mimic the output from lshistory -long. Note the use of single quotes to enclose the format string,
which includes literal double quotes.
% cleartool lshistory −fmt ’%d %Fu (%u@%h)\n %e "%n"\n "%Nc"\n’ util.c
11-May-94.09:24:38 Anne Duvo (anne@neptune)
create version "util.c@@/main/3"
"fix bug r2-307"

10-May-94.09:09:29 Ravi Singha (ravi@mercury)
create version "util.c@@/main/2"
"ready for code review"

...

g Describe the element main.c in detail. This example illustrates the complete set of conversion
specifications (but does not use field width specifiers). Again, the command is a single input line; line
breaks are added for readability.
% cleartool describe −fmt "Name (default): %n\n

Element name: %En\n
Leaf name: %Ln\n
Short name: %Sn\n
Predecessor short name: %PSn\n
Version ID: %Vn\n
Predecessor version ID: %PVn\n
Extended name: %Xn\n
Attributes: %a\n
Attr values only: %Sa\n

454 ClearCase Reference Manual

ClearCase miscellany fmt_ccase
hh

Attrs without commas or parens: %Na\n
This attr only: %[Tested]a\n
Comment: %c
Date/Time:\tdefault: %d\n
\t\tshort: %Sd\n
\t\tlong: %Vd\n
Age in days: %DAd\n
Age in months: %MAd\n
Age graph (long = new): %BAd\n
Age graph (long = old): %OAd\n
Host: %h\n
Labels: %Cl\n
Labels without commas or parens: %Nl\n
Object kind: %m\n
Operation kind: %o\n
Event kind: %e\n
User (default): %u\n
Full user name: %Fu\n
Group name: %Gu\n
Long name: %Lu\n\n" main.c

Name (default): main.c@@/main/34
Element name: main.c
Leaf name: 34
Short name: /main/34
Predecessor short name: /main/33
Version ID: /main/34
Predecessor version ID: /main/33
Extended name: main.c@@/main/34
Attributes: (Tested="yes", QAlevel=4, Responsible="anne")
Attr values only: ("yes", 4, "anne")
Attrs without commas or parens: Tested="yes" QAlevel=4 Responsible="anne"
This attr only: (Tested="yes")
Comment: still needs QA
Date/Time: default: 30-Jul-94.15:02:49

short: 30-Jul-94
long: Tuesday 07/30/94 15:02:49

Age in days: 42
Age in months: 1
Age graph (long = new): ####
Age graph (long = old): ##
Host: neptune
Labels: (Rel3.1C, Rel3.1D, Rel3.1E)
Labels without commas or parens: Rel3.1C Rel3.1D Rel3.1E
Object kind: version
Operation kind: checkin
Event kind: create version
User (default): anne
Full user name: Anne Duvo
Group name: dev
Long name: anne.dev

SEE ALSO
cleartool subcommands: lshistory, describe, lscheckout, lsdo, annotate, lslock, lspool, lsreplica, lstype
events_ccase, printf(3)

May 1994 455

init_ccase ClearCase administration command
hh

NAME init_ccase − ClearCase startup/shutdown script

DESCRIPTION
The scripts that start ClearCase processes at system startup, and kill those processes at system shutdown,
are architecture-specific. Consult the following manual pages:

SunOS-4 init_sun4
SunOS-5 init_sun5
HPUX-9 init_hpx9
IRIX-5 init_irx5
OSF/1 V2 init_osf1

456 ClearCase Reference Manual

ClearCase administration command init (HPUX-9)
hh

NAME init_hpx9 − ClearCase startup/shutdown script (HPUX-9)

SYNOPSIS
/etc/rc.atria { start | stop }

DESCRIPTION
The shell script /etc/rc.atria is invoked automatically at system startup and shutdown. It can also be exe-
cuted as a shell command.

CLEARCASE STARTUP
When invoked with the argument start (or without an argument), the script performs ClearCase initiali-
zation:
g start the Location Broker Daemon, albd_server
g start the database lock manager process, lockmgr
g initialize the viewroot directory (default name /view)
g mount public VOBs listed in ClearCase storage registry. If the network is partitioned into multiple

network regions, only the VOBs that have public VOB-tags in the local host’s region will be mounted.
g export VOBs through particular views to enable access by non-ClearCase hosts; the list of VOBs to be

exported is read from the ClearCase-specific file, /etc/exports.mvfs.

Startup Retry Loop
The startup script itself resides outside the host’s ClearCase installation area (by default, /usr/atria). The
actual work, however, is performed by a script that resides inside the installation area:
/usr/atria/etc/rc.atria. If this script cannot be accessed (for example, because it is actually located on a
remote host that is currently down), the startup script enters a retry loop: it periodically attempts to start
ClearCase processing over an extended period (about half an hour). If the final retry fails, an error mes-
sage is displayed.

You can break the startup script out of its retry loop by removing the flag file /tmp/ClearCase.retrying.

The Viewroot Mount Command
The startup script runs a standard mount command to mount the viewroot directory as a file system of
type MVFS:
mount -t mvfs -o rw,viewroot /view /view

You can change the extending naming symbol by appending a string to the argument that follows the −o
option:

,xnsuffix=symbol

This specifies a character string to be used on the local host as the ClearCase extended naming symbol. By
default, the string @@ is used. Be careful: this option affects the local host only; other hosts may use the
default extended naming symbol or another symbol specified with this mount option.

May 1994 457

init (HPUX-9) ClearCase administration command
hh

You can specify a directory other than /view as the viewroot. Whatever directory you specify (for exam-
ple, /ccasevu) must exist at system startup time. Note that you must specify this directory name twice in
the mount command.

Mounting the viewroot directory enables use of ClearCase views on the local host. When a view is
activated (by startview, setview, or mktag), its view-tag is entered into the viewroot directory. For example,
activating a view whose view−tag is gamma would create directory entry /view/gamma. See the
pathnames_ccase manual page for a discussion of view-extended pathnames that use such directory entries.

A mounted viewroot directory is not actually an on-disk directory. Rather, it is a data structure main-
tained in main memory by the MVFS code linked with the operating system kernel. The viewroot
directory’s list of view-tags is lost whenever ClearCase operation on the local host is stopped (including
an operating system shutdown).

The viewroot directory cannot be exported, and cannot be mounted by any other host. Each ClearCase
host must have its own viewroot directory.

CLEARCASE SHUTDOWN
When invoked with the argument stop, the script performs ClearCase shutdown:
g unmount all VOBs
g kill the vob_server processes for VOB’s whose storage directories are on the local host
g kill the albd_server process, which also causes view_server, db_server, and vobrpc_server processes to exit
g kill the lockmgr process
g unmount the viewroot directory

SEE ALSO
albd_server, exports_ccase, filesys_ccase, lockmgr, mount_ccase, pathnames_ccase

458 ClearCase Reference Manual

ClearCase administration command init (IRIX-5)
hh

NAME init_irx5 − ClearCase startup/shutdown script (IRIX-5)

SYNOPSIS
/etc/init.d/atria { start | stop }

DESCRIPTION
The shell script /etc/init.d/atria is invoked automatically at system startup and shutdown. It can also be
executed as a shell command.

CLEARCASE STARTUP
When invoked with the argument start (or without an argument), the script performs ClearCase initiali-
zation:
g start the Location Broker Daemon, albd_server
g start the database lock manager process, lockmgr
g initialize the viewroot directory (default name /view)
g mount public VOBs listed in ClearCase storage registry. If the network is partitioned into multiple

network regions, only the VOBs that have public VOB-tags in the local host’s region will be mounted.
g export VOBs through particular views to enable access by non-ClearCase hosts; the list of VOBs to be

exported is read from the ClearCase-specific file, /etc/exports.mvfs.

Startup Retry Loop
The startup script itself resides outside the host’s ClearCase installation area (by default, /usr/atria). The
actual work, however, is performed by a script that resides inside the installation area:
/usr/atria/etc/init.d/atria. If this script cannot be accessed (for example, because it is actually located on a
remote host that is currently down), the startup script enters a retry loop: it periodically attempts to start
ClearCase processing over an extended period (about half an hour). If the final retry fails, an error mes-
sage is displayed.

You can break the startup script out of its retry loop by removing the flag file /tmp/ClearCase.retrying.

The Viewroot Mount Command
The startup script runs a standard mount command to mount the viewroot directory as a file system of
type MVFS:
mount -t mvfs -o rw,viewroot /view /view

You can change the extending naming symbol by appending a string to the argument that follows the −o
option:

,xnsuffix=symbol

This specifies a character string to be used on the local host as the ClearCase extended naming symbol. By
default, the string @@ is used. Be careful: this option affects the local host only; other hosts may use the
default extended naming symbol or another symbol specified with this mount option.

May 1994 459

init (IRIX-5) ClearCase administration command
hh

You can specify a directory other than /view as the viewroot. Whatever directory you specify (for exam-
ple, /ccasevu) must exist at system startup time. Note that you must specify this directory name twice in
the mount command.

Mounting the viewroot directory enables use of ClearCase views on the local host. When a view is
activated (by startview, setview, or mktag), its view-tag is entered into the viewroot directory. For example,
activating a view whose view−tag is gamma would create directory entry /view/gamma. See the
pathnames_ccase manual page for a discussion of view-extended pathnames that use such directory entries.

A mounted viewroot directory is not actually an on-disk directory. Rather, it is a data structure main-
tained in main memory by the MVFS code linked with the operating system kernel. The viewroot
directory’s list of view-tags is lost whenever ClearCase operation on the local host is stopped (including
an operating system shutdown).

The viewroot directory cannot be exported, and cannot be mounted by any other host. Each ClearCase
host must have its own viewroot directory.

CLEARCASE SHUTDOWN
When invoked with the argument stop, the script performs ClearCase shutdown:
g unmount all VOBs
g kill the vob_server processes for VOB’s whose storage directories are on the local host
g kill the albd_server process, which also causes view_server, db_server, and vobrpc_server processes to exit
g kill the lockmgr process
g unmount the viewroot directory

SEE ALSO
albd_server, exports_ccase, filesys_ccase, lockmgr, mount_ccase, pathnames_ccase

460 ClearCase Reference Manual

ClearCase administration command init (OSF/1)
hh

NAME init_osf1 − ClearCase startup/shutdown script (OSF/1)

SYNOPSIS
/sbin/init.d/atria { start | stop }

DESCRIPTION
The shell script /sbin/init.d/atria is invoked automatically at system startup and shutdown. It can also be
executed as a shell command.

CLEARCASE STARTUP
When invoked with the argument start (or without an argument), the script performs ClearCase initiali-
zation:
g start the Location Broker Daemon, albd_server
g start the database lock manager process, lockmgr
g initialize the viewroot directory (default name /view)
g mount public VOBs listed in ClearCase storage registry. If the network is partitioned into multiple

network regions, only the VOBs that have public VOB-tags in the local host’s region will be mounted.
g export VOBs through particular views to enable access by non-ClearCase hosts; the list of VOBs to be

exported is read from the standard exports file, /etc/exports.

Startup Retry Loop
The startup script itself resides outside the host’s ClearCase installation area (by default, /usr/atria). The
actual work, however, is performed by a script that resides inside the installation area:
/usr/atria/sbin/init.d/atria. If this script cannot be accessed (for example, because it is actually located on a
remote host that is currently down), the startup script enters a retry loop: it periodically attempts to start
ClearCase processing over an extended period (about half an hour). If the final retry fails, an error mes-
sage is displayed.

You can break the startup script out of its retry loop by removing the flag file /tmp/ClearCase.retrying.

The Viewroot Mount Command
The startup script runs a standard mount command to mount the viewroot directory as a file system of
type MVFS:
mount -t mvfs -o -o=rw,-o=viewroot /view /view

You can change the extending naming symbol by appending a string to the argument that follows the −o
option:

,-o=xnsuffix=symbol

This specifies a character string to be used on the local host as the ClearCase extended naming symbol. By
default, the string @@ is used. Be careful: this option affects the local host only; other hosts may use the
default extended naming symbol or another symbol specified with this mount option.

May 1994 461

init (OSF/1) ClearCase administration command
hh

Mounting the viewroot directory enables use of ClearCase views on the local host. When a view is
activated (by startview, setview, or mktag), its view-tag is entered into the viewroot directory. For example,
activating a view whose view−tag is gamma would create directory entry /view/gamma. See the
pathnames_ccase manual page for a discussion of view-extended pathnames that use such directory entries.

A mounted viewroot directory is not actually an on-disk directory. Rather, it is a data structure main-
tained in main memory by the MVFS code linked with the operating system kernel. The viewroot
directory’s list of view-tags is lost whenever ClearCase operation on the local host is stopped (including
an operating system shutdown).

The viewroot directory cannot be exported, and cannot be mounted by any other host. Each ClearCase
host must have its own viewroot directory.

CLEARCASE SHUTDOWN
When invoked with the argument stop, the script performs ClearCase shutdown:
g unmount all VOBs
g kill the vob_server processes for VOB’s whose storage directories are on the local host
g kill the albd_server process, which also causes view_server, db_server, and vobrpc_server processes to exit
g kill the lockmgr process
g kill all user processes that are using the MVFS (multiversion file system)
g unmount the viewroot directory

SEE ALSO
albd_server, exports_ccase, filesys_ccase, lockmgr, mount_ccase, pathnames_ccase

462 ClearCase Reference Manual

ClearCase administration command init (SunOS-4)
hh

NAME init_sun4 − ClearCase startup/shutdown script (SunOS-4)

SYNOPSIS
/etc/rc.atria { start | stop }

DESCRIPTION
The shell script /etc/rc.atria is invoked automatically at system startup and shutdown. It can also be exe-
cuted as a shell command.

CLEARCASE STARTUP
When invoked with the argument start (or without an argument), the script performs ClearCase initiali-
zation:
g dynamically load the MVFS (multiversion file system) into the operating system kernel
g start the Location Broker Daemon, albd_server
g start the database lock manager process, lockmgr
g initialize the viewroot directory (default name /view)
g mount public VOBs listed in ClearCase storage registry. If the network is partitioned into multiple

network regions, only the VOBs that have public VOB-tags in the local host’s region will be mounted.
g export VOBs through particular views to enable access by non-ClearCase hosts; the list of VOBs to be

exported is read from the ClearCase-specific file, /etc/exports.mvfs.

Startup Retry Loop
The startup script itself resides outside the host’s ClearCase installation area (by default, /usr/atria). The
actual work, however, is performed by a script that resides inside the installation area:
/usr/atria/etc/rc.atria. If this script cannot be accessed (for example, because it is actually located on a
remote host that is currently down), the startup script enters a retry loop: it periodically attempts to start
ClearCase processing over an extended period (about half an hour). If the final retry fails, an error mes-
sage is displayed.

You can break the startup script out of its retry loop by removing the flag file /tmp/ClearCase.retrying.

The Viewroot Mount Command
The startup script runs a standard mount command to mount the viewroot directory as a file system of
type MVFS:
mount -t mvfs -o rw,viewroot /view /view

You can change the extending naming symbol by appending a string to the argument that follows the −o
option:

,xnsuffix=symbol

This specifies a character string to be used on the local host as the ClearCase extended naming symbol. By
default, the string @@ is used. Be careful: this option affects the local host only; other hosts may use the
default extended naming symbol or another symbol specified with this mount option.

May 1994 463

init (SunOS-4) ClearCase administration command
hh

You can specify a directory other than /view as the viewroot. Whatever directory you specify (for exam-
ple, /ccasevu) must exist at system startup time. Note that you must specify this directory name twice in
the mount command.

Mounting the viewroot directory enables use of ClearCase views on the local host. When a view is
activated (by startview, setview, or mktag), its view-tag is entered into the viewroot directory. For example,
activating a view whose view−tag is gamma would create directory entry /view/gamma. See the
pathnames_ccase manual page for a discussion of view-extended pathnames that use such directory entries.

A mounted viewroot directory is not actually an on-disk directory. Rather, it is a data structure main-
tained in main memory by the MVFS code linked with the operating system kernel. The viewroot
directory’s list of view-tags is lost whenever ClearCase operation on the local host is stopped (including
an operating system shutdown).

The viewroot directory cannot be exported, and cannot be mounted by any other host. Each ClearCase
host must have its own viewroot directory.

CLEARCASE SHUTDOWN
When invoked with the argument stop, the script performs ClearCase shutdown:
g unmount all VOBs
g kill the vob_server processes for VOB’s whose storage directories are on the local host
g kill the albd_server process, which also causes view_server, db_server, and vobrpc_server processes to exit
g kill the lockmgr process
g kill all user processes that are using the MVFS (multiversion file system)
g unload the MVFS from the operating system kernel
g unmount the viewroot directory

SEE ALSO
albd_server, exports_ccase, filesys_ccase, lockmgr, mount_ccase, pathnames_ccase

464 ClearCase Reference Manual

ClearCase administration command init (SunOS-5)
hh

NAME init_sun5 − ClearCase startup/shutdown script (SunOS-5)

SYNOPSIS
/etc/init.d/atria { start | stop }

DESCRIPTION
The shell script /etc/init.d/atria is invoked automatically at system startup and shutdown. It can also be
executed as a shell command.

CLEARCASE STARTUP
When invoked with the argument start (or without an argument), the script performs ClearCase initiali-
zation:
g dynamically load the MVFS (multiversion file system) into the operating system kernel
g start the Location Broker Daemon, albd_server
g start the database lock manager process, lockmgr
g initialize the viewroot directory (default name /view)
g mount public VOBs listed in ClearCase storage registry. If the network is partitioned into multiple

network regions, only the VOBs that have public VOB-tags in the local host’s region will be mounted.
g export VOBs through particular views to enable access by non-ClearCase hosts; the list of VOBs to be

exported is read from the ClearCase-specific file, /etc/exports.mvfs.

Startup Retry Loop
The startup script itself resides outside the host’s ClearCase installation area (by default, /usr/atria). The
actual work, however, is performed by a script that resides inside the installation area:
/usr/atria/etc/init.d/atria. If this script cannot be accessed (for example, because it is actually located on a
remote host that is currently down), the startup script enters a retry loop: it periodically attempts to start
ClearCase processing over an extended period (about half an hour). If the final retry fails, an error mes-
sage is displayed.

You can break the startup script out of its retry loop by removing the flag file /tmp/ClearCase.retrying.

The Viewroot Mount Command
The startup script runs a standard mount command to mount the viewroot directory as a file system of
type MVFS:
mount -t mvfs -o rw,viewroot /view /view

You can change the extending naming symbol by appending a string to the argument that follows the −o
option:

,xnsuffix=symbol

This specifies a character string to be used on the local host as the ClearCase extended naming symbol. By
default, the string @@ is used. Be careful: this option affects the local host only; other hosts may use the
default extended naming symbol or another symbol specified with this mount option.

May 1994 465

init (SunOS-5) ClearCase administration command
hh

You can specify a directory other than /view as the viewroot. Whatever directory you specify (for exam-
ple, /ccasevu) must exist at system startup time. Note that you must specify this directory name twice in
the mount command.

Mounting the viewroot directory enables use of ClearCase views on the local host. When a view is
activated (by startview, setview, or mktag), its view-tag is entered into the viewroot directory. For example,
activating a view whose view−tag is gamma would create directory entry /view/gamma. See the
pathnames_ccase manual page for a discussion of view-extended pathnames that use such directory entries.

A mounted viewroot directory is not actually an on-disk directory. Rather, it is a data structure main-
tained in main memory by the MVFS code linked with the operating system kernel. The viewroot
directory’s list of view-tags is lost whenever ClearCase operation on the local host is stopped (including
an operating system shutdown).

The viewroot directory cannot be exported, and cannot be mounted by any other host. Each ClearCase
host must have its own viewroot directory.

CLEARCASE SHUTDOWN
When invoked with the argument stop, the script performs ClearCase shutdown:
g unmount all VOBs
g kill the vob_server processes for VOB’s whose storage directories are on the local host
g kill the albd_server process, which also causes view_server, db_server, and vobrpc_server processes to exit
g kill the lockmgr process
g kill all user processes that are using the MVFS (multiversion file system)
g unload the MVFS from the operating system kernel
g unmount the viewroot directory

SEE ALSO
albd_server, exports_ccase, filesys_ccase, lockmgr, mount_ccase, pathnames_ccase

466 ClearCase Reference Manual

ClearCase data structure license.db
hh

NAME license.db − ClearCase network-wide license database

SYNOPSIS
g Specify a set of licenses:

-license ClearCase vendor any.max-users expiration-date password

g Specify license timeout period:

−−timeout minutes

g Specify users’ license priorities:

-user { user-name | user-ID } ...

g Forbid ClearCase use by certain users:

−−nuser user-name ...

g Enable auditing of licensing activity:

-audit

DESCRIPTION
NOTE: Some ClearCase hosts do not use the Atria-provided licensing scheme.

One or more hosts in the network must be designated as ClearCase license server hosts. Each one must also
be an installation host: a host on which the ClearCase software is installed. Network-wide licensing of
ClearCase usage is established as follows:
g On a license server host — creating (or appending data to) a text file named /usr/adm/atria/license.db,

the license database file. (The administration directory is /var/adm on some platforms.)
g On each installation host — placing the name of the license server host in text file

/usr/adm/atria/config/license_host

In order to use ClearCase, each user must have a license, which grants the user the privilege to use Clear-
Case commands and data on any number of hosts in the network. If no more licenses are available at a
particular time, a user with a higher license priority automatically bumps (replaces) a lower priority user.
The highest priority level is 1.

Use the clearlicense utility to determine your current licensing status.

LICENSE DATABASE FILE FORMAT
The license database file contains several kinds of lines. A line can define a multiuser license, specify
users’ license priorities, or enable auditing of licensing activity.

All lines in the license database file must be terminated with a <NL> character.

May 1994 467

license.db ClearCase data structure
hh

License Set Definition Lines
When you first obtain ClearCase, your vendor provides you with a single line of text, which defines a cer-
tain number of licenses. This line must be entered, exactly as provided, in the license database file on the
license server host.

Most licenses are locked to their particular license server host. You cannot move the license.db file to any
other host without invalidating the license. If the vendor field is TEMPORARY, you can move the license.db
file around the network, to any ClearCase installation host.

The license database file can contain any number of −license lines. All the lines are effectively com-
bined into a single license; the maximum numbers accumulate to determine the total number of license
slots. Alternatively, it may be better to split licenses among two or more license servers. This increases
ClearCase availability: if one license server host goes down, the licenses on the other license server hosts
can still be used.

User Priority Lines
The license database file can contain any number of −user lines, each of which specifies one or more
users (by name or by numeric ID). All these lines are effectively concatenated into a single license priority
list. The first user on the list has the highest priority; each successive user has a lower priority. Users not
listed at all can still use ClearCase, but they all share the lowest priority.

Excluded User Lines
The license database file can contain any number of −nuser lines, each of which specifies one or more
users (by name or by numeric ID). The specified users cannot obtain a license and, thus, are completely
forbidden from using ClearCase.

−user and −nuser lines can be intermixed. If a user is named in both kinds of line, the first entry wins.

Audit-Enable Line
A line consisting of the single word −audit enables auditing of license activity. An audit message is
logged to /usr/adm/atria/log/albd_log when:
g a user is granted a new license
g a user is denied a license because all licenses are in use
g a user entered a clearlicense -release command. The success/failure of the command is logged,

also.

Timeout Line
By default, a license granted to a user expires in 60 minutes if the user does not enter any additional
ClearCase commands. A −timeout line changes the expiration interval to the specified number of
minutes. The minimum interval is 30 minutes; there is no maximum interval.

EXAMPLES
g The following line defines a ClearCase license for a maximum of 10 active users. The license expires on

November 16, 1992.
-license ClearCase ATRIA *.10 19921116 2adde977.1360cb11.02

468 ClearCase Reference Manual

ClearCase data structure license.db
hh

g The following lines define licenses that accommodate a total of 13 active users. User adm is assigned the
highest priority, smith the next highest, and akp the next highest. The 10-user license expires at the begin-
ning of November 16, 1992, but the 3-user license has no expiration date.
-license ClearCase ATRIA *.10 19921116 2adde977.1360cb11.02
-license ClearCase ATRIA *.3 NONE 2adde9b9.682410da.02
-user adm
-user smith akp

SEE ALSO
clearlicense, albd_server

May 1994 469

lockmgr ClearCase administration command
hh

NAME lockmgr − VOB database access arbitrator

SYNOPSIS
invoked by ClearCase startup script

DESCRIPTION
Each VOB host runs one database lock manager process, lockmgr. This process arbitrates transaction
requests to all the VOB databases on that host, from ClearCase client programs throughout the network.
The calling program polls lockmgr, which either grants or prohibits access to the requested data. If the
data is available, the transaction proceeds immediately: the data is read or written, and output is
returned to the calling program. If the data is unavailable (‘‘locked’’ because another caller has been
granted ‘‘write’’ access to the data), the caller waits until lockmgr grants it access to the data.

The ClearCase startup script invokes a lockmgr process at system startup time. This command sets the
number of ‘‘file slots’’ to 256, enabling the host to accommodate up to 36 concurrently-active VOBs. To
change this limit, modify the value of the −f option in the command that starts lockmgr:
${ATRIA}/etc/lockmgr ...

Lock Manager Socket
lockmgr creates a socket, /tmp/.A/almd, when it begins execution. It communicates with calling processes
through this socket. To reduce the likelihood of accidental deletion, the socket is created within a sub-
directory of /tmp, and is owned by the root user.

The root user’s crontab(1) should be examined, and modified if necessary, to ensure that the socket for a
long-lived lockmgr process is not deleted accidentally. For example, the following find(1) command
includes a ‘‘not a socket’’ clause:
find /tmp ! \(-type s \) -exec rm -f {} \;

ERROR LOG
The lockmgr sends warning and error messages to /usr/adm/atria/log/lockmgr_log.

SEE ALSO
albd_server, db_server, init_ccase

470 ClearCase Reference Manual

ClearCase data structure makefile_ccase
hh

NAME makefile_ccase − target description file for clearmake builds

SYNOPSIS
file(s) read by ClearCase build program, ’clearmake’, containing instructions for creating derived objects

DESCRIPTION
This manual page discusses the format of target description files, or makefiles, processed by the ClearCase
build program, clearmake. This is not a complete, rigorous description of makefile syntax; rather, it is a
discussion of differences and ClearCase-specific extensions.

MAKEFILE FORMAT
A makefile contains a sequence of entries, each of which specifies some dependencies and build scripts of
commands to be executed. A makefile can also contain make macro definitions and build directives (special
targets.)
g Target/dependencies line — The first line of an entry is a white-space-separated, non-null list of tar-

gets, followed by a colon (:) or a double colon (::), and a (possibly empty) list of dependencies. Both
targets and dependencies may contain ClearCase pathname patterns. (See the wildcards_ccase manual
page.)

The list of dependencies often need not include source objects, such as header files — such dependen-
cies are detected automatically by clearmake. But the list must include build-order dependencies —
for example, object modules and libraries that must be built before executables.

g Build script — Text following a semicolon (;) on the same line, and all subsequent lines that begin
with a <Tab> character, constitute a build script: a set of shell commands to be executed. A shell com-
mand can be continued onto the next text line with a \<NL> sequence. Any line beginning with a
pound sign (#) character is a comment.

A build script ends at the first non-empty line that does not begin with a <Tab> or pound sign (#)
character; this begins a new target/dependencies line or a make macro definition.

Note that clearmake always completely eliminates a \<NL> sequence, even in its compatibility modes.
Some other make programs sometimes preserve such a sequence — for example, in a sed(1) ‘‘insert’’
command:
target: depdcy

sed -e ’/xxx=0/i\
yyy=xxx;’ depdcy > target

Build scripts should use standard pathnames only — not view-extended pathnames, nor version-
extended pathnames.

Executing a build script ‘‘updates the target’’, and is termed a target rebuild. The shell commands in a
build script are executed one at a time, each in its own subshell.

g Make macro — A make macro is an assignment of a character-string value to a simple name. By con-
vention, all letters in the name are uppercase (for example, CFLAGS).

g Special targets — A line that begins with a dot (.) character is a special target, which acts as a direc-
tive to the build utility, clearmake.

May 1994 471

makefile_ccase ClearCase data structure
hh

RESTRICTIONS
clearmake does not have any built-in rules to support the use of SCCS files in a makefile. clearmake does
not support the use of standard input (−) as a makefile.

LIBRARIES
If a target or dependency name contains parentheses, it is assumed to be an archive (library) created by
ar(1). For example:
lib.a : lib.a(mod1.o) lib.a(mod2.o)

The string within parentheses refers to a member (object module) within the library. Use of function
names within parentheses is not supported. Thus, lib.a(mod1.o) refers to an archive that contains
object module mod1.o. The expression lib.a(mod1.o mod2.o) is not valid.

Inference rules for archive libraries have this form:

.sfx.a

... where sfx is the file name suffix from which the archive member is to be made.

ClearCase does not support incremental updating of derived objects. Thus, the way in which clearmake
handles archive construction differs from other make variants. For more on this topic, see the ‘‘Makefile
Optimization’’ chapter in the ClearCase User´s Manual.

COMMAND ECHOING AND ERROR HANDLING
You can control the echoing of commands and the handling of errors that occur during command execu-
tion on a line-by-line basis, or on a global basis.

You can prefix any command with one or two characters, as follows:

−− Causes clearmake to ignore any errors during execution of the command. By default, an error
causes clearmake to terminate.

The command-line option −i suppresses termination-on-error for all command lines.

@ Suppresses display of the command line. By default, clearmake displays each command line
just before executing it.

The command-line option −s suppresses display of all command lines. The −n option does
the opposite — commands are displayed but not executed.

−@ @− These two prefixes combine the effect of − and @.

The −k option provides for partial recovery from errors. If an error occurs, execution of the current tar-
get (that is, the set of commands for the current target) is abandoned, but execution continues on other
targets that do not depend on that target.

472 ClearCase Reference Manual

ClearCase data structure makefile_ccase
hh

BUILT-IN RULES
Suffixes and their associated rules in the makefile override any identical suffixes in the built−in rules.
clearmake reads built-in rules from the file /usr/atria/etc/builtin.mk.

INCLUDE FILES
If a line in a makefile starts with the string include or sinclude followed by white space (at least one
<Space> or <Tab> character), the rest of the line is assumed to be a file name. (This name can contain
macros.) The contents of the file are effectively placed at the current location in the makefile.

For include, a fatal error occurs if the file is not readable. For sinclude, a non-readable file is silently
ignored. Include files may be nested to a maximum of 17 levels.

MAKE MACROS
A macro definition takes this form:

macro_name = string

Macros can appear in the makefile, on the command line, or in a build options specification file. (See the
clearmake.options manual page.)

Macro definitions require no quotes or delimiters, except for the equal sign(=) character, which separates
the macro name from the value. Leading and trailing white space characters are stripped. Lines can be
continued using a \<NL> sequence; this sequence and all surrounding white space is effectively converted
to a single <Space> character. macro_name cannot include white space, but string can — it includes all
characters up to an unescaped <NL> character.

clearmake performs macro substitution whenever it encounters either of the following in the makefile:

$(macro_name)

$(macro_name:subst1=subst2)

It substitutes string for the macro invocation. In the latter two forms, it performs an additional substitu-
tion within string: all occurrences of subst1 at the end of a word within string are replaced by subst2. If
subst1 is empty, subst2 is appended to each word in the value of macro_name; If subst2 is empty, subst1 is
removed from each word in the value of macro_name.

Example:
% cat Makefile
C_SOURCES = one.c two.c three.c four.c
test:

echo "OBJECT FILES are: $(C_SOURCES:.c=.o)"
echo "EXECUTABLES are: $(C_SOURCES:.c=)"

% clearmake test
OBJECT FILES are: one.o two.o three.o four.o
EXECUTABLES are: one two three four

May 1994 473

makefile_ccase ClearCase data structure
hh

INTERNAL MACROS
clearmake maintains these macros internally, which are useful for writing rules for building targets:

$* (defined only for inference rules) The file name part of the inferred dependency, with the
suffix deleted.

$@ The full target name of the current target.

$< (defined only for inference rules) The file name of the implicit dependency.

$? (defined only when explicit rules from the makefile are evaluated) The list of dependencies
that are out-of-date with respect to the target. When configuration lookup is enabled
(default), it expands to the list of all dependencies. When a dependency is an archive library
member of the form lib(file.o), the name of the member, file.o, appears in the list.

$$@ (defined only on dependency lines in makefiles) The file name of the current target. In the
example below, the dependency is translated at makefile-parse time, first to the string cat.c,
then to the string dd.c:
cat dd: $$@.c

$% (defined only when the target is an archive library member) For a target of the form
lib(file.o), $@ evaluates to lib and $% evaluates to the library member, file.o.

MAKEFILE
During makefile parsing, this macro expands to the pathname of the current makefile. After
makefile parsing is complete, it expands to the pathname of the last makefile that was parsed.
This holds only for top-level makefiles, not for included makefiles or for built-in rules.

Use this macro as an explicit dependency to include the version of the makefile in the CR pro-
duced by a target rebuild. For example:
supersort: main.o sort.o cmd.o $(MAKEFILE)

cc -o supersort ...

VPATH MACRO
The VPATH macro specifies a search path for targets. Its value can be one directory pathname, or a
colon-separated list of directory pathnames. clearmake searches the directories on the VPATH when it
fails to find a target in the current working directory.

Configuration lookup is VPATH-sensitive when qualifying makefile dependencies (explicit dependencies
in the makefile). Thus, if a newer version of a dependent file appears in a directory on the search path
before the pathname in the CR (the version used in the previous build), clearmake rejects the previous
build, and rebuilds the target with the new file.

The VPATH setting may affect the expansion of internal macros, such as $<.

474 ClearCase Reference Manual

ClearCase data structure makefile_ccase
hh

SPECIAL TARGETS
clearmake supports these special targets in makefiles:

.DEFAULT If a file must be built, but there are no explicit commands or relevant built-in rules to build it,
the commands associated with this target are used (if it exists).

.PRECIOUS
Dependents of this target will not be removed when a QUIT character (typically, <Ctrl-\>)
or an INTR character (typically, <Ctrl-C>) is typed.

.NOTPARALLEL
Disables parallel building for the current makefile. It does not affect lower-level builds in a
recursive make (unless present in the makefiles for those builds).

.SILENT Same effect as the −s option.

.IGNORE Same effect as the −i option.

NOTE: The following special targets can be used either in the makefile itself or in a build options
specification file. (See the clearmake.options manual page.)

.NO_CONFIG_REC : tgt ...
The specified targets will be built as if the −F option was specified: modification time is used
for build avoidance, and no CRs or derived objects are created. You might use this target in a
build options specification file to allow incremental updating of ar archives.

.NO_CMP_SCRIPT : tgt ...
The specified targets will be built as if the −O option was specified: build scripts are not com-
pared during configuration lookup. This is useful when different makefiles (and, hence, dif-
ferent build scripts) are regularly used to build the same target.

.NO_WINK_IN : tgt ...
The specified targets will be built as if the −V option was specified: configuration lookup is
restricted to the current view.

.NO_CMP_NON_MF_DEPS : tgt ...
The specified targets will be built as if the −M option was specified: if a dependency is not
explicitly declared in the makefile, it is not used in configuration lookup.

SEE ALSO
bldhost, bldserver.control, clearmake, clearmake.options, wildcards_ccase

May 1994 475

mount_ccase ClearCase administration command
hh

NAME mount_ccase − mount/unmount commands for VOBs and the viewroot directory

DESCRIPTION
MVFS file systems, VOBs and the viewroot directory, are mounted and unmounted by the standard
mount(1M) and umount(1M) commands. ClearCase also includes a utility, clearcase_domounts, for han-
dling this work. The details are architecture-specific — consult the following manual pages:

SunOS-4 mount_sun4
SunOS-5 mount_sun5
HPUX-9 mount_hpx9
IRIX-5 mount_irx5
OSF/1 V2 mount_osf1

SEE ALSO
exports_ccase, mount_ccase, filesys_ccase
mount(1M), umount(1M), mountall(1M) [some architectures]

476 ClearCase Reference Manual

ClearCase administration command mount (HPUX-9)
hh

NAME mount_hpx9 − ClearCase-specific mount utility: mount_mvfs (HPUX-9)

SYNOPSIS
/etc/mount

replaced during ClearCase installation
invoked as needed by cleartool’s ’mount’ subcommand

DESCRIPTION
This manual page describes the mechanisms that mount VOBs as file systems of type MVFS (the Clear-
Case multiversion file system). Also included is a description of ‘‘obsolete’’ ClearCase Release 1.1.x func-
tionality that continues to be supported in the current release, but will be withdrawn in a future release.

Automatic VOB Activation at System Startup. At system startup, the ClearCase startup script,
/etc/rc.atria, issues a cleartool mount -all command. This activates on the local host all the VOBs that
are registered as public in the (local host’s network region of the) ClearCase storage registry. During this
procedure, the program /etc/mount performs the actual work of mounting the VOB as a file system of type
MVFS. ClearCase installation replaces the standard /etc/mount program with a ClearCase-supplied com-
piled program, which knows how to mount file systems of type mvfs. The original program is renamed
to mount.9.0.

No comparable manipulation of the /etc/umount command is required or performed.

VOB Activation after System Startup. After system startup, a cleartool mount command can be used to
(re)activate any VOB that is listed in the storage registry.
g The root user can activate any VOB in this way.
g A non-root user can activate any public VOB, or any private VOB owned by that user.

Automatic VOB Deactivation at System Shutdown. At system shutdown, the script is invoked with the
stop option to execute the ClearCase shutdown procedure. As part of this procedure, a cleartool

umount -all command deactivates on the local host all the VOBs that are currently active there. This
command invokes the standard umount(1M) utility.

Individual VOB Deactivation. While ClearCase is running, a cleartool umount command can be used to
deactivate any mounted VOB:
g The root user can deactivate any VOB in this way.
g A non-root user can deactivate any public VOB, or any private VOB owned by that user.

USE OF FILE SYSTEM TABLE: OBSOLETE, BUT STILL SUPPORTED
The root user can invoke the script /usr/atria/etc/clearcase_domounts to mount all VOBs listed in a particular
file or NIS map. In Release 1.1.x, this script was used by the ClearCase startup script to process the
ClearCase-specific file system table, /etc/fstab.mfs. (If your host had such a file, installation of this release
will have renamed it to /etc/fstab.mvfs.) See the filesys_ccase manual page for descriptions of the ‘‘obsolete’’
ClearCase-specific file system table and NIS map, and the clearcase_domounts script.

May 1994 477

mount (HPUX-9) ClearCase administration command
hh

NOTES
The mount_mvfs program should never be invoked explicitly.

SEE ALSO
cleartool subcommands: mount, umount
exports_ccase, filesys_ccase, mount_ccase
mount(1M), umount(1M)

478 ClearCase Reference Manual

ClearCase administration command mount (IRIX-5)
hh

NAME mount_irx5 − ClearCase-specific mount utility: mount_mvfs (IRIX-5)

SYNOPSIS
/usr/etc/mount_mvfs

invoked as needed by cleartool’s ’mount’ subcommand

DESCRIPTION
This manual page describes the mechanisms that mount VOBs as file systems of type MVFS (the Clear-
Case multiversion file system). Also included is a description of ‘‘obsolete’’ ClearCase Release 1.1.x func-
tionality that continues to be supported in the current release, but will be withdrawn in a future release.

Automatic VOB Activation at System Startup. At system startup, the ClearCase startup script,
/etc/init.d/atria, issues a cleartool mount -all command. This activates on the local host all the VOBs
that are registered as public in the (local host’s network region of the) ClearCase storage registry. During this
procedure, the program /usr/etc/mount_mvfs performs the actual work of mounting the VOB as a file sys-
tem of type MVFS. (This is actually a symbolic link to /usr/atria/etc/mount_mvfs.)

VOB Activation after System Startup. After system startup, a cleartool mount command can be used to
(re)activate any VOB that is listed in the storage registry.
g The root user can activate any VOB in this way.
g A non-root user can activate any public VOB, or any private VOB owned by that user.

Automatic VOB Deactivation at System Shutdown. At system shutdown, the script is invoked with the
stop option to execute the ClearCase shutdown procedure. As part of this procedure, a cleartool

umount -all command deactivates on the local host all the VOBs that are currently active there. This
command invokes the standard umount(1M) utility.

Individual VOB Deactivation. While ClearCase is running, a cleartool umount command can be used to
deactivate any mounted VOB:
g The root user can deactivate any VOB in this way.
g A non-root user can deactivate any public VOB, or any private VOB owned by that user.

USE OF FILE SYSTEM TABLE: OBSOLETE, BUT STILL SUPPORTED
The root user can invoke the script /usr/atria/etc/clearcase_domounts to mount all VOBs listed in a particular
file or NIS map. In Release 1.1.x, this script was used by the ClearCase startup script to process the
ClearCase-specific file system table, /etc/fstab.mfs. (If your host had such a file, installation of this release
will have renamed it to /etc/fstab.mvfs.) See the filesys_ccase manual page for descriptions of the ‘‘obsolete’’
ClearCase-specific file system table and NIS map, and the clearcase_domounts script.

NOTES
The mount_mvfs program should never be invoked explicitly.

SEE ALSO
cleartool subcommands: mount, umount
exports_ccase, filesys_ccase, mount_ccase
mount(1M), umount(1M)

May 1994 479

mount (OSF/1) ClearCase administration command
hh

NAME mount_osf1 − ClearCase-specific mount utility: mount_mvfs (OSF/1)

SYNOPSIS
/sbin/mount_mvfs

invoked as needed by cleartool’s ’mount’ subcommand

DESCRIPTION
This manual page describes the mechanisms that mount VOBs as file systems of type MVFS (the Clear-
Case multiversion file system). Also included is a description of ‘‘obsolete’’ ClearCase Release 1.1.x func-
tionality that continues to be supported in the current release, but will be withdrawn in a future release.

Automatic VOB Activation at System Startup. At system startup, the ClearCase startup script,
/sbin/init.d/atria, issues a cleartool mount -all command. This activates on the local host all the VOBs
that are registered as public in the (local host’s network region of the) ClearCase storage registry. During this
procedure, the program /sbin/mount_mvfs performs the actual work of mounting the VOB as a file system
of type MVFS. (This is actually a symbolic link to /usr/atria/etc/mount_mvfs.)

VOB Activation after System Startup. After system startup, a cleartool mount command can be used to
(re)activate any VOB that is listed in the storage registry.
g The root user can activate any VOB in this way.
g A non-root user can activate any public VOB, or any private VOB owned by that user.

Automatic VOB Deactivation at System Shutdown. At system shutdown, the script is invoked with the
stop option to execute the ClearCase shutdown procedure. As part of this procedure, a cleartool

umount -all command deactivates on the local host all the VOBs that are currently active there. This
command invokes the standard umount(1M) utility.

Individual VOB Deactivation. While ClearCase is running, a cleartool umount command can be used to
deactivate any mounted VOB:
g The root user can deactivate any VOB in this way.
g A non-root user can deactivate any public VOB, or any private VOB owned by that user.

USE OF FILE SYSTEM TABLE: OBSOLETE, BUT STILL SUPPORTED
The root user can invoke the script /usr/atria/etc/clearcase_domounts to mount all VOBs listed in a particular
file or NIS map. See the filesys_ccase manual page for descriptions of the ‘‘obsolete’’ ClearCase-specific file
system table and NIS map, and the clearcase_domounts script.

NOTES
The mount_mvfs program should never be invoked explicitly.

SEE ALSO
cleartool subcommands: mount, umount
exports_ccase, filesys_ccase, mount_ccase
mount(1M), umount(1M)

480 ClearCase Reference Manual

ClearCase administration command mount (SunOS-4)
hh

NAME mount_sun4 − ClearCase-specific mount utility: mount_mvfs (SunOS-4)

SYNOPSIS
/usr/etc/mount_mvfs

invoked as needed by cleartool’s ’mount’ subcommand

DESCRIPTION
This manual page describes the mechanisms that mount VOBs as file systems of type MVFS (the Clear-
Case multiversion file system). Also included is a description of ‘‘obsolete’’ ClearCase Release 1.1.x func-
tionality that continues to be supported in the current release, but will be withdrawn in a future release.

Automatic VOB Activation at System Startup. At system startup, the ClearCase startup script,
/etc/rc.atria, issues a cleartool mount -all command. This activates on the local host all the VOBs that
are registered as public in the (local host’s network region of the) ClearCase storage registry. During this
procedure, the program /usr/etc/mount_mvfs performs the actual work of mounting the VOB as a file sys-
tem of type MVFS. (This is actually a symbolic link to /usr/atria/etc/mount_mvfs.)

VOB Activation after System Startup. After system startup, a cleartool mount command can be used to
(re)activate any VOB that is listed in the storage registry.
g The root user can activate any VOB in this way.
g A non-root user can activate any public VOB, or any private VOB owned by that user.

Automatic VOB Deactivation at System Shutdown. At system shutdown, the script is invoked with the
stop option to execute the ClearCase shutdown procedure. As part of this procedure, a cleartool

umount -all command deactivates on the local host all the VOBs that are currently active there. This
command invokes the standard umount(1M) utility.

Individual VOB Deactivation. While ClearCase is running, a cleartool umount command can be used to
deactivate any mounted VOB:
g The root user can deactivate any VOB in this way.
g A non-root user can deactivate any public VOB, or any private VOB owned by that user.

USE OF FILE SYSTEM TABLE: OBSOLETE, BUT STILL SUPPORTED
The root user can invoke the script /usr/atria/etc/clearcase_domounts to mount all VOBs listed in a particular
file or NIS map. In Release 1.1.x, this script was used by the ClearCase startup script to process the
ClearCase-specific file system table, /etc/fstab.mfs. (If your host had such a file, installation of this release
will have renamed it to /etc/fstab.mvfs.) See the filesys_ccase manual page for descriptions of the ‘‘obsolete’’
ClearCase-specific file system table and NIS map, and the clearcase_domounts script.

NOTES
The mount_mvfs program should never be invoked explicitly.

SEE ALSO
cleartool subcommands: mount, umount
exports_ccase, filesys_ccase, mount_ccase
mount(1M), umount(1M)

May 1994 481

mount (SunOS-5) ClearCase administration command
hh

NAME mount_sun5 − ClearCase-specific mount utility: mount_mvfs (SunOS-5)

SYNOPSIS
/usr/lib/fs/mvfs/mount

invoked as needed by cleartool’s ’mount’ subcommand

DESCRIPTION
This manual page describes the mechanisms that mount VOBs as file systems of type MVFS (the Clear-
Case multiversion file system). Also included is a description of ‘‘obsolete’’ ClearCase Release 1.1.x func-
tionality that continues to be supported in the current release, but will be withdrawn in a future release.

Automatic VOB Activation at System Startup. At system startup, the ClearCase startup script,
/etc/init.d/atria, issues a cleartool mount -all command. This activates on the local host all the VOBs
that are registered as public in the (local host’s network region of the) ClearCase storage registry. During this
procedure, the program /usr/lib/fs/mvfs/mount performs the actual work of mounting the VOB as a file sys-
tem of type MVFS. (This is actually a symbolic link to /usr/atria/etc/mount_mvfs.)

VOB Activation after System Startup. After system startup, a cleartool mount command can be used to
(re)activate any VOB that is listed in the storage registry.
g The root user can activate any VOB in this way.
g A non-root user can activate any public VOB, or any private VOB owned by that user.

Automatic VOB Deactivation at System Shutdown. At system shutdown, the script is invoked with the
stop option to execute the ClearCase shutdown procedure. As part of this procedure, a cleartool

umount -all command deactivates on the local host all the VOBs that are currently active there. This
command invokes the standard umount(1M) utility.

Individual VOB Deactivation. While ClearCase is running, a cleartool umount command can be used to
deactivate any mounted VOB:
g The root user can deactivate any VOB in this way.
g A non-root user can deactivate any public VOB, or any private VOB owned by that user.

USE OF FILE SYSTEM TABLE: OBSOLETE, BUT STILL SUPPORTED
The root user can invoke the script /usr/atria/etc/clearcase_domounts to mount all VOBs listed in a particular
file or NIS map. In Release 1.1.x, this script was used by the ClearCase startup script to process the
ClearCase-specific file system table, /etc/fstab.mfs. (If your host had such a file, installation of this release
will have renamed it to /etc/fstab.mvfs.) See the filesys_ccase manual page for descriptions of the ‘‘obsolete’’
ClearCase-specific file system table and NIS map, and the clearcase_domounts script.

NOTES
The mount_mvfs program should never be invoked explicitly.

SEE ALSO
cleartool subcommands: mount, umount
exports_ccase, filesys_ccase, mount_ccase
mount(1M), umount(1M)

482 ClearCase Reference Manual

ClearCase administration command mvfscache
hh

NAME mvfscache − control and monitor MVFS caches

SYNOPSIS
g Determine cache status:

/usr/atria/etc/mvfscache [cache_name]

g Control cache operation:

/usr/atria/etc/mvfscache { −−e cache_list | −−d cache_list | −−f cache_list }

DESCRIPTION
mvfscache maintains a host’s MVFS caches, which are used to optimize file system performance. The root
user can display or change a cache’s enabled/disabled status. Any user can flush a cache. However, this
utility is not intended for general use. It is intended primarily to help ClearCase engineering and Custo-
mer Support personnel diagnose problems with the MVFS.

OPTIONS AND ARGUMENTS
Determining Cache Status. With no options or arguments, mvfscache displays the enabled/disabled
status of all MVFS caches. If you don’t use any of the options, but specify a cache name as an argument,
mvfscache does not display any output; it just returns an appropriate exit status:

0 specified cache is enabled
1 specified cache is disabled

Controlling Cache Operation. Use one of the following options to control a cache, or a set of caches.

−−e cache-list (must be root) Enables the specified caches and cache-related behaviors. The cache-list can
include any number of the following keywords; the list must be comma-separated, with no
white space.

attr attribute cache — caches stat(2) records for recently accessed objects.
name name cache — caches name lookup translations for recently accessed files and

directories.
noent name-not-found cache — (a portion of the name cache) caches recent name lookups

that returned ENOENT.
rvc VOB root version cache — caches VOB mount point data for each view.
slink symbolic link text cache — caches the contents of recently accessed symbolic links.

The remaining keywords enable cache-related behaviors, rather than actual caches:

cto close-to-open consistency — force a stat operation to the view_server on every OS
open operation.

autocd automatic cd — automatically cd’s the user to a new version of the current work-
ing directory, if one is checked in to the current view.

−−d cache-list
(must be root) Disables the specified caches and cache-related behaviors. The syntax is the
same as for −e.

May 1994 483

mvfscache ClearCase administration command
hh

−−f cache-list Flushes the specified cache(s). The cache-list can include any number of the following key-
words; the list must be comma-separated, with no white space.

mnode mnode freelist cache — flushes attrs, ‘‘slink text’’, open freelist files, and mnode
storage for all freelist mnodes.

name name cache

rvc VOB root version cache

EXAMPLES
g Determine the status of all caches.
% /usr/atria/etc/mvfscache
Attr: on
Name: on
Noent: on
Rvc: on
Slink: on
Cto: on
Autocd: on

g Clear busy mount points, to prepare for unmounting VOBs.
% /usr/atria/etc/mvfscache −f mnode

g Enable the name and noent caches:
% /usr/atria/etc/mvfscache −e name,noent

SEE ALSO
mvfslog, mvfsstat, mvfsstorage, mvfstime, mvfsversion
csh(1), init_ccase, stat(2)

484 ClearCase Reference Manual

ClearCase administration command mvfslog
hh

NAME mvfslog − set or display MVFS console error logging level

SYNOPSIS
/usr/atria/etc/mvfslog [none | error | warn | info | stale | debug]

DESCRIPTION
Only the ’root’ user can use this command to change the error logging level.

Sets or displays the verbosity level for MVFS console error logging. The initial setting is error: only
RPC errors and actual MVFS errors are logged; warnings and diagnostics are suppressed.

OPTIONS AND ARGUMENTS
Default: Displays the current error logging level. Use one of the following keywords to specify a new
level; none is the least verbose; debug is the most verbose.

none RPC errors only.

error MVFS errors are logged (default setting).

warn MVFS warnings are logged.

info MVFS diagnostics on some expected errors are logged.

stale MVFS diagnostics related to ESTALE errors are logged.

debug Verbose information on many expected errors.

SEE ALSO
mvfscache, mvfsstat, mvfsstorage, mvfstime, mvfsversion

May 1994 485

mvfsstat ClearCase administration command
hh

NAME mvfsstat − list MVFS statistics

SYNOPSIS
/usr/atria/etc/mvfsstat [−−chilrvV] [time] [count]

DESCRIPTION
Displays MVFS usage and operating statistics, including cumulative statistics on MVFS cache usage, rpc
statistics, cleartext I/O counts, vnode operation counts, and VFS operation counts. This data is useful for
evaluating file system performance and determining whether MVFS cache sizes require adjustment.

MVFS CACHE STATISTICS
The −c option reports on the usage of the host’s MVFS caches. This report is cumulative, covering the
entire period since the operating system was last restarted. The following example covers 16-day period:
----------------- Mon Mar 7 11:50:06 1994 ---------------------
dnlc: 527187 453323(86.0%) hit 23728 dot 234884 dir 118954 reg 75757 noent

73864 (14.0%) miss 15097 tl 246 gen 233 ev 1803 timeout 0 novp
60935 (11.6%) add 26544 tlmiss 0 unlkmiss 0 noop

2167 dir 30544 reg 28224 noent
203 addbh 0 addbhinvar
40442 hitbhinvar 203 missbh
12038 change 0 remove
2485 flushvp 12 flush 27088 ents

attr: 363967 295000(81.1%) hit 68967 (31243cto+8237ev) miss
178658 upd 15866+30094 mod 268 vmod 101225 aud

slink: 5811 5326(91.7%) hit 485 miss
rvc: 191570 189309(98.8%) hit 2261 miss

The following sections describe the particular statistics that are useful in tuning MVFS performance on a
ClearCase client host.

Directory Name Lookup Cache (dnlc)
The dnlc section reports on usage of a name-lookup cache that maps pathnames to ClearCase-internal
identifiers. Note that the value precedes the keyword — for example, 23728 dot means that the
reported value of the ‘‘dot’’ statistic is 23728.

Cache Hits. The hit line reports on cache hits:

dot Number of times the current working directory was looked up (always a cache hit)

dir Number of times a directory object was hit in the cache.

reg Number of times a file object was hit in the cache.

noent Number of times a cached ENOENT return was found.

This cache has low hit rates (around 50%) for activities that walk a large tree — for example, a find com-
mand, or a recursive clearmake that examines many files and determines that nothing needs to be built.

Cache Misses. The miss line reports on total cache misses. In some cases a cache miss occurs ‘‘nor-
mally’’, just because there was no entry in the cache; in other cases, there is a ‘‘special’’ reason for the
cache miss:

486 ClearCase Reference Manual

ClearCase administration command mvfsstat
hh

tl Attempted to lookup a name which was too long (> 24 characters).

gen Misses due to MVFS-internal readjustments.

ev Misses due to a significant VOB event (such as version labeling or branch creation) or because
the view_server’s cache is too small.

timeout Misses due to the entry ‘‘timing out’’. This is most common on the ENOENT portion of the
cache, where there is no object to tie VOB events to.

novp Misses due to vnode recycling before completion of cache lookup.

Cache Additions. The add line report on cache misses that occurred because a new entry was being
added to the cache. The additions are categorized as directory entries (dir), file entries (reg), and
ENOENT entries (noent).

The flushvp statistic reports the number of times a specific object flushed from the cache; the flush statistic
reports the number of times the whole cache was flushed.

Attribute Cache
The attr section reports on usage of a cache of stat(2) returns. This cache generally has hit rates compar-
able to that for the directory name lookup cache.

Symlink Text Cache
The slink section reports on usage of a cache of symbolic link texts (both VOB symbolic links and view-
private symbolic links). This number has a small effect on performance.

Root Version Cache
The rvc section reports on usage of a specialized cache for the version of a VOB mount point. This
number has a small effect on performance.

OPTIONS AND ARGUMENTS
time Time in seconds between samples. Display deltas on each sample. If you omit this option,

only the absolute values of all information are printed.

count Number of samples. If omitted, defaults to ‘‘infinite’’.

−−c Display statistics for the MVFS caches, as described in ‘‘MVFS Cache Statistics’’ above.

−−r Display MVFS remote-procedure-call (RPC) statistics. These statistics include both counts
and ‘‘real time waited’’. Real-time waited may be greater than 100% of a sample period in
two cases:

− when an operation took longer to complete than the sample period; for example, 60
seconds of ‘‘wait time’’ is recorded in a 30-second sample

− multiple processes are waiting at the same time

In general, real-time percentages are meaningful only when a single process is accessing a
VOB.

May 1994 487

mvfsstat ClearCase administration command
hh

−−i Display cleartext I/O counts and wait times.

−−v Display counts of vnode operations.

−−V Display counts of vfs operations.

−−h Display an RPC histogram. Cleartext fetch RPCs are tallied separately from all other RPCs.

−−l Add more detail to the statistics generated by −r, −i, −v, and/or −V, by providing a break-
down by individual operations.

SEE ALSO
mfscache, mvfslog, mvfsstorage, mvfstime, mvfsversion

488 ClearCase Reference Manual

ClearCase administration command mvfsstorage
hh

NAME mvfsstorage − list data container pathname for MVFS file

SYNOPSIS
/usr/atria/etc/mvfsstorage pname ...

DESCRIPTION
mvfsstorage lists the pathname of an MVFS file’s data container.

The contents of an MVFS file are stored in a data container. There are several cases:

1. Versions of file elements are stored in data containers located in a VOB source storage pool.

NOTE: mvfsstorage does not list these data containers; use cleartool dump instead.

2. Recently-accessed versions of text_file and compressed_text_file elements may be cached in data con-
tainers located in a VOB cleartext storage pool.

3. View-private files (including checked-out versions and unshared derived objects) are stored in data
containers located in a view’s private storage area.

mvfsstorage is intended for use in finding discrepancies in UNIX access rights between the view and the
underlying MVFS storage. Usually, such discrepancies occur as a result of set−UID root, or creating files as
root. If you encounter a permissions error that seems unfounded, you should run this utility as a diagnos-
tic.

This command takes one or more pathnames as its argument. These should be the names of files whose
pathnames are under a VOB-tag (an MVFS object). For directories and non-MVFS objects, mvfsstorage sim-
ply echos the pathname(s) you give it.

EXAMPLES
g For a view-private file, compare view-level ownership and permissions against those on the file’s under-

lying storage location.
% ls −l unixV7 ‘mvfsstorage unixV7‘
-rwxrwxrwx 1 nobody 65534 2210032 May 12 09:33 /net/myhost/home/myview/

.s/0008.VOB/016D.2E2F.unixV7*
-rwxrwxrwx 1 root sys 2210032 May 12 09:33 unixV7*

SEE ALSO
mfscache, mvfslog, mvfsstat, mvfstime, mvfsversion

May 1994 489

mvfstime ClearCase administration command
hh

NAME mvfstime − list MVFS timing statistics for a command

SYNOPSIS
/usr/atria/etc/mvfstime [−−i] [−−c] [−−r] [−−v] [−−V] [−−l] [−−h] command [args]

DESCRIPTION
Executes a command and sends to stderr a report consisting of:
g standard UNIX timing statistics
g MVFS usage statistics, similar to those generated by mvfsstat.

Use this command to perform timing experiments for applications running in a ClearCase environment.

See the mvfsstat manual page for an explanation of MVFS statistics. See the csh(1) manual page for infor-
mation on UNIX statistics.

OPTIONS AND ARGUMENTS
See the mvfsstat manual page for a description of the command-line options.

EXAMPLES
g Generate timing statistics for an invocation of the make program.
% mvfstime −iclr make afprint
linking afprint

rm -f afprint
cc -o afprint afprint.o -g -L/vobs/atria/sgi4/pvtlib \

-L/vobs/atria/sgi4/lib -ltbs -lks -lm -lcurses -lsun

----------------- Wed May 2 17:33:36 1992 ---------------------
time: 0.8u 2.1s 0:10 28% 215+62io 9pf+0w
dnlc: 124 74 + 49(99.2%) hit 1 (0tl+0vm+0bh) miss

1 ch 0 rm 0/0 purge
attr: 281 271(96.4%) hit 10 (10cto+0ev) miss

12 upd 1+1 mod 0 vmod
rvc: 56 56(100.0%) hit 0 miss
--------clrio-------calls---c/s------rt--rt/call
get/create 1 0.10 0.1 0.080 1%
rdwr 365 35.70 1.7 0.005 17%
clrio total: 366 35.80 1.8 17%
----------rpc-------calls---c/s------rt--rt/call
getattr 10 0.98 3.1 0.310 30%
setattr 1 0.10 0.0 0.020 0%
lookup 1 0.10 0.0 0.030 0%
create 1 0.10 0.1 0.080 1%
readdir 4 0.39 0.1 0.035 1%
rpc total: 17 1.66 3.4 33% 0 retrans

SEE ALSO
mfscache, mvfslog, mvfsstat, mvfsstorage, mvfsversion
csh(1)

490 ClearCase Reference Manual

ClearCase administration command mvfsversion
hh

NAME mvfsversion − list MVFS version string

SYNOPSIS
/usr/atria/bin/mvfsversion [−−r] [−−s]

DESCRIPTION
Lists the version string of your host’s MVFS, in RCS or SCCS format. This string also appears at operat-
ing system startup.

OPTIONS AND ARGUMENTS
Default: The MVFS version string is displayed in SCCS format.

−−s Same as default.

−−r Displays the version string in RCS format.

EXAMPLES
g Display the MVFS version string in RCS format.
% mvfsversion −r
$Header: MVFS Release 2.0 (Fri Apr 11 16:51:23 EST 1994) $

SEE ALSO
mfscache, mvfslog, mvfsstat, mvfsstorage, mvfstime

May 1994 491

pathnames_ccase ClearCase miscellany
hh

NAME pathnames_ccase − ClearCase pathname resolution, view context, and extended namespace

SYNOPSIS
g View-Extended Pathname:

/view/view-tag/full-pathname

g VOB-Extended Pathname:

Element: element-pname@@

Branch: element-pname@@branch-pname

Version: element-pname@@version-selector

VOB symbolic link: link-pname

Derived object: derived-object-pname@@DO-ID

DESCRIPTION
This manual page describes ClearCase’s extensions to the standard file/directory namespace provided by
the operating system. These extensions can be used only on a host that supports the ClearCase multiver-
sion file system — the MVFS. Code that implements the MVFS is linked with a host’s operating system,
either statically (which requires generation of a new version of the operating system that includes the
MVFS) or dynamically (the MVFS code is loaded at system startup time).

All ClearCase data is logically accessed at locations under VOB-tags (VOB mount points). Physically,
some data is stored in a VOB storage pool — for example, a checked-in version of a file element. Other
data is stored in a view’s private storage area — for example, a checked-out version of a file element. Col-
lectively, all such file system objects are termed MVFS objects — files, directories, and links.

VIEW CONTEXTS
A pathname can access ClearCase data only if it has a view context:
g Set view context — A process, typically a shell, created with the setview command is said to have a set

view context. That process, along with all of its children, is ‘‘set to the view’’.
g Working directory view context — You can change the current working directory of a process to a

view-extended pathname:
% cd /view/david/vobs/proj

Such a process is said to have a working directory view context. (The process may or may not also have
a set view context.)

g View-extended pathname — A pathname can specify its own view context, regardless of the current
set view or working directory view contexts, if any.

492 ClearCase Reference Manual

ClearCase miscellany pathnames_ccase
hh

KINDS OF PATHNAMES
The following sections describe the kinds of pathnames you can use with ClearCase.

Standard Pathnames
A standard pathname is either full or relative:
g A full pathname begins with a slash character (/):

/vobs/proj
/usr/bin/cc

A full pathname is interpreted in the process’s set view context. An error occurs if you attempt to use
a full pathname to access ClearCase data in a process that is not set to a view.

g A relative pathname does not begin with a slash character:
foo.c
../lib
motif/libX.a

A relative pathname is interpreted in the process’s working directory view context, if it has one. Oth-
erwise, it uses the process’s set view context. If a process has neither kind of view context, an error
occurs.

A standard pathname can reference any kind of file system object: For example, /vobs/proj/BAR references
‘‘file system object named ’BAR’, as seen through the current view’’. This can be any of the following:
g Version — If ‘‘BAR’’ names an element, the pathname references the version of that element selected

by the current view’s config spec.
g VOB symbolic link — ‘‘BAR’’ can name a VOB symbolic link that is visible in the current view.

Depending on the command, the link may or may not be traversed.
g Derived object — ‘‘BAR’’ can name a derived object that was built in the current view, or was

winked-in to the view.
g View-private object — ‘‘BAR’’ can name a view-private object (including a checked-out version)

located in the current view’s private storage area.
g Non-MVFS object — ‘‘BAR’’ can name an object that is not under ClearCase control, such as objects

in your home directory or in /usr/bin.

Using standard pathnames to reference MVFS objects is termed transparency: a view’s view_server process
resolves (converts) the standard pathname into a reference to the appropriate MVFS object. In essence,
transparency makes a VOB appear to be a standard directory tree.

ClearCase Extended Pathnames
The MVFS supports two kinds of extensions to the standard pathname scheme:
g You can add two pathname components to the beginning of any full pathname, turning it into a view-

extended pathname:
(view−extended full pathname)/view/david/vobs/proj/foo.c

May 1994 493

pathnames_ccase ClearCase miscellany
hh

In certain situations, a relative pathname can include a view specification:
(view−extended relative pathname)../../david/vobs/proj/foo.c

g You can add characters to the end of a relative or full pathname, turning it into a VOB-extended path-
name. VOB-extended pathnames that specify versions of elements are the most commonly used; they
are termed version-extended pathnames.

(version−extended pathname)foo.c@@/main/12
(version−extended pathname)/vobs/proj/foo.c@@/main/motif/4
(version−extended pathname)foo.c@@/RLS4.3
(VOB−extended pathname to a branch)foo.c@@/main
(VOB−extended pathname to an element)foo.c@@
(VOB−extended pathname to a derived object)hello.o@@15-Sep.08:10.439

VIEW-EXTENDED PATHNAMES
A view-extended pathname is a standard pathname, along with a specification of a ClearCase view. For
example, /view/david/vobs/proj/BAR references ‘‘file system object named ’BAR’, as seen through view
’david’’’. A view-extended pathname can access any kind of file system object, as described in section
‘‘Standard Pathnames’’ above.

The Viewroot Directory / View-Tags
In most view-extended pathnames, a full pathname is prepended with two components: the name of the
host’s viewroot directory and the view-tag of a particular view. The viewroot directory is a virtual data
structure, whose contents exist only in MVFS buffers in main memory. Each view is made accessible to
standard programs and ClearCase programs through a view-tag entry in the viewroot directory. No stan-
dard command or program can modify this directory. Only a few ClearCase commands use or modify it:
mkview, mktag, rmtag, rmview, startview.

The viewroot directory is activated by a standard mount(1M) command, which considers the virtual data
structure to be a file system of type MVFS. The ClearCase-standard pathname of the viewroot directory
is /view. See the init_ccase and viewroot manual pages for details.

SYMBOLIC LINKS AND THE VIEW-EXTENDED NAMESPACE
Pathnames are resolved component-by-component by the operating system kernel and the ClearCase
MVFS. When a UNIX symbolic link or VOB symbolic link is traversed, the note above applies: a full path-
name needs a set view context to access ClearCase data. Thus, a symbolic link whose text is a full path-
name ...
/vobs/aardvark -> /vobs/all_projects/aardvark

... will be interpreted in the current set view context. If the process has no set view context, traversing
such a symbolic link will fail.

VOB-EXTENDED PATHNAMES
ClearCase’s transparency feature enables you to use standard pathnames to access version-controlled
data; the view_server does the work of locating the data. But you can also bypass transparency and ‘‘do
the work yourself’’:
g You can access any version of an element by using its version-ID, which specifies its exact version-tree

location:
sort.c@@/main/motif/4

494 ClearCase Reference Manual

ClearCase miscellany pathnames_ccase
hh

g If a version has been assigned a version label, you can access it using the label:
(branch and version label)sort.c@@/main/motif/RLS_1.3
(version label only)sort.c@@/RLS_1.3

Typically, you can use just the label, without having to specify the branch on which the labeled ver-
sion resides — see ‘‘Version Labels in Extended Namespace’’ below.

g You can access any element object or branch object directly:
(element object)sort.c@@
(branch object)sort.c@@/main
(branch object)sort.c@@/main/motif

g You can access any derived object directly, no matter what view it was created in:
(derived object created on 13−Aug)sort.o@@13-Aug.09:45.569
(derived object created on 23−Sep)sort.o@@23-Sep.19:09.a50f

The pathnames in the above examples are termed VOB-extended pathnames. A VOB’s file/directory
namespace is extended in two ways from the standard namespace: one extension enables direct access to
elements, branches, and versions; the other enables direct access to derived objects. Both extensions allow
you to access objects not visible in your own view (and, perhaps, not currently visible in any other view,
either).

Extended Namespace for Elements, Branches, and Versions
An element’s version tree has the same form as a standard directory tree (Figure 20):

Component of Component of
Version Tree Directory Tree in Extended Namespace

element root of tree: The element itself appears to be a directory, which contains a single sub-
directory, corresponding to the main branch. (It can also contain some version labels
— see ‘‘Version Labels in Extended Namespace’’ below.)

branch subdirectory: Each branch appears to be a directory, which contains files (individual
versions), directories (subbranches), and links (version labels).

version leaf: Each version appears to be a leaf of a directory tree. For a file element, the leaf
contains text lines or binary data, and can be processed with standard commands like
cat, diff, and cmp. For a directory element, the leaf contains a directory structure, and
can be processed with standard commands like ls and cd.

May 1994 495

pathnames_ccase ClearCase miscellany
hh

hhhhhhhhhhhhhhhhhhbranch1

hhhhhhhhhhhhhhhhhhbranch2

main

hh
cc
c
c
c
c

cc
c
c
c
c

main

hhhhhhhhhhhhhhhhhhhhhhbranch1 hhhhhhhhhhhhhhh branch2

Figure 20. Version Tree and Extended Namespace

Accordingly, any location within an element’s version tree can be identified by a pathname in this
extended namespace:

(specifies an element)sort.c@@
(specifies a branch)sort.c@@/main
(specifies a branch)sort.c@@/main/branch1
(specifies a version)sort.c@@/main/branch1/2
(special case: extra component is required element in VOB’s top−level directory)doctn/.@@/main/3

Extended Naming Symbol
The pathname examples above all incorporate the extended naming symbol, @@. This symbol is required to
effect a ‘‘switch’’ from the standard file/directory namespace to the extended element/branch/version
namespace. There are two equivalent ways to think of @@:
g When appended to the name of any element, the extended naming symbol turns off transparency

(automatic version-selection). Thus, you must specify one of the element’s versions explicitly.
g The extended naming symbol is part of an element’s ‘‘official’’ name. For example, foo.c is the name of

a version (the particular version that appears in the view); foo.c@@ is the name of the element itself.

NOTE. The establishment of @@ as the extended naming symbol occurs at system startup time with a file
system table entry. Thus, different symbols might be used on different hosts. See the init_ccase manual
page for details.

Version Labels in Extended Namespace
Version labels appear in the extended namespace as hard links. If version /main/4 of an element is labeled
RLS_1, then the extended namespace ‘‘directory’’ corresponding to the element’s main branch lists both 4
and RLS_1 as hard links to the version:

496 ClearCase Reference Manual

ClearCase miscellany pathnames_ccase
hh

% ls −il sort.c@@/main
246 -r--r--r-- 1 drp user 217 Oct 6 21:12 4
...
246 -r--r--r-- 1 drp user 217 Oct 6 21:12 RLS_1

If the label type was created with the ‘‘once-per-element’’ restriction, an additional hard link to the labeled
version appears in the element’s top-level directory:
% ls −il sort.c@@
246 -r--r--r-- 1 drp user 217 Oct 6 21:12 RLS_1

In this case, all the following are equivalent extended pathnames to the labeled version:
(version label at top level of element)sort.c@@/RLS_1
(version−ID)sort.c@@/main/4
(version label at branch level)sort.c@@/main/RLS_1

(The ‘‘once-per-element’’ restriction is the mklbtype default. A mklbtype -pbranch command creates a
label type that can be used once on each branch of an element.)

Pathnames Involving More Than One Element
A VOB can implement an arbitrarily deep directory structure. Thus, a pathname can involve several ele-
ments — for example:
/vobs/proj/src/include/sort.h

If proj is the VOB’s root directory element, then src and include also name directory elements, and sort.h
names a file element.

RULE: once a pathname ‘‘crosses over’’ into the extended namespace with @@, you must specify a version
for each succeeding element in the pathname. For example:

/vobs/proj/src/include@@/main/4/sort.h/main/LATEST

Automatic version selection for elements proj and src; cross over to extended namespace at directory
element include, specifying a version of include and a version of sort.h.

/vobs/proj/src@@/RLS_1/include/RLS_1/sort.h/RLS_1

Automatic version selection for element proj only; cross over to extended namespace at directory ele-
ment src, specifying the version labeled RLS_1 of each succeeding element.

/vobs/proj@@/main/1/src/main/4 (invalid)
/vobs/proj/.@@/main/1/src/main/4 (valid)

Special case: When crossing over into extended namespace at the VOB root directory (that is, at the
VOB-tag or VOB mount point), you must use /.@@ instead of @@ .

The extended naming symbol need be used only once in a pathname, to indicate the crossover into
extended namespace. You can, however, append it to any element name:
/vobs/proj/src@@/RLS_1/include@@/RLS_1/sort.h@@/RLS_1

Reading and Writing in the Extended Namespace
A VOB-extended pathname references an object in a VOB database. The reference can either read or
write the database — that is, either query meta-data or modify meta-data:

May 1994 497

pathnames_ccase ClearCase miscellany
hh

(attach an additional label to a version)% cleartool mklabel RLS2.1 util.c@@/RLS2.0
(remove an attribute)% cleartool rmattr BugNum util.c@@/main/3

For a version, an extended pathname can also read the version’s data, but cannot write or delete it:
(valid)% grep ’env’ util.c@@/main/rel2_bugfix/1
(invalid)% rm util.c@@/main/rel2_bugfix/1

ERROR: util.c@@/main/rel2_bugfix/1 not removed: Read-only file system.

Extended Namespace for Derived Objects
ClearCase’s extended namespace allows multiple derived objects to exist at the same standard pathname.
This parallels the fact that the multiple versions of an element all exist at the same standard pathname —
but the two extensions work differently. Derived objects created at the same location are distinguished by
their unique derived object identifiers, or DO-IDs:
sort.o@@14-Sep.09:54.418
sort.o@@13-Sep.09:30.404
sort.o@@02-Sep.16:23.353

...

An extended name provides access only to the derived object’s meta-data in the VOB database — princi-
pally, its configuration record. To access a DO’s file system data (stored in its data container), you must
use a standard pathname (sort.o) in some view, or a view-extended pathname (/view/david/vobs/sort.o).

Navigating the VOB-Extended Namespace
You can use standard directory-navigation commands — cd, ls, pwd, and so on — in a VOB’s extended
namespace. For example, these are two equivalent ways to display the contents of an old version:
g Use a version-extended pathname from a standard directory:

% cat util.c@@/main/rel2_bugfix/1

g Go to branch ‘‘directory’’ in the VOB-extended namespace, then display the version:
% cd util.c@@/main/rel2_bugfix

% cat 1

In VOB-extended namespace, elements and branches are directories; you can change to such directories
with cd; you can lists their contents — branches and versions — with ls.

You can access versions of file elements as ordinary files, with cat, diff, and so on — even executing ver-
sions that happen to be compiled programs or scripts. You can access versions of file elements as ordi-
nary directories, with cd, ls, and so on — but not with file-oriented commands, such as cat.

Special View-Tag Reported by ’pwd’. When you have changed to a VOB-extended namespace direc-
tory, the pwd(1) command reports your current working directory as under a special view-tag: For exam-
ple:
% cd /view/akp_vu/vobs/proj/special@@

% pwd
/view/akp_vu@@/vobs/proj/main/4/special

498 ClearCase Reference Manual

ClearCase miscellany pathnames_ccase
hh

The special view-tag akp_vu@@ appears as a separate entry from akp_vu in your host’s viewroot direc-
tory. When in the context of a special view-tag, version-selection is suppressed completely — to access a
particular version of any file or directory element, you must specify the version explicitly. ClearCase
periodically deletes these special entries, on a least-recently-used basis.

Exiting from VOB-Extended Namespace. To exit VOB-extended namespace, cd to a standard full path-
name or a view-extended pathname. (The pathname can specify a VOB or non-VOB location.) For exam-
ple:

(enter VOB−extended namespace)% cd /vobs/proj/src@@/main
% pwd
/view/david@@/vobs/proj/main/4/src/main

(exit VOB−extended namespace)% cd /vobs/proj
% pwd
/vobs/proj

Repeated use of cd .. does not work as you might expect. You do not exit extended namespace where
you entered it; instead, you ascend through all the extended-namespace directories listed by pwd. For
example:
% cd util.c@@/main/rel2_bugfix

% ls
0 1 2 LATEST

% pwd
/view/drp_fix@@/usr/hw/main/1/src/main/2/util.c/main/rel2_bugfix

% cd ../../..

% pwd
/view/drp_fix@@/usr/hw/main/1/src/main/2

% cd ../..

% pwd
/view/drp_fix@@/usr/hw/main/1/src

% cd ../../../

% pwd
/view/drp_fix@@/usr/hw

SEE ALSO
derived_object, init_ccase, query_language, version_selector, viewroot, wildcards_ccase

May 1994 499

profile_ccase ClearCase data structure
hh

NAME profile_ccase − cleartool user profile: .clearcase_profile

SYNOPSIS
command_name flag

.

.

.

DESCRIPTION
The cleartool user profile is an ordered set of rules that determine the comment option default for one or
more cleartool commands. Many cleartool commands accept user comments with the −c, −cq, −cqe, or
−nc option. If you specify none of these options, cleartool invokes one of them by default — the option
invoked varies from command to command.

If cleartool finds a file named .clearcase_profile in your home directory, it checks to see if it contains a com-
ment rule that applies to the current command. If so, it invokes the comment option indicated by that
rule. No error occurs if this file does not exist; cleartool just invokes the command’s standard comment
default (discussed below).

An alternate name for the user profile can be specified with the environment variable
CLEARCASE_PROFILE. Its value should be a full pathname.

HOW CLEARTOOL SELECTS A COMMENT RULE
For a given command, cleartool consults the user profile to determine which comment rule, if any, applies.
The method is similar to the one used by the view_server process to evaluate a config spec:
g cleartool examines the first comment rule in the user profile and decides whether it applies to the com-

mand.
g If the rule does not apply, cleartool goes on to the next rule in the file; it repeats this step for each

succeeding rule until the last.
g If no comment rule applies, cleartool invokes the standard comment default for the command.

cleartool uses the first comment rule that applies. Therefore, the order of rules in the user profile is
significant. For example, to ensure that you are always prompted for a comment when you create a direc-
tory element, you must place a rule for the mkdir command before any more general rule that might also
apply to mkdir, such as * −nc.

COMMENT RULE SYNTAX
Comment rules must be placed on separate lines. Extra white space (space, tab) is ignored.

Comments begin with a pound sign (#) character. For example:
#element rules
mkelem -cqe #prompt for comment for each new element being created

...

500 ClearCase Reference Manual

ClearCase data structure profile_ccase
hh

All other lines must be have two tokens, separated by white space:

command-name flag
g command-name must be one of these:

checkin mkeltype
checkout mkbrtype
mkdir mklbtype
mkelem mkattype
mkpool mkhltype
mkvob mkrptype

mktrtype

... or an asterisk (*), which matches all these names
g flag must be one of these: −−nc, −−cqe, −−cq

If you do not provide a comment rule for one of the commands above (checkin, checkout, and so on), clear-
tool uses −cqe as its default comment option. cleartool uses −nc as the default for all other commands
that accept comments.

EXAMPLES
g Never prompt for a comment.

* -nc

g During a checkin operation, prompt for a comment for each element. During a mkdir operation, prompt for
a single comment to be applied to all the new directories. In all other cases, do not prompt at all.
checkin -cqe
mkdir -cq
* -nc

SEE ALSO
cleartool, config_spec, xclearcase

May 1994 501

promote_server ClearCase administration command
hh

NAME promote_server − change storage location of derived object data container

SYNOPSIS
invoked by clearmake, if necessary, when it performs a wink-in

DESCRIPTION
The promote_server program migrates a derived object’s data container file from private storage to shared
storage. When clearmake winks−in a derived object that was previously unshared, it automatically invokes
promote_server to copy the data container file from view-private storage to a VOB storage pool. (The origi-
nal data container remains in view-private storage; use the standard rm(1) command to remove it.)

NOTE: clearmake also migrates a derived object’s configuration record from private storage to shared
storage at the same time. This work is performed by clearmake itself, not by promote_server

The destination storage pool is determined by the derived object’s pathname. By definition, this path-
name is under a VOB-tag (mount point) — that is, the derived object is ‘‘in’’ some VOB directory. The
derived object storage pool to which the directory element is assigned is the destination of the promotion.
(Some build scripts create multiple hard links, in different directories, to a derived object. In this case, the
data container is promoted to the storage pool of just one of the directories.)

clearmake invokes promote_server by making a request to the ClearCase master server, albd_server.
promote_server runs as the owner of the view in which the data container to be copied resides. This
ensures that the data container is readable.

After promoting a derived object, the promote_server remains active for several minutes to ensure that sub-
sequent promotions from the same view are processed with the least overhead. During this time, the
promote_server remains associated with the view from which the DO was promoted; if two users try to
promote DOs from the same view, at the same time, they share (serially) the same promote_server.

NOTE
Never run promote_server manually. It should only be invoked by clearmake.

SEE ALSO
albd_server, clearmake, view_server

502 ClearCase Reference Manual

ClearCase miscellany query_language
hh

NAME query_language − select objects by their meta-data / find, findmerge, version-selector, config spec

SYNOPSIS
Query Primitives:

query-function (arg-list)
attribute-type-name == value
attribute-type-name != value
attribute-type-name < value
attribute-type-name <= value
attribute-type-name > value
attribute-type-name >= value

Compound Queries:
query && query
query |||| query
! query
(query)

DESCRIPTION
The ClearCase query language is used to formulate queries on VOB databases. It includes logical operators
similar to those in the C programming language. ClearCase uses a query to search one or more VOB
database(s), and returns the names of objects: versions, branches, elements, and/or VOB symbolic links. A
query may return a single object, many objects, or no objects at all.

Queries as Version Selectors
You can use a query in a version selector in the following contexts:
g in cleartool command-line options
g in configuration rules — see the config_spec manual page
g in version-extended pathnames — see the pathnames_ccase manual page

A query in a version selector must be enclosed in braces ({...}).

When a query is applied to a single branch, ClearCase selects the most recent version on that branch that
satisfies the query. For example:
% cleartool describe −ver ’/main/{attype(QAed)}’ util.c

Using a query without a branch pathname causes an element’s entire version tree to be searched. If the
query returns a single version, the version-selection operation succeeds; the operation fails if the query
returns no version (not found) or returns more than one version (ambiguous). For example:
% cleartool describe −ver ’{attype(QAed)}’ util.c
cleartool: Error: Ambiguous query: "{attype(QAed)}"

May 1994 503

query_language ClearCase miscellany
hh

Queries in the ’find’ Command
You can also use queries in the find command. In this context, the query need not be, but can be, enclosed
in braces ({...}). The query returns the names of all matching objects. For example:
% cleartool find util.c −ver ’attype(QAed)’ −print
util.c@@/main/1
util.c@@/main/3

QUERY PRIMITIVES
A query primitive evaluates to TRUE or FALSE. A TRUE value selects an object, such as an element,
branch, or version; a FALSE value excludes it.

A query must be enclosed in quotes if it includes spaces. You may also need to enclose a query in quotes
to prevent shell-level interpretation of characters such as ((open parenthesis). Quoting parentheses in
config specs is not required.

The query language includes these primitives:

attribute-type-name comparison-operator value

... where comparison-operator is one of the following:

== != < <= > >=

Examples:
BugNum==4053
BugNum>=4000
Status!="tested"

This primitive is the only one that does not use ‘‘function’’ notation. It is TRUE if the object itself has
an attribute of that type and the value comparison holds. Use the attr_sub primitive to test whether
an object or its subobjects has a particular attribute (for example, an element or its branches and ver-
sions).

NOTE: If no attribute named BugNum has been attached to an object, then !BugNum==671 is TRUE,
but BugNum!=671 is FALSE. The second query would be true if an attribute of type BugNum exists,
but has a different value.

attr_sub (attribute-type-name, comparison-operator, value)

With elements: TRUE if the element or any of its branches or versions has an attribute of type
attribute-type-name that satisfies the specified comparison with value.
With branches: TRUE if the branch or any of its versions has an attribute of type attribute-type-name
that satisfies the specified comparison with value.
With versions: TRUE if the version itself has an attribute of type attribute-type-name that satisfies the
specified comparison with value.

attype (attribute-type-name)

With elements: TRUE if the element itself has an attribute of type attribute-type-name.
With branches: TRUE if the branch itself has an attribute of type attribute-type-name.
With versions: TRUE if the version itself has an attribute of type attribute-type-name.

504 ClearCase Reference Manual

ClearCase miscellany query_language
hh

attype_sub (attribute-type-name)

With elements: TRUE if the element or any of its branches or versions has an attribute of type
attribute-type-name.
With branches: TRUE if the branch or any of its versions has an attribute of type attribute-type-name.
With versions: TRUE if the version itself has an attribute of type attribute-type-name.

brtype (branch-type-name)

With elements: TRUE if the element has a branch named branch-type-name.
With branches: TRUE if the branch is named branch-type-name.
With versions: TRUE if the version is on a branch named branch-type-name.

created_by (login-name)

In all cases, TRUE if the object was created by the user login-name (as shown by the describe com-
mand).

created_since (date-time)

In all cases, TRUE if the object was created since date-time, which uses the standard date-time syn-
tax. (See the lshistory manual page.

eltype (element-type-name)

In all cases, TRUE if the element to which the object belongs is of type element-type-name.

hltype (hlink-type-name)
hltype (hlink-type-name , ->)
hltype (hlink-type-name , <-)

In all cases, TRUE if the object is either end of a hyperlink (first form) named hlink-type-name, or is
the ‘‘from’’ end of a hyperlink (second form), or is the ‘‘to’’ end of a hyperlink (third form).

lbtype (label-type-name)

In all cases, TRUE if the object itself is labeled label-type-name (hence, only true for versions).

lbtype_sub (label-type-name)

With elements: TRUE if any version of element has a version that is labeled label-type-name.
With branches: TRUE if any version on branch has a version that is labeled label-type-name.
With versions: TRUE if the version itself is labeled label-type-name.

merge (from-location , to-location)

In all cases, TRUE if the element to which the object belongs has a merge hyperlink (default name:
Merge) connecting the from-location and to-location. You can specify either or both locations with a
branch pathname or a version selector. Specifying a branch produces TRUE if the merge hyperlink
involves any version on that branch. The branch pathname must be complete (for example,
/main/rel2_bugfix, not simply rel2_bugfix).

May 1994 505

query_language ClearCase miscellany
hh

needs_merge (from-branch-pname, to-branch-pname)

Use of this query primitive is discouraged, and is no longer supported. Its functionality is now
implemented by the cleartool subcommand findmerge. Using this primitive causes a warning mes-
sage to appear. See the Release 1.x ClearCase Reference Manual for syntax details.

pool (pool-name)

In all cases, TRUE if the element to which the object belongs has a source or cleartext pool named
pool-name.

trtype (trigger-type-name)

In all cases, TRUE if the element to which the object belongs has an attached or inherited trigger
named trigger-type-name.

version (version-selector)

With elements: TRUE if the element has a version with the specified version-selector.
With branches: TRUE if the branch has a version with the specified version-selector.
With versions: TRUE if the version itself has the specified version-selector.

Note that in this context, version-selector cannot itself contain a query. For example, version(REL1) is
valid, but version(lbtype(REL1)) is not.

LOGICAL OPERATORS
Primitives can be combined into expressions with logical operators. An expression can take any of these
forms, where query is a primitive or another expression:
g query ||query (logical OR)
g query && query (logical AND)
g ! query (logical NOT)
g (query) (grouping to override precedence)

OPERATOR PRECEDENCE
The precedence and associativity of the operators for attribute comparisons and formation of logical
expressions are the same as in the C programming language:
g highest precedence: ! (right associative)
g lower precedence: < <= > >= (left associative)
g lower precedence: == != (left associative)
g lower precedence: && (left associative)
g lowest precedence: || (left associative)

506 ClearCase Reference Manual

ClearCase miscellany query_language
hh

EXAMPLES
NOTE: Examples show query language in typical contexts, like find and the version selector. For addi-
tional examples, see the manual pages listed in the ‘‘See Also’’ section.

g Display the latest version of test.c for which the attribute QAed has the value Yes.
% cat test.c@@/main/’{QAed=="Yes"}’

g Attach the label REL6 to the version of test.c that is already labeled REL5.
% cleartool mklabel −ver ’{lbtype(REL5)}’ REL6 test.c
Created label "REL6" on "test.c" version "/main/4".

g Attach an attribute to the latest version of test.c created since yesterday at 1 PM by user ‘‘block’’.
% mkattr −ver ’{created_since(yesterday.13:00)&&created_by(block)}’ \

QAed ’"No"’ test.c
Created attribute "QAed" on "test.c@@/main/5".

g List each branch named rel2_bugfix that occurs in an element to which a trigger named mail_all has been
attached.
% cleartool find . −branch ’brtype(rel2_bugfix)&&trtype(mail_all)’ −print
./util.c@@/main/rel2_bugfix

SEE ALSO
cleartool subcommands: describe, find, lshistory
config_spec, pathnames_ccase, version_selector

May 1994 507

registry_ccase ClearCase data structure
hh

NAME registry_ccase − ClearCase storage registry for VOBs and views

SYNOPSIS
g Registry directory:

/usr/adm/atria/rgy

g VOB registry:

vob_object
vob_tag

g View registry:

view_object
view_tag

g Configuration files:

rgy_hosts.conf
rgy_region.conf
rgy_svr.conf
vob_tag.sec

DESCRIPTION
Each ClearCase host in the network has a registry directory: subdirectory rgy of /usr/adm/atria, the Clear-
Case administration directory. (This directory is /var/adm/atria on some platforms.) On most hosts, the
registry directory contains only the rgy_hosts.conf and rgy_region.conf configuration files. On one host in
the network, the registry server host, the registry directory contains information on all the VOBs and views
in the local area network, organized into the following files:

vob_object Registry of VOB storage directories
view_object Registry of view storage directories
vob_tag Registry of VOB-tags
view_tag Registry of view-tags

You should never need to edit the four registry files on the registry server host manually. The following
cleartool subcommands all add, delete, or modify registry file entries:

Command Registry Files Affected Change
mktag -view view_tag Add or replace entry
mktag -vob vob_tag Add or replace entry
rmtag -view view_tag Delete entry
rmtag -vob vob_tag Delete entry
mkview view_tag Add entry

508 ClearCase Reference Manual

ClearCase data structure registry_ccase
hh

view_object Add entry
rmview view_object Delete entry
rmview -tag view_object Delete entry

view_tag Delete entry
mkvob vob_tag Add entry

vob_object Add entry
rmvob vob_tag Delete entry

vob_object Delete entry
register -view view_object Add or replace entry
register -vob vob_object Add or replace entry
unregister -view view_object Delete entry
unregister -vob vob_object Delete entry

The lsview and lsvob commands read and report information from the registry files.

REGISTRY SERVER
One host in the local area network is designated as the registry server host. The name of this host must
appear in the file /usr/adm/atria/rgy/rgy_hosts.conf on each host in the network. The ClearCase albd_server
program running on the registry server host acts as the ‘‘registry server’’ process: it fields RPC requests
for registry information from ClearCase client programs (and other server programs) around the net-
work.

NETWORK REGIONS
A local area network can be conceptually partitioned into multiple ClearCase network regions. Each region
is a consistent ‘‘naming domain’’: all hosts in the same region must be able to access ClearCase physical
data storage (that is, all VOB storage directories and view storage directories) using the same full path-
names. For example, all hosts in a network region might access a view storage directory on host neptune
using this automount(1M)-style pathname:
/net/neptune/shared_views/rls3_clean.vws

Hosts in another network region might use a different name to access the same view storage directory:
/net/neptune_gw/shared_views/rls3_clean.vws

These hosts might be on a subnet that uses a different network interface to host neptune. Hosts that use a
nonstandard auto-mount program, or that don’t use an auto-mount program at all, may also need to be
placed in separate network regions.

There is no formal mechanism for defining a network region. Each host exists in exactly one network
region, and that region is named in the file /usr/adm/atria/rgy/rgy_hosts.conf.

Conceptually, each network region has its own view-tags registry and VOB-tags registry. However, the
registry server host stores the only copies of the view-tag and VOB-tag files; each view-tag and VOB-tag
entry includes a -region field, which assigns the tag to a particular region.

May 1994 509

registry_ccase ClearCase data structure
hh

FORMAT OF REGISTRY FILES
The following sections describe the fields in the various registry files.

vob_object
Each VOB storage directory in the network has one entry in the vob_object file. The entry is a single text
line with these fields:

−entry vob_object

−hostname The host on which the VOB storage directory resides.

−local_path A standard full pathname to the VOB storage directory on that host.

−vob_replica The unique identifier (UUID) of the VOB. (For a replicated VOB, maintained by the
Atria MultiSite product, this VOB replica UUID identifies the particular VOB replica
at your site.)

−vob_family The VOB family UUID, which is shared by all replicas of the same VOB. Replicas are
created and maintained by the Atria MultiSite product. Even if the VOB is not repli-
cated, this UUID is different from the VOB replica UUID.

vob_tag
Each VOB storage directory in the network can have one VOB-tag per network region, and each VOB-tag
has an entry in the vob_tag file. The entry is a single text line with these fields:

−entry vob_tag

−tag The VOB-tag, which is a full pathname. A VOB’s tag is the same as its mount point.

−global_path A standard full pathname to the VOB storage directory that is valid on all hosts
within the network region.

−hostname The host on which the VOB storage directory resides.

−mount_access A keyword: ‘‘private’’ or ‘‘public’’.

−mount_options A system-dependent character string, which records options to be invoked when the
VOB is mounted on a host.

−region The network region.

−vob_replica Same as the like-named field in the vob_object file (see above).

−title (optional) The tag comment supplied with a -tcomment option on mkvob or mktag.

view_object
Each view storage directory in the network can have one entry per network region in the view_object file.
The entry is a single text line with these fields:

−entry view_object

−hostname The host on which the view storage directory resides.

510 ClearCase Reference Manual

ClearCase data structure registry_ccase
hh

−local_path A standard full pathname to the view storage directory on that host.

−view_uuid The view’s unique identifier (UUID).

view_tag
Each view storage directory in the network can have one entry per network region in the view_tag file.
The entry is a single text line with these fields:

−entry view_tag

−tag The view-tag, which takes the form of a simple file name. When a view is active on a
host, its view-tag appears as an entry in the host’s viewroot directory (/view).

−hostname The host on which the view storage directory resides.

−global_path For all machines in this network region, the full pathname of the view storage direc-
tory.

−region The network region.

−view_uuid The view’s unique identifier (UUID).

−title (optional) The tag comment supplied with a -tcomment option on mkview or mktag.

rgy_hosts.conf
A one-per-line list of the hosts that run registry_server processes. This file must exist on every ClearCase
host. In the current implementation, rgy_hosts.conf names the single registry server host for the network.
The region name can be any character string that does not include white space.

rgy_svr.conf
On each host named in rgy_hosts.conf, the rgy_svr.conf file includes a single keyword, master or slave, speci-
fying what kind of registry_server process runs on the host. If rgy_hosts.conf names a single host, that
host’s rgy_svr.conf file should contain the keyword master. The rgy_svr.conf file need not exist (its contents
are ignored) on hosts not named in rgy_hosts.conf.

rgy_region.conf
A single word specifying the host’s network region. Each ClearCase host belongs to a single network
region. All hosts in a network region access VOB and view storage directories using the same ‘‘global’’
(network) pathnames.

vob_tag.sec
The network’s VOB-tag password, an encrypted character string. This password is required from any user
who attempts to create a public VOB-tag with mkvob or mktag. This file exists only on the registry server
host. If it is empty or nonexistent, the root user or ClearCase administrator must place a password in it
using the rgy_passwd utility. For example:

(log in to registry server host)% rlogin ccsvr05 -l root
Password: <enter root password>

(invoke encrypted−password utility)# /usr/atria/etc/rgy_password
Password: <enter VOB-tag password>

May 1994 511

registry_ccase ClearCase data structure
hh

FILES
/usr/adm/atria/rgy/vob_object
/usr/adm/atria/rgy/view_object
/usr/adm/atria/rgy/vob_tag
/usr/adm/atria/rgy/view_tag
/usr/adm/atria/rgy/rgy_hosts.conf
/usr/adm/atria/rgy/rgy_region.conf
/usr/adm/atria/rgy/rgy_svr.conf
/usr/adm/atria/rgy/vob_tag.sec

SEE ALSO
cleartool subcommands: mkview, rmview, mkvob, rmvob, mktag, lsview, lsvob, register, unregister, mount,
umount
rgy_passwd

512 ClearCase Reference Manual

ClearCase user command rgy_passwd
hh

NAME rgy_passwd − create or change encrypted VOB-tag registry password

SYNOPSIS
/usr/atria/etc/rgy_passwd [−−pas .sword tag-registry-password]

DESCRIPTION
Places an encrypted password in the ClearCase VOB-tag password file: /usr/adm/atria/rgy/vob_tag.sec on the
network’s registry server host. This file need not already exist.

Knowledge of this password enables an administrator to create public VOBs. Such VOBs can be mounted
by nonprivileged users, using the command cleartool mount. See the mkvob, mktag, and mount manual
pages for more on public VOBs.

Security Restrictions
A high level of security is implemented through the following restrictions:
g You must execute this command on the registry server host.
g If the vob_tag.sec file already exists, you must be the owner of that file.
g The registry directory, /usr/adm/atria/rgy, is protected so that only the root user can create the

vob_tag.sec file.
g rgy_passwd maintains the access mode of the vob_tag.sec file at ‘‘400’’. (You need not use chmod(1)

before or after entering this command.)

OPTIONS AND ARGUMENTS
By default, rgy_passwd prompts you to type the (new) password.

−−pas .sword tag-registry-password
Specifies the password on the command line.

CAUTION: This is a potential security breach, since the password will remain visible in your transcript
pad.

FILES
/usr/adm/atria/rgy/vob_tag.sec

DIAGNOSTICS
Not run on registry server host

This command must be executed on the network’s registry server host.

No permission to update file

A vob_tag.sec file already exists, and you are not its owner.

SEE ALSO
cleartool subcommands: mktag, mkvob, mount
registry_ccase

May 1994 513

schemes ClearCase data structure
hh

NAME schemes − X Window System resources for ClearCase graphical interface

SYNOPSIS
automatically read by GUI utilities

DESCRIPTION
The ClearCase GUI utilities use schemes, collections of X Window System resource settings, to control their
geometry, colors, and fonts. Each scheme is implemented as a separate directory. For example, the
ClearCase-supplied scheme Turner consists of four files:

Turner/palette Defines mnemonic names for colors and fonts, using a subset of standard cpp(1)
syntax:
#ifndef GAMMA_1_0
#define TextForeground #ffffff
#define BasicBackground #002e5c
#define ScrolledListBackground #623463

...

Turner/Turner Specifies resources for use by the X Toolkit widgets that make up the GUI panels.
These resources can be specified absolutely, or in terms of the mnemonic names
defined in the palette file:
*XmText*marginHeight: 4

...
*foreground: TextForeground
*background: BasicBackground

Turner/ClearCasepalette Extends and/or overrides the ‘‘standard’’ palette definitions.

Turner/ClearCase Extends and/or overrides the ‘‘standard’’ Turner file definitions.

The two mnemonic map declaration files are combined, as are the two resource definition files. To add
your own definitions, or to replace existing ones, either (1) edit one or both of the ClearCase-specific files,
or (2) create your own scheme files and add them to the scheme file search path as described below in the
section ‘‘Search Path for Schemes’’.

Note that the palette and ClearCasePalette files are not actually processed by cpp — they are processed by
the GUI utility itself. The resources (Turner and ClearCase) apply only to the program that reads them.
They are not added to the RESOURCE_MANAGER property of the root window and, therefore, do not
affect other X applications.

Schemes are configured at two levels:
g Your display’s X resources enable scheme usage and specify the name of a particular scheme.
g A search path capability supports maintenance of system-wide and personal schemes.

Resources for Schemes
The scheme resource specifies a scheme to be used by one or more GUI utilities (xclearcase, xcleardiff,
xlsvtree). For example:

514 ClearCase Reference Manual

ClearCase data structure schemes
hh

(specifies scheme for all GUI utilities)*scheme: Turner
(specifies scheme for xclearcase)xclearcase*scheme: Turner

If you enable scheme usage but do not specify a particular scheme, the black-and-white scheme Willis is
used. If you do not explicitly enable schemes, the Motif default resources are used when you start a GUI
utility, or you may inherit a scheme automatically as described in the following section.

Monochrome and Greyscale Schemes. A user working on a monochrome monitor gets the Willis scheme
automatically. A user working on a greyscale monitor gets the Print scheme automatically. You can over-
ride these assignments with the resources *monoscheme and *greyscheme, respectively. If you specify
an alternative scheme, it must be located in the scheme search path, which is described in the following
section.

Search Path for Schemes
The GUI utilities use a search path to find scheme directories. Effectively, the default search path is:
/usr/lib/X11/Schemes:/usr/atria/config/ui/Schemes

You can use the environment variable SCHEMESEARCHPATH to specify a colon-separated list of direc-
tories to be searched instead. Each entry on this list must be in the following standard X Toolkit form:

pathname/%T/%N%S

The GUI utilities always make these substitutions:

%T → Schemes
%N → scheme-name
%S → (null)

For example, if your SCHEMESEARCHPATH value is:
/netwide/config/ui/%T/%N%S:/home/gomez/%T/%N%S

... and your .Xdefaults file includes this line:
*scheme: Rembrandt

... then xclearcase reads resource schemes from these two directories:
/netwide/config/ui/Schemes/Rembrandt
/home/gomez/Schemes/Rembrandt

If the same resource is specified in two or more schemes on the search path, the last specification wins.

International Language Support. If your site uses the language resource *xnlLanguage to implement
pathname substitutions based on national language and/or codeset, you may wish to expand customized
SCHEMESEARCHPATH entries to use one or more of these optional substitution parameters:

%L → value of *xnlLanguage (language[_territory][.codeset])
%l → language
%t → territory (if any)
%c → codeset (if any)

May 1994 515

schemes ClearCase data structure
hh

See X Windows System Toolkit documentation for more details on constructing directory trees to store
language-dependent application text files.

IRIX-5 Support. On IRIX-5 systems, ClearCase-supplied scheme files are automatically copied to
/usr/lib/X11/schemes. If you are developing a scheme for use on IRIX-5 systems, your custom scheme
directory must reside in a directory named schemes (not Schemes), and the custom scheme directory and its
files must mimic the file names and directory structure in a predefined scheme like
/usr/lib/X11/schemes/Print. On IRIX-5, the default scheme search path is /usr/lib/X11/schemes, and in
SCHEMESEARCHPATH entries, the %T is replaced by schemes, not Schemes.

If you are developing a scheme for use on both IRIX-5 and non-IRIX-5 systems, you must create two
scheme dirs: .../schemes/MyScheme, for IRIX-5 systems, and .../Schemes/MyScheme, for all other systems.
The IRIX-5 version of the custom scheme directory should follow the file name and directory structure in
a pre-defined IRIX-5 scheme directory like /usr/lib/X11/schemes/Print. The structure and contents of the
second version of the scheme directory should be based on a predefined scheme directory like
/usr/atria/config/ui/Schemes/Print.

FILES
/usr/atria/config/ui/Schemes/Gainsborough/*
/usr/atria/config/ui/Schemes/Lascaux/*
/usr/atria/config/ui/Schemes/Leonardo/*
/usr/atria/config/ui/Schemes/Monet/*
/usr/atria/config/ui/Schemes/Print/*
/usr/atria/config/ui/Schemes/Rembrandt/*
/usr/atria/config/ui/Schemes/Sargent/*
/usr/atria/config/ui/Schemes/Titian/*
/usr/atria/config/ui/Schemes/Turner/*
/usr/atria/config/ui/Schemes/VanGogh/*
/usr/atria/config/ui/Schemes/Whistler/*
/usr/atria/config/ui/Schemes/Willis/*

SEE ALSO
xclearcase, xcleardiff, xlsvtree, clearprompt
X Toolkit documentation

516 ClearCase Reference Manual

ClearCase administration command scrubber
hh

NAME scrubber − remove data containers from VOB storage pools and remove DOs from VOB database

SYNOPSIS
/usr/atria/etc/scrubber [−−e | −−f | −−o] [−−p pool[,. . .] | −−k kind[,. . .]]

[−−a | vob-storage-dir-pname ...]

DESCRIPTION
The scrubber program deletes (scrubs) data container files from the cleartext storage pools and derived
object storage pools of one or more VOBs. It also deletes corresponding derived objects from a VOB data-
base. Only cleartext pools and derived object pools are affected; scrubbing is not defined for source
pools.

SCRUBBING ALGORITHMS
scrubber implements several scrubbing algorithms, described in the following sections.

Heuristic Scrubbing
By default or with the −o option, scrubber uses a free-space-analysis heuristic: it compares a disk
partition’s current free-space level with a lower limit that it computed during its preceding execution
(stored in file /usr/adm/atria/cache/scrubber_fs_info):
g If the free-space level is still above the computed limit, scrubber performs no scrubbing at all in that

partition, regardless of the state of the storage pools within it. This performance optimization allows
a ‘‘quick check’’ to take place frequently (for example, once an hour), without much system overhead.

g If the free-space level has fallen below the limit, scrubber performs parameter-driven scrubbing of
each storage pool in the partition.

Parameter-Driven Scrubbing
With the −f option, scrubber removes data container files from a storage pool according to the pool’s
scrubbing parameter settings. (As described above, the heuristic scrubbing algorithm can also ‘‘fall
through’’ to this algorithm.)

When a derived object pool or cleartext pool is created with mkvob or mkpool, its scrubbing parameters are
set to user-specified or default values:

maximum size maximum pool size (specified in Kb; default=0)

reclaim size size to which scrubber should attempt to reduce the pool (specified in Kb; default=0)

age threshold to prevent premature scrubbing of recently-referenced objects (specified in
hours; default=96)

Parameter-driven scrubbing proceeds as follows:
g Files are removed from a pool only if its current size exceeds its maximum size setting. In this case,

scrubber begins deleting data containers that have not been referenced within age hours, proceeding
on a least-recently-referenced basis:

g The data container for a derived object is deleted only if the DO’s reference count is zero. In this case,
the derived object in the VOB database is deleted, too. The associated configuration record is also
deleted if no other derived object is associated with it.

May 1994 517

scrubber ClearCase administration command
hh

g Cleartext data containers do not have reference counts; they are deleted solely on the basis of recent
usage.

g Scrubbing stops when the pool’s size falls below its reclaim size setting. But in no case does scrubber
delete any object that has been referenced within the last age hours.

A maximum size of zero is a special case: this instructs scrubber to delete all data containers that have not
been referenced within age hours, regardless of the reclaim size setting.

Everything-Goes Scrubbing
With the −e option, scrubber ignores a pool’s scrubbing parameters, and:
g deletes all files from each cleartext pool
g deletes all files with zero reference counts from each derived object pool

To avoid deleting files that are currently being used, it does not delete any file that has been accessed in
the preceding two minutes.

AUTOMATIC SCRUBBING
By default, scrubber is run periodically by a crontab(1) script. (See the crontab_ccase manual page). The
script uses the −f option, so that each pool is examined individually. You can edit this script to change
the scrubbing options; use crontab (as the root user) to change the scrubbing frequency.

You can scrub one or more pools ‘‘manually’’ at any time.

OPTIONS AND ARGUMENTS
Specifying the Scrubbing Algorithm. Default: Invokes the free-space-analysis heuristic described above,
instead of examining pools individually.

−−f Examines all specified pools individually, using the parameter-driven algorithm. This does
not guarantee that any objects will actually be removed from the pool(s)

−−e Examines all specified pools individually (as with −f), using the ‘‘everything-goes’’ algo-
rithm.

−−o Same as default.

Specifying the Pools. Default: All of a VOB’s cleartext and derived object pools are scrubbed.

−−p pool[,. . .]
Restricts scrubbing to pools with the specified name(s), which might occur in multiple VOBs.
The list of pool names must be comma-separated, with no white space.

−−k kind[,. . .]
Restricts scrubbing to pools of the specified kind(s). Valid kinds are do and cltxt. The list
of kinds must be comma-separated, with no white space.

Specifying the VOBs. Default: None.

−−a Scrubs all VOBs listed in the ClearCase storage registry whose storage directories reside on the
local host. An error occurs if a VOB is listed in the registry, but cannot be found on the local
host.

518 ClearCase Reference Manual

ClearCase administration command scrubber
hh

vob-storage-dir-pname ...
One or more pathnames of VOB storage directories, indicating the particular VOB(s) to be
scrubbed.

SCRUBBER LOG FILE
scrubber documents its work in the host’s scrubber log file, /usr/adm/atria/log/scrubber_log. For example,
this partial report describes the results of scrubbing a derived object pool:
04/27/93 08:03:00 Stats for VOB betelgeuse:/usr1/vobstorage/orange.vbs
Pool ddft:

04/27/93 08:03:00 Get cntr tm 918.928979
04/27/93 08:03:00 Setup tm 10631.121127
04/27/93 08:03:00 Scrub tm 1207.099240
04/27/93 08:03:00 Total tm 12757.149346
04/27/93 08:03:00 Start size 404789 Deleted 3921 Limit size 0
04/27/93 08:03:00 Start files 20349 Deleted 121 Subdir dels 0
04/27/93 08:03:00 Statistics for scrub of DO Pool ddft:
04/27/93 08:03:00 DO’s 3671 Scrubs 121 Strands 1760
04/27/93 08:03:00 Lost refs 1790 No DO’s 20228

The first six lines, which contain elapsed times and file statistics, are included in the report for every pool.
The last three lines are specific to DO pools.

Get cntr tm Elapsed time for first scrubbing phase: walk the file system tree to get pathname,
size, and referenced-time information for each container in the pool.

Setup tm Elapsed time for second scrubbing phase: perform setup processing specific to the
kind of storage pool. For a cleartext pool, no setup is required. For a DO pool, setup
is complicated; see ‘‘Processing of Derived Object Pools’’ below.

Scrub tm Elapsed time for third scrubbing phase: determine which containers to delete, and
then delete them.

Start size Total size (Kb) of all the container files in the storage pool directory before this scrub-
bing.

Deleted Amount of storage (Kb) reclaimed by this scrubbing.

Limit size Desired size of the pool (Kb), as specified by the pool’s maximum size parameter.

Start files Total number of container files in the storage pool directory before this scrubbing.

Deleted Number of container files deleted by this scrubbing.

Subdir dels Number of empty subdirectories of the storage pool directory deleted by this scrub-
bing.

DO’s Total number of zero-reference-count DOs in the VOB database before scrubbing.

Scrubs Total number of shared zero-reference-count DOs deleted by this scrubbing. (This
should always equal the ‘‘Deleted’’ count above.)

May 1994 519

scrubber ClearCase administration command
hh

Strands Total number of stranded DOs deleted by this scrubbing. (These are described below.)

Lost refs Total number of lost DO reference counts deleted by this scrubbing. (These are
described below.)

No DO’s Total number of containers in the DO pool before scrubbing that are not associated
with a zero-reference-count shared DO. (Each of these is presumably associated with
a DO that is still referenced by some view, and hence cannot be scrubbed).

Processing of Derived Object Pools
For a DO pool, scrubber does more than simply delete old, unreferenced data containers; it also:

1. Deletes the derived object in the VOB database corresponding to the data container, and possibly its
associated configuration record, as well. This occurs during the third phase of scrubbing.

2. Finds and deletes all stranded DOs from the VOB database: DOs that were never shared, and whose
data containers have been deleted from view-private storage. (The VOB database is not updated
when the DO’s data file is removed or overwritten in the view, due to implementation restrictions.)
There are no data containers in the DO storage pool for such DOs, since they were never shared. This
occurs during the second phase of scrubbing.

3. Finds and deletes all lost DO reference counts from the VOB database. Such entries are an implementa-
tion artifact; they correspond to files that were created during a build, but deleted before the build
completed. This occurs during the second phase of scrubbing.

4. Finds and deletes all stranded configuration records: CRs that do not correspond to any existing derived
object.

Derived Statistics
Some interesting results can be derived from these statistics:
g Number of zero-reference-count DOs in this pool before scrubbing:

DO’s - Strands - Lost refs
or
Start files - No DO’s

g Total number of derived object data containers in this pool after scrubbing:
Start files - scrubs

g Total number of unreferenced data containers in this pool after scrubbing:
Start files - scrubs - No DO’s

g Total size (Kb) of the storage pool after scrubbing:
Start size - deleted

EXAMPLES
g Force scrubbing of all mounted VOBs with a storage directory on the local host (default scrubbing per-

formed by ClearCase crontab script /usr/atria/config/cron/scrubber_day.sh).
% /usr/atria/etc/scrubber −f −a

520 ClearCase Reference Manual

ClearCase administration command scrubber
hh

g Scrub cleartext pools in the VOB whose storage directory is /usr/vobstore/project.vobs, using the free-space
analysis heuristic.
% /usr/atria/etc/scrubber −o −k cltxt /usr/vobstore/project.vobs

g Force scrubbing of the default derived object pool (ddft) and the pool named do_staged in all mounted
VOBs with a storage directory on the local host.
% /usr/atria/etc/scrubber −f −p ddft,do_staged −a

SEE ALSO
cleartool subcommands: lsdo, chpool, mkpool, rmdo
crontab_ccase, filesys_ccase, promote_server, crontab(1)

May 1994 521

softbench_ccase ClearCase administration command
hh

NAME softbench_ccase − ClearCase Encapsulation for SoftBench

SYNOPSIS
invoked as needed by SoftBench Broadcast Message Server

DESCRIPTION
The ClearCase Encapsulation for SoftBench enables integration of ClearCase with all of the SoftBench
tools. ClearCase services and broadcasts all the messages prescribed for CM systems in the document
"CASE Communique: Configuration Management Operation Specifications" from the "historical" stan-
dard.

ClearCase adds a menu to the SoftBench Development Manager, providing users with a familiar interface
to ClearCase’s most important version control and configuration management functions. Users can cus-
tomize the SoftBench environment to add items to this menu, accessing more sophisticated features.

Users can configure the SoftBench Builder to use the ClearCase build tool, clearmake. All other SoftBench
tools (debugger, browser, static analyzer, and so on) work within ClearCase environments by using
ClearCase’s transparent file access capability.

ClearCase can broadcast SoftBench messages whenever ClearCase performs a CM operation, no matter
how that operation was requested: from the SoftBench or ClearCase graphical user interface, from the
ClearCase command line interface, from the ClearCase API, from other SoftBench tools, and so on. This
flexibility accommodates a variety of working styles without sacrificing tool integration.

SoftBench tools communicate with ClearCase through the SoftBench Broadcast Message Server (BMS), and
two ClearCase server processes:
g clearencap_sb — the ClearCase encapsulator for SoftBench
g sb_nf_server — the ClearCase notice forwarder for SoftBench

After SoftBench has been configured to work with ClearCase, certain SoftBench commands automatically
invoke ClearCase operations. When a SoftBench tool makes a configuration management request, such as
VERSION-CHECK-OUT, the BMS receives the message and passes it on to the ClearCase encapsulator.
(The BMS starts the encapsulator process if not already running.) The encapsulator evaluates the message
and invokes the appropriate ClearCase tool, such as cleartool checkout.
g If the operation succeeds, the ClearCase tool sends a success message to the notice forwarder process

(starting it if necessary). The notice forwarder informs the BMS that the operation succeeded.
g If the operation fails (that is, the ClearCase tool exits with a non-zero exit status), the encapsulator

returns a failure message to the BMS.

In both cases, the BMS passes the final status message back to the SoftBench tool.

You can have ClearCase tools send the success messages described above, even if the operation was not
initiated by a SoftBench tool:
g Make sure that the ClearCase tool and the BMS both have the environment variable DISPLAY set to

the same value.

522 ClearCase Reference Manual

ClearCase administration command softbench_ccase
hh

g Run the ClearCase tool in an environment with CLEARCASE_MSG_PROTO set to SoftBench.

An error occurs in a ClearCase tool that has CLEARCASE_MSG_PROTO set correctly, but not DISPLAY.

NOTE: HP VUE users must add the $ATRIAHOME/bin directory to their search path by adding a line like
the following to the file /usr/lib/X11/vue/Vuelogin/Xconfig:
Vuelogin*userPath: /usr/bin/X11:/bin:/usr/bin:/etc:/usr/contrib/bin:/usr/atria/bin:/usr/lib:/usr/lib/acct

Otherwise, the encapsulator will be unable to find ClearCase utilities.

ENCAPSULATOR TRANSCRIPT PAD
Text output produced by encapsulator operations can be placed in a file (‘‘results_file’’ in the pseudo-
syntax summaries in the next section). If a result file is not specified, output is directed to the
encapsulator’s dedicated transcript pad. The pad is created and appears on-screen the first time output is
directed to it. The transcript pad window has a single menu, with these choices:

clear pad Removes the current contents of the pad.

cancel Interrupts the current encapsulator operation.

quit Removes the transcript pad window from the screen. The transcript pad process
continues to run and to collect output text. The window will reappear on the next
operation that sends text to the pad, with the new output appended to the existing
contents of the pad.

ENCAPSULATION SUMMARY
The clearencap_sb program handles the SoftBench messages listed in the pseudo-code syntax summary
below. These conventions apply:
g The context parameter is replaced by the pathname(s) currently selected in the SoftBench tool.
g Virtually all other parameters are optional. A default action is taken if no value is supplied for a

given parameter, or if it has the string value "-" (except with comments — see below).
g Many messages take optional comments. If a comment is not supplied, clearencap_sb prompts the

user for a comment before acting on the message.

NOTE: The comment string "-" does not indicate a default action; it is a one-character comment.
g Braces ({ ... }) indicate that a non-default value from the message is substituted at that location.
g DEFAULT indicates that the user either did not supply the parameter or specified the string "-".

Standard Messages
The following messages are specified in the ‘‘historical standard’’.

VERSION-CHECK-IN context rev options keyword comment
if (keyword == "CO-LOCK")

cleartool checkin -c comment options context
cleartool checkout -nc context

else if (keyword == "CANCEL")
cleartool uncheckout { options | -keep } context

else
cleartool checkin -c comment options context

May 1994 523

softbench_ccase ClearCase administration command
hh

VERSION-CHECK-OUT context rev options keyword comment
if (keyword == "CO")

if (context{@@rev} not in current view)
fail

else
succeed

else
cleartool checkout -c comment options context{@@rev}

VERSION-COMPARE-REVS context rev1 rev2 results_file
if (results_file != DEFAULT && results_file != "*")

if (rev1 == "-pred")
cleartool diff -pred context{@@rev2} > results_file

else
cleartool diff context{@@rev1} context{@@rev2} > results_file

else
if (rev1 == "-pred")

cleartool xdiff -pred context{@@rev2}
else

cleartool xdiff context{@@rev1} context{@@rev2}

VERSION-INITIALIZE context options comment
cleartool mkelem -c comment options context

VERSION-LIST-DIR context results_file keyword options
if (keyword == "RECURSIVE")

cleartool ls -r options context { > results_file }
else

cleartool ls options context { > results_file }

NOTE: if results_file is DEFAULT, output is sent to the transcript pad.

VERSION-SET-MASTER context configuration options
if (configuration == DEFAULT)

cleartool setcs -default options
else if (configuration == "*")

cleartool edcs
else

cleartool setcs options configuration

VERSION-SHOW-HISTORY context results_file options
cleartool lshistory options context { > results_file }

NOTE: if results_file is DEFAULT, output is sent to the transcript pad.

VERSION-UPDATE-DIR context keyword options
(no action needed with ClearCase — always succeeds)

524 ClearCase Reference Manual

ClearCase administration command softbench_ccase
hh

Non-Standard Messages
The following messages are ClearCase extensions, not specified in the ‘‘historical standard’’.

VERSION-MAKE-DIR context keyword options comment
if (keyword == "QUERY")

prompt for directory-name
cleartool mkdir -c comment options context[/directory-name]

VERSION-MAKE-BRANCH context branch-type-name rev options comment
cleartool mkbranch {-version rev} -c comment options branch-type-name context

DERIVED-CAT-CONFIG-REC context do-extension results_file options
cleartool catcr options context{@@do-extension} { > results_file }

NOTE: if results_file is DEFAULT, output is sent to the transcript pad.

DERIVED-DIFF-CONFIG-REC context do-extension1 do-extension2 results_file options
cleartool diffcr options context{@@do-extension1}

context{@@do-extension2} { > results_file }

NOTE: if results_file is DEFAULT, output is sent to the transcript pad.

VERSION-MAKE-ATTRIBUTE context options attribute-type attribute-value comment
if (options include "-default")

cleartool mkattr -c comment options -default attribute-type context
else

cleartool mkattr -c comment options attribute-type attribute-value context

VERSION-GET-ATTRIBUTE context options attribute-type results_file
cleartool describe -short options -aattr attribute-type context { > results_file }

NOTE: if results_file is DEFAULT, output is sent to the transcript pad.

VERSION-MAKE-LABEL context options label-type comment
cleartool mklabel -c comment options label-type context

START-VIEW context view_tag
cleartool startview view_tag

VERSION-DESCRIBE context options results_file
cleartool describe options context { > results_file }

NOTE: if results_file is DEFAULT, output is sent to the transcript pad.

VERSION-LIST-CHECKOUTS context options results_file
cleartool lscheckout options context { > results_file }

NOTE: if results_file is DEFAULT, output is sent to the transcript pad.

VERSION-SHOW-VTREE context options results_file
if (results_file = DEFAULT)

cleartool xlsvtree options context
else

cleartool lsvtree options context > results_file

May 1994 525

softbench_ccase ClearCase administration command
hh

VERSION-COMPARE-FILES context file2 result-file
if (result-file != DEFAULT && result-file != "*")

cleartool diff context file2 > result-file
else

cleartool xdiff context file2

If file2 is not supplied as part of the message, or is either - or *, then clearencap_sb prompts
the user for a file name (using the Motif file-selection dialog box).

VERSION-MERGE-REVS context options rev
cleartool xmerge options −to context −version rev

DO-COMMAND context keyword command
if (command includes the string "<context>")

first substitute context for this string,
then execute the resulting command

else
cleartool command context

NOTE: If the keyword is DISPLAY, output is sent to the transcript pad.

FILES
/usr/adm/atria/log/ti_server_log error log for notice forwarder

SEE ALSO
‘‘Using the ClearCase/SoftBench Integration’’ in the ClearCase User´s Manual.

526 ClearCase Reference Manual

ClearCase administration command tooltalk_ccase
hh

NAME tooltalk_ccase − ClearCase Encapsulation for ToolTalk

SYNOPSIS
invoked as needed by ToolTalk Session Server

DESCRIPTION
ToolTalk tools communicate with ClearCase through the ToolTalk Session Server, ttsession, and two
ClearCase server processes:
g clearencap_tt — the ClearCase encapsulator for ToolTalk
g tt_nf_server — the ClearCase notice forwarder for ToolTalk

After ToolTalk has been configured to work with ClearCase, certain ToolTalk commands automatically
invoke ClearCase operations. When a ToolTalk tool makes a configuration management request, such as
CM-Checkout-File, the Session Server receives the message and passes it on to the ClearCase encapsula-
tor. (The Session Server starts the encapsulator process if not already running.) The encapsulator evalu-
ates the message and invokes the appropriate ClearCase tool, such as cleartool checkout.
g If the operation succeeds, the ClearCase tool returns a success exit status to clearencap_tt, which sends

a success reply back to the Session Server.
g If the operation fails (non-zero exit status), the encapsulator returns a failure status to the Session

Server.

In both cases, the Session Server passes the final status message back to the ToolTalk tool.

A ClearCase tool can send a success message even if the operation was not initiated by a ToolTalk tool:
g Make sure that the ClearCase tool and the Session Server both have the environment variable

DISPLAY set to the same value.
g Run the ClearCase tool in an environment with CLEARCASE_MSG_PROTO set to ToolTalk.

(An error occurs in a ClearCase tool that has CLEARCASE_MSG_PROTO set correctly, but not
DISPLAY.) In this environment, the Notice Forwarder generates a success message on each applicable
ClearCase operation that succeeds.

ENCAPSULATOR TRANSCRIPT PAD
Text output produced by encapsulator operations can be placed in a file (‘‘results_file’’ in the pseudo-
syntax summaries in the next section). If a result file is not specified, output is directed to the
encapsulator’s dedicated transcript pad. The pad is created and appears on-screen the first time output is
directed to it. The transcript pad window has a single menu, with these choices:

clear pad Removes the current contents of the pad.

cancel Interrupts the current encapsulator operation.

quit Removes the transcript pad window from the screen. The transcript pad process
continues to run and to collect output text. The window will reappear on the next
operation that sends text to the pad, with the new output appended to the existing
contents of the pad.

May 1994 527

tooltalk_ccase ClearCase administration command
hh

ENCAPSULATION SUMMARY
The clearencap_tt program handles the ToolTalk RPC signatures listed here. Also listed are the
corresponding ClearCase command(s) that clearencap_tt invokes.

CM-Checkin-File(in string filename)
cleartool checkin -nc filename

CM-Checkout-File(in string filename)
cleartool checkout -nc filename

CM-Revert-File(in string filename)
cleartool uncheckout -keep filename

CM-Create-File(in string filename)
cleartool mkelem -nc filename

CM-Create-Directory(in string filename)
cleartool mkdir -nc filename

CM-Create-Branch(in string filename, in string branchtype)
cleartool mkbranch -nc branchtype filename

CM-List-Items(in string dirname [, in string results_file])
cleartool ls dirname > results_file
... or
cleartool ls dirname [output to transcript pad]

CM-List-Changes(in string dirname [, in string results_file])
cleartool lshistory dirname > results_file
... or
cleartool lshistory dirname [output to transcript pad]

CM-List-Checkouts(in string dirname [, in string results_file])
cleartool lscheckout dirname > results_file
... or
cleartool lscheckout dirname [output to transcript pad]

CM-Compare-Revs(in string rev1, in string rev2)
cleartool xdiff rev1 rev2

CM-Set-Config(in string filename)
cleartool setcs filename

CM-Do-Command(in string cmdbuf)
execute command in cmdbuf [output to transcript pad]

BUILD-Build(in string current_wd, in string target, in string results_file)
cd current_wd ; start terminal emulator; clearmake target > results_file

528 ClearCase Reference Manual

ClearCase administration command tooltalk_ccase
hh

BUILD-Do-Command(in string current_wd, in string cmdbuf)
cd current_wd ; execute command in cmdbuf [output to transcript pad]

FILES
/usr/atria/config/tooltalk/* files for ToolTalk Type Compiler
/usr/adm/atria/log/ti_server_log error log for notice forwarder

SEE ALSO
‘‘Using the ClearCase/ToolTalk Integration’’ in the ClearCase User´s Manual.

May 1994 529

type_manager ClearCase data structure
hh

NAME type_manager − programs for managing contents of element versions

SYNOPSIS
g Type manager directory:

/usr/atria/lib/mgrs/manager-name

g Methods, some or all of which are supported by each type manager:

annotate, compare, construct_version, create_branch, create_element, create_version,
delete_branches_versions, merge, xcompare, xmerge

DESCRIPTION
A type manager is a suite of programs that manipulates files with a particular data format; different type
managers process files with different formats. A directory type manager provides programs that compare
and/or merge versions of directory elements. ClearCase provides several type managers; users can
create additional ones.

Several ClearCase version-control commands for file elements are implemented in two phases:

1. Updating of the VOB database. This phase is independent of the element’s data format, and is han-
dled directly by cleartool.

2. Manipulation of the element’s data. In this phase, the data format is extremely significant, and so is
handled by a particular type manager. cleartool invokes the type manager as a separate program,
rather than as a subroutine. This provides flexibility and openness, allowing users to integrate their
own data-manipulation routines with ClearCase.

For example, checkin of a text_file element involves (1) storing information in the VOB database about
who created the new version, when it was created, and so on; (2) computing and storing the delta (incre-
mental difference) between the new version and its predecessor. For a different type of element — for
example, a bitmap file — the delta would be computed very differently, or not at all, and so would
require a different type manager.

ELEMENT TYPES AND TYPE MANAGERS
Each file element type is associated with a type manager. For the predefined file element types, the asso-
ciations are as follows:

Element Type Type Manager Purpose
file whole_copy store any data
compressed_file z_whole_copy store any data, using compress(1)
text_file text_file_delta store text, using incremental deltas
compressed_text_file z_text_file_delta store text, using both

compress(1) and deltas
directory directory compare and merge directory versions

By default, an element type inherits the type manager of its supertype, but you can specify an alternative
type manager when creating an element type. (See the −supertype and −manager options to mkeltype.)

530 ClearCase Reference Manual

ClearCase data structure type_manager
hh

USING A TYPE MANAGER
To have a particular file element use a particular type manager, you must establish two connections:
file element ----> element type ----> type manager

1. Make sure the VOB has an element type that is associated with the desired type manager. Use the
lstype −eltype −long command to identify an existing element type. Alternatively, use the
mkeltype -manager command to create a new element type that is associated with the desired type
manager.

2. Create the file element, specifying the element type with the −eltype option. If the file element
already exists, use the chtype command to change its element type.

You can automate the assignment of the new element type to newly-created elements using the ClearCase
file typing facility, driven by .magic files. See the cc.magic manual page for details; see also the ‘‘Example’’
section below.

TYPE MANAGER STRUCTURE
A type manager is a collection of programs in a subdirectory of /usr/atria/lib/mgrs; the subdirectory name is
the name by which the type manager is specified with the −manager option in a mkeltype command.

Methods
Each program in a type manager subdirectory implements one method (data-manipulation operation). A
method can be a compiled program, a shell script, or a link to an executable. It is invoked automatically
at the appropriate time by a ClearCase version-control command.

A type manager can include these methods:

create_element Invoked by mkelem to create an element’s initial data container.

create_branch Invoked by mkbranch to create a branch in an element’s version tree.

create_version Invoked by checkin to store a new version of an element.

annotate Invoked by annotate to produce an annotated listing of a version’s contents.

construct_version Invoked by a view’s view_server process when a file element is opened, from ver-
sions stored in delta or compressed format. This method constructs a readable,
cleartext copy of a particular version.

After the cleartext version is constructed, its line terminators may be adjusted by
the view_server, according to the view’s text mode. See the ‘‘Text Files, Cleartext,
and a View’s Text Mode’’ section in the mkeltype manual page, and the mkview
manual page.

delete_branches_versions Invoked by rmver and rmbranch to delete versions of an element.

delete_branches_versions Invoked by diff and xdiff to run a file-comparison program that is specific to the
element’s data format.

delete_branches_versions Invoked by merge and xmerge to run a file-merge program that is specific to the
element’s data format.

May 1994 531

type_manager ClearCase data structure
hh

A type manager need not implement every method. For example, a type manager for bitmap graphics
images may omit the merge method, because the operation doesn’t make sense for that file format. In this
case, the command cleartool merge will produce an error when invoked on an element that uses this
type manager.

Method Inheritance and Links
A type manager can use symbolic links to inherit one or more of its methods from another type manager.
For example, the type manager for nroff(1) source files described in the ‘‘Examples’’ section below is a
variant of the standard text_file_delta type manager: it uses links to inherit all the text_file_delta methods,
except for compare.

Another typical usage of symbolic links is to have individual methods be links to a ‘‘master’’ type
manager program, which implements several (or all) of the methods. For an example, see directory
/usr/atria/lib/mgrs/z_whole_copy.

A link to the cleardiff program can implement the compare and/or merge method for text files. Similarly, a
link to the xcleardiff program can implement the xcompare and/or xmerge method. Again, see directory
/usr/atria/lib/mgrs/z_whole_copy for an example.

Data Containers
Type managers process data containers, each of which stores the actual data for one or more versions of
some element. All data containers are standard UNIX files, and are stored in the VOB’s source pools,
which are standard UNIX directories. Only type managers deal with data containers directly; users
always manipulate data using the names of elements and links.

Performing the data manipulation for a version-control operation involves several programs. For exam-
ple, to create a new version of an element:

1. cleartool generates the pathname (within a source pool) for a new data container.

2. On the VOB host (where the VOB storage area resides), a vob_server process creates an empty file at
that pathname.

3. On the client host (where the user is working), the type manager fills the new data container with the
data for the new version. (If the type manager implements deltas, it writes the data for one or more
other versions to the new container, too.)

4. The vob_server changes the access mode of the new data container, making it unwritable.

5. Using the MGR_DELETE_KEEP_JUST_NEW exit status returned by the type manager, the vob_server
deletes the old data container.

NOTE: Even with a type manager that implements deltas, a new data container is created each time a
new version is created. In this case, the old container (which may have stored 27 versions) is replaced by
the new container (which stores 28 versions). A type manager must never write to an old container or
delete a old container (it usually won’t have rights to do so).

CREATING A NEW TYPE MANAGER
You can create any number of new type managers for use throughout the local network. Use these guide-
lines:

532 ClearCase Reference Manual

ClearCase data structure type_manager
hh

1. Choose a name for the new type manager — ideally, one that shows its relationship to the data for-
mat (for example, bitmap_mgr). Create a subdirectory of /usr/atria/lib/mgrs with this name.

2. Create symbolic links to make the new type manager inherit some of its methods (file-manipulation
operations) from an existing type manager.

3. Create your own program for the method(s) that you wish to customize. See ‘‘Writing a Type
Manager Program’’ below.

4. On each other ClearCase client host in the network, either make a copy of the new type manager
directory, or create a symbolic link to it. The standard storage, performance, and reliability tradeoffs
apply.

NOTE: An element type belongs to a VOB, and thus is available on every host that mounts its VOB. But
a type manager is host-specific — it is some host’s /usr/atria/lib/mgrs/manager-name directory.

Example
This section describes how the guidelines presented above can be used to create a type manager for ele-
ments that store a project’s nroff(1) source files. We wish to implement the compare method with a pro-
gram that compares the corresponding formatted files, instead of the source files. But we do not wish to
change the merge method, since that is an operation to be performed on the source files themselves. Thus,
the type manager:
g will be a refinement of the text_file_delta type manager
g will have the same functionality as text_file_delta for all methods except compare
g will compare two or more versions by first creating formatted pure-ASCII files with nroff(1), then

using cleardiff to display the differences

The step numbers below correspond to those in the preceding section.

1. Create a directory for the type manager:
% su
<enter password>

cd /usr/atria/lib/mgrs

mkdir nroff_delta

2. For all the methods except compare, create symbolic links back to the text_file_delta directory:
cd nroff_delta

ln −s ../text_file_delta/construct_version construct_version

ln −s ../text_file_delta/create branch create_branch

ln −s ../text_file_delta/create_element create_element

ln −s ../text_file_delta/create_version create_version

ln −s ../text_file_delta/delete_branches_versions delete_branches_versions

ln −s ../text_file_delta/merge merge

ln −s ../text_file_delta/xcompare xcompare

ln −s ../text_file_delta/xmerge xmerge

May 1994 533

type_manager ClearCase data structure
hh

3. Create a compare program as an executable shell script. It might contain:
#!/bin/sh
read file that defines methods and exit statuses
. ${ATRIAHOME:-/usr/atria}/lib/mgrs/mgr_info.sh

OPTS=""
while (expr $1 : ’\-’ > /dev/null) ; do

OPTS="$OPTS $1"
if ["$1" = "$MGR_FLAG_COLUMNS"] ; then

shift 1
OPTS="$OPTS $1"

fi
shift 1

done

COUNT=1
for X in $* ; do

nroff -man $X | col | ul -Tcrt > /usr/tmp/compare.$$.$COUNT
COUNT=‘expr $COUNT + 1‘

done

echo Comparing files: $*
cleardiff -quiet $OPTS /usr/tmp/compare.$$.*
rm -f /usr/tmp/compare.$$.*

4. Create symbolic links to (or create copies of) the nroff_delta directory in other hosts’ /usr/atria/lib/mgrs
directories. For example:
rlogin saturn
cd /usr/atria/lib/mgrs
ln -s /net/neptune/usr/atria/lib/mgrs/nroff_delta nroff_delta

The nroff_delta type manager is now ready to be used.

1. Create the manpage element type, associating the new type manager with it:
cleartool mkeltype −supertype text_file \

−manager nroff_delta manpage
Comments for "manpage":
Variant of text_file, for nroff source files
.
Created element type "manpage".

2. Convert an existing element to type manpage:
% cleartool chtype −force manpage hello.1
Changed type of element "hello.1" to "manpage".

3. Compare two versions of the element, using the new type manager:
% diff hello.1@@/main/3 hello.1
7,8c7,8
< program outputs the message
< ‘‘Hello, World’’

> program sends the message
> ‘‘Hello there, World’’

% cleartool diff −serial hello.1@@/main/3 hello.1
Comparing files: hello.1@@/main/3 hello.1

534 ClearCase Reference Manual

ClearCase data structure type_manager
hh

-----[12 changed to 12]-----
< The program outputs the message ‘‘Hello, World’’ to the

> The program sends the message ‘‘Hello there, World’’ to the

4. Revise your personal magic file (for example, $HOME/.magic/my.magic) to have certain newly-created
elements automatically get the manpage element type. For example:

manpage text_file : -name "*.[1-8]"
Classifies any file whose name ends with a digit suffix (.1−.8) as an manpage file.

manpage text_file : -name "manual_pages/*"
Classifies any file within the manual_pages directory as an manpage file.

WRITING A TYPE MANAGER PROGRAM
When invoking a type manager method, cleartool passes it all the arguments needed to perform the opera-
tion, in ASCII format. For example, many methods accept a new_container_name argument, specifying the
pathname of a data container to which data is to be written.

In many cases, one or more of the parameters can be ignored. For example, the create_version method is
passed pred_container_name, the pathname of the predecessor version’s data container. If the type
manager implements incremental differences, this is required information; otherwise, the predecessor’s
data container is of no interest.

Arguments are often ClearCase object identifiers (OIDs). You need not know anything about how Clear-
Case generates OIDs — just consider each OID to be a unique name for an element, branch, or version. In
general, only type managers that store multiple versions is the same data container need be concerned
with OIDs.

For more information on argument processing, see files /usr/atria/lib/mgrs/mgr_info.h (for C language pro-
grams) and /usr/atria/lib/mgrs/mgr_info.sh (for Bourne shell scripts), along with the chapter ‘‘Type
Managers and Customized Processing of File Elements’’ in the ClearCase User´s Manual.

Exit Status of a Method
A user-defined type manager method must return an exit status to cleartool, indicating how the command
is to be completed. The symbolic constants in /usr/atria/lib/mgrs/mgr_info.sh specify all valid exit statuses.
For example, an invocation of create_version might successfully create a new data container, then return
exit status MGR_STORE_KEEP_JUST_NEW; if creation of the new data container fails, it would return
exit status MGR_STORE_KEEP_JUST_OLD.

FILES
/usr/atria/lib/mgrs/*
/usr/atria/lib/mgrs/mgr_info.h
/usr/atria/lib/mgrs/mgr_info.sh

SEE ALSO
cleartool subcommands: mkelem, mkeltype
cc.magic, cc.icon, compress(1)

May 1994 535

version_selector ClearCase miscellany
hh

NAME version_selector − ClearCase version selector syntax

SYNOPSIS
branch-pathname/version-number

[branch-pathname/] version-label

[branch-pathname/] { query } (query must be enclosed in braces)

DESCRIPTION
A version selector identifies a version of an element in a version tree. You can use it with the −version
command-line option in cleartool, as part of a rule in a config spec, and as part of a version-extended path-
name. The version selector has three general forms. Each identifies a version in a different way:
g by version-ID
g by the version label attached to it
g by a query on the meta-data attached to it, or some other version characteristic

A version selector selects one version of an element, no version of an element, or generates an error, if
ambiguous.

BRANCH PATHNAMES
All forms of the version selector may include a branch pathname to identify the branch on which a version
resides. (Only one form requires a branch pathname — the version-ID; see next section). A branch path-
name consists of a series of branch type names separated by slashes (/). A version tree has the same
hierarchical structure as a directory tree; the root of this tree is the main branch (default name: /main),
which must always be the first entry in the branch pathname. The names of other branches follow the
tree structure. Examples:

main branch/main
bugfix branch, off the main branch/main/bugfix
bugfix branch, off the /main/motif branch/main/motif/bugfix
jpb branch, off the /main/motif/bugfix branch/main/motif/bugfix/jpb

SELECTION BY VERSION-ID: branch-pathname/version-number
Selects the version with the specified version-ID. This is the only form that requires a branch pathname.
Examples:

version 2 on main branch/main/2
version 5 on bugfix branch off main branch/main/bugfix/5
version 1 on subbranch of /main/motif branch/main/motif/bugfix/1

In a version-extended pathname, the version-ID follows the element name and extended naming symbol
(default: @@). For example:

version 4 on main branch of file ’hello.c’hello.c@@/main/4
version 1 on the /motif/experiment branch, off the main branchutil.c@@/main/motif/experiment/1
version 3 on the main branch of file ’hello.h’, in version 4 on the main branch of direc-
tory ’include’include@@/main/4/hello.h/main/3

536 ClearCase Reference Manual

ClearCase miscellany version_selector
hh

SELECTION BY VERSION LABEL: [branch-pathname/]label
Selects the version with the specified version label. The branch pathname is optional. Examples:

most recent version on main branch/main/LATEST
version labeled REL2 on a branch named bugfix, at any branching level.../bugfix/REL2
version labeled REL2 on a bugfix branch that is a subbranch of main/main/bugfix/REL2
version labeled BUG3 on a particular third−level branch/main/sunport/openlook/BUG3
version labeled REL2 on any branchREL2

The label LATEST is predefined by ClearCase. It automatically evaluates to the most recent version on
each branch of an element. If the most recent version on the main branch is version 4, then these two ver-
sion selectors identify the same version:
/main/LATEST
/main/4

A version selector can consist of a standalone label, such as REL2. Standalone labels can be ambiguous,
however. For example, /main/bugfix/REL2 and REL2 may or may not be equivalent for a given element:
g If the REL2 label type was created as one-per-element (default), the two version selectors must be

equivalent.
g If REL2 was created with mklabel -pbranch, however, the label can be used once per branch. If the

label is actually attached to two or more versions of an element, an ambiguous error occurs. No error
occurs for elements that happen to have only one instance of a one-per-branch label type.

Version Labels As Hard Links
Version labels appear as UNIX hard links in an element’s directory tree in version-extended namespace. (See
the pathnames_ccase manual page.) If a version label was defined to be one-per-element, then an addi-
tional hard link appears at the top level of an element’s directory tree. For example, if BL3 is a one-per-
element label, then these version-extended pathnames are both unambiguous references to the same ver-
sion:
hello.c@@/BL3
hello.c@@/main/bugfix/patch2/BL3

In effect, this feature allows you to reference a version without knowing its exact location in the version
tree.

If a label was defined with the −pbranch option, it does not appear in the element’s top-level extended
namespace directory (as implied above). Thus, if the one-per-element label, BL3, and the one-per-branch
label, TEST_LBT, was attached to version /main/1 of file hello.c, its top-level extended namespace directory
would look like this:
% cd hello.c@@

% ls
BL3 main

SELECTION BY QUERY: [branch-pathname/]{query}
Selects the version that satisfies the specified query. A branch pathname is optional.

May 1994 537

version_selector ClearCase miscellany
hh

The query expression consists of one or more query primitives and operators, organized according to the
syntax rules listed in the query_language manual page. The query expression must be enclosed in braces
({ ... }), and the entire version selector in single quotes (’ ... ’) or double quotes (" ... ") if it includes spaces,
or characters that have special meaning to the shell. String literals within the query expression must be
double-quoted.

Examples:
the latest version on the main branch for which the ’TESTED’ attribute has the value ’yes’/main/{TESTED=="yes"}
the version on any branch that is the ’to’ end of a hyperlink of type ’design_spec’{hltype(design_spec,<-)}
the latest version on the bugfix branch which is not labeled ’REL2’/main/bugfix/{!lbtype(REL2)}
the version on any branch created by user ’jpb’ which is stored in the ’sr1’ storage pool{created_by(jpb)&&pool(sr1)}

If the version selector includes a branch pathname, the view_server selects the latest version on the branch
that satisfies the query. If the version selector does not include a branch pathname, the view_server selects
the version on any branch that satisfies the query. However, without a branch pathname, a query is ambi-
guous when more than one version of the element satisfies the query; versions on different branches, or
two versions on the same branch, for example.

An ambiguous query fails to select any version. A query will also fail if no version satisfies the query.

A version-extended pathname can include a query, but is subject to the same restrictions as other version
selectors of this form. That is, the query must select exactly one version to succeed. For example, this
command displays the most recent version that has an attribute of type TESTED:
% cat include.h@@/"{attype(TESTED)}"

Note the use of quotes to prevent the shell from interpreting the curly brace and parenthesis characters.
As an alternative, you can quote the entire pathname:
% cat "include.h@@/{attype(TESTED)}"

If multiple branches have versions with a TESTED attribute, the version-selector used in the examples
above is ambiguous, and an error occurs.

RESTRICTION: In a version-extended pathname, you cannot use both a branch pathname and a query:
(does not work)% cat "include.h@@/main/{attype(TESTED)}"
(does not work)% cat "include.h@@/main/rel2_bugfix/{attype(TESTED)}"

You can use the describe command to work around this restriction:
% cat ‘cleartool describe −s −ver /main/rel2_bugfix/"{attype(TESTED)}" include.h‘

SEE ALSO
cleartool, config_spec, pathnames_ccase, query_language

538 ClearCase Reference Manual

ClearCase data structure view
hh

NAME view − ClearCase view data structures

SYNOPSIS
UNIX directory tree created by ’mkview’ command

DESCRIPTION
A view provides a virtual workspace, in which users can access shared data, stored in one or more VOBs,
and private data, which is stored in the view itself. For users to access a view on a ClearCase client host,
the view must be activated on that host (for example, with setview).

This manual page discusses both a view’s physical data structures and the way file system data appears
to a user process through a view.

VIEW STORAGE DIRECTORY
A view is implemented as a standard directory tree, whose top-level directory is termed the view storage
directory. The directory contains files and subdirectories:

.pid A one-line text file that lists the process-ID of the associated view_server process, currently
running on the host where the view storage directory resides.

.view A file that lists the view’s ‘‘universal unique identifier’’ (UUID):
neptune:/home/akp/tut/old.vws

(view’s UUID)26a7d404.428211cd.b405.08:00:69:06:af:65
neptune

The other lines are historical artifacts; they indicate where the view was originally created,
but are not used in the current ClearCase release to determine a view’s current location. (This
is information is maintained in the network’s storage registry.)

config_spec A file that stores the view’s current config spec, in the form displayed by catcs.

.compiled_spec
A modified version of config_spec, which includes ClearCase-internal accounting information.

.identity A subdirectory whose files establish the view’s owner and group memberships. Only the
view’s creator has any access rights to this subdirectory. It has the same structure as the like-
named subdirectory within a VOB storage directory. See the vob manual page for more infor-
mation.

.s A subdirectory that implements the view’s private storage area. See ‘‘Private Storage Area’’
below.

db A subdirectory containing the files that implement the view’s embedded database. See ‘‘View
Database’’ below.

Private Storage Area
Subdirectory .s of the view storage directory is the root of a subtree that implements the view’s private
storage area. If the view was created with mkview -ln, then .s is actually a (UNIX-level) symbolic link,
pointing to a remote storage area.

May 1994 539

view ClearCase data structure
hh

The private storage area holds several kinds of objects:

View-Private Objects. A view-private object is a file system object — file, directory, or link — created by a
standard program within a VOB directory. Such objects are stored only within the view’s private storage
area; no VOB maintains any record of such objects.

Checked-Out Files. A checked-out version is a file created by the checkout command. This file is an editable
copy of the version being checked out.

A checked-out version is very much like a view-private file, except that there is a corresponding object in
the VOB database: the special ‘‘placeholder’’ version with the CHECKEDOUT version label.

Unshared Derived Objects. An unshared derived object is a data container created by execution of a
makefile build script by clearmake, or by any program invoked by clearaudit. A corresponding derived object
is created in the VOB database.

NOTE: An unshared derived object remains in the view’s private storage area even after the DO becomes
shared; promotion of the DO involves a copy — not a move — of the data container. The winkin command
and view_scrubber utility remove unshared derived objects from a view’s private storage area.

Configuration Records. File view_db.crs_file in the .s subdirectory is actually part of the view’s database
(see below): the part that stores the configuration records of derived objects built in the view.

View Database
The view database subdirectory, db, contains these files:

view_db.dbd A compiled database schema, used by ClearCase’s embedded DBMS routines for data-
base access. The schema describes the structure of the view database. The mkview com-
mand creates this file by copying /usr/atria/etc/view_db.dbd.

view_db_schema_version
A schema version file, used by ClearCase’s embedded DBMS routines to verify that the
compiled schema file is at the expected revision level. The mkview command creates this
file by copying /usr/atria/etc/view_db_schema_version.

view_db.d0n
view_db.k01 Files in which the database’s contents are stored.

vista.* Database control files and transaction logs.

view_db.crs_file Stores the configuration records of unshared derived objects. As described above, this
file resides in subdirectory .s of the view storage directory, allowing it to be remote.

The view database keeps track of the objects in its private storage area: view-private objects (files, direc-
tories, and links), checked-out versions, and unshared derived objects.

SEE ALSO
cleartool subcommands: lsview, mkview, setview, startview, lsview
mvfsstorage, registry_ccase, scrubber, view_scrubber, vob
ClearCase Administrator´s Manual

540 ClearCase Reference Manual

ClearCase administration command view_scrubber
hh

NAME view_scrubber − remove derived object data containers from view storage

SYNOPSIS
/usr/atria/etc/view_scrubber [−−p] [−−k] [−−n] [DO-pname ...]

DESCRIPTION
WARNING: This command modifies the way in which view-resident objects are combined with VOB-resident
objects to produce a ’virtual workspace’. To avoid errors, make sure that no application or development tool is using
the view’s files when this command is executed.

The most common way to run the view_scrubber is indirectly, by running the /usr/atria/etc/view_scrubber.sh
script supplied with ClearCase.

The view_scrubber program ‘‘cleans’’ a view’s private storage area by removing derived object data con-
tainers. This is useful in these situations:

Scenario 1: Cleaning Up after a ’clearmake’ Wink-In. The first time it winks-in a derived object, clearmake
copies the data container from private storage (of the view where the object was originally built) to
shared storage (a VOB storage pool). This procedure, termed promotion, involves a copy, not a move. (See
the promote_server manual page for details.) At this point:
g The view where the derived object was originally built continues to use the data container in view

storage.
g Any other view into which the derived object is subsequently winked-in uses the promoted data con-

tainer in VOB storage.

Running view_scrubber in the view where the derived object was built simplifies the situation. First, it
uses rm(1) to remove the derived object; this deletes the data container from view storage. Then, it
restores the derived object through a wink-in; the establishes a link to the data container in VOB storage.

Now, all views that share the derived object access the data container in VOB storage; and the redundant,
space-consuming data container in view storage has been eliminated.

Scenario 2: ’Self-Wink-In’. By default, the data container for an unshared derived object always remains
in view storage (until the DO is deleted or overwritten). view_scrubber -p transfers the data container
to VOB storage, thus freeing space in the view storage area. In essence, this involves winking-in the
derived object to the same view. First, the data container is promoted from view storage to VOB storage;
then, the remove-then-restore procedure described in Scenario 1 is invoked.

NOTE: Scenario 2 can also be accomplished with the winkin command.

OPTIONS AND ARGUMENTS
Preprocessing with a ’Promotion’. Default: view_scrubber removes view-resident data containers, then
restores the derived objects to the view through wink-in. Requirement: the derived objects’ data con-
tainers must already be in VOB storage.

−−p Before performing the default processing described above, promotes (copies) the derived
objects’ data containers from view storage to VOB storage. This removes the requirement
noted above.

May 1994 541

view_scrubber ClearCase administration command
hh

Error Recovery. Default: view_scrubber aborts if it is unable to complete its work on any derived object.

−−k Keeps going, even if one or more derived objects cannot be successfully processed.

No-Execute Option. Default: view_scrubber performs its work and displays appropriate messages.

−−n Suppresses the actual processing of data containers; messages are displayed to indicate what
work view_scrubber would have performed.

Derived Objects to Process. Default: If you don’t specify any derived objects as command arguments,
view_scrubber reads a one-per-line list of pathnames from stdin, which must be a pipe.

DO-pname ...
One or more standard pathnames of derived objects.

EXAMPLES
g Make the view you wish to scrub the current working view, and move to the directory of interest. Then

scrub DO containers for the entire directory tree, using the script /usr/atria/etc/view_scrubber.sh (which
invokes the view_scrubber program).
% cleartool setview big_view

% cd /vobs/src

% /usr/atria/etc/view_scrubber.sh

SEE ALSO
cleartool subcommands: winkin
clearmake, promote_server, scrubber

542 ClearCase Reference Manual

ClearCase administration command view_server
hh

NAME view_server − server process that performs version selection for a view

DESCRIPTION
A view_server is a long-lived process that manages activity in a particular ClearCase view. It interprets the
rules in the view’s config spec, and tracks modifications to view-private files for other ClearCase software.

Each view requires a dedicated view_server on the host where the view storage area resides. The
view_server is started by its host’s albd_server process when necessary. It runs with the user-ID of the
owner of the view storage directory (usually, the user who created the view). A view_server remains
active until it is terminated by a system shutdown or a kill(1) command.

A view_server handles MVFS file system requests (such as create, delete, and rename) by querying one or
more VOB databases and comparing them against the view’s own database. Using the view’s config spec,
it selects versions of file elements and directory elements to appear in the view. It also handles requests
from cleartool, clearmake, and clearaudit to look up VOB-database objects and/or names.

A view_server manages its view’s database by tracking changes to view-private objects against the related
objects in VOB databases (for example, the view-private file that corresponds to the checked-out version
of a file element).

VIEW CONFIGURATION
When it begins execution, a view_server reads configuration information from file .view in the view storage
directory. This is an ASCII file, which contains:
g line 1: the location of the view storage directory, in hostname :pathname format
g line 2: the view’s UUID (unique identifier), which must not be changed
g line 3: the hostname specified in line 1

NOTE: Lines 1 and 3 are placed in the .view file when the view is created, but the view_server ignores these
lines thereafter.

The configuration file can include additional entries, each on a separate line:

−−cache size-in-bytes
Sets the total size of the view_server’s caches to be size-in-bytes. The default is 204800 (200Kb).
This total is allocated among the several caches automatically.

−−readonly Prevents modification of the view’s private data-storage area. A read-only view cannot be
used for checkouts or for builds, since these operations create new files in view-private
storage. (A checkout command will succeed in creating a checked-out version in the VOB
database, but will not be able to create the corresponding view-private file.)

NOTE: −readonly does not prevent users from changing a view’s config spec. Use view
access permissions for to implement this kind of restriction. (See the mkview manual page for
details.)

May 1994 543

view_server ClearCase administration command
hh

The following example shows how a view’s owner can reconfigure a view to double its cache allocation.
Suppose the view storage directory is located at $HOME/jones_3.vws, and is registered with view-tag
jones_3.

(go to view storage directory)% cd $HOME/jones_3.vws
(make configuration file writable)% chmod +w .view
(add option line to configuration file)% echo "-cache 409600" >> .view
(restore permissions of configuration file)% chmod 444 .view
(kill view_server, using stored PID)% kill ‘cat .pid‘
(restart view_server)% cleartool startview jones_3

VIEW PERFORMANCE STATISTICS
This command causes a view_server to write cumulative cache-performance (and other) statistics to its log
file, /usr/adm/atria/log/view_log:

kill -HUP view_server-process-ID

It then resets all the statistics accumulators to zero. You must enter this command on the host where the
view_server executes.

SEE ALSO
cleartool subcommands: mkview, mktag, recoverview, reformatview, rmtag, rmview, setview, startview,
albd_server, clearmake, kill(1)

544 ClearCase Reference Manual

ClearCase data structure vob
hh

NAME VOB − ClearCase VOB data structures

SYNOPSIS
UNIX directory tree created by ’mkvob’ command

DESCRIPTION
A VOB (versioned object base) is a secure data repository for a directory tree. For users to access a VOB on
a ClearCase client host:
g The VOB must be activated on the host by mounting it as a file system of type MVFS (ClearCase’s mul-

tiversion file system type).
g The VOB must be accessed through a view.

This manual page discusses both a VOB’s physical data structures and its logical structures, as seen by a
user process through a view.

PHYSICAL DATA STRUCTURES / VOB STORAGE
A VOB is implemented as a standard directory tree, whose top-level directory is termed the VOB storage
directory. The directory contains files and subdirectories:

.pid A one-line text file that lists the process-ID of the associated vob_server process, currently run-
ning on the host where the VOB storage directory resides.

vob_oid A one-line text file that lists the VOB’s ‘‘universal unique identifier’’(UUID). (‘‘OID’’ means
‘‘object identifier’’.) or OID. This UUID is the same for all the replicas in a VOB family (Atria
MultiSite product).

replica_uuid A one-line text file that lists the ClearCase-internal replica UUID of this particular replica of
the VOB. Different replicas created with the Atria MultiSite product have different
identifiers.

.identity A subdirectory whose files establish the VOB’s owner and group memberships. See ‘‘The
.identity Directory’’ below.

s A subdirectory in which all of the VOB’s local source storage pools reside.
d A subdirectory in which all of the VOB’s local derived object storage pools reside.
c A subdirectory in which all of the VOB’s local cleartext storage pools reside.

See ‘‘VOB Storage Pools’’ below.

db A subdirectory containing the files that implement the VOB’s embedded database. See ‘‘VOB
Database’’ below.

The .identity Directory
Subdirectory .identity records the VOB’s ownership and group membership information. This directory
has a very restricted access mode: only the user who is the VOB owner has any access rights. (As always,
the host’s root user can also access this directory.)

May 1994 545

vob ClearCase data structure
hh

The .identity directory contains these files:

uid The owner of this file is the VOB owner.

gid This group to which this file belongs is the VOB’s principal group.

group.nn Each additional file (if any) indicates by its group membership an additional group on the
VOB’s group list. In addition, the file’s name identifies the group by numeric ID (group.30,
group.2, and so on).

You can use a describe -vob command to display this information.

Example: A VOB is created by user drp, whose password entry places him in the vga group, and who also
belongs to groups 2 (bin) and 30 (dvt). The VOB storage directory’s .identity subdirectory contains these
files to record this information:
-r----S--- 1 drp vga 0 Oct 9 09:34 gid
-r----S--- 1 drp bin 0 Oct 9 09:34 group.2
-r----S--- 1 drp dvt 0 Oct 9 09:34 group.30
-r-S------ 1 drp vga 0 Oct 9 09:34 uid

User drp or root subsequently adds group 50 (rlsgrp) to the VOB’s group list:
% cleartool protectvob −add_group rlsgrp /vobstore/...

This change is recorded by an additional file in .identity:
-r----S--- 1 drp rlsgrp 0 Oct 9 09:34 group.50

VOB Storage Pools
Each VOB storage directory is created with three default storage pools, located within the directories listed
above.

s/sdft Default source storage pool, for permanent storage of versions’ file system data.

c/cdft Default cleartext storage pool, for temporary storage of the cleartext versions currently in
use (for example, reconstructed versions of text_file elements).

d/ddft Default derived object storage pool, for storage of shared derived objects.

For more information on storage pools, see the mkvob, mkpool, and chpool manual pages.

VOB Database
The VOB database subdirectory, db, contains these files:

vob_db.dbd A compiled database schema, used by ClearCase’s embedded DBMS routines for data-
base access. The schema describes the structure of the VOB database. The mkvob com-
mand creates this file by copying /usr/atria/etc/vob_db.dbd.

vob_db_schema_version
A schema version file, used by ClearCase’s embedded DBMS routines to verify that the
compiled schema file is at the expected revision level. The mkvob command creates this
file by copying /usr/atria/etc/vob_db_schema_version.

546 ClearCase Reference Manual

ClearCase data structure vob
hh

vob_db.d0n
vob_db.k0n Files in which the database’s contents are stored.

vista.* Database control files and transaction logs.

db_dumper A copy of /usr/atria/etc/db_dumper. This is an executable program, invoked during the
reformatvob command’s ‘‘dump’’ phase. Each VOB gets its own copy of db_dumper so that
it will always be able to ‘‘dump itself’’ to ASCII files. (Typically, it will need to be
dumped after a newer release of ClearCase has already been installed on the host; with
this strategy, the /usr/atria/etc/db_dumper program in the newer release need not know
about the ‘‘old’’ VOB database format.)

Backup Database Subdirectories. reformatvob does its work by creating a new VOB database. By default,
it preserves the old database by moving it aside to a date-stamped name. Thus, a VOB storage directory
may contain old, (usually) unneeded VOB database subdirectories, with names like db.0318. If reformatvob
is interrupted, it may leave a partially-reformatted database with the name db.reformat.

LOGICAL DATA STRUCTURES
From the user’s standpoint, a VOB contains file system objects and meta-data. Some meta-data is stored in
the form of objects; other meta-data is stored as records or annotations attached to objects.

’VOB-Itself’ Object / Replica Objects
Each VOB database contains one object that represents the VOB itself. Termed the VOB object, it provides
a ‘‘handle’’ for certain operations — for example:
g listing event records of operations that affect the entire VOB (lshistory -vob). This includes crea-

tion and deletion of type objects, removal of elements, and so on.
g Placing a lock on the entire VOB (lock -vob).

Using the Atria MultiSite product, you can create any number of replicas of a VOB at different sites. Each
VOB replica is represented in the VOB database by a replica object.

File System Objects
A VOB database keeps track of users’ file system objects using the following database objects:

file element An object with a version tree, consisting of branches and versions. Each version of a file ele-
ment has file system data: a sequence of bytes. Certain element types constrain the nature
of the versions’ file system data; for example, versions of text_file elements must contain
text lines, not binary data.

directory element
An object with a version tree, consisting of branches and versions. Each version of a direc-
tory element catalogs a set of file elements, directory elements (subdirectories), and VOB
symbolic links. An ‘‘extra’’ name for an element this is already entered in some other direc-
tory version is termed a VOB hard link.

VOB symbolic link
An object whose contents is a text string. This string is interpreted by standard com-
mands in the same way as an operating system symbolic link.

May 1994 547

vob ClearCase data structure
hh

Link Counts for File System Objects. Link counts for file system objects are stored in the VOB database,
and reported by the standard ls(1) command, as follows:

symbolic link 1
file element 1
file version 1
directory element 2
directory version 2 plus number of directory elements cataloged in that version
branch 2 plus number of subbranches (each branch appears as a subdirectory in the

extended-namespace representation of an element’s version tree)

This scheme satisfies two UNIX rules:
g The link count is at least one for an object that has a name.
g The link count of a directory is 2 + number-of-subdirectories.

The scheme does not satisfy the rule that the link count should be the number of names the object has in
the current namespace.

Type Objects
A VOB can store several kinds of type objects:

element type Defines a class of elements within the VOB.

branch type Defines a set of like-named branches in some or all of the VOB’s elements.

label type Defines a mnemonic name that can be attached to a set of versions, thus defining a
configuration of the VOB’s elements.

attribute type Defines a name to be used in attaching name/value pairs to VOB-database objects.

hyperlink type Defines a class of logical arrow that can be used to connect pairs of objects.

trigger type Defines a monitor on operations that modify the VOB’s objects.

replica type Defines a class of VOB replicas (Atria MultiSite product).

Instances of Type Objects
After a type object is created, users can create any number of instances of the type.

element Each file or directory element in a VOB is created by mkelem or mkdir as an instance of an
existing element type in that VOB.

branch Each branch in an element is created by mkbranch as an instance of an existing branch
type in that element’s VOB.

version label The mklabel command annotates a version with a version label, by creating an instance of
an existing label type.

attribute The mkattr command annotates a version, branch, element, VOB symbolic link, or hyper-
link with an attribute, by creating an instance of an existing attribute type. Each instance
of an attribute has a particular value — a string, an integer, and so on.

548 ClearCase Reference Manual

ClearCase data structure vob
hh

hyperlink The mkhlink command creates a hyperlink object, which is an instance of an existing
hyperlink type. A typical hyperlink connects two objects, in the same VOB or in different
VOBs.

trigger The mktrigger command creates a trigger object, which is an instance of an existing trigger
type. The trigger becomes attached to one or more elements.

replica The Atria MultiSite product’s mkreplica command creates a VOB replica object, which is an
instance of an existing replica type.

Derived Objects
A VOB’s database stores information on all the derived objects (DOs) created at pathnames within the
VOB. For each DO, the database catalogs:
g the directory element, along with the location of the DO within the directory (for example, util.o or

sun5/util.o)
g the DO’s unique identifier, its DO-ID

See the derived_object manual page for more information.

Configuration Records
A VOB’s database stores the configuration records (CRs) associated with derived objects and DO versions
(derived objects that have been checked in as versions of elements). Each CR documents a single target
rebuild, which typically involves execution of one build script. See the config_record manual page for more
information.

Event Records
ClearCase creates an event record in the VOB database for nearly every operation that modifies the VOB.
See the events_ccase manual page for more information.

Unneeded event records are periodically deleted from a VOB’s database by the vob_scrubber utility.

Initial VOB Contents
When first created by the mkvob command, a VOB appears to users (through its type-MVFS file system
mount point) as an almost-empty directory tree. It contains no files, and just two directories:

VOB Root Directory. mkvob automatically performs a mkdir command to create a directory element, the
VOB root directory, in the new VOB. Mounting a VOB makes its root directory accessible at the VOB-tag
(VOB mount point) pathname.

For most purposes, the VOB root directory is like any other ClearCase directory element you subse-
quently create within the VOB. But there are differences in certain contexts:
g The filename pattern in a config spec rule cannot be a relative pathname that begins at a VOB root

directory. A relative pathname must start below a VOB root directory. See the config_spec manual
page for details.

May 1994 549

vob ClearCase data structure
hh

g You must use a special syntax for a version-extended name that specifies a location in the version tree
of a VOB’s root directory:

(invalid if directory ’proj’ is VOB root)ls /usr/src/proj@@/main/3
(valid)ls /usr/src/proj/.@@/main/3

The VOB root directory is assigned to the three default storage pools. All newly-created file and directory
elements will be assigned to the default storage pools until new pools are created and assigned.

The lost+found Directory. mkvob also creates a special directory element, lost+found, as a subdirectory of
the VOB root directory. ClearCase places elements that are no longer cataloged in any directory version
in this special directory. This occurs when you:
g create new elements, and then uncheckout the directory in which they were created
g delete the last reference to an element with the rmname command
g delete the last reference to an element by deleting a directory version with the rmver, rmbranch, or

rmelem command

When an element is moved to lost+found, it gets a name of the form:

element_leaf_name.id-number.

The id-number is a unique (and rather lengthy) hexadecimal number, such as
41a00000bcaa11caacd0080069021c7.

The lost+found directory has several unique properties:
g It cannot be checked out.
g It can be modified without being checked out.
g No branches can be created within it.

To conserve disk space, purge the lost+found directory of unneeded elements on a periodic basis, using
the rmelem command.

VOB REGISTRY AND VOB ACTIVATION
Each VOB is registered in the network-wide storage registry, as described in the registry_ccase manual
page. The cleartool mount command activates a registered VOB by mounting it as a type-MVFS file
system. See the ClearCase mount manual page for details.

SEE ALSO
cleartool subcommands: chpool, lsvob, mkvob, mkdir, mkelem, mkpool
config_record, config_spec, crontab_ccase, derived_object, events_ccase, mvfsstorage, registry_ccase,
scrubber, view, vob_scrubber
ClearCase Administrator´s Manual

550 ClearCase Reference Manual

ClearCase administration command vob_scrubber
hh

NAME vob_scrubber − remove event records from VOB database

SYNOPSIS
/usr/atria/etc/vob_scrubber [−−stats_only] [−−long] [−−nlog]

{ −−lvobs | vob-storage-dir-pname ... }

DESCRIPTION
The vob_scrubber utility program deletes old event records (abbreviated to ‘‘events’’ in this manual page)
from a VOB database. This retards VOB growth by logically deleting the events, freeing space in the VOB
database for storage of new events. (Physical deletion requires processing with the reformatvob com-
mand.)

You can explicitly run vob_scrubber as needed; by default, it is automatically run periodically by cron(1M)
— see ‘‘Crontab Processing’’ below. A configuration file, vob_scrubber_params, provides control over
which events are deleted.

vob_scrubber does not need to run in a view and does not require the VOB(s) it processes to be mounted.

ClearCase Events
ClearCase creates a meta-data item called an event in a VOB database (almost) every time it modifies the
database — for example, to record the checkin of a new version, the attaching of an attribute to an ele-
ment, or the creation of a new branch type. Each event consumes 300−400 bytes. Some events, like those
for element and version creation, are valuable indefinitely; however, many minor events are not. For
example, the removal of a version label from a collection of versions creates a minor event for each
affected object. Over time, such minor events occupy more and more space, while becoming less and less
useful. (After a month or a year, no one is likely to care who removed the version labels, especially if the
label type itself has also been deleted.)

Event Scrubbing
vob_scrubber marks certain events as logically deleted. As with any meta-data removal, the deletion does
not physically reduce the amount of disk space used by the VOB database; it merely frees up space in the
database, making it available for future use. To actually reduce the size of the database, you must run
reformatvob, which discards the logically deleted data as it reconstructs the VOB database. Thus, regular
use of vob_scrubber minimizes VOB database growth, but does not recover disk space.

What Events Are Deleted
These events are never deleted:
g The most recent 1000 events physically added to the VOB (regardless of logical event time). These are

needed by views for cache invalidation.
g If an object is locked, the object’s most recent lock event
g Events for operations not listed in section ‘‘VOB-Specific Event Scrubbing Parameters’’ below. (See

the events_ccase manual page for a complete list of the operations that cause event records to be stored
in the VOB database.)

May 1994 551

vob_scrubber ClearCase administration command
hh

These obsolete events are always deleted, regardless of event scrubbing parameters:
g Creation events for derived objects
g Events whose operation is mklabel, mkattr, mkhlink, mktrigger, rmlabel, rmattr, rmhlink, or

rmtrigger (if the type object associated with the event has been deleted with rmtype)
g Events with event kind destroy, modify, or modify meta-data that have no generated comment.

(Only VOBs created with very early releases of ClearCase have such events.)

All other events are preserved or deleted according to the configuration file specifications described in
section ‘‘VOB-Specific Event Scrubbing Parameters’’ below.

Crontab Processing
ClearCase installation adds an entry to the root user’s crontab(1), enabling once-a-week execution of the
script /usr/atria/config/cron/ccase_cron.wk. This script, in turn, invokes /usr/atria/config/cron/vob_scrubber.sh
to run vob_scrubber on each VOB that resides on the local host.

OPTIONS AND ARGUMENTS
Report Format and Destination. Default: Event statistics are listed briefly, with events categorized by
kind of object (for example, all events for branch objects are grouped); report is sent to the standard log
file, /usr/adm/atria/log/vob_scrubber_log.

−−long Produces a detailed report of the event statistics, with events categorized by kind of object,
kind of event, and kind of operation.

−−nlog Sends the report to stdout instead of the log file.

Deletion Control. Default: Delete events and report statistics on the number of objects, the number of
events before deletion, the number of events deleted, and the number of events after deletion.

−−stats_only
Suppresses event deletion; the report includes statistics on the number of objects and events
in the VOB.

VOBs to be Processed. Default: None.

−−lvobs Event-scrubs all mounted VOBs that reside on the local host.

vob-storage-dir-pname
Scrubs the VOB whose storage directory is at the specified pathname.

552 ClearCase Reference Manual

ClearCase administration command vob_scrubber
hh

VOB-SPECIFIC EVENT SCRUBBING PARAMETERS
A system-wide event-scrubbing configuration file controls the operation of vob_scrubber; each VOB can
have its own configuration file, which overrides the system-wide settings:

system-wide config file /usr/atria/config/vob/vob_scrubber_params
per-VOB config file vob-storage-dir-pname/vob_scrubber_params

The event-scrubbing configuration file is a text file. A line that begins with a pound-sign character (#) is a
comment. All other lines control how one kind of event is to be scrubbed — how long to keep the most
recent one, and how long to keep other events of that kind:

operation −−keep_all { n | forever } [−−keep_last { n | forever }]

The components of an event-scrubbing control line are:

operation Kind of event, specified by the operation that creates the event. (See the table in the
−−keep_last description below.)

−−keep_all { n | forever }
For each object: keep events created by the specified operation for at least n days, or forever.
If −keep_last is also specified, this period applies to all but the most recent such event; oth-
erwise, the period applies to all such events, including the most recent one.

−−keep_last { n | forever }
(optional) For each object: keep the most recent event created by the operation for at least n
days, or forever. The ‘‘keep_last’’ period must be at least as long as the ‘‘keep_all’’ period.
The meaning of ‘‘most recent event’’ depends on the operation:

mklabel, mkattr, mkhlink, mktrigger
rmlabel, rmattr, rmhlink, rmtrigger

Most recent ‘‘modify meta-data’’ event for each type object on each element.
(Example: for each element, the most recent event that records the attaching of
version label REL3 to some version)

lnname, rmname
Most recent ‘‘modify directory version’’ event for each directory element.

rmelem, rmpool, rmtype
Most recent event in VOB.

rmbranch, rmver, chpool, chtype
Most recent event on each element.

protect Most recent event on each element or derived object.

modpool Most recent event on each pool.

modtype Most recent event on each type.

lock, unlock
Most recent event on each object. Exception: if an object is locked, the most
recent lock event on that object is never deleted.

May 1994 553

vob_scrubber ClearCase administration command
hh

Operation Log Scrubbing
A slightly different syntax controls scrubbing of operation log entries, produced by the Atria MultiSite pro-
duct to synchronize VOB replicas:

oplog −−keep { n | forever }

This control line specifies how long (in days) an operation log entry will be retained in the VOB database.
Be sure to preserve operation log entries long enough to guarantee delivery of synchronization updates
based on them.

Event-Scrubbing Defaults
If the configuration file includes no entry for an operation, all events created by the operation are kept for-
ever. Hence, an empty configuration file preserves all events (except obsolete events, which are always
discarded; see ‘‘What Events Are Deleted’’ above). The calculated times are always compared against the
logical event creation time (as shown by lshistory), rather than the physical event creation time. These can
differ if the events were created by a converter.

EXAMPLES
g For unlock events in all VOBs on the local host: keep the event if it occurred within the last 7 days (but 30

days for the most recent such event on a particular object); otherwise, delete it.

In ’/usr/atria/config/vob/vob_scrubber_params’:
unlock -keep_all 7 -keep_last 30

FILES
/usr/atria/config/vob/vob_scrubber_params
/usr/adm/atria/log/vob_scrubber_log

SEE ALSO
cleartool subcommands: reformatvob, lshistory
events_ccase, scrubber

554 ClearCase Reference Manual

ClearCase administration command vob_server
hh

NAME vob_server − ClearCase server program for VOB storage pool access

SYNOPSIS
invoked as needed by the ’albd_server’ program

DESCRIPTION
For each VOB, a long-lived vob_server process runs on the VOB host, with the user-ID of the VOB owner
(see protectvob) This process maintains the VOB’s storage pools in response to requests from ClearCase
client processes. This includes creating, deleting, and controlling the UNIX-level permissions of the
pools’ data containers.

The vob_server is the only process that ever creates or deletes data containers; the VOB owner is the only
user who can modify data containers and storage pools. These severe restrictions protect VOB data
against careless or malicious users.

A vob_server process is started automatically, as needed, by albd_server. It remains active until the operat-
ing system is restarted or the VOB is deleted with the rmvob command.

ERROR LOG
The db_server sends warning and error messages to /usr/adm/atria/log/vob_log.

SEE ALSO
abe, albd_server, init_ccase, scrubber, view_server, clearmake, cleartool, nfsd(1M)

May 1994 555

vobrpc_server ClearCase administration command
hh

NAME vobrpc_server − ClearCase database server program

SYNOPSIS
invoked as needed by the ’albd_server’ program

DESCRIPTION
Each VOB host runs up to five vobrpc_server processes for each of its VOBs. Each such process handles
requests from view_server processes throughout the network. The request can generate both meta-data
(VOB database) and file system data (storage pool) activity: the vobrpc_server accesses the VOB database
in exactly the same way as a db_server; it forwards storage pool access requests to the vob_server.

vobrpc_server processes are managed similarly to NFS daemons (see nfsd(1M)). Multiple server processes
are started automatically by albd_server, which also routes new requests to the least-busy servers, and ter-
minates unneeded vobrpc_server processes when the system is lightly loaded.

ERROR LOG
The db_server sends warning and error messages to /usr/adm/atria/log/vobrpc_server_log.

SEE ALSO
abe, albd_server, init_ccase, scrubber, view_server, clearmake, cleartool, nfsd(1M)

556 ClearCase Reference Manual

ClearCase miscellany wildcards_ccase
hh

NAME wildcards_ccase − pattern-matching characters for ClearCase pathnames

SYNOPSIS
? * ˜ ˜username [...] ...

DESCRIPTION
The wildcard (or pattern-matching) characters listed below are recognized in these ClearCase contexts:
g ’cleartool’ commands — If you use cleartool in single-command mode, pathnames you specify on the

command line are interpreted — and wildcards expanded — by the operating system shell, not by
cleartool. In interactive mode, cleartool itself interprets the pathnames and expands wildcards.

With some commands, you can specify a pathname or pathname pattern as a quoted argument:
cleartool catcr -select ’bug?.o’ bgrs@@04-Mar.22:54.426

Such quoted pathname patterns are always interpreted by cleartool.
g Config spec rules — The pathname pattern in a config spec rule is interpreted by a view’s associated

view_server process.

Wildcard Characters
ClearCase software recognizes these wildcard characters:

? Matches any single character.

* Matches zero or more characters.

˜ Indicates your home directory (even if you are not a C shell user).

˜username Indicates username’s home directory (even if you are not a C shell user).

[xyz] Matches any of the listed characters.

[x−−y] Matches any character whose ASCII code falls between that of x and that of y, inclusive.

. . . (ellipsis, a ClearCase extension) matches zero or more directory levels.

Example 1: foo/.../bar matches any of the following pathnames:
/vobs/foo/bar
/vobs/foo/usr/src/bar
/vobs/foo/rel3/sgi/irix5/bar

Example 2: foo/... matches the foo directory itself, along with the entire directory tree
under it.

SEE ALSO
cleartool subcommands: catcr, diffcr, find, findmerge, mkattr, mklabel
cc.magic, config_spec, makefile_ccase

May 1994 557

xclearcase ClearCase user command
hh

NAME xclearcase − primary ClearCase graphical interface utility

SYNOPSIS
xclearcase [−−fil .e | −−att .ype | −−brt .ype | −−elt .ype | −−hlt .ype | −−lbt .ype | −−trt .ype

| −−vtr .ee [−−all] [−−nme.rge] [−−nco] pname ...]
[X-options]

DESCRIPTION
Invokes the ClearCase GUI (graphical user interface). For more information, see the ClearCase User´s
Manual.

xclearcase is implemented as an X Windows application using a standard window system toolkit. See your
X Windows documentation for a description of mouse and keyboard conventions.

OPTIONS AND ARGUMENTS
Selecting a Browser. Default: Starting xclearcase brings up the main panel, an enhanced file browser.
(xclearcase -file has the same effect.)

−−fil .e −−att .ype −−brt .ype −−elt .ype −−hlt .ype −−lbt .ype −−trt .ype −−vtr .ee
Specifies a browser type. You can use exactly one of these options to specify the type of
browser that appears when you invoke xclearcase. Note that xclearcase -vtree is
equivalent to the xlsvtree and cleartool xlsvtree commands. See the xlsvtree manual page for
details on starting a vtree browser.

X Windows Options. Default: None

X-options xclearcase accepts all the standard X Toolkit command-line options (for example, −display
and −geometry), as described in the X(1) manual page. Quote the option string if it includes
white space.

X RESOURCES
‘‘Shell instance’’ names for the xclearcase browsers and transcript pad:
xclearcase.vtree
xclearcase.metatype
xclearcase.file
xclearcase.viewtag
xclearcase.vob
xclearcase.username
xclearcase.string
xclearcase.list
xclearcase.pool
xclearcase*transcript

EXAMPLES
g Start the ClearCase graphical user interface.
% xclearcase

SEE ALSO
X(1)
ClearCase User´s Manual

558 ClearCase Reference Manual

ClearCase user command xcleardiff
hh

NAME xcleardiff − compare or merge text files graphically

SYNOPSIS
g Compare files:

xcleardiff [−−tin .y] [−−hst .ack | −−vst .ack] [X-options] pname1 pname2 ...

g Merge files:

xcleardiff −−out output-pname [−−f .orce] [−−bas .e pname] [−−tin .y]
[−−hst .ack | −−vst .ack]
[−−qal . l] [−−pause] [X-options] contrib-pname ...

DESCRIPTION
xcleardiff is a graphical diff and merge utility for text files. It implements the xcompare and xmerge methods
for the predefined element types text_file and compressed_text_file. xcleardiff can also compare, but not
merge, directory versions. On color display monitors, xcleardiff uses different colors to highlight changes,
insertions, and deletions from one or more contributing files. During merge operations, input files are
processed incrementally and, when necessary, interactively, to visibly construct a merged output file.
You can edit the merged output as it is being built — either directly in the merged output display pane, or
by invoking a separate text editor on the merged output — to add, delete, or change code manually, or to
add comments.

xcleardiff is implemented as an X Windows application using a standard Motif toolkit. See your X Win-
dows documentation for a description of general mouse and keyboard conventions.

INVOKING xcleardiff
You can invoke xcleardiff directly from the command line, specifying files or versions to compare or
merge. However, because xcleardiff implements the xcompare and xmerge methods for the text_file_delta
and z_text_file_delta type managers, the following cleartool subcommands, when applied to text files, also
invoke xcleardiff:
g xdiff
g xmerge
g findmerge (with options −xmerge or −okxmerge)

The xdiff, xmerge, and findmerge commands include the advantage of some extra command options —
optional ClearCase preprocessing — in the same way that diff and merge offer more flexibility than direct
calls to the character-based cleardiff utility. See xdiff -pred, xmerge -insert, and findmerge -ftag,
for example.

Invoke xcleardiff directly when you are working with text files that are not stored in a VOB.

Various buttons and menu options in the xclearcase graphical interface also invoke xcleardiff.

SETTING THE COLOR SCHEME
ClearCase GUI utilities support several predefined color schemes, which are collections of X resource set-
tings. The schemes are stored in directory /usr/atria/config/ui/Schemes, and include a special scheme for
monochrome monitors called ‘‘Willis’’.

May 1994 559

xcleardiff ClearCase user command
hh

A scheme may be specified in your standard X resources file (typically, .Xdefaults in your home directory).
It takes the form:
*scheme: scheme_name

You can also use standard X Window System mechanisms to customize the xcleardiff window. The X class
name is xcleardiff. The specific color-related resources are:
xcleardiff*promptBrightColor
xcleardiff*changeColor
xcleardiff*deleteColor
xcleardiff*insertColor

See also the schemes manual page.

OPTIONS AND ARGUMENTS
Font Size. Default: xcleardiff uses the font specified by the resource xcleardiff*diffFont.

−−tin .y Uses a smaller font, in order to increase the amount of text displayed in each display pane.

Difference Pane Stacking. Default: Each of the two or more files being compared or merged is displayed
in a separate subwindow, or difference pane. By default, these panes are displayed, or ‘‘stacked’’, horizon-
tally (side by side), with the base contributor on the left.

−−vst .ack Stacks the difference panes vertically, with the base contributor at the top.

−−hst .ack Displays the difference panes horizontally (the default behavior).

Merged Output File. Default: For merge operations, you must specify a merged output file with the
−out option. xcleardiff returns an error if the specified output file already exists (unless the output file is a
checked-out version).

−−f .orce (merge only) overwrite the merged output file, if it already exists.

−−out output-pname
(merge only; required) Specifies the merged output file — a checked-out version or a stan-
dard operating system file.

Specifying a Base Contributor for a Merge Operation. Default: xcleardiff does not calculate a base contri-
butor file (see merge for contrast). The first contributor file named on the command line becomes the base
contributor, against which the one or more additional contributor files are compared. ‘‘Query on All’’
mode (−qall) is in effect by default but can be deactivated from the graphical interface.

−−bas .e pname
(merge only) Makes pname the base contributor file for a merge. Using −base turns off
‘‘Query on All’’ mode, unless −qall is explicitly supplied. See also ‘‘Merge Automation’’.

Merge Automation. Default: If you do not specify a base contributor file with −base, ‘‘Query on All’’
mode is enabled automatically. In this mode, xcleardiff prompts you to accept or reject each change, inser-
tion, or deletion found in contributor files 2 through n on the command line. The options described in this
subsection have no effect.

560 ClearCase Reference Manual

ClearCase user command xcleardiff
hh

If you do specify a base contributor file with −base, xcleardiff performs the merge automatically, pausing
to prompt only if two or more contributor files modify the same section of the base contributor file. If all
changes can be merged automatically, xcleardiff prompts you before saving the merged output file.

−−qal . l (merge only) If a base contributor file is specified with −base, −qall enables ‘‘Query on All’’
mode. In this mode, xcleardiff prompts you to accept or reject each modification (relative to
the base file) in each contributor file. You can toggle this mode interactively during the xclear-
diff session.

−−pause (merge only) If a base contributor file is specified with −base, −pause enables ‘‘Pause after
Auto Decisions’’ mode. In this mode, xcleardiff pauses with the prompt Continue merge?

after each automatic change. This gives you an opportunity to edit the merged output, or to
abort the merge. You can toggle the pause mode interactively during the xcleardiff session.

X Windows Options. Default: None

X-options xcleardiff accepts all the standard X Toolkit command-line options (for example, −display
and −geometry), as described in the X(1) manual page. Quote the option string if it includes
white space.

Diff/Merge Contributor Files. Default: None. You must specify at least two files for a diff operation, and
at least one file for a merge operation (two, if a base contributor file is not supplied with −base).

contrib-pname ...
The files to be compared or merged. If a merge operation does not explicitly include a base
contributor file with −base, the first contrib-pname becomes the base contributor file. For a
diff operation, xcleardiff does not calculate a common ancestor (see diff for contrast); the first
contrib-pname is the base file against which subsequent contributors are compared.

EXAMPLES
g Compare two files in different directories.
% xcleardiff test.c ˜jpb/my_proj/test_NEW.c

g Use version-extended pathnames to compare a view-private file with two versions of a related file ele-
ment.
% xcleardiff my_source_NEW.c my_source.c@@/main/LATEST my_source.c@@/main/4

SEE ALSO
cleartool commands: diff, xdiff, merge, xmerge
cleardiff, type_manager, schemes

May 1994 561

xcleardiff ClearCase user command
hh

562 ClearCase Reference Manual

ClearCase administration command ptx_divider
hh

NAME ptx_divider − separator page

DESCRIPTION

FOR POSITION ONLY

THIS PAGE TO BE REPLACED

BY A FULL-PAGE RUBYLITH AND

"Permuted Index"

May 1994 563

ptx_divider ClearCase administration command
hh

FOR POSITION ONLY

BLANK PAGE WITH A

FULL-PAGE RUBYLITH

564 ClearCase Reference Manual

location broker daemon / ClearCase master server .. albd_server
build hosts file / client-side control file for distributed build bldhost

select objects by their meta-data / find, findmerge, version-selector, config spec query_language
ClearCase build utility / maintain, update, and regenerate groups of programs clearmake

search for elements that require a merge / optionally perform merge ... findmerge
remove a view storage directory / remove view-related records from a VOB rmview

change the type of an element / rename a branch ... chtype
audited build executor / server for ClearCase distributed build abe

annotate lines of text file / timestamps, usernames, etc. ... annotate
VOB database access arbitrator ... lockmgr

export and unexport VOBs to NFS clients (non-ClearCase access) .. export_mvfs
access permissions for cleartool commands ct_permissions

ClearCase server program for VOB storage pool access ... vob_server
list of VOBs to be accessed by non-ClearCase hosts (exporting from HPUX-9) exports_hpx9
list of VOBs to be accessed by non-ClearCase hosts (exporting from IRIX-5) exports_irx5
list of VOBs to be accessed by non-ClearCase hosts (exporting from OSF/1) exports_osf1
list of VOBs to be accessed by non-ClearCase hosts (exporting from SunOS-4) exports_sun4
list of VOBs to be accessed by non-ClearCase hosts (exporting from SunOS-5) exports_sun5
list of VOBs to be accessed by non-ClearCase hosts .. exports_ccase

activate a VOB at its VOB-tag directory ... mount
annotate lines of text file / timestamps, usernames, etc. annotate

rules for selecting versions of elements to appear in a view ... config_spec
VOB database access arbitrator ... lockmgr

list objects in a view’s private storage area ... lsprivate
remove a merge arrow from an element’s version tree ... rmmerge

change the storage pool to which an element is assigned ... chpool
file built by clearmake or clearaudit, with an associated configuration record .. derived_object

create problem report for Atria Customer Support ... clearbug
attach a hyperlink to an object ... mkhlink
attach a trigger to an element .. mktrigger
attach attributes to objects .. mkattr
attach version labels to versions of elements mklabel

remove an attribute from an object .. rmattr
create an attribute type object .. mkattype

attach attributes to objects ... mkattr
build audited build executor / server for ClearCase distributed abe

non-clearmake build and shell command auditing facility .. clearaudit
create and register a versioned object base (VOB) .. mkvob

bill-of-materials for clearmake build or clearaudit shell config_record
clearmake build options specification file (BOS) .. clearmake.options

change the type of an element / rename a branch .. chtype
remove a branch from the version tree of an element rmbranch

create a new branch in the version tree of an element .. mkbranch
create a branch type object .. mkbrtype
location broker daemon / ClearCase master server albd_server

audited build executor / server for ClearCase distributed build ... abe
non-clearmake build and shell command auditing facility clearaudit

hosts file / client-side control file for distributed build build ... bldhost
server-side control file for distributed build ... bldserver.control

audited build executor / server for ClearCase distributed build abe
distributed build build hosts file / client-side control file for bldhost

clearmake build options specification file (BOS) ... clearmake.options
bill-of-materials for clearmake build or clearaudit shell .. config_record

of programs ClearCase build utility / maintain, update, and regenerate groups clearmake
target description file for clearmake builds ... makefile_ccase

configuration record file built by clearmake or clearaudit, with an associated derived_object
control and monitor MVFS caches ... mvfscache

cancel a checkout of an element .. uncheckout
cancel a checkout of an element .. unco
change a reserved checkout to unreserved unreserve
change current working directory .. cd

create or change encrypted VOB-tag registry password rgy_passwd
change owner or groups of a VOB .. protectvob

Permuted Index 565

change permissions or ownership of an object protect
change storage location of derived object data container promote_server
change the storage pool to which an element is assigned chpool
change the type of an element / rename a branch chtype

pattern-matching characters for ClearCase pathnames ... wildcards_ccase
cancel a checkout of an element ... uncheckout
cancel a checkout of an element ... unco

convert an unreserved checkout to reserved ... reserve
change a reserved checkout to unreserved ... unreserve

list checkouts of an element ... lscheckout
list checkouts of an element ... lsco

display configuration record created by clearmake or clearaudit .. catcr
compare configuration records created by clearmake or clearaudit .. diffcr

list derived objects created by clearmake or clearaudit .. lsdo
bill-of-materials for clearmake build or clearaudit shell ... config_record

file built by clearmake or clearaudit, with an associated configuration record derived_object
regenerate groups of programs ClearCase build utility / maintain, update, and clearmake

ClearCase configuration files ... config_ccase
ClearCase crontab scripts ... crontab_ccase

copy ClearCase data to a different VOB .. clearcvt_ccase
ClearCase database server program ... db_server
ClearCase database server program ... vobrpc_server

audited build executor / server for ClearCase distributed build ... abe
convert DSEE elements to ClearCase elements ... clearcvt_dsee

convert RCS files to ClearCase elements ... clearcvt_rcs
convert SCCS files to ClearCase elements ... clearcvt_sccs

convert UNIX files to versions of ClearCase elements ... clearcvt_unix
ClearCase Encapsulation for SoftBench ... softbench_ccase
ClearCase Encapsulation for ToolTalk ... tooltalk_ccase
ClearCase environment variables ... env_ccase
ClearCase error log files ... errorlogs_ccase
ClearCase file typing rules ... cc.magic

X Window System resources for ClearCase graphical interface .. schemes
primary ClearCase graphical interface utility .. xclearcase

monitor and control ClearCase license database .. clearlicense
display a ClearCase manual page .. man

ClearCase manual page summary .. clearcase
ClearCase manual page summary .. toc

location broker daemon / ClearCase master server ... albd_server
ClearCase network-wide license database license.db
ClearCase operations and event records .. events_ccase

namespace ClearCase pathname resolution, view context, and extended pathnames_ccase
pattern-matching characters for ClearCase pathnames .. wildcards_ccase

ClearCase server program for VOB storage pool access vob_server
ClearCase startup/shutdown script (HPUX-9) init_hpx9
ClearCase startup/shutdown script ... init_ccase
ClearCase startup/shutdown script (IRIX-5) init_irx5
ClearCase startup/shutdown script (OSF/1) init_osf1
ClearCase startup/shutdown script (SunOS-4) init_sun4
ClearCase startup/shutdown script (SunOS-5) init_sun5
ClearCase storage registry for VOBs and views registry_ccase
ClearCase user-level commands (command-line interface) cleartool
ClearCase version selector syntax ... version_selector
ClearCase view data structures ... view
ClearCase VOB data structures ... VOB

cleartool user profile: .clearcase_profile .. profile_ccase
ClearCase-specific mount utility: mount_mvfs (HPUX-9) mount_hpx9
ClearCase-specific mount utility: mount_mvfs (IRIX-5) mount_irx5
ClearCase-specific mount utility: mount_mvfs (OSF/1) mount_osf1
ClearCase-specific mount utility: mount_mvfs (SunOS-4) mount_sun4
ClearCase-specific mount utility: mount_mvfs (SunOS-5) mount_sun5
clearmake build options specification file (BOS) clearmake.options

bill-of-materials for clearmake build or clearaudit shell .. config_record

566 ClearCase Reference Manual

target description file for clearmake builds .. makefile_ccase
display configuration record created by clearmake or clearaudit .. catcr

compare configuration records created by clearmake or clearaudit .. diffcr
list derived objects created by clearmake or clearaudit .. lsdo

record file built by clearmake or clearaudit, with an associated configuration derived_object
format strings for cleartool command output ... fmt_ccase

display cleartool command summary information apropos
help on cleartool command usage ... help

access permissions for cleartool commands .. ct_permissions
quit interactive cleartool session ... quit

cleartool user profile: .clearcase_profile ... profile_ccase
export and unexport VOBs to NFS clients (non-ClearCase access) ... export_mvfs

build hosts file / client-side control file for distributed build bldhost
non-clearmake build and shell command auditing facility ... clearaudit

list MVFS timing statistics for a command .. mvfstime
format strings for cleartool command output ... fmt_ccase

display cleartool command summary information .. apropos
help on cleartool command usage ... help

ClearCase user-level commands (command-line interface) ... cleartool
ClearCase user-level commands (command-line interface) ... cleartool

access permissions for cleartool commands ... ct_permissions
mount/unmount commands for VOBs and the viewroot directory mount_ccase

modify comment string in existing event record chevent
clearaudit compare configuration records created by clearmake or diffcr

compare or merge text files .. cleardiff
compare or merge text files graphically ... xcleardiff
compare versions of a text-file element or a directory diff

graphically compare versions of a text-file element or a directory xdiff
display config spec of a view ... catcs

edit config spec of a view ... edcs
set the config spec of a view ... setcs

by their meta-data / find, findmerge, version-selector, config spec select objects .. query_language
ClearCase configuration files .. config_ccase

display configuration record created by clearmake or clearaudit catcr
file built by clearmake or clearaudit, with an associated configuration record .. derived_object

compare configuration records created by clearmake or clearaudit diffcr
start or connect to a view_server process .. startview

set or display MVFS console error logging level ... mvfslog
list data container pathname for MVFS file .. mvfsstorage

change storage location of derived object data container ... promote_server
remove derived object data containers from view storage ... view_scrubber

database remove data containers from VOB storage pools and remove DOs from VOB scrubber
programs for managing contents of element versions .. type_manager

ClearCase pathname resolution, view context, and extended namespace .. pathnames_ccase
control and monitor MVFS caches .. mvfscache

monitor and control ClearCase license database ... clearlicense
build hosts file / client-side control file for distributed build .. bldhost

server-side control file for distributed build .. bldserver.control
convert an unreserved checkout to reserved reserve
convert DSEE elements to ClearCase elements clearcvt_dsee
convert RCS files to ClearCase elements .. clearcvt_rcs
convert SCCS files to ClearCase elements clearcvt_sccs
convert UNIX files to versions of ClearCase elements clearcvt_unix
copy ClearCase data to a different VOB ... clearcvt_ccase

create view-private, modifiable copy of a version .. checkout
create view-private, modifiable copy of a version .. co

create a branch type object ... mkbrtype
create a directory element .. mkdir
create a file or directory element ... mkelem
create a hyperlink type object .. mkhltype
create a label type object ... mklbtype
create a new branch in the version tree of an element mkbranch
create a process that is set to a view ... setview

Permuted Index 567

create a subprocess to run a shell or other program shell
create a trigger type object ... mktrtype
create a view-tag or a public/private VOB-tag mktag

parameters create a VOB storage pool or modify its scrubbing mkpool
create an attribute type object .. mkattype
create an element type object ... mkeltype

file create an entry in the vob_object or view_object registry register
create and register a versioned object base (VOB) mkvob
create and register a view ... mkview
create or change encrypted VOB-tag registry password rgy_passwd
create permanent new version of an element checkin
create permanent new version of an element ci
create problem report for Atria Customer Support clearbug
create view-private, modifiable copy of a version checkout
create view-private, modifiable copy of a version co
create VOB hard link or VOB symbolic link ln

display configuration record created by clearmake or clearaudit ... catcr
compare configuration records created by clearmake or clearaudit ... diffcr

list derived objects created by clearmake or clearaudit ... lsdo
ClearCase crontab scripts .. crontab_ccase

change current working directory .. cd
create problem report for Atria Customer Support ... clearbug

location broker daemon / ClearCase master server .. albd_server
list data container pathname for MVFS file ... mvfsstorage

change storage location of derived object data container ... promote_server
remove derived object data containers from view storage .. view_scrubber

from VOB database remove data containers from VOB storage pools and remove DOs scrubber
ClearCase view data structures .. view
ClearCase VOB data structures .. VOB
copy ClearCase data to a different VOB ... clearcvt_ccase

VOB database access arbitrator ... lockmgr
monitor and control ClearCase license database .. clearlicense

ClearCase network-wide license database .. license.db
recover a view database .. recoverview

update the format of a view database .. reformatview
update the format (schema) of a VOB database .. reformatvob

dump/load a VOB database schema .. db_dumper
containers from VOB storage pools and remove DOs from VOB database remove data ... scrubber

ClearCase database server program .. db_server
ClearCase database server program .. vobrpc_server

remove event records from VOB database .. vob_scrubber
deactivate a VOB ... umount

change storage location of derived object data container ... promote_server
remove derived object data containers from view storage view_scrubber

remove a derived object from a VOB ... rmdo
list derived objects created by clearmake or clearaudit lsdo

wink-in one or more derived objects to a view .. winkin
describe an object ... describe

target description file for clearmake builds .. makefile_ccase
copy ClearCase data to a different VOB ... clearcvt_ccase

remove a view storage directory / remove view-related records from a VOB rmview
change current working directory .. cd

compare versions of a text-file element or a directory .. diff
create a directory element ... mkdir

create a file or directory element ... mkelem
compare versions of a text-file element or a directory graphically ... xdiff

merge versions of a text-file element or a directory graphically ... xmerge
list VOB-resident objects and view-private objects in a directory .. ls

merge versions of a text-file element or a directory .. merge
activate a VOB at its VOB-tag directory .. mount

mount/unmount commands for VOBs and the viewroot directory .. mount_ccase
print working directory .. pwd

remove a VOB storage directory .. rmvob

568 ClearCase Reference Manual

remove the name of an element or VOB symbolic link from a directory version .. rmname
report on VOB disk space usage .. space

display a ClearCase manual page ... man
display cleartool command summary information apropos
display config spec of a view ... catcs

clearaudit display configuration record created by clearmake or catcr
set or display MVFS console error logging level mvfslog

audited build executor / server for ClearCase distributed build .. abe
build hosts file / client-side control file for distributed build .. bldhost

server-side control file for distributed build .. bldserver.control
remove data containers from VOB storage pools and remove DOs from VOB database .. scrubber

convert DSEE elements to ClearCase elements ... clearcvt_dsee
dump/load a VOB database schema .. db_dumper
edit config spec of a view ... edcs

change the type of an element / rename a branch .. chtype
create permanent new version of an element .. checkin
create permanent new version of an element .. ci

remove an element from a VOB .. rmelem
change the storage pool to which an element is assigned ... chpool

list checkouts of an element .. lscheckout
list checkouts of an element .. lsco

list version tree of an element .. lsvtree
create a new branch in the version tree of an element .. mkbranch

create a directory element .. mkdir
create a file or directory element .. mkelem

attach a trigger to an element .. mktrigger
compare versions of a text-file element or a directory ... diff
compare versions of a text-file element or a directory graphically .. xdiff

merge versions of a text-file element or a directory graphically .. xmerge
merge versions of a text-file element or a directory ... merge

move or rename an element or VOB link .. mv
remove the name of an element or VOB symbolic link from a directory version rmname

remove a branch from the version tree of an element .. rmbranch
remove trigger from an element .. rmtrigger

remove a version from the version tree of an element .. rmver
create an element type object .. mkeltype

cancel a checkout of an element .. uncheckout
cancel a checkout of an element .. unco

programs for managing contents of element versions .. type_manager
convert DSEE elements to ClearCase elements .. clearcvt_dsee

convert RCS files to ClearCase elements .. clearcvt_rcs
convert SCCS files to ClearCase elements .. clearcvt_sccs

convert UNIX files to versions of ClearCase elements .. clearcvt_unix
attach version labels to versions of elements .. mklabel

search for elements that require a merge / optionally perform merge findmerge
rules for selecting versions of elements to appear in a view ... config_spec

convert DSEE elements to ClearCase elements .. clearcvt_dsee
remove a merge arrow from an element’s version tree ... rmmerge

ClearCase Encapsulation for SoftBench .. softbench_ccase
ClearCase Encapsulation for ToolTalk .. tooltalk_ccase

create or change encrypted VOB-tag registry password ... rgy_passwd
file system table entries for VOBs: fstab.mvfs ... filesys_ccase
file system table entries for VOBs: fstab.mvfs (HPUX-9) .. filesys_hpx9
file system table entries for VOBs: fstab.mvfs (IRIX-5) .. filesys_irx5
file system table entries for VOBs: fstab.mvfs (OSF/1) ... filesys_osf1
file system table entries for VOBs: fstab.mvfs (SunOS-4) ... filesys_sun4
file system table entries for VOBs: fstab.mvfs (SunOS-5) ... filesys_sun5

list view registry entries .. lsview
list VOB registry entries .. lsvob

remove an entry from the vob_object or view_object registry file unregister
create an entry in the vob_object or view_object registry file register

ClearCase environment variables .. env_ccase
ClearCase error log files .. errorlogs_ccase

Permuted Index 569

set or display MVFS console error logging level ... mvfslog
annotate lines of text file / timestamps, usernames, etc. .. annotate

modify comment string in existing event record .. chevent
ClearCase operations and event records .. events_ccase

list event records for VOB-database objects ... lshistory
remove event records from VOB database .. vob_scrubber

audited build executor / server for ClearCase distributed build abe
modify comment string in existing event record ... chevent

access) export and unexport VOBs to NFS clients (non-ClearCase export_mvfs
list of VOBs to be accessed by non-ClearCase hosts (exporting from HPUX-9) ... exports_hpx9
list of VOBs to be accessed by non-ClearCase hosts (exporting from IRIX-5) .. exports_irx5
list of VOBs to be accessed by non-ClearCase hosts (exporting from OSF/1) .. exports_osf1
list of VOBs to be accessed by non-ClearCase hosts (exporting from SunOS-4) .. exports_sun4
list of VOBs to be accessed by non-ClearCase hosts (exporting from SunOS-5) .. exports_sun5

use pattern, query, or expression to search for objects ... find
ClearCase pathname resolution, view context, and extended namespace ... pathnames_ccase
non-clearmake build and shell command auditing facility .. clearaudit

build hosts file / client-side control file for distributed build bldhost
annotate lines of text file / timestamps, usernames, etc. .. annotate

clearmake build options specification file (BOS) ... clearmake.options
configuration record file built by clearmake or clearaudit, with an associated derived_object

target description file for clearmake builds ... makefile_ccase
build hosts file / client-side control file for distributed build ... bldhost

server-side control file for distributed build ... bldserver.control
list data container pathname for MVFS file .. mvfsstorage

create a file or directory element ... mkelem
create an entry in the vob_object or view_object registry file .. register

file system table entries for VOBs: fstab.mvfs filesys_ccase
file system table entries for VOBs: fstab.mvfs (HPUX-9) filesys_hpx9
file system table entries for VOBs: fstab.mvfs (IRIX-5) filesys_irx5
file system table entries for VOBs: fstab.mvfs (OSF/1) filesys_osf1
file system table entries for VOBs: fstab.mvfs (SunOS-4) filesys_sun4
file system table entries for VOBs: fstab.mvfs (SunOS-5) filesys_sun5
file type to icon mapping rules (graphical interface) cc.icon

ClearCase file typing rules .. cc.magic
an entry from the vob_object or view_object registry file remove ... unregister

compare or merge text files ... cleardiff
ClearCase configuration files ... config_ccase

ClearCase error log files ... errorlogs_ccase
compare or merge text files graphically .. xcleardiff

convert RCS files to ClearCase elements .. clearcvt_rcs
convert SCCS files to ClearCase elements .. clearcvt_sccs
convert UNIX files to versions of ClearCase elements .. clearcvt_unix

select objects by their meta-data / find, findmerge, version-selector, config spec query_language
select objects by their meta-data / find, findmerge, version-selector, config spec .. query_language

update the format of a view database .. reformatview
update the format (schema) of a VOB database .. reformatvob

format strings for cleartool command output fmt_ccase
file system table entries for VOBs: fstab.mvfs .. filesys_ccase
file system table entries for VOBs: fstab.mvfs (HPUX-9) ... filesys_hpx9
file system table entries for VOBs: fstab.mvfs (IRIX-5) ... filesys_irx5
file system table entries for VOBs: fstab.mvfs (OSF/1) .. filesys_osf1
file system table entries for VOBs: fstab.mvfs (SunOS-4) ... filesys_sun4
file system table entries for VOBs: fstab.mvfs (SunOS-5) ... filesys_sun5

file type to icon mapping rules (graphical interface) .. cc.icon
X Window System resources for ClearCase graphical interface ... schemes

primary ClearCase graphical interface utility ... xclearcase
compare or merge text files graphically .. xcleardiff

compare versions of a text-file element or a directory graphically .. xdiff
merge versions of a text-file element or a directory graphically .. xmerge

change owner or groups of a VOB ... protectvob
build utility / maintain, update, and regenerate groups of programs ClearCase ... clearmake

create VOB hard link or VOB symbolic link ... ln

570 ClearCase Reference Manual

help on cleartool command usage .. help
list of VOBs to be accessed by non-ClearCase hosts (exporting from HPUX-9) ... exports_hpx9
list of VOBs to be accessed by non-ClearCase hosts (exporting from IRIX-5) .. exports_irx5
list of VOBs to be accessed by non-ClearCase hosts (exporting from OSF/1) ... exports_osf1
list of VOBs to be accessed by non-ClearCase hosts (exporting from SunOS-4) .. exports_sun4
list of VOBs to be accessed by non-ClearCase hosts (exporting from SunOS-5) .. exports_sun5
list of VOBs to be accessed by non-ClearCase hosts ... exports_ccase

build build hosts file / client-side control file for distributed bldhost
to be accessed by non-ClearCase hosts (exporting from HPUX-9) list of VOBs ... exports_hpx9

file system table entries for VOBs: fstab.mvfs (HPUX-9) ... filesys_hpx9
ClearCase startup/shutdown script (HPUX-9) ... init_hpx9

ClearCase-specific mount utility: mount_mvfs (HPUX-9) ... mount_hpx9
remove a hyperlink object ... rmhlink

attach a hyperlink to an object ... mkhlink
create a hyperlink type object .. mkhltype

file type to icon mapping rules (graphical interface) cc.icon
display cleartool command summary information ... apropos

prompt for user input .. clearprompt
quit interactive cleartool session ... quit

file type to icon mapping rules (graphical interface) ... cc.icon
ClearCase user-level commands (command-line interface) ... cleartool

X Window System resources for ClearCase graphical interface ... schemes
primary ClearCase graphical interface utility ... xclearcase

to be accessed by non-ClearCase hosts (exporting from IRIX-5) list of VOBs ... exports_irx5
file system table entries for VOBs: fstab.mvfs (IRIX-5) .. filesys_irx5

ClearCase startup/shutdown script (IRIX-5) .. init_irx5
ClearCase-specific mount utility: mount_mvfs (IRIX-5) .. mount_irx5

remove a version label from a version ... rmlabel
create a label type object ... mklbtype

attach version labels to versions of elements .. mklabel
set or display MVFS console error logging level .. mvfslog

monitor and control ClearCase license database ... clearlicense
ClearCase network-wide license database ... license.db

annotate lines of text file / timestamps, usernames, etc. annotate
remove the name of an element or VOB symbolic link from a directory version ... rmname

create VOB hard link or VOB symbolic link ... ln
move or rename an element or VOB link ... mv

create VOB hard link or VOB symbolic link .. ln
list a VOB’s type objects ... lstype
list checkouts of an element ... lscheckout
list checkouts of an element ... lsco
list data container pathname for MVFS file mvfsstorage
list derived objects created by clearmake or clearaudit lsdo
list event records for VOB-database objects lshistory
list locks on objects .. lslock
list MVFS statistics ... mvfsstat
list MVFS timing statistics for a command mvfstime
list MVFS version string ... mvfsversion
list objects in a view’s private storage area lsprivate

(exporting from HPUX-9) list of VOBs to be accessed by non-ClearCase hosts exports_hpx9
(exporting from IRIX-5) list of VOBs to be accessed by non-ClearCase hosts exports_irx5
(exporting from OSF/1) list of VOBs to be accessed by non-ClearCase hosts exports_osf1

(exporting from SunOS-4) list of VOBs to be accessed by non-ClearCase hosts exports_sun4
(exporting from SunOS-5) list of VOBs to be accessed by non-ClearCase hosts exports_sun5

list of VOBs to be accessed by non-ClearCase hosts exports_ccase
list replicas of a VOB ... lsreplica
list version tree of an element .. lsvtree
list view registry entries ... lsview
list VOB registry entries .. lsvob
list VOB storage pools ... lspool

directory list VOB-resident objects and view-private objects in a ls
location broker daemon / ClearCase master server albd_server

change storage location of derived object data container promote_server

Permuted Index 571

lock an object .. lock
list locks on objects .. lslock

ClearCase error log files .. errorlogs_ccase
set or display MVFS console error logging level ... mvfslog

ClearCase build utility / maintain, update, and regenerate groups of programs clearmake
programs for managing contents of element versions ... type_manager

display a ClearCase manual page ... man
ClearCase manual page summary ... clearcase
ClearCase manual page summary ... toc

file type to icon mapping rules (graphical interface) .. cc.icon
location broker daemon / ClearCase master server .. albd_server

search for elements that require a merge / optionally perform merge .. findmerge
remove a merge arrow from an element’s version tree rmmerge

for elements that require a merge / optionally perform merge search .. findmerge
compare or merge text files ... cleardiff
compare or merge text files graphically .. xcleardiff
graphically merge versions of a text-file element or a directory xmerge

merge versions of a text-file element or a directory merge
spec select objects by their meta-data / find, findmerge, version-selector, config query_language

create view-private, modifiable copy of a version .. checkout
create view-private, modifiable copy of a version .. co

modify comment string in existing event record chevent
create a VOB storage pool or modify its scrubbing parameters .. mkpool

monitor and control ClearCase license database clearlicense
control and monitor MVFS caches ... mvfscache

ClearCase-specific mount utility: mount_mvfs (HPUX-9) ... mount_hpx9
ClearCase-specific mount utility: mount_mvfs (IRIX-5) ... mount_irx5
ClearCase-specific mount utility: mount_mvfs (OSF/1) .. mount_osf1
ClearCase-specific mount utility: mount_mvfs (SunOS-4) ... mount_sun4
ClearCase-specific mount utility: mount_mvfs (SunOS-5) ... mount_sun5

ClearCase-specific mount utility: mount_mvfs (HPUX-9) ... mount_hpx9
ClearCase-specific mount utility: mount_mvfs (IRIX-5) .. mount_irx5
ClearCase-specific mount utility: mount_mvfs (OSF/1) .. mount_osf1
ClearCase-specific mount utility: mount_mvfs (SunOS-4) .. mount_sun4
ClearCase-specific mount utility: mount_mvfs (SunOS-5) .. mount_sun5

directory mount/unmount commands for VOBs and the viewroot mount_ccase
move or rename an element or VOB link mv

control and monitor MVFS caches ... mvfscache
set or display MVFS console error logging level ... mvfslog

list data container pathname for MVFS file .. mvfsstorage
list MVFS statistics ... mvfsstat
list MVFS timing statistics for a command .. mvfstime
list MVFS version string .. mvfsversion

version remove the name of an element or VOB symbolic link from a directory rmname
ClearCase pathname resolution, view context, and extended namespace .. pathnames_ccase

ClearCase network-wide license database ... license.db
remove a view-tag or a VOB-tag from the network-wide storage registry .. rmtag

export and unexport VOBs to NFS clients (non-ClearCase access) .. export_mvfs
export and unexport VOBs to NFS clients (non-ClearCase access) .. export_mvfs

list of VOBs to be accessed by non-ClearCase hosts (exporting from HPUX-9) exports_hpx9
list of VOBs to be accessed by non-ClearCase hosts (exporting from IRIX-5) exports_irx5
list of VOBs to be accessed by non-ClearCase hosts (exporting from OSF/1) exports_osf1
list of VOBs to be accessed by non-ClearCase hosts (exporting from SunOS-4) exports_sun4
list of VOBs to be accessed by non-ClearCase hosts (exporting from SunOS-5) exports_sun5
list of VOBs to be accessed by non-ClearCase hosts .. exports_ccase

non-clearmake build and shell command auditing facility clearaudit
create and register a versioned object base (VOB) ... mkvob

change storage location of derived object data container ... promote_server
remove derived object data containers from view storage view_scrubber

describe an object .. describe
remove a derived object from a VOB .. rmdo

remove a type object from a VOB .. rmtype
lock an object .. lock

572 ClearCase Reference Manual

create an attribute type object .. mkattype
create a branch type object .. mkbrtype

create an element type object .. mkeltype
attach a hyperlink to an object .. mkhlink
create a hyperlink type object .. mkhltype

create a label type object .. mklbtype
create a trigger type object .. mktrtype

change permissions or ownership of an object .. protect
remove an attribute from an object .. rmattr

remove a hyperlink object .. rmhlink
rename a type object .. rntype

unlock an object .. unlock
list VOB-resident objects and view-private objects in a directory ls

version-selector, config spec select objects by their meta-data / find, findmerge, query_language
list derived objects created by clearmake or clearaudit lsdo

use pattern, query, or expression to search for objects .. find
list VOB-resident objects and view-private objects in a directory ... ls

list objects in a view’s private storage area .. lsprivate
list event records for VOB-database objects .. lshistory

list locks on objects .. lslock
list a VOB’s type objects .. lstype

attach attributes to objects .. mkattr
wink-in one or more derived objects to a view ... winkin

ClearCase operations and event records ... events_ccase
search for elements that require a merge / optionally perform merge .. findmerge

clearmake build options specification file (BOS) .. clearmake.options
to be accessed by non-ClearCase hosts (exporting from OSF/1) list of VOBs .. exports_osf1

file system table entries for VOBs: fstab.mvfs (OSF/1) ... filesys_osf1
ClearCase startup/shutdown script (OSF/1) ... init_osf1

ClearCase-specific mount utility: mount_mvfs (OSF/1) ... mount_osf1
format strings for cleartool command output .. fmt_ccase

change owner or groups of a VOB .. protectvob
change permissions or ownership of an object .. protect

display a ClearCase manual page ... man
ClearCase manual page summary ... clearcase
ClearCase manual page summary ... toc

create a VOB storage pool or modify its scrubbing parameters .. mkpool
create or change encrypted VOB-tag registry password ... rgy_passwd

list data container pathname for MVFS file .. mvfsstorage
ClearCase pathname resolution, view context, and extended namespace .. pathnames_ccase

pattern-matching characters for ClearCase pathnames ... wildcards_ccase
use pattern, query, or expression to search for objects find

pattern-matching characters for ClearCase pathnames wildcards_ccase
search for elements that require a merge / optionally perform merge ... findmerge

server process that performs version selection for a view .. view_server
create permanent new version of an element ... checkin
create permanent new version of an element ... ci
access permissions for cleartool commands .. ct_permissions

change permissions or ownership of an object ... protect
ClearCase server program for VOB storage pool access .. vob_server

create a VOB storage pool or modify its scrubbing parameters mkpool
remove a VOB storage pool .. rmpool
rename a VOB storage pool .. rnpool

change the storage pool to which an element is assigned ... chpool
remove data containers from VOB storage pools and remove DOs from VOB database scrubber

list VOB storage pools .. lspool
primary ClearCase graphical interface utility xclearcase
print working directory .. pwd
print working view .. pwv

list objects in a view’s private storage area ... lsprivate
create problem report for Atria Customer Support clearbug

start or connect to a view_server process ... startview
create a process that is set to a view .. setview

Permuted Index 573

server process that performs version selection for a view view_server
cleartool user profile: .clearcase_profile .. profile_ccase

ClearCase database server program ... db_server
ClearCase server program for VOB storage pool access .. vob_server

create a subprocess to run a shell or other program ... shell
ClearCase database server program ... vobrpc_server

utility / maintain, update, and regenerate groups of programs ClearCase build ... clearmake
programs for managing contents of element versions type_manager
prompt for user input ... clearprompt

create a view-tag or a public/private VOB-tag ... mktag
use pattern, query, or expression to search for objects find

quit interactive cleartool session ... quit
convert RCS files to ClearCase elements .. clearcvt_rcs

modify comment string in existing event record ... chevent
display configuration record created by clearmake or clearaudit catcr

clearmake or clearaudit, with an associated configuration record file built by ... derived_object
compare configuration records created by clearmake or clearaudit diffcr

ClearCase operations and event records ... events_ccase
list event records for VOB-database objects ... lshistory

remove a view storage directory / remove view-related records from a VOB ... rmview
remove event records from VOB database ... vob_scrubber

recover a view database .. recoverview
ClearCase build utility / maintain, update, and regenerate groups of programs ... clearmake

create and register a versioned object base (VOB) ... mkvob
create and register a view .. mkview

list view registry entries ... lsview
list VOB registry entries ... lsvob

create an entry in the vob_object or view_object registry file .. register
remove an entry from the vob_object or view_object registry file .. unregister

ClearCase storage registry for VOBs and views .. registry_ccase
create or change encrypted VOB-tag registry password .. rgy_passwd

a view-tag or a VOB-tag from the network-wide storage registry remove ... rmtag
remove a branch from the version tree of an element rmbranch
remove a derived object from a VOB ... rmdo
remove a hyperlink object .. rmhlink
remove a merge arrow from an element’s version tree rmmerge
remove a type object from a VOB ... rmtype
remove a version from the version tree of an element rmver
remove a version label from a version ... rmlabel

records from a VOB remove a view storage directory / remove view-related rmview
storage registry remove a view-tag or a VOB-tag from the network-wide rmtag

remove a VOB storage directory ... rmvob
remove a VOB storage pool ... rmpool
remove an attribute from an object ... rmattr
remove an element from a VOB .. rmelem

registry file remove an entry from the vob_object or view_object unregister
DOs from VOB database remove data containers from VOB storage pools and remove ... scrubber

remove derived object data containers from view storage view_scrubber
remove data containers from VOB storage pools and remove DOs from VOB database .. scrubber

remove event records from VOB database vob_scrubber
directory version remove the name of an element or VOB symbolic link from a .. rmname

remove trigger from an element ... rmtrigger
remove a view storage directory / remove view-related records from a VOB rmview

change the type of an element / rename a branch ... chtype
rename a type object ... rntype
rename a VOB storage pool ... rnpool

move or rename an element or VOB link .. mv
list replicas of a VOB ... lsreplica

create problem report for Atria Customer Support ... clearbug
report on VOB disk space usage .. space

search for elements that require a merge / optionally perform merge findmerge
ClearCase pathname resolution, view context, and extended namespace pathnames_ccase

X Window System resources for ClearCase graphical interface schemes

574 ClearCase Reference Manual

ClearCase file typing rules ... cc.magic
view rules for selecting versions of elements to appear in a config_spec

file type to icon mapping rules (graphical interface) ... cc.icon
create a subprocess to run a shell or other program .. shell

convert SCCS files to ClearCase elements .. clearcvt_sccs
dump/load a VOB database schema ... db_dumper

update the format (schema) of a VOB database ... reformatvob
ClearCase startup/shutdown script (HPUX-9) .. init_hpx9
ClearCase startup/shutdown script .. init_ccase
ClearCase startup/shutdown script (IRIX-5) ... init_irx5
ClearCase startup/shutdown script (OSF/1) ... init_osf1
ClearCase startup/shutdown script (SunOS-4) ... init_sun4
ClearCase startup/shutdown script (SunOS-5) ... init_sun5

ClearCase crontab scripts .. crontab_ccase
create a VOB storage pool or modify its scrubbing parameters ... mkpool

perform merge search for elements that require a merge / optionally findmerge
use pattern, query, or expression to search for objects .. find

version-selector, config spec select objects by their meta-data / find, findmerge, query_language
rules for selecting versions of elements to appear in a view config_spec

server process that performs version selection for a view .. view_server
ClearCase version selector syntax .. version_selector

location broker daemon / ClearCase master server ... albd_server
audited build executor / server for ClearCase distributed build ... abe

server process that performs version selection for a view view_server
ClearCase database server program ... db_server

ClearCase server program for VOB storage pool access vob_server
ClearCase database server program ... vobrpc_server

server-side control file for distributed build bldserver.control
quit interactive cleartool session ... quit

set or display MVFS console error logging level mvfslog
set the config spec of a view ... setcs

create a process that is set to a view .. setview
non-clearmake build and shell command auditing facility .. clearaudit

bill-of-materials for clearmake build or clearaudit shell .. config_record
create a subprocess to run a shell or other program .. shell

ClearCase Encapsulation for SoftBench .. softbench_ccase
report on VOB disk space usage ... space

display config spec of a view ... catcs
edit config spec of a view ... edcs

set the config spec of a view ... setcs
meta-data / find, findmerge, version-selector, config spec select objects by their ... query_language

clearmake build options specification file (BOS) .. clearmake.options
start or connect to a view_server process startview

ClearCase startup/shutdown script (HPUX-9) .. init_hpx9
ClearCase startup/shutdown script .. init_ccase
ClearCase startup/shutdown script (IRIX-5) ... init_irx5
ClearCase startup/shutdown script (OSF/1) .. init_osf1
ClearCase startup/shutdown script (SunOS-4) ... init_sun4
ClearCase startup/shutdown script (SunOS-5) ... init_sun5

list MVFS timing statistics for a command ... mvfstime
list MVFS statistics ... mvfsstat

list objects in a view’s private storage area ... lsprivate
VOB remove a view storage directory / remove view-related records from a rmview

remove a VOB storage directory .. rmvob
change storage location of derived object data container promote_server

ClearCase server program for VOB storage pool access .. vob_server
create a VOB storage pool or modify its scrubbing parameters mkpool

remove a VOB storage pool .. rmpool
rename a VOB storage pool .. rnpool

change the storage pool to which an element is assigned chpool
remove data containers from VOB storage pools and remove DOs from VOB database scrubber

list VOB storage pools .. lspool
ClearCase storage registry for VOBs and views .. registry_ccase

Permuted Index 575

remove a view-tag or a VOB-tag from the network-wide storage registry .. rmtag
remove derived object data containers from view storage ... view_scrubber

modify comment string in existing event record ... chevent
list MVFS version string .. mvfsversion

format strings for cleartool command output .. fmt_ccase
ClearCase view data structures .. view
ClearCase VOB data structures .. VOB

create a subprocess to run a shell or other program shell
ClearCase manual page summary ... clearcase

display cleartool command summary information ... apropos
ClearCase manual page summary ... toc

to be accessed by non-ClearCase hosts (exporting from SunOS-4) list of VOBs ... exports_sun4
file system table entries for VOBs: fstab.mvfs (SunOS-4) .. filesys_sun4

ClearCase startup/shutdown script (SunOS-4) .. init_sun4
ClearCase-specific mount utility: mount_mvfs (SunOS-4) .. mount_sun4

to be accessed by non-ClearCase hosts (exporting from SunOS-5) list of VOBs ... exports_sun5
file system table entries for VOBs: fstab.mvfs (SunOS-5) .. filesys_sun5

ClearCase startup/shutdown script (SunOS-5) .. init_sun5
ClearCase-specific mount utility: mount_mvfs (SunOS-5) .. mount_sun5

create problem report for Atria Customer Support .. clearbug
remove the name of an element or VOB symbolic link from a directory version .. rmname

create VOB hard link or VOB symbolic link .. ln
ClearCase version selector syntax .. version_selector

X Window System resources for ClearCase graphical interface schemes
file system table entries for VOBs: fstab.mvfs filesys_ccase
file system table entries for VOBs: fstab.mvfs (HPUX-9) filesys_hpx9
file system table entries for VOBs: fstab.mvfs (IRIX-5) filesys_irx5
file system table entries for VOBs: fstab.mvfs (OSF/1) filesys_osf1
file system table entries for VOBs: fstab.mvfs (SunOS-4) filesys_sun4
file system table entries for VOBs: fstab.mvfs (SunOS-5) filesys_sun5

file system table entries for VOBs: fstab.mvfs ... filesys_ccase
file system table entries for VOBs: fstab.mvfs (HPUX-9) filesys_hpx9
file system table entries for VOBs: fstab.mvfs (IRIX-5) filesys_irx5
file system table entries for VOBs: fstab.mvfs (OSF/1) filesys_osf1
file system table entries for VOBs: fstab.mvfs (SunOS-4) filesys_sun4
file system table entries for VOBs: fstab.mvfs (SunOS-5) filesys_sun5

target description file for clearmake builds makefile_ccase
annotate lines of text file / timestamps, usernames, etc. ... annotate

compare or merge text files ... cleardiff
compare or merge text files graphically .. xcleardiff

compare versions of a text-file element or a directory .. diff
compare versions of a text-file element or a directory graphically xdiff

merge versions of a text-file element or a directory graphically xmerge
merge versions of a text-file element or a directory .. merge

annotate lines of text file / timestamps, usernames, etc. .. annotate
list MVFS timing statistics for a command .. mvfstime

ClearCase Encapsulation for ToolTalk .. tooltalk_ccase
list version tree of an element .. lsvtree

create a new branch in the version tree of an element .. mkbranch
remove a branch from the version tree of an element .. rmbranch
remove a version from the version tree of an element .. rmver

remove a merge arrow from an element’s version tree ... rmmerge
remove trigger from an element .. rmtrigger
attach a trigger to an element ... mktrigger
create a trigger type object .. mktrtype

remove a type object from a VOB ... rmtype
create an attribute type object ... mkattype

create a branch type object ... mkbrtype
create an element type object ... mkeltype
create a hyperlink type object ... mkhltype

create a label type object ... mklbtype
create a trigger type object ... mktrtype

rename a type object ... rntype

576 ClearCase Reference Manual

list a VOB’s type objects ... lstype
change the type of an element / rename a branch ... chtype

file type to icon mapping rules (graphical interface) cc.icon
ClearCase file typing rules ... cc.magic

export and unexport VOBs to NFS clients (non-ClearCase access) export_mvfs
convert UNIX files to versions of ClearCase elements clearcvt_unix

unlock an object ... unlock
convert an unreserved checkout to reserved .. reserve

change a reserved checkout to unreserved .. unreserve
ClearCase build utility / maintain, update, and regenerate groups of programs clearmake

update the format of a view database .. reformatview
update the format (schema) of a VOB database reformatvob

help on cleartool command usage .. help
report on VOB disk space usage .. space

use pattern, query, or expression to search for objects find
prompt for user input .. clearprompt

cleartool user profile: .clearcase_profile ... profile_ccase
ClearCase user-level commands (command-line interface) cleartool

annotate lines of text file / timestamps, usernames, etc. ... annotate
programs ClearCase build utility / maintain, update, and regenerate groups of clearmake

ClearCase-specific mount utility: mount_mvfs (HPUX-9) .. mount_hpx9
ClearCase-specific mount utility: mount_mvfs (IRIX-5) .. mount_irx5
ClearCase-specific mount utility: mount_mvfs (OSF/1) ... mount_osf1
ClearCase-specific mount utility: mount_mvfs (SunOS-4) ... mount_sun4
ClearCase-specific mount utility: mount_mvfs (SunOS-5) ... mount_sun5

primary ClearCase graphical interface utility ... xclearcase
ClearCase environment variables .. env_ccase

create view-private, modifiable copy of a version ... checkout
create view-private, modifiable copy of a version ... co

remove a version from the version tree of an element rmver
remove a version label from a version ... rmlabel

attach version labels to versions of elements .. mklabel
create permanent new version of an element .. checkin
create permanent new version of an element .. ci

remove a version label from a version ... rmlabel
name of an element or VOB symbolic link from a directory version remove the ... rmname

server process that performs version selection for a view .. view_server
ClearCase version selector syntax .. version_selector
list MVFS version string .. mvfsversion

list version tree of an element .. lsvtree
create a new branch in the version tree of an element .. mkbranch
remove a branch from the version tree of an element .. rmbranch
remove a version from the version tree of an element .. rmver

remove a merge arrow from an element’s version tree ... rmmerge
create and register a versioned object base (VOB) .. mkvob

compare versions of a text-file element or a directory diff
graphically compare versions of a text-file element or a directory xdiff

graphically merge versions of a text-file element or a directory xmerge
merge versions of a text-file element or a directory merge

convert UNIX files to versions of ClearCase elements ... clearcvt_unix
attach version labels to versions of elements .. mklabel

rules for selecting versions of elements to appear in a view config_spec
programs for managing contents of element versions ... type_manager

select objects by their meta-data / find, findmerge, version-selector, config spec .. query_language
display config spec of a view ... catcs

rules for selecting versions of elements to appear in a view ... config_spec
ClearCase pathname resolution, view context, and extended namespace ... pathnames_ccase

ClearCase view data structures .. view
recover a view database ... recoverview

update the format of a view database ... reformatview
edit config spec of a view ... edcs
create and register a view ... mkview

print working view ... pwv

Permuted Index 577

list view registry entries .. lsview
set the config spec of a view ... setcs

create a process that is set to a view ... setview
a VOB remove a view storage directory / remove view-related records from rmview

remove derived object data containers from view storage ... view_scrubber
server process that performs version selection for a view ... view_server

wink-in one or more derived objects to a view ... winkin
create an entry in the vob_object or view_object registry file .. register

remove an entry from the vob_object or view_object registry file .. unregister
create view-private, modifiable copy of a version checkout
create view-private, modifiable copy of a version co

list VOB-resident objects and view-private objects in a directory .. ls
remove a view storage directory / remove view-related records from a VOB ... rmview

mount/unmount commands for VOBs and the viewroot directory ... mount_ccase
list objects in a view’s private storage area .. lsprivate

ClearCase storage registry for VOBs and views .. registry_ccase
start or connect to a view_server process .. startview

create a view-tag or a public/private VOB-tag ... mktag
registry remove a view-tag or a VOB-tag from the network-wide storage rmtag

activate a VOB at its VOB-tag directory ... mount
copy ClearCase data to a different VOB .. clearcvt_ccase

ClearCase VOB data structures .. VOB
VOB database access arbitrator ... lockmgr

update the format (schema) of a VOB database ... reformatvob
dump/load a VOB database schema ... db_dumper

containers from VOB storage pools and remove DOs from VOB database remove data ... scrubber
remove event records from VOB database ... vob_scrubber

report on VOB disk space usage ... space
create VOB hard link or VOB symbolic link ... ln

move or rename an element or VOB link .. mv
list replicas of a VOB .. lsreplica

create and register a versioned object base (VOB) ... mkvob
change owner or groups of a VOB .. protectvob

list VOB registry entries .. lsvob
remove a derived object from a VOB .. rmdo

remove an element from a VOB .. rmelem
remove a type object from a VOB .. rmtype

storage directory / remove view-related records from a VOB remove a view .. rmview
remove a VOB storage directory .. rmvob

ClearCase server program for VOB storage pool access ... vob_server
create a VOB storage pool or modify its scrubbing parameters mkpool

remove a VOB storage pool ... rmpool
rename a VOB storage pool ... rnpool

remove data containers from VOB storage pools and remove DOs from VOB database scrubber
list VOB storage pools ... lspool

remove the name of an element or VOB symbolic link from a directory version rmname
create VOB hard link or VOB symbolic link ... ln

deactivate a VOB .. umount
list event records for VOB-database objects .. lshistory
create an entry in the vob_object or view_object registry file ... register

remove an entry from the vob_object or view_object registry file ... unregister
directory list VOB-resident objects and view-private objects in a ls

mount/unmount commands for VOBs and the viewroot directory ... mount_ccase
ClearCase storage registry for VOBs and views ... registry_ccase

file system table entries for VOBs: fstab.mvfs .. filesys_ccase
file system table entries for VOBs: fstab.mvfs (HPUX-9) ... filesys_hpx9
file system table entries for VOBs: fstab.mvfs (IRIX-5) ... filesys_irx5
file system table entries for VOBs: fstab.mvfs (OSF/1) .. filesys_osf1
file system table entries for VOBs: fstab.mvfs (SunOS-4) .. filesys_sun4
file system table entries for VOBs: fstab.mvfs (SunOS-5) .. filesys_sun5

from HPUX-9) list of VOBs to be accessed by non-ClearCase hosts (exporting exports_hpx9
from IRIX-5) list of VOBs to be accessed by non-ClearCase hosts (exporting exports_irx5
from OSF/1) list of VOBs to be accessed by non-ClearCase hosts (exporting exports_osf1

578 ClearCase Reference Manual

from SunOS-4) list of VOBs to be accessed by non-ClearCase hosts (exporting exports_sun4
from SunOS-5) list of VOBs to be accessed by non-ClearCase hosts (exporting exports_sun5

list of VOBs to be accessed by non-ClearCase hosts exports_ccase
export and unexport VOBs to NFS clients (non-ClearCase access) export_mvfs

list a VOB’s type objects ... lstype
activate a VOB at its VOB-tag directory .. mount

remove a view-tag or a VOB-tag from the network-wide storage registry rmtag
create a view-tag or a public/private VOB-tag ... mktag

create or change encrypted VOB-tag registry password .. rgy_passwd
X Window System resources for ClearCase graphical interface schemes

wink-in one or more derived objects to a view winkin
change current working directory .. cd

print working directory .. pwd
print working view ... pwv

interface X Window System resources for ClearCase graphical schemes

Permuted Index 579

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-1613-030.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-965-0964

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

