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About This Guide

Welcome to the IRIS Performer™ application development environment. IRIS Performer
provides a programming interface (with ANSI C and C++ bindings) for creating
real-time graphics applications and offers high-performance rendering in an easy-to-use
3D graphics toolkit. IRIS Performer interfaces to both the OpenGL® graphics library and
the IRIS Graphics Library™ (also known as IRIS GL™); these libraries combined with the
IRIX™ operating system form the foundation of a powerful suite of tools and features for
creating real-time 3D graphics applications on Silicon Graphics® systems.

Why Use IRIS Performer?

Use IRIS Performer for building visual simulation applications and virtual reality
environments, for rapid rendering in on-air broadcast and virtual set applications, for
assembly viewing in large simulation-based design tasks, or to maximize the graphics
performance of any application. Applications that require real-time visuals, free-running
or fixed-frame-rate display, or high-performance rendering will benefit from using IRIS
Performer.

IRIS Performer drastically reduces the work required to tune your application’s
performance. General optimizations include the use of highly-tuned routines for all
performance critical operations and the reorganization of graphics data and operations
for faster rendering. IRIS Performer also handles Silicon Graphics architecture-specific
tuning issues for you by selecting the best rendering and multiprocessing modes at run
time, based on the system configuration.

IRIS Performer is an integral part of the Silicon Graphics visual simulation systems, such
as the and provides the interface to advanced features available exclusively with the
Silicon Graphics product line, such as the InfiniteReality™, OCTANE™, and O2™ graphics
subsystems . IRIS Performer teamed with InfiniteReality or OCTANE provide a
sophisticated image generation system in a powerful, flexible, and extensible software
environment. IRIS Performer is also tuned to operate at peak efficiency on each graphics
platform produced by Silicon Graphics; you don’t need the hardware sophistication of
InfiniteReality graphics to benefit from IRIS Performer.
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What You Should Know Before Reading This Guide

To use IRIS Performer, you should be comfortable programming in ANSI C or C++. You
should also have a fairly good grasp of graphics programming concepts (terms such as
“texture map” and “homogeneous coordinate” aren’t explained in this guide). It will
help if you’re at least familiar with the OpenGL library. If you’re a newcomer to these
topics, see the references listed under “Bibliography” at the end of this introduction and
examine the glossary for definitions of terms or usage unique to IRIS Performer.

On the other hand, though you need to know a little about graphics, you don’t have to
be a seasoned C (or C++) programmer, a graphics hardware guru, or a graphics-library
virtuoso to use IRIS Performer. IRIS Performer puts the engineering expertise behind
Silicon Graphics hardware and software at your fingertips, so you can minimize your
application development time while maximizing the application’s performance and
visual impact.

For a consise description of IRIS Performer basics, see the “Getting Started with
Performer” guide.

Internet and Hard Copy Reading for the Performer Series

XXX

You can use a web browser to search through the Performer libraries. For the very latest
version of Performer class names and definitions, method names and declarations,
tokens, man pages, and sample code, use the API Search Tool. To do so, point your
browser at:

*  http://[<LOCALHOST>/performer
= http://techpubs.sgi.com/library/manuals/3000/007-3632-001/html

Printed books in the IRIS Performer series include:
= IRIS Performer Programmer’s Guide (007-1680-nnn)
= IRIS Performer Getting Started Guide (007-3560-nnn)
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You can read online versions of the following books:

= IRIS Performer Programmer’s Guide

= IRIS Performer Getting Started Guide

= |RIS Performer Class Reference Guide for C Programmers

= IRIS Performer Class Reference Guide for C++ Programmers

To read these online books, point your browser at:

= http://techpubs.sgi.com/library/dynaweb_hin/0620/bin/nph-dynaweb.cgi/dynaweb/SGI_De
veloper/Perf_PG/@Generic__BookView

For general information about Performer, point your browser at:

e http://www.sgi.com/Technology/Performer

Answers to common questions

= Silicon Graphics maintains a publicly accessible directory of questions that
developers often ask about IRIS Performer, along with answers to those questions.
Each question-and-answer pair is provided in a file of its own, named by topic. To
obtain any of these files, use anonymous ftp to connect to sgigate.sgi.com; then cd to
the directory /pub/Performer/selected-topics and use Is to see a list of available topics.
Alternatively, use a World Wide Web browser to look at
ftp://sgigate.sgi.com/pub/Performer/selected-topics.

Electronic forum for discussions about IRIS Performer:

= The info-performer mailing list provides a forum for discussion of IRIS Performer
including technical and non-technical issues. Subscription requests should be sent
to info-performer-request@sgi.com. Much like the comp.sys.sgi.* newsgroups on the
Internet, it isn’t an official support channel but is monitored by several interested
Silicon Graphics employees familiar with the toolkit.

For other related reading, see “Bibliography” on page xxxvi.
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How to Use This Guide

XXXIV

The best way to get started is to read the “IRIS Performer Getting Started” manual. If you
like learning from sample code, turn to Chapter 1, “Getting Acquainted With IRIS
Performer,” which takes you on a tour of some demo programs. These programs let you
see for yourself what IRIS Performer does. Even if you aren’t developing a visual
simulation application, you might want to look at the demos to see high-performance
rendering in action. At the end of Chapter 2 you’ll find suggestions pointing to possible
next steps; alternatively, you can browse through the summary below to find a topic of
interest.

What This Guide Contains

This guide is divided into the following chapters and appendices:

Chapter 1, “IRIS Performer Programming Interface,” describes the fundamental
ideas behind the Performer programming interface.

Chapter 2, “Setting Up the Display Environment,” describes how to set up
rendering pipelines, windows, and channels (cameras).

Chapter 3, “Nodes and Node Types,” describes the data structures used in IRIS
Performer’s memory-based scene-definition databases.

Chapter 4, “Database Traversal,” explains how to manipulate and examine a scene
graph.

Chapter 5, “Frame and Load Control,” explains how to control frame rate,
synchronization, and dynamic load management. This chapter also discusses the
load management techniques of multiprocessing and level-of-detail.

Chapter 6, “Creating Visual Effects,” describes how to use environmental,
atmospheric, lighting, and other visual effects to enhance the realism of your
application.

Chapter 7, “Importing Databases,” describes database formats and sample
conversion utilities.

Chapter 8, “Geometry,” discusses the classes used to create geometry in Performer
scenes.

Chapter 9, “Graphics State,” describes the graphics state, which contains all of the
fields that together define the appearance of geometry.
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= Chapter 10, “ClipTextures,” describes how to work with large, high-resolution
textures.

= Chapter 11, “Windows,” describes how to create, configure, manipulate, and
communicate with a window in Performer.

= Chapter 12, “pfPipeWindows and pfPipeVideoChannels,” describes the unified
window and video channel control and management provided by pfPipeWindows
and pfPipeVideoChannels.

= Chapter 13, “Managing Nongraphic System Tasks,” describes clocks, memory
allocation, synchronous 170, error handling and notification, and search paths.

= Chapter 14, “Dynamic Data,” describes how to connect pfFlux, pfFCS, and
pfEngine nodes, which together can be used for animating geometries.

= Chapter 15, “Active Surface Definition,” describes the Active Surface Definition
(ASD): a library that handles real-time surface meshing and morphing.

= Chapter 16, “Light Points,” describes the calligraphic lights, which are intensely
bright lights.

= Chapter 17, “Math Routines,” details the comprehensive math support provided as
part of IRIS Performer.

= Chapter 18, “Statistics,” discusses the various kinds of statistics you can collect and
display about the performance of your application.

= Chapter 19, “Performance Tuning and Debugging,” explains how to use
performance measurement and debugging tools and provides hints for getting
maximum performance.

= Chapter 20, “Programming with C++,” discusses the differences between using the
C and C++ programming interfaces.

Sample Applications

You can find the sample code for all of the sample IRIS Performer applications installed
under /usr/share/Performer/src/pguide.
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Conventions

This guide uses the following typographical conventions:

Bold is used for function names, with parentheses appended to the name.
Also, bold lowercase letters represent vectors, and bold uppercase
letters denote matrices.

Italics indicates filenames, IRIX command names, command-line option flags,
variables, and book titles.

Fixed-width is used for code examples and system output.

Bold Fixed-width
indicates user input, items that you should type in from the keyboard.

Note that in some cases it’s convenient to refer to a group of similarly named IRIS
Performer functions by a single name; in such cases an asterisk is used to indicate all the
functions whose names start the same way. For instance, pfNew*() refers to all functions
whose names begin with “pfNew”: pfNewChan(), pfNewDCS(), pfNewESky(),
pfNewGeode(), and so on.

Most code examples in this guide are written in C; some are in C++. All code examples
are available in both C and C++ forms in the source directory
/usr/share/Performer/src/pguide.

You should be familiar with most of the concepts presented in the first few books listed
here—notably Computer Graphics: Principles and Practice and the OpenGL or IRIS GL™
books—to make the best use of IRIS Performer and this programming guide. Most of the
other books listed here, however, delve into more advanced topics and are listed as
further reading for those interested. Information is also provided on electronic access to
Silicon Graphics’ files containing answers to frequently asked IRIS Performer questions.
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Computer Graphics

For a general treatment of a wide variety of graphics-related topics, see:

« Foley, J.D., A. van Dam, S.K. Feiner, and J.F. Hughes. Computer Graphics: Principles
and Practice, 2nd Ed. Reading, Mass.: Addison-Wesley Publishing Company, Inc.,
1990.

< Newman, W.M., and R.F. Sproull, Principles of Interactive Computer Graphics, 2nd Ed.
New York: McGraw-Hill, Inc., 1979.

For specific topics of interest to developers using IRIS Performer, also see:

= Akeley, Kurt, “RealityEngine Graphics,” Computer Graphics Annual Conference Series
(SIGGRAPH), 1993. pp. 309-318.

= Michael Jones, Sharon Clay,James Helman, John Rohlf, Andy Bigos, Philippe
Tarbouriech, Wes Hoffman, Eric Johnston, Michael Limber, and Scott
Watson,”Designing Real-Time 3D Graphics for Entertainment,” Course Notes of 1997
SIGGRAPH Course #6.

= Willis, L. R., Jones, M. T., and Zhao, J. A Method for Continuous Adaptive
Terrain”, Proceedings of the 1996 Image Conference. June 23-28, 1996, Scottsdale
Arizona.

e John S. Montrym, Daniel R. Baum, David L. Dignam, Christopher J. Migdal,
“InfiniteReality: A Real-Time Graphics System,” Computer Graphics Annual
Conference Series (SIGGRAPH), 1997. pp. 293-302.

= Rohlf, John and James Helman, “IRIS Performer: A High Performance
Multiprocessing Toolkit for Real-Time 3D Graphics,” Computer Graphics Proceedings,
Annual Conference Series (SIGGRAPH), 1994, pp. 381-394.

< Shoemake, Ken. “Animating Rotation with Quaternion Curves,” SIGGRAPH ‘85
Conference Proceedings Vol 19, Number 3, 1985.The IRIS GL and OpenGL Graphics
Libraries

For information about IRIS GL, see these Silicon Graphics publications:

e Graphics Library Programming Guide, Volumes | and 11

e Graphics Library Programming Tools and Techniques

To order all three of the above manuals, call 1-800-800-SGI1 (in the U.S. and Canada) and

specify part number M4-GLGT-5.2. Outside the U.S. and Canada, please contact your
local sales office or distributor.
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For information about OpenGL, see:

= Neider, Jackie, Tom Davis, and Mason Woo, OpenGL Programming Guide. Reading,
Mass.: Addison-Wesley Publishing Company, Inc., 1993. A comprehensive guide to
learning OpenGL.

= OpenGL Architecture Review Board, OpenGL Reference Manual. Reading, Mass.:
Addison-Wesley Publishing Company, Inc., 1993. A compilation of OpenGL
reference pages.

= The OpenGL Porting Guide, a Silicon Graphics publication shipped in IRIS
InSight-viewable on-line format. Provides information on updating IRIS GL-based
software to use OpenGL.

X, Xt, IRIS IM, and Window Systems

In conjunction with OpenGL, you may wish to learn about the X window system, the Xt
Toolkit Intrinsics library, and IRIS IM (though note that if you use IRIS Performer’s
pfwindow routines, windows are handled for you; in that case you don’t need to know
about any of these topics). For information on X, Xt, and Motif, see the O’Reilly X
Window System Series, Volumes 1,2, 4, and 5 (usually referred to simply as “O’Reilly”
with a volume number):

< Nye, Adrian, Volume One: Xlib Programming Manual. Sebastopol, California:
O’Reilly & Associates, Inc., 1991.

< Volume Two: Xlib Reference Manual, published by O’Reilly & Associates, Inc.,
Sebastopol, California.

= Volume Four: X Toolkit Intrinsics Programming Manual, by Adrian Nye and Tim
O’Reilly, published by O’Reilly & Associates, Inc., Sebastopol, California.

< Volume Five: X Toolkit Intrinsics Reference Manual, published by O’Reilly &
Associates, Inc., Sebastopol, California.

For information on IRIS IM, Silicon Graphics’ port of OSF/Motif™, and on making your
application interact well with the Silicon Graphics desktop, see these Silicon Graphics
publications:

< |RIS IM Programming Guide (007-1472-nnn)
= Indigo Magic User Interface Guidelines (007-2167-nnn)
< Indigo Magic Desktop Integration Guide (007-2006-nnn)

All three of these books are shipped in IRIS InSight™-viewable on-line format.
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Visual Simulation

For information about visual simulation and the use of simulation systems in training
and research, see:

= Rolfe, .M., and K.J. Staples, eds. Flight Simulation. Cambridge: Cambridge
University Press, 1986. Provides a comprehensive overview of visual simulation
from the basic equations of motion to the design of simulator cabs, optical and
display systems, motion bases, and instructor/operator stations. Also includes a
historical overview and an extensive bibliography of visual simulation and
aerodynamic simulation references.

= Rougelot, Rodney S. “The General Electric Computer Color TV Display,” in Faiman,
M., and J. Nievergelt, eds. Pertinent Concepts in Computer Graphics. Urbana,
I11.:University of lllinois Press, 1969, pp. 261-281. This extensive report gives an
excellent overview of the origins of visual simulation. It shows many screen images
of the original systems developed for various NASA programs and includes the
first real-time textured image. This article provides the basis for understanding the
historical development of computer image generation and real-time graphics.

= Schacter, Bruce J., ed. Computer Image Generation. New York: John Wiley & Sons, Inc.,
1983. Reviews the computer image generation process and provides a detailed
analysis of early approaches to system design and implementation. The
bibliography refers to early papers by the designers of the first image-generation
systems.

Mathematics of Flight Simulation

Stevens, Brian L., and Frank L. Lewis. Aircraft Control and Simulation. New York: John
Wiley & Sons, Inc., 1992. This book describes the complete implementation of a
flight-dynamics model for the F-16 fighter aircraft. It provides the basic equations of
motion and explains how the more complex issues are handled in practice. Some source
code, in FORTRAN, is included.

Virtual Reality

Kalawsky, Roy S. Science of Virtual Reality and Virtual Environments. Reading, Mass.:
Addison-Wesley Publishing Company, Inc., 1993.
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Geometric Reasoning
These two books address geometric reasoning in general, rather than any specifically
computer-related or Performer-specific topics:

= Abbott, Edwin A. Flatland: A Romance of Many Dimensions, 6th Ed. New York: Dover
Publications, Inc., 1952. The story of A. Square and his journeys among the
dimensions.

= Polya, George. How to Solve It: A New Aspect of Mathematical Method, 2nd Ed.
Princeton, NJ: Princeton University Press, 1973.

Conference Proceedings

The proceedings of the I/ITSEC (Interservice/Industry Training, Simulation, and
Education Conference) are a primary source of published visual simulation experience.
In the past this conference has been known as the National Training Equipment
Center/Industry Conference (NTEC/IC) and the Interservice/Industry Training
Equipment Conference (I/ITEC). Proceedings are available from the National Technical
Information Service (NTIS). Here are NTIS order numbers for several of the older
proceedings:

= Seventh N/IC, November 1974: AD-A000-970 NTEC
= Eighth N/IC, November 1975: AD-A028-885 NTEC

= Ninth N/IC, November 1976: AD-A031-447 NTEC

= Tenth N/IC, November 1977: AD-A047-905 NTEC

= Eleventh N/IC, November 1978: AD-A061-381 NTEC
= First I/ITEC, November 1979: AD-A077-656 NTEC

= Third I/ITEC, November 1981: AD-A109-443 NTEC
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The IMAGE Society is dedicated solely to the advancement of visual simulation
technology and its applications. It holds conferences and workshops, the proceedings of
which are an excellent source of advice and guidance for visual simulation developers.
The society can be reached through electronic mail at image@acvax.inre.asu.edu. Some
of the IMAGE proceedings published by the Air Force Human Resources Lab AFHRL at
Williams AFB prior to the formation of the IMAGE Society are also available from the
NTIS. Order numbers are:

< IMAGE, May, 1977: AD-A044-582 AFHRL

= IMAGE Il (closing), July, 1981: AD-A104-676 AFHRL

= IMAGE Il (proceedings), November, 1981: AD-A110-226 AFHRL

The Society of Photo-Optical Instrumentation Engineers (SPIE) also has articles of

interest to visual simulation developers in their conference proceedings. Some of the
interesting publications are:

=< \ol. 17, Photo-Optical Techniques in Simulators, April, 1969
« \ol. 59, Simulators & Simulation, March, 1975
< \ol. 162, Visual Simulation & Image Realism, August, 1978

Survey Articles in Magazines

= Aviation Week & Space Technology, January 17, 1983. Special issue on visual
simulation.

= Fischetti, Mark A., and Carol Truxal. “Simulating the Right Stuff.” IEEE Spectrum,
March, 1985, pp. 38-47.

= Schacter, Bruce. “Computer Image Generation for Flight Simulation.” IEEE
Computer Graphics & Applications, October, 1981, pp. 29-68.

= Schacter, Bruce, and Narendra Ahuja. “A History of Visual Flight Simulation.”
Computer Graphics World, May, 1980, pp. 16-31.

= Tucker, Jonathan B., “Visual Simulation Takes Flight.” High Technology Magazine,
December, 1984, pp. 34-47.

xli
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“IRIS Performer Programming Interface”

This chapter describes the fundamental ideas behind the IRIS Performer
programming interface.






Chapter 1

IRIS Performer Programming Interface

This chapter describes the fundamental ideas behind the IRIS Performer programming
interface in the following sections:

« “General Naming Conventions” on page 3
e “Class API” on page 5

= “Base Classes” on page 8.

General Naming Conventions

The IRIS Performer API uses naming conventions to help you understand what a given
command will do and even predict the appropriate names of routines for desired
functionality. Following similar naming practices in the software that you develop will
make it easier for you and others on your team to understand and debug your code.

The APl is largely object-oriented; it contains classes of objects comprised of methods
that:

= Configure their parent objects.

= Apply associated operations, based on the current configuration of the object.

Both C and C++ bindings are provided for IRIS Performer. In addition, naming
conventions provide a consistent and predictable APl and indicate the kind of operations
performed by a given command.

Prefixes

The prefix of the command tells you in which library a C command or C++ class is found.
All exposed IRIS Performer C commands and C++ classes begin with “pf’. The utility
libraries use an additional prefix letter, such as "pfu’ for the libpfutil general utility
library, pfi’ for the libpfui input handling library, and “pfd’ for the libpfdu database
utility library. Libpr level commands still have the “pf’ prefix as they are still in the main
libpf library.
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Header Files

Each IRIS Performer library contains a main header file in /usr/include/Performer that
contains type and class definitions, the C API for that library, and global routines that are
part of the C and C++ API. Libpf is broken into two distinct pieces: the low-level
rendering layer, libpr, and the application layer, libpf, and each has their own main header
file: pr.h and pf.h. Since libpf is considered to include libpr, pf.h includes pr.h. C++ class
header files are found under /usr/include/Performer/{pf, pr, ...}. Each class has its own C++
header file and that header must be included to use that class.

#include <Performer/pf.h>

#include <Performer/pf/pfGroup.h>

pfGroup *group;

Naming in C and C++

All C++ class method names have an expanded C counterpart. Typically, the C routine
will include the class name in the routine, whereas the C++ method will not.

C: pfGetPipeScreen();
C++: pipe->getScreen();

For some very general routines on the most abstract classes, the class name is omitted.
This is the case with the child API on pfNodes:

C: pfAddChild(node,child);

C++: node->addChild(child);

Command and type names are mixed case where the first letter of a new word in a name
is capitalized. C++ method names always start with a lower case letter.

pfTexture *texture;
texture->loadFile();

Abbreviations

Type names do not use abbreviations. The C API acting on that type will often use
abbreviations for the type names, as will the associated tokens and enums.
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Class API

In procedure names, a name will always be abbreviated or never, and the same
abbreviation will always be used and will be in the pfNew* C command. For example:
the pfTexture object uses ‘Tex’ in its API, such as pfNewTex(). If a type name has multiple
words, the abbreviation will use the first letter of the first words and then the first syllable
of the last word.

pfPipeWindow *pwin = pfNewPWin();
pfPipeVideoChannel *pvchan = pfNewPVChan();
pfTexLOD *tlod = pfNewTLOD();

Macros, Tokens, and Enums

Macros, tokens, and enums all use full upper-case. Token names associated with a class
and methods of a class start with the abbreviated name for that class, such as texture to
“tex” in PFTEX_SHARPEN.

The API of a given class, such as pfTexture, is comprised of:
= API to create an instance of the object

= API to set parameters on the object

= API to get those parameter settings

= API to perform actions on the configured object

Object Creation

Obijects are always created with
C: pfThing *thing = pfNewThing();
C++: pfThing *thing = new pfThing;

Libpf objects are automatically created out of the shared memory arena. Libpr objects
take as an argument an arena pointer which, if NULL, will cause allocation off the heap.



Chapter 1: IRIS Performer Programming Interface

Set Routines

A set routine has the form:

C: pfThingParam(thing, ... ) (note no ‘Set’ in the name)
C++: thing->setParam()

Set routines are usually very fast and are not order dependent. Work required to process
the settings happens once when the object is first used after settings have changed. If
particularly expensive options must be done, there will be a pfConfigThing routine or
method to explicitly force this work that must be called before the object is to be used.

Get Routines

For every ‘set’ there is a matching ‘get’ routine to get back the value that was set.

C: pfGetThingParam(thing, ...)
C++: thing->getParam()

If the set/get is for a single value, that value is usually the return value of the routine. If
there are multiple values together, the ‘get’ routine will then take as arguments pointers
to result variables.

Getting Current In-Use Values

Get routine return values that have been previously set by the user, or default values if
no settings have been made. Sometimes a value other than the user-specified value is
currently in use and that is the value that you would like to get. For these cases, there is
a separate ‘getCur’ routine to get the current in-use value.

C: pfGetCurThingParam()
C++: thing->getcurParam()

These ‘cur’ routines may only be able to give reasonable values in the process which
associated operations are happening. Example: to get the current texture
(pfGetCurTex()), you need to be in the draw process since that is the only process that
has a current texture.
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Action Routines

An action routine has the form:

C: pfVerbThing(), such as pfApplyTex()
C++: thing->verb(), such as tex->apply()

Action routines can have parameter scope and apply only to that parameter. These
routines have the form

C: pfVerbThingParam(), such as pfApplyTexMinLOD()
C++: thing->verbParam(), such as tex->applyMinLOD()

Apply and Draw Routines

The Apply and Draw action routines do graphics operations and so must happen either
in the draw process or in display list mode.

C: pfApplypfGeoState()
pfDrawGSet()

C++: gstate->apply()
gset->draw()

Enable and Disable of Modes

Features that can be enabled and disabled are done so with pfEnable() and pfDisable(),
respectively.

pfGetEnable() takes PFEN_* tokens naming the graphics state operation to enable or
disable. A GetEnable() is used to query enable status and will return 1 or 0 if the given
mode is enabled or disabled, respectively.

ex: pfEnable(PFEN_TEXTURE), pfDisable(PFEN_TEXTURE),
pfGetEnable(PFEN_TEXTURE);

Mode, Attribute, or Value

Classes instances are configured by having their internal fields set. These fields may be
simple modes or complex attribute structures. Mode values are ints or tokens, attributes
are typically pointers to objects, and values are floats.

pfGStateMode(gstate, PFSTATE_DECAL, PFDECAL_LAYER)
pfGStateAttr(gstate, PFSTATE_TEXTURE, texPtr)
pfGStateVal(gstate, PFSTATE_ALPHAREF, 0.5)
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Base Classes

IRIS Performer provides an object-oriented programming interface to most of its data
structures. Only IRIS Performer functions can change the values of elements of these data
structures; for instance, you must call pfMtlColor() to set the color of a pfMaterial
structure rather than modifying the structure directly.

For a more transparent type of memory, IRIS Performer provides pfMemory. All object
classes are derived from pfMemory. pfMemory instances must be explicitly allocated
with the new operator and cannot be allocated statically, on the stack, or included
directly in other object definitions. pfMemory is managed memory; it includes special
fields, such as size, arena, and ref count, that are initialized by the pfMemory new()
function.

Some very simple and unmanaged data types are not encapsulated for speed and easy
access. Examples include pfMatrix, pfSphere and pf\Vec3. These data types are referred
to as public structures and are inherited from pfStruct.

Unlike pfMemory, pfStructs can be:
« Allocated statically.
= Allocated on the stack.

< Included directly in other structure and object definitions.

pfStructs allocated off the stack or allocated statically are not in the shared memory arena
and thus are not safe for multiprocessed use. Also, pfStructs allocated off the stack in a

procedure do not exist after the procedure exits so they should not be given to persistent
objects, such as a pf\ec3 array of vertices for a pfGeoSet.

In order to allow some functions to apply to multiple data types, IRIS Performer uses the
concept of class inheritance. Class inheritance takes advantage of the fact that different
data types (classes) often share attributes. For example, a pfGroup is a node which can
have children. A pfDCS (Dynamic Coordinate System) has the same basic structure as a
pfGroup, but also defines a transformation to apply to its children—in other words, the
pfDCS data type inherits the attributes of the pfGroup and adds new attributes of its
own. This means that all functions that accept a pfGroup* argument will alternatively
accept a pfDCS* argument.
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For example, pfAddChild() takes a pfGroup* argument, but

pfDCS *dcs = pfNewDCS();
pfAddChild(dcs, child);

appends child to the list of children belonging to dcs.

Because the C language does not directly express the notion of classes and inheritance,
arguments to functions must be cast before being passed, for example,

pfAddChild((pfGroup*)dcs, (pfNode*)child);

In the example above, no such casting is required because IRIS Performer provides
macros that perform the casting when compiling with ANSI C, for example:

#define pfAddChild(g, c) pfAddchild((pfGroup*)g, (pfNode*)c)

Note: Using automatic casting eliminates type checking—the macros will cast anything
to the desired type. If you make a mistake and pass an unintended data type to a casting
macro, the results may be unexpected.

No such trickery is required when using the C++ API. Full type checking is always
available at compile time.

Inheritance Graph

The relations between classes can be arranged in a directed acyclic inheritance graph in
which each child inherits all of its parent’s attributes, as illustrated in Figure 1-1. IRIS
Performer does not use multiple inheritance, so each class has only one parent in the
graph.

Note: It’s important to remember that an inheritance graph is different from a scene
graph. The inheritance graph shows the inheritance of data elements and member
functions among user-defined data types; the scene graph shows the relationship among
instances of nodes in a hierarchical scene definition.
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Some classes
found in libpf

Some classes
found in libpr

Figure 1-1 Partial Inheritance Graph of IRIS Performer Data Types
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Base Classes

IRIS Performer objects are divided into two groups: those found in the libpf library and
those found in the libpr library. These two groups of objects have some common
attributes, but also differ in some respects.

While IRIS Performer only uses single inheritance, some objects encapsulate others,
hiding the encapsulated object but also providing a functional interface that mimics its
original one. For example a pfChannel has a pfFrustum, a pfFrameStats has a pfStats, a
pfPipeWindow has a pfWindow, and a pfPipeVideoChannel has a pfVideoChannel. In
these cases, the first object in each pair provides functions corresponding to those of the
second. For example, pfFrustum has a routine,

pfMakeSimpleFrust(frust, 45.0f);

and pfChannel has a corresponding routine,
pfMakeSimpleChan(channel, 45.0f);

Libpr and Libpf Objects

All of the major classes in IRIS Performer are derived from the pfObject class. This
common, base class unifies the data types by providing common attributes and
functions. Libpf objects are further derived from pfUpdatable. The pfUpdatable abstract
class provides support for automatic multi-buffering for multiprocessing. pfObjects have
no special support for multiprocessing and so all processes share the same copy of the
pfObject in the shared arena. libpr objects allocated from the heap are only visible in the
process in which they are created or in child processes created after the object. Changes
made to such an object in one process are not visible in any other process.

Explicit multi-buffering of pfObjects is available through the pfFlux class. In general,
libpr provides lightweight and low-level modular pieces of functionality that are then
enhanced by more powerful libpf objects.

User Data
The primary attribute defined by the pfObject is class is the custom data a user gets to
define on any pfObject called “user data.” pfUserDataSlot attaches the user-supplied

data pointer to user data. pfUserData attaches the user-supplied data pointer to user data
slot. Example 1-1 shows how to use user data.

11
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Example 1-1 How to Use User Data

typedef struct

float coeffFriction;
float density;
float *dataPoints;

}

myMaterial;
myMaterial ~ *granite;

granite = (myMaterial *)pfMalloc(sizeof(myMaterial), NULL);
granite->coeffFriction = 0.5f;

granite->density = 3.0f;

granite->dataPoints = (float *)pfMalloc(sizeof(float)*8, NULL);
graniteMtl = pfNewMtI(NULL);

pfUserData(graniteMtl, granite);

pfDelete() and Reference Counting

Most kinds of data objects in IRIS Performer can be placed in a hierarchical scene graph,
using instancing when an object is referenced multiple times. Scene graphs can become
guite complex, which can cause problems if you’re not careful. Deleting objects can be a
particularly dangerous operation, for example, if you delete an object that another object
still references.

Reference counting provides a bookkeeping mechanism that makes object deletion safe:
an object is never deleted if its reference count is greater than zero.

All libpr objects (such as pfGeoState and pfMaterial) have a reference count that specifies
how many other objects refer to it. A reference is made whenever an object is attached to
another using the IRIS Performer routines shown in Table 1-1.
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Table 1-1 Routines that Modify libpr Object Reference Counts

Routine Action

pfGSetGState Attaches a pfGeoState to a pfGeoSet

pfGStateAttr Attaches a state structure (such as a pfMaterial) to
a pfGeoState

pfGSetHlight Attaches a pfHighlight to a pfGeoSet

pfTexDetail Attaches a detail pfTexture to a base pfTexture

pfGSetAttr Attaches attribute and index arrays to a pfGeoSet

pfTexImage Attaches an image array to a pfTexture

pfAddGSet, pfReplaceGSet, Modify pfGeoSet/pfGeode association
pflnsertGSet

When object A is attached to object B, the reference count of A is incremented.
Additionally, if A replaces a previously referenced object C, then the reference count of
C is decremented. Example 1-2 demonstrates how reference counts are incremented and
decremented.

Example 1-2 Objects and Reference Counts

pfGeoState *gstateA, *gstateC;
pfGeoSet *gsetB,;

/* Attach gstateC to gsetB. Reference count of gstateC
* is incremented. */
pfGSetGState(gsetB, gstateC);

/* Attach gstateA to gsetB, replacing gstateC. Reference
* count of gstateC is decremented and that of gstateA
*is incremented. */

pfGSetGState(gsetB, gstateA);

13
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This automatic reference counting done by IRIS Performer routines is usually all you’ll
ever need. However, the routines pfRef(), pfUnref(), and pfGetRef() allow you to
increment, decrement, and retrieve the reference count of a libpr object should you wish
to do so. (These routines also work with objects allocated by pfMalloc(); see the IRIS
Performer Programmer’s Guide for more information).

An object whose reference count is equal to 0 can be deleted with pfDelete(). pfDelete()
works for all libpr objects and all pfNodes but not for other libpf objects like pfPipe and
pfChannel. pfDelete() first checks the reference count of an object. If the reference count
is non-positive, pfDelete() decrements the reference count of all objects that the current
object references, then it deletes the current object. pfDelete() doesn’t stop here but
continues down all reference chains, deleting objects until it finds one whose count is
greater than zero. Once all reference chains have been explored, pfDelete returns a
boolean indicating whether it successfully deleted the first object or not. Example 1-3
illustrates the use of pfDelete() with libpr.

Example 1-3 Using pfDelete() with libpr Objects

pfGeoState *gstateO, *gstatel;
pfMaterial *mtl;
pfGeoSet *gset;

gstate0 = pfNewGState(arena); /* initial ref count is 0 */
gset = pfNewGSet(arena); /* initial ref count is 0 */
mtl = pfNewMtl(arena); /* initial ref count is 0 */

/* Attach mtl to gstate0. Reference count of mtl is
* incremented. */
pfGStateAttr(gstate0, PFSTATE_FRONTMTL, mtl);

/* Attach mtl to gstatel. Reference count of mtl is
* incremented. */
pfGStateAttr(gstatel, PFSTATE_FRONTMTL, mtl);

/* Attach gstateO to gset. Reference count of gstateO is
* incremented. */
pfGSetGState(gset, gstate0);

/* This deletes gset, gstate0, but not mtl since gstatel is
* still referencing it. */
pfDelete(gset);
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Example 1-4 illustrates the use of pfDelete() with libpf.

Example 1-4 Using pfDelete() with libpf Objects

pfGroup *group;
pfGeode *geode;
pfGeoSet *gset;

group = pfNewGroup(); /* initial parent count is 0 */
geode = pfNewGeode(); /* initial parent count is 0 */
gset = pfNewGSet(arena); /* initial ref count is 0 */

/* Attach geode to group. Parent count of geode is
* incremented. */
pfAddChild(group, geode);

/* Attach gset to geode. Reference count of gset is
* incremented. */
pfAddGSet(geode, gset);

/* This has no effect since the parent count of geode is 1.*/
pfDelete(geode);

/* This deletes group, geode, and gset */
pfDelete(group);

Some notes about reference counting and pfDelete():

= All reference count modifications are locked so that they guarantee mutual

exclusion when multiprocessing.

= Objects added to a pfDispList don’t have their counts incremented due to

performance considerations.

< In the multiprocessing environment of libpf, the successful deletion of a pfNode
doesn’t have immediate effect but is delayed one or more frames until all processes
in all processing pipelines are through with the node. This accounts for the fact that

pfDispLists don’t reference-count their objects.
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= pfUnrefDelete(obj) is shorthand for

if(pfUnref(obj) ==0)
pfDelete(obj);

This is true when pfUnrefGetRef is atomic.

= Objects whose count reaches zero are not automatically deleted by IRIS Performer.
You must specifically request that an object be deleted with pfDelete() or
pfUnrefDelete().

Copying Objects with pfCopy/()

pfCopy() is currently implemented for libpr (and pfMalloc()) objects only. Object
references are copied and reference counts are modified appropriately, as illustrated in
Example 1-5.

Example 1-5 Using pfCopy()

pfGeoState *gstateO, *gstatel;
pfMaterial *mtlA, *mtlB;

gstate0 = pfNewGState(arena);
gstatel = pfNewGState(arena);
mtlA = pfNewMtl(arena); /* initial ref count is 0 */
mtlB = pfNewMtl(arena); /* initial ref count is 0 */

/* Attach mtlA to gstate0. Reference count of mtlA is
* incremented. */
pfGStateAttr(gstate0, PFSTATE_FRONTMTL, mtlA);

/* Attach mtIB to gstatel. Reference count of mtIB is
* incremented. */
pfGStateAttr(gstatel, PFSTATE_FRONTMTL, mtIB);

/* gstatel = gstate0. The reference counts of mtlA and mtiB
*are 2 and O respectively. Note that mtIB is NOT deleted

* even though its reference count is 0. */

pfCopy(gstatel, gstate0);

pfMalloc and the related routines provide a consistent method to allocate memory, either
from the user’s heap (using the C-library malloc function) or from a shared memory
arena (using the IRIX malloc function).
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Printing Objects with pfPrint()

pfPrint() can print many different kinds of objects to a file, for example, you can print
nodes and geosets. To do so, you specify in the argument of the function the object to
print, the level of verbosity, and the destination file. An additional argument, which,
specifies different data according to the type of object being printed.

The different levels of verbosity include:

e PFPRINT_VB_OFF—no printing.

e PFPRINT_VB_ON-—minimal printing (default).

e PFPRINT_VB_NOTICE—minimal printing (default).

e PFPRINT_VB_INFO—considerable printing.

< PFPRINT_VB DEBUG—exhaustive printing.

If the object to print is a type of pfNode, which specifies whether the print traversal
should only traverse the current node (PFTRAV_SELF) or the entire scene graph where
the node specified in the argument is the root node (PFTRAV_SELF |

PFTRAV_DESCEND). For example, to print an entire scene graph, in which scene is the
root node, to the file, fp, with default verbosity, use the following line of code.

file = fopen (“scene.out”,"w");
pfPrint(scene, PFTRAV_SELF | PFTRAV_DESCEND, PFPRINT_VB_ON, fp);
fclose(file);

If the object to print is a pfFrameStats, which should specify a bitmask of the frame
statistics classes that you want printed. The values for the bitmask include:

= PFSTATS_ON Enables the specified classes.

= PFSTATS_OFF Disables the specified classes.

= PFSTATS_DEFAULT  Sets the specified classes to their default values.

e PFSTATS_SET Sets the class enable mask to enmask.

For example, to print select classes of a pfFrameStats structure, stats, to stderr, use the
following line of code.

pfPrint(stats, PFSTATS_ENGFX | PFFSTATS_ENDB | PFFSTATS_ENCULL,
PFSTATS_ON, NULL);

17
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If the object to print is a pfGeoSet, which is ignored and information about that pfGeoSet
is printed according to the verbosity indicator. The output contains the types, names, and
bounding volumes of the nodes and pfGeoSets in the hierarchy. For example, to print the
contents of a pfGeoSet, gset, to stderr, use the following line of code.

pfPrint(gset, NULL, PFPRINT_VB_DEBUG, NULL);

Note: When the last argument, file, is set to NULL, the object is printed to stderr.

Determining Object Type

Sometimes you have a pointer to a pfObject but you don’t know what it really is—is it a
pfGeoSet, a pfChannel, or something else? pfGetType() returns a pfType which specifies
the type of a pfObject. This pfType can be used to determine the class ancestry of the
object. Another set of routines, one for each class, returns the pfType corresponding to
that class, e.g. pfGetGroupClassType() returns the pfType corresponding to pfGroup.

pflsOfType() tells whether an object is derived from a specified type, as opposed to
being the exact type.

With these functions you can test for class type as shown in Example 1-6.

Example 1-6 General-Purpose Scene Graph Traverser
void

travGraph(pfNode *node)

{

if (pflsOfType(node, pfGetDCSClassType()))
doSomethingTransforming(node);

[* If 'node’ is derived from pfGroup then recursively
* traverse its children */
if (pflsOfType(node, pfGetGroupClassType()))
for (i = 0; i < pfGetNumChildren(node); i++)
travGraph(pfGetChild(node, i));
}

Because IRIS Performer allows subclassing of built-in types, when decisions are made
based on the type of an object, it is usually better to use pflsOfType() to test the type of
an object rather than to test for the strict equality of the pfTypes. Otherwise the code will
not have reasonable default behavior with file loaders or applications which use
subclassing.
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The pfType returned from pfGetType() is useful for programs but it is not in a readable
form for you. Calling pfGetTypeName() on a pfType returns a null-terminated ASCII
string that identifies an object’s type. For a pfDCS, for example, pfGetTypeName()
returns the string, “pfDCS.” The type returned by pfGetType() can then be compared to

a class type using pflsOfType(). Class types can be returned by methods such as
pfGetGroupClassType().

19






Chapter 2

“Setting Up the Display Environment”

This chapter describes how to create a display environment by configuring
rendering pipelines, channels, and viewpoints.






Chapter 2

Setting Up the Display Environment

libpf is a visual-database processing and rendering system. The visual database has at its
root a pfScene (as described in Chapter 3 and Chapter 4). The chain of events in leading
from the scene graph to the display includes:

1. A pfScene is viewed by a pfChannel.

2. The pfChannel view of the pfScene is rendered by a pfPipe into a frame buffer.

3. A pfPipeWindow manages the frame buffer.

4. The images in the frame buffer are transmitted to a display system which is
managed by a pfPipeVideoChannel.

Figure 2-1 shows this chain of events.
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pfChannel 1

pfChannel O

pfScene

=

Scene graph

Display system

pfChannel 0 pfChannel 1

Figure 2-1 From Scene Graph to Visual Display

This chapter describes how to implement this chain of events using pfPipes,
pfPipeWindows, and pfChannels.
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Using Pipes

This section describes rendering pipelines (pfPipes) and their implementation in IRIS
Performer. Each rendering pipeline draws into one or more windows (pfPipeWindows)
associated with a single Geometry Pipeline. A minimum of one rendering pipeline is
required, although it is possible to have more than one.

The Functional Stages of a Pipeline

This rendering pipeline comprises three primary functional stages:

APP Simulation processing, which includes reading input from control
devices, simulating the vehicle dynamics of moving models, updating
the visual database, and interacting with other networked simulation
stations.

CULL Traverses the visual database and determines which portions of it are
potentially visible (a procedure known as culling), selects a level of detail
for each model, sorts objects and optimizes state management, and
generates a display list for the draw function.

DRAW Traverses the display list and issues graphics library commands to a
Geometry Pipeline in order to create an image for subsequent display.

Figure 2-2 shows the process flow for a single-pipe system. The application constructs
and modifies the scene definition (a pfScene) associated with a channel. The traversal
process associated with that channel’s pfPipe then traverses the scene graph, building an
IRIS Performer libpr display list. As shown in the figure, this display list is used as input
to the draw process that performs the actual graphics library actions required to draw the
image.
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Figure 2-2 Single Graphics Pipeline

IRIS Performer also provides additional processes for application processing tasks, such
as database loading and intersection traversals, but these processes are per-application
and are asynchronous to the software rendering pipeline(s).

An IRIS Performer application renders images using one or more pfPipes. Each pfPipe
represents an independent software-rendering pipeline. Most IRIS systems contain only
one Geometry Pipeline™, so a single pfPipe is usually appropriate. This single pipeline is
often associated with a window that occupies the entire display surface.

Alternative configurations include Onyx2™ systems with InfiniteReality graphics
(allowing up to eight Geometry Pipelines). Applications can render into multiple
windows, each of which is connected to a single Geometry Pipeline through a pfPipe
rendering pipeline.

Figure 2-3 shows the process flow for a dual-pipe system. Notice both the differences and
similarities between these two figures. Each pipeline (pfPipe) is independent in
multiple-pipe configurations; the traversal and draw tasks are separate, as are the libpr
display lists that link them. In contrast, these pfPipes are controlled by the same
application process, and in many situations access the same shared scene definition.
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Application Scene Pipeline 1 Traversal/Cull Draw-  Frame Buffer-

Pipeline 0~ Traversal/Cull
Figure 2-3 Dual Graphics Pipeline

Each of these stages can be combined into a single IRIX process or split into multiple
processes (pfMultiprocess) for enhanced performance on multiple CPU systems.
Multiprocessing and multiple pipes are advanced topics that are discussed in
“Successful Multiprocessing With IRIS Performer” in Chapter 5.

Creating and Configuring a pfPipe

pfPipes and their associated processes are created when pfConfig() is called. They exist
for the duration of the application. After pfConfig(), the application can get handles to
the created pfPipes using pfGetPipe(). The argument to pfGetPipe() indicates which
pfPipe to return and is an integer between 0 and numPipes-1, inclusive. The pfPipe handle
is then used for further configuration of the pfPipe.

pfMultipipe() specifies the number of pfPipes desired. pfMultiprocess() specifies the

multiprocessing mode used by all pfPipes; the default is one. These two routines are
discussed further in“Successful Multiprocessing With IRIS Performer” in Chapter 5.
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A key part of pfPipe initialization is the determination of the graphics hardware pipeline
(or screen) and the creation of a window on that screen. The screen of a pfPipe can be set
explicitly using pfPipeScreen(). Under single pipe operation, pfPipes can also inherit the
screen of their first opened window. Under multipipe operation, the screen of all pfPipes
must be determined before the pipes are configured by pfConfigStage() or the first call
to pfFrame(). There may be other operations that require pre-set knowledge of the screen
even under single pipes, such as custom configuration of video channels, discussed in
“Creating and Configuring a pfChannel” on page 31.

Once the screen of a pfPipe has been set, it cannot be changed. All windows of a pfPipe
must be opened on the same screen. A graphics window is associated with a pfPipe
through the pfPipeWindow mechanism. If you do not create a pfPipeWindow, IRIS
Performer will automatically create and open a full screen window with a default
configuration for your pfPipe.

Once you create and initialize a pfPipe, you can query information about its
configuration parameters. pfGetPipeScreen() returns the index number of the hardware
pipeline for the pfPipe, starting from zero. On single-pipe systems the return value will
be zero. If no screen has been set, the return value will be (-1). pfGetPipeSize() returns
the full screen size, in pixels, of the rendering area associated with a pfPipe.

You may have application states associated with pfPipe stages and processes that need
special initialization. For this purpose, you may provide a stage configuration callback
for each pfPipe stage using pfStageConfigFunc(pipe, stageMask, configFunc) and
specify the pfPipe, the stage bitmask (including one or more of PFPROC_APP,
PFPROC_CULL, and PFPROC_DRAW), and your stage configuration callback routine.
At any time, you may call the function pfConfigStage() from the application process to
trigger the execution of your stage configuration callback in the process associated with
that pfPipe’s stage. The stage configuration callback will be invoked at the start of that
stage within the current frame (the current frame in the application process, and
subsequent frames through the cull and draw phases of the software rendering pipeline).
Use a pfStageConfigFunc() callback function to configure performer processes not
associated with pfPipes, such as the database process, PFPROC_DBASE, and the
intersection process, PFPROC_ISECT. A common process initialization task for real-time
applications is the selection and/or specification of a CPU on which to run.
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Example of pfPipe Use

The sample source code shipped with IRIS Performer includes several simple examples
of pfPipe use in both C and C++. Specifically, look at the following examples under the
C and C++ directories in /usr/share/Performer/src/pguide/libpf/, such as hello.c, simple.c, and
multipipe.c.

Example 2-1 illustrates the basics of using pipes. The code in this example is adapted
from IRIS Performer sample programs.

Example 2-1 pfPipes in Action

main()

{

inti;

[* Initialize IRIS Performer */
pfinit();
[* Set number of pfPipes desired -- THIS MUST BE DONE
* BEFORE CALLING pfConfig().
*/
pfMultipipe(NumPipes);
/* set multiprocessing mode */
pfMultiprocess(ProcSplit);

[* Configure IRIS Performer and fork extra processes if
* configured for multiprocessing.

*/

pfConfig();

/* Optional custom mapping of pipes to screens.
* This is actually the reverse as the default.
*//
for (i=0; i < NumPipes; i++)
pfPipeScreen(pfGetPipe(i), NumPipes-(i+1));

/* set up optional DRAW pipe stage config callback */
pfStageConfigFunc(-1 /* selects all pipes */,
PFPROC_DRAW /* stage bitmask */,
ConfigPipeDraw /* config callback */);
/* Config func should be done next pfFrame */
pfConfigStage(i, PFPROC_DRAW);
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InitChannels();

[* trigger the configuration and opening of pfPipes
* and pfwindows
*/

pfFrame();

[* Application’s simulation loop */
while(!SimDone())
{

}

/* CALLBACK FUNCTIONS FOR PIPE STAGE INITIALIZATION */
void
ConfigPipeDraw(int pipe, uint stage)
{
/* Application state for the draw process can be initialized
* here. This is also a good place to do real-time
* configuration for the drawing process, if there is one.
* There is no graphics state or pfState at this point so no
* rendering calls or pfApply*() calls can be made.
*/
pfPipe *p = pfGetPipe(pipe);
pfNotify(PFNFY_INFO, PFNFY_PRINT,
“Initializing stage 0x%x of pipe %d”, stage, pipe);

This section describes how to use pfChannels. A pfChannel is a view of a scene. A
pfChannel is a required element for an IRIS Performer application because it establishes
the visual frame of reference for what is rendered in the drawing process.
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Creating and Configuring a pfChannel

When you create a new pfChannel, it is attached to a pfPipe for the duration of the
application. The pfPipe renders the pfScene viewed by the pfChannel into a
pfPipeWindow that is managed by that pipe. Use pfNewChan() to create a new
pfChannel and assign it to a pfPipe. pfChannels are automatically assigned to the first
pfPipeWindow of the pfPipe. In the sample program, the following statement creates a
new channel and assigns it to pipe p.

chan = pfNewChan(p);

The pfChannel is automatically placed in the first pfPipeWindow of the pfPipe. A
pfPipeWindow is created automatically if one is not explicitly created with
pfNewPWin().

The simplest configuration uses one pipe, one channel, and one window. You can use
multiple channels in a single pfPipeWindow on a pfPipe, thereby allowing channels to
share hardware resources. Using multiple channels is an advanced topic that is discussed
in the section of this chapter on “Using Multiple Channels.” For now, focus your
attention on understanding the concepts of setting up and using a single channel.

The primary function of a pfChannel is to define the view of a scene. A view is fully
characterized by a viewport, a viewing frustum, and a viewpoint. The following sections
describe how to set up the scene and view for a pfChannel.

Setting Up a Scene

A pfChannel draws the pfScene set by pfChanScene(). A channel can draw only one
scene per frame but can change scenes from frame to frame. Other pfChannel attributes
such as LOD modifications, described in “pfLOD Nodes” in Chapter 3, affect the scene.

A pfChannel also renders an environmental model known as pfEarthSky. A pfEarthSky
defines the method for clearing the channel viewport before rendering the pfScene and
also provides environmental effects, including ground and sky geometry and fog and
haze. A pfEarthSky is attached to a pfChannel by pfChanESky().
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Setting Up a Viewport

A pfChannel is rendered by a pfPipe into its pfPipeWindow. The screen area that displays
a pfChannel’s view is determined by the origin and size of the window and the channel
viewport specified by pfChanViewport. The channel viewport is relative to the lower left
corner of the window and ranges from 0 to 1. By default, a pfChannel viewport covers
the entire window.

Suppose that you want to establish a viewport that is one-quarter of the size of the
window, located in the lower left corner of the window. Use pfChanViewport(chan, 0.0,
0.25, 0.0, 0.25) to set up the one-quarter window viewport for the channel chan.

You can then set up other channels to render to the other three-quarters of the window.
For example, you can use four channels to create a four-way view for an architectural or
CAD application. See “Using Multiple Channels” on page 40 to learn more about
multiple channels.

Setting Up a Viewing Frustum

A viewing frustum is a truncated pyramid that defines a viewing volume. Everything
outside this volume is clipped, while everything inside is projected onto the viewing
plane for display. A frustum is defined by

< field-of-view (FOV) in the horizontal and vertical dimensions

= near and far clipping planes

A viewing frustum is created by the intersections of the near and far clipping planes with
the top, bottom, left, and right sides of the infinite viewing volume formed by the FOV
and aspect ratio settings. The aspect ratio is the ratio of the vertical and horizontal
dimensions of the FOV.

Figure 2-4 shows the parameters that define a symmetric viewing frustum. To establish
asymmetric frusta refer to the pfChannel(3pf) or pfFrustum(3pf) reference pages for
further details.
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Figure 2-4 Symmetric Viewing Frustum

The viewing frustum is called symmetric when the vertical half-angles are equal and the
horizontal half-angles are equal.

Field-of-View

The FOV is the angular width of view. Use pfChanFOV/(chan, horiz, vert) to set up
viewing angles in IRIS Performer. The quantities horiz and vert are the total horizontal
and vertical fields of view in degrees; usually you specify one and let IRIS Performer
compute the other. If you’re specifying one angle, pass any amount less than or equal to
zero, or greater than or equal to 180, as the other angle. IRIS Performer automatically
computes the unspecified FOV angle to fit the pfChannel viewport using the aspect-ratio
preserving relationship

tan(vert/2) / tan(horiz/2) = aspect ratio
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That is, the ratio of the tangents of the vertical and horizontal half-angles is equal to the
aspect ratio. For example, if horiz is 45 degrees and the channel viewport is twice as wide
as it is high (so the aspect ratio is 0.5), then the vertical field-of-view angle, vert, is
computed to be 23.4018 degrees. If both angles are unspecified, pfChanFOV() assumes a
default value of 45 degrees for horiz and computes the value of vert as described.

Clipping Planes

Clipping planes define the near and far boundaries of the viewing volume. These
distances describe the extent of the visual range in the view, because geometry outside
these boundaries is clipped, meaning that it isn’t drawn.

Use pfChanNearFar(chan, near, far) to specify the distance along the line of sight from
the viewpoint to the near and far planes that bound the viewing volume. These clipping
planes are perpendicular to the line of sight. For the best visual acuity, choose these
distances so that near is as far away as possible from the viewpoint and far is as close as
possible to the viewpoint. Minimizing the range between near and far provides more
resolution for distance comparisons and fog computations.

Setting Up a Viewpoint

A viewpoint describes the position and orientation of the viewer. It is the origin of the
viewing location, the direction of the line of sight from the viewer to the scene being
viewed, and an up direction. The default viewpoint is at the origin (0, 0, 0) looking along
the +Y axis, with +Z up and +X to the right.

Use pfChanView(chan, point, dir) to define the viewpoint for the pfChannel identified
by chan. Specify the view origin for point in X, y, z world coordinates. Specify the view
direction for dir in degrees by giving the degree measures of the three Euler angles:
heading, pitch, and roll.

Heading is a rotation about the z axis, pitch is a rotation about the x axis, and roll is a
rotation about the y axis. The value of dir is the product of the rotations ROTy(roll) O
ROTx(pitch) OROTz(heading), where ROTa(angle) is a rotation matrix about axis a of angle
degrees.
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Angles have not only a degree value, but also a sense, + or —, indicating whether the
direction of rotation is clockwise or counterclockwise. Because different systems follow
different conventions, it is very important to understand the sense of the Euler angles as
they are defined by IRIS Performer. IRIS Performer follows the right-hand rule. According
to the right-hand rule, counterclockwise rotations are positive. This means that a rotation
about the x axis by +90 degrees shifts the +Y axis to the +Z axis, a rotation about the y
axis by +90 degrees shifts the +Z axis to the +X axis, and a rotation about the z axis by
+90 degrees shifts the +X axis to the +Y axis.

Figure 2-5 shows a toy plane (somewhat reminiscent of the Ryan S-T) at the origin of a

coordinate system with the angles of rotation labeled for heading, pitch, and roll. The
arrows show the direction of positive rotation for each angle.

z
d

‘ + Heading

+ Pitch

Figure 2-5 Heading, Pitch, and Roll Angles

A roll motion tips the wings from side to side. A pitch motion tips the nose up or down.
A yaw motion steers the plane, changing its heading. Accurate readings of these angles
are critical information for a pilot during a flight, and a thorough understanding of how
the angles function together is required for creation of an accurate flight simulation
visual with IRIS Performer. The same is also true of marine and other vehicle
simulations.
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Alternatively, you can use pfChanViewMat(chan, mat) to create a 4x4 homogeneous
matrix mat that defines the view coordinate system for channel chan. The upper left 3x3
submatrix defines the coordinate system axes, and the bottom row vector defines the
origin of the coordinate system. The matrix must be orthonormal, or the results will be
undefined. You can construct matrices using tools in the libpr library.

The origin and heading, pitch, and roll angles, or the view matrix, create a complete view
specification. The view specification can locate the eyepoint frame-of-reference origin at
any point in world coordinates. The gaze vector, the eye’s +Y axis, can point in any
direction. The up vector, the eye’s +Z axis, can point in any direction perpendicular to the
gaze vector.

You can query the system for the view and eyepoint-direction values with
pfGetChanView(), or obtain the view matrix directly with pfGetChanViewMat().

The view direction can be modified by one or more offsets, relative to the eyepoint
frame-of-reference. View offsets are useful in situations where several channels render
the same scene into adjacent displays for a wider field-of-view or higher resolution.
Offsets are also used for multiple viewer perspectives, such as pilot and copilot views.

Use pfChanViewOffsets(chan, xyz, hpr) to specify additional translation and rotation
offsets for the viewpoint and direction; xyz specifies a translation vector and hpr specifies
a heading/pitch/roll rotation vector. Viewing offsets are automatically added each
frame to the view direction specified by pfChanView() or pfChanViewMat().

For example, to create three different perspectives of the same scene as displayed by
three windows in an airplane cockpit, use azimuth offsets of 45, 0, and -45 for left,
middle, and right views. To create vertical view groups such as might be seen through
the windscreen of a helicopter, use both azimuth and elevation offsets. Once the view
offsets have been set up, you need only set the view once per frame. View offsets are
applied after the eyepoint position and gaze direction have been established. As with the
other angles, be aware that the conventions for measuring azimuth and elevation angles
vary between graphics systems, so you should verify that the sense of the angles is
correct.

Example of Channel Use

Example 2-2 shows how to use various pfChannel-related functions. The code is derived
from IRIS Performer sample programs.
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Example 2-2 Using pfChannels

main()

}

pfinit();

pfConfig();

InitScene();

InitPipe();

InitChannel();

/* Application main loop */
while(!SimDone())

{

,

void InitChannel(void)

{

pfChannel *chan;
chan = pfNewChan(pfGetPipe(0));

/* Set the callback routines for the pfChannel */
pfChanTravFunc(chan, PFTRAV_CULL, CullFunc);
pfChanTravFunc(chan, PFTRAV_DRAW, DrawFunc);

/* Attach the visual database to the channel */
pfChanScene(chan, ViewState->scene);

[* Attach the EarthSky model to the channel */
pfChanESky(chan, ViewState->eSky);

/* Initialize the near and far clipping planes */

pfChanNearFar(chan, ViewState->near, ViewState->far);

[* Vertical FOV is matched to window aspect ratio. */
pfChanFOV(chan, 45.0f/NumChans, -1.0f);

/* Initialize the viewing position and direction */
pfChanView(chan, ViewState->initView.xyz,
ViewState->initView.hpr);
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/* CULL PROCESS CALLBACK FOR CHANNEL*/

/* The cull function callback. Any work that needs to be
* done in the cull process should happen in this function.
*/

void

CullFunc(pfChannel * chan, void *data)

{

static long first = 1;
if (first)

if ((pfGetMultiprocess() & PFMP_FORK_CULL) &&
(ViewState->procLock & PFMP_FORK_CULL))
pfuLockDownCull(pfGetChanPipe(chan));
first = 0;
}
PreCull(chan, data);

pfCull(); [* Cull to the viewing frustum */

PostCull(chan, data);
}

/* DRAW PROCESS CALLBACK FOR CHANNEL*/
/* The draw function callback. Any graphics functionality
* outside IRIS Performer must be done here. 1/0O with pure
devices must happen here.
*/
void
DrawFunc(pfChannel *chan, void *data)

{

PreDraw(chan, data); /* Clear the viewport, etc. */

pfDraw(); /* Render the frame */

*|RIS GL

/* draw HUD, read IRIS GL devices, or whatever else needs

* to be done post-draw.
*/
PostDraw(chan, data);
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Controlling the Video Output

You use pfPipeVideoChannel to query and control the configuration of a hardware video
channel. The methods allow you to, for example, query or specify the origin and size of
the video output and scale the display.

By default, all pfVideoChannels on a pfPipe use the first entire video channel on the
screen selected by the pfPipe. Each pfPipeWindow initially has a default
pfPipeVideoChannel already assigned to it. When pfChannels are added to
pfPipeWindows, they will be using, by default, this first pfPipeVideoChannel. You can
get a pfPipeVideoChannel of a pfRPipeWindow with pfGetPWinPVChan() and
specifying the index of the pfPipeVideoChannel on the pfPipeWinow; the initial default
one will be at index 0. You can then reconfigure this pPipeVideoChannel to select a
different video channel or change the attributes of the selected video channel. You can
create a pfPipeVideoChannel with pfNewPVChan(). To use this for a given pfChannel,
you must add it to a pfPipeWindow that will cover the screen area of the desired video
channel. When a pfPipeVideoChannel is added to a pfPipeWindow with
pfAddPWinPVChan(), the index into the pfPipeWindow list of video channels is
returned and by default the pfPipeVideoChannel will get the next active hardware video
channel after the previous pfPipeVideoChannel on that pfPipeWindow. You can
explicitly select the hardware video channel with pfPVVChanld(). The pfChannel will
then reference this pfPipeVideoChannel through the index that you got back from
pfAddPWinPVChan() and assign to the pfChannel with pfChanPWinPVChanlndex().

pvc = pfNewPVChan(p);
pvcindex = pfPWinAddPVChan(pw, pvc);
pfChanPWinPVChanindex(chan, pvcindex);

Note that the screen of the pfPipe must be known to fully specify the desired video
channel. Queries on the pfPipeVideoChannel will return values indicating unknown
configuration until the screen is known. The screen can be determined by IRIS Performer
when the window is opened in the DRAW process but you can also explicitly set the
screen of the pfPipe with pfPipeScreen().

You can also get to the hardware video channel structure, pfVideoChannellnfo(), for
more configuration options, such as reading gamma data or even a specific video format.
For more information on pfPipeWindows and pfPipeVideoChannels, see Chapter 12,
“pfPipeWindows and pfPipeVideoChannels.”
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Each rendering pipeline can render multiple channels with multiple
pfPipeVideoChannels to a single pfPipeWindows. Multiple pfPipeWindows can also be
used but at the cost of some additional processing overhead. The pfChannel is assigned
to the proper pfPipeWindow and selects its pfPipeVideoChannel from that
pfPipeWindow. The pfChannel must also have a viewport, set with pfChanViewport(),
that covers the proper window area to match that of the desired pfPipeVideoChannel.

Each channel represents an independent viewpoint into either a shared or an
independent visual database. Different types of application can have vastly different
pipeline-window-channel configurations. This section describes two extremes: visual
simulation applications where there is typically one window per pipeline, and highly
interactive uses that require dynamic window and channel configuration.

One Window per Pipe, Multiple Channels per Window

Often there will is a single channel associated with each pipeline, as shown in the top half
of Figure 2-6. This section describes two important uses for multiple-channel support—
multiple pipelines per system and multiple windows per pipeline—the second of which
is illustrated in the bottom half of Figure 2-6.
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One situation that requires multiple channels occurs when inset views must appear
within an image. A simple example of this application is a driving simulator in which the
screen image represents the view out the windshield. If a rear-view mirror is to be drawn,
it must overlay the main forward view to provide a separate view of the same database
within the borders of the simulated mirror’s frame.

Channels are physically rendered in the order that they are assigned to a pfPipeWindow
on their parent pfPipe. Channels, upon creation, are assigned to the end of the channel
list of the first window of their pfPipe. In the driving simulator example, creating pipes
and channels with the following structure creates two channels on a single shared
pipeline:

pipeline = pfGetPipe(0);

frontView = pfNewChan(pipeline);

rearView = pfNewChan(pipeline);

In this case, IRIS Performer’s actual drawing order becomes:
1. Clear frontView.
2. Draw frontView.
3. Clear rearView.
4

Draw rearView.

This default ordering results in the rear-view mirror image always overlaying the
front-view image, as desired. You can control and re-order the drawing of channels
within a pfPipeWindow with the pflnsertChan(pwin, where, chan) and
pfMoveChan(pwin, where, chan) routines. More details about multiple channels and
multiple window are discussed in the next section.

When the host has multiple Geometry Pipelines, as supported on Onyx RealityEngine?
systems, you can create a pfPipe and pfChannel pair for each hardware pipeline. The
following code fragment illustrates a two-channel, two-pipeline configuration:

leftPipe = pfGetPipe(0);

leftView = pfNewChan(leftPipe);

rightPipe = pfGetPipe(1);

rightView = pfNewChan(rightPipe);

This configuration forms the basis for a high-performance stereo display system, since
there is a hardware pipeline dedicated to each eye and rendering occurs in parallel.



Using Multiple Channels

The two-channel stereo-view application described in this example and the inset-view
application described in the previous example can be combined to provide stereo views
for a driving simulator with an inset rear-view mirror. The correct management of each
eye’s viewpoint and the mirror reflection helps provide a convincing sense of physical
presence within the vehicle.

The third common multiple-channel situation involves support for multiple video
outputs per pipeline. To do this, first associate each pipeline with a set of nonoverlapping
channels, one for each desired view. Next, use one of the following video-splitting
methods:

= Use the multi-channel hardware options, available from Silicon Graphics, for
systems such as the 8 channel Display Generator(DG) for Onyx2 InfiniteReality,
where you can create up to eight independent video outputs from a single Graphics
Pipeline, with each video output corresponding to one of the tiled channels. The
OCTANE video option supports four video outputs and the RealityEngine?
Multi-Channel Option supports six video channels per Graphics Pipeline.

= Connect multiple video monitors in series to a single pipeline’s video output.
Because each monitor receives the same display image, a masking bezel is used to
obscure all but the relevant portion of each display surface.

The three multiple-channel concepts described here can be used in combination. For
example, use of three InfiniteReality pipelines, each equipped with the 8 channel DG ,
allows creation of up to 24 independent video displays. The channel-tiling method can
also be used for some or all of these displays.

Example 2-3 shows how to use multiple channels on separate pipes.

Example 2-3 Multiple Channels, One Channel per Pipe
pfChannel *Chan[MAX_CHANS];

void InitChannel(int NumChans)
{
/* Initialize each channel on a separate pipe */
for (i=0; i< NumChans; i++)
Chan([i] = pfNewChan(pfGetPipe(i));

/* Make channel n/2 the master channel (can be any
* channel).
*/
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ViewState->masterChan = Chan[NumChans/2];

{

long share;

[* Get the default channel-sharing mask */
share = pfGetChanShare(ViewState->masterChan);

[* Add in the viewport share bit */
share |= PFCHAN_VIEWPORT;

if (GangDraw)
{
/* add GangDraw to channel share mask */
share |= PFCHAN_SWAPBUFFERS_HW;
}

pfChanShare(ViewState->masterChan, share);

}

[* Attach channels */
for (i=0; i< NumChans; i++)
if (Chan[i] |= ViewState->masterChan)
pfAttachChan(ViewState->masterChan, Chan([i]);

/* Continue with channel initialization */

Using Channel Groups
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In many multiple-channel situations, including the examples described in the previous
section, it is useful for channels to share certain attributes. For the three-channel cockpit
scenario, each pfChannel shares the same eyepoint while the left and right views are
offset using pfChanViewOffsets(). IRIS Performer supports the notion of channel groups,
which facilitate attribute sharing between channels.

pfChannels can be gathered into channel groups that share like attributes. A channel

group is created by attaching one pfChannel to another, or to an existing channel group.
Use pfAttachChan() to create a channel group from two channels or to add a channel to
an existing channel group. Use pfDetachChan() to remove a pfChannel from a channel

group.
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A channel share mask defines shared attributes for a channel group. The attribute tokens
listed in Table 2-1 are bitwise OR-ed to create the share mask.

Table 2-1 Attributes in the Share Mask of a Channel Group

Token Shared Attributes

PFCHAN_FOV Horizontal and vertical fields of view
PFCHAN_VIEW View position and orientation
PFCHAN_VIEW_OFFSETS (x,y, ) and (heading, pitch, roll) offsets of the view direction
PFCHAN_NEARFAR Near and far clipping planes
PFCHAN_SCENE All channels display the same scene
PFCHAN_EARTHSKY All channels display the same earth/sky model
PFCHAN_STRESS All channels use the same stress filter
PFCHAN_LOD All channels use the same LOD modifiers
PFCHAN_SWAPBUFFERS All channels swap buffers at the same time

PFCHAN_SWAPBUFFERS_HW Synchronize swap buffers for channels on different graphics
pipelines

Use pfChanShare() to set the share mask for a channel group. By default, channels share
all attributes except PFCHAN_VIEW_OFFSETS. When you add a pfChannel to a channel
group, it inherits the share mask of that group.

A change to any shared attribute is applied to all channels in a group. For example, if you
change the viewpoint of a pfChannel that shares PFCHAN_VIEW with its group, all
other pfChannels in the group will acquire the same viewpoint.

Two attributes are particularly important to share in adjacent-display multiple-channel
simulations: PFCHAN_SWAPBUFFERS and PFCHAN_LOD. PFCHAN_LOD ensures
that geometry that straddles displays is drawn the same way in each channel. In this case,
all channels will use the same LOD modifier when rendering their scenes so that LOD
behavior is consistent across channels. PFCHAN_SWAPBUFFERS ensures that channels
refresh the display with a new frame at the same time. pfChannels in different pfPipes
that share PFCHAN_SWAPBUFFERS_HW will frame-lock the graphics pipelines
together.
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Example 2-4 illustrates the use of multiple channels and channel-sharing.

Example 2-4 Channel-Sharing
pfChannel *Chan[MAX_CHANS];

main()
{
pfinit();

[* Set number of pfPipes desired. THIS MUST BE DONE
* BEFORE CALLING pfConfig().

*/

pfMultipipe(NumPipes);

.p;{‘Config();

i.r;itScene();

InitChannels();
pfFrame();

[* Application main loop */
while(!SimDone())
{

-
}

void InitChannel(int NumChans)
{
/* Initialize all channels on pipe 0 */
for (i=0; i< NumChans; i++)
Chanli] = pfNewChan(pfGetPipe(0));

/* Make channel n/2 the master channel (can be any
* channel).

*/

ViewState->masterChan = Chan[NumChans/2];
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/* Attach all Channels as slaves to the master channel */
for (i=0; i< NumChans; i++)
if (Chan[i] |= ViewState->masterChan)
pfAttachChan(ViewState->masterChan, Chan([i]);

pfSetVec3(xyz, 0.0f, 0.0f, 0.0f);
/* Set each channel’s viewing offset. In this case use
* many channels to create one multichannel contiguous
* frustum with a 45° field of fiew.
*/
for (i=0; i < NumChans; i++)
{
float fov = 45.0f/NumChans;

pfSetVec3(hpr, ((NumChans - 1) * 0.5f) - i) * fov,
0.0f, 0.0f);
pfChanViewOffsets(Chanli], xyz, hpr);
}

/* Now, just configure the master channel and all of the
* other channels will share those attributes.
*/

chan = ViewState->masterChan;
pfChanTravFunc(chan, PFTRAV_CULL, CullFunc);
pfChanTravFunc(chan, PFTRAV_DRAW, DrawFunc);
pfChanScene(chan, ViewState->scene);
pfChanESky(chan, ViewState->eSky);
pfChanNearFar(chan, ViewState->near, ViewState->far);
pfChanFOV(chan, 45.0f/NumChans, -1.0f);
pfChanView(chan, ViewState->initView.xyz,
ViewState->initView.hpr);
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Multiple Channels and Multiple Windows

For some interactive applications, you may want to be able to dynamically control the
configuration of Channels and Windows. IRIS Performer allows you to dynamically
create, open, and close windows. You can also move channels amongst the windows of
the shared parent pfPipe, and re-order channels within a pfPipeWindow. Channels can
be appended to the end of a pfPipeWindow channel list with pfAddChan() and removed
with pfRemoveChan(). A channel can only be attached to one pfPipeWindow — no
instancing of pfChannels is allowed. When a pfChannel is put on a pfPipeWindow, it is
automatically deleted from its previous pfPipeWindow. A channel that is not assigned to
a pfPipeWindow is not drawn (though it may still be culled).

You can control and re-order the drawing of channels within a pfPipeWindow with the
pflnsertChan(pwin, where, chan) and pfMoveChan(pwin, where, chan) routines. Both
of these routines do a type of insertion: pflnsertChan() will add chan to pwin’s channel
list in front of the channel in the list at location where. pfMoveChan() will delete chan
from it’s old location and move it to where in pwin’s channel list.

If you have pfChannels in different pfPipeWindows or pfPipes that are supposed to
combine to form a continuous scene, you will want to ensure that both the vertical retrace
and doublebuffering of these windows is synchronized. This is required for both
reasonable performance and visual quality. Use the genlock(7) system video feature to
ensure that the verticial retraces of different graphics pipelines are synchronized. To
synchronize double buffering, you want to either specify
PFCHAN_SWAPBUFFERS_HW in the share mask of the pfChannels and put the
pfChannels in a share group, or else create a pfPipeWindow swap group, discussed in
Chapter 12, “pfPipeWindows and pfPipeVideoChannels.”
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“Nodes and Node Types”

This chapter describes the structure of IRIS Performer’s scene-definition
databases and component data types.
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Nodes and Node Types

A scene graph holds the data that defines a virtual world. The scene graph includes
low-level descriptions of object geometry and their appearance, as well as higher-level,
spatial information, such as specifying the positions, animations, and transformations of
objects, as well as additional application-specific data.

Scene graph data is encapsulated in many different types of nodes. One node might
contain the geometric data of an object; another node might contain the transformation
for that object to orient and position it in the virtual world. The nodes are associated in a
hierarchy that is an adirected, acyclic graph. IRIS Performer and your application can act
on the scene graph to perform various complex operations efficiently, such as database
intersection and rendering scenes.

This chapter focuses on the data types themselves rather than instances of those types.
Chapter 4, “Database Traversal,” discusses traversing sample scene graphs in terms of
actual objects rather than abstract data types.

A scene is represented by a graph of nodes. A node is a subclass of pfNode. Only nodes
can be in scene graphs and have child nodes. In general, nodes either contain descriptive
information about scene graph geometry, or they create groups and hierarchies of nodes.
Many classes, such as pfEngine and pfFlux, that are not nodes can interact with nodes.

Attribute Inheritance
The basic element of a scene hierarchy is the node. While IRIS Performer supplies many
specific types of nodes, it also uses a concept called class inheritance, which allows

different node types to share attributes. An attribute is a descriptive element of geometry
or its appearance.
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pfNode

IRIS Performer’s node hierarchy begins with the pfNode class, as shown in Figure 3-1.

pfNode

[pfGeode| [pfText| pfGroup | pfASD | |pfLightSource

pfBillboard

pfPartition| |pfLayer pfLOD

pfSCS |pfSWitch| |pfSequence

pfFCS pfDCS

pfScene

Figure 3-1 Nodes in the IRIS Performer Hierarchy
All node types are derived from pfNode; they inherit pfNode’s attributes and the libpf

routines for setting and getting attributes. In general, a node type inherits the attributes
and routines of all its parent nodes in the type hierarchy.
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Table 3-1 lists the basic node class and gives a simple description for each node type.

Table 3-1 IRIS Performer Node Types

Node Type Node Class Description

pfNode Abstract Basic node type

pfGroup Branch Groups zero or more children

pfScene Root Parent of the visual database

pfSCS Branch Static Coordinate System

pfDCS Branch Dynamic Coordinate System

pfFCS Branch Flux Coordinate System

pfSwitch Branch Selects among multiple children
pfSequence Branch Sequences through its children

pfLOD Branch Level-of-detail node

pfLayer Branch Renders coplanar geometry
pfLightSource  Leaf Contains specifications for a light source
pfGeode Leaf Contains geometric specifications
pfBillboard Leaf Rotates geometry to face the eyepoint
pfPartition Branch Partitions geometry for efficient intersections
pfText Leaf Renders 2D and 3D text

pfASD Leaf Controls transition between LOD levels.
pfNode

As shown in Figure 3-1, all libpf nodes are arranged in a type hierarchy, which defines the
inheritance of functionality. A pfNode is an abstract class, meaning that a pfNode can
never be explicitly created by an application, and all other nodes inherit the functionality
of pfNode.. Its purpose is to provide a root to the type hierarchy and to define the
attributes that are common to all node types.

53



Chapter 3: Nodes and Node Types

54

pfNode Attributes

The following pfNode attributes are inherited by all other libpf node types:
= Node name

= Parent list

= Bounding geometry

= Intersection and traversal masks

= Callback functions and data

= User data

Bounding geometry, intersection masks, user data, and callbacks are advanced topics
that are discussed in Chapter 4, “Database Traversal.”

The routines that set, get, and otherwise manipulate these attributes can be used by all
libpf node types, as indicated by the keyword ‘Node’ in the routine names. Nodes used
as arguments to pfNode routines must be cast to pfNode* to match parameter
prototypes, as shown in this example:

pfNodeName((pfNode*) dcs, "rotor_rotation");

However, you usually don’t need to do this casting explicitly. When you use the C API
and compile with the —ansi flag (which is the usual way to compile IRIS Performer
applications), libpf provides macro wrappers around pfNode routines that automatically
perform argument casting for you. When you use the C++ API, such type casting is not
necessary.

pfNode Operations

In addition to sharing attributes, certain basic operations are provided for all node types.
They include;

New Create and return a handle to a new node.
Get Get node attributes.

Set Set node attributes.

Find Find a node based on its name.

Print Print node data.
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Copy Copy node data.
Delete Delete a node.

The Set operation is implied in the node attribute name. The names of the
attribute-getting functions contain the string “Get”.

An Example of Scene Creation

Example 3-1 illustrates the creation of a scene that includes two different kinds of
pfNodes. (For information about pfScene nodes, see “pfScene Nodes” on page 63; for
information about pfDCS nodes, see “pfDCS Nodes” on page 64.)

Example 3-1 Making a Scene

pfScene *scene;
pfDCS *dcs1, *dcs2;

scene = pfNewScene(); [* Create a new scene node */
dcsl = pfNewDCS(); [* Create a new DCS node */
dcs2 = pfNewDCS(); /* Create a new DCS node */
pfCopy(dcs2, dcsl); /* Copy all node attributes */

I* from dcs1 to dcs2 */
pfNodeName(scene, "Scene_Graph_Root"); /* Name scene node */
pfNodeName(dcs1,"DCS_1"); /* Name dcsl */
pfNodeName(dcs2,"DCS_2"); /* Name dcs2 */

/* Use a pfGet*() routine to determine node name */
printf("Name of first DCS node is %s.", pfGetNodeName(dcsl));

/* Recursively free this node if it's no longer referenced */
pfDelete(scene);

pfGroup

In addition to inheriting the pfNode attributes described in the “pfNode” section of this
chapter, a pfGroup also maintains a list of zero or more child nodes that are accessed and
manipulated using group operators. Children of a pfGroup can be either branch or leaf
nodes. Traversals process the children of a pfGroup in left-to-right order.
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Table 3-2 lists the pfGroup functions, with a description and a visual interpretation of
each.

Table 3-2 pfGroup Functions
Function Name Description Diagram
pfAddChild(group, child) Appends child to the list for group.

o

pflnsertChild(group, index, child) Inserts child before the child whose o= 2
place in the list is index. Ingex =
¢ I be

pfRemoveChild(group, child) Detaches child from the list and
shifts the list to fill the vacant spot.
Returns 1 if child was removed.
Returns 0 if child was not found in
the list. Note that the “removed”
node is only detached, not deleted. &—

s

pfGetNumChildren(group) Returns the number of children in
group. ﬁ\/
4

pfGroup nodes can organize a database hierarchy either logically or spatially. For
example, if your database contains a model of a town, a logical organization might be to
group all house models under a single pfGroup. However, this kind of organization is
less efficient than a spatial organization, which arranges geometry by location. A spatial
organization improves culling and intersection performance; in the example of the town,
spatial organization would consist of grouping houses with their local terrain geometry
instead of with each other. Chapter 4 describes how to spatially organize your database
for best performance.



Nodes

The code fragment in Example 3-2 illustrates building a hierarchy using pfGroup nodes.

Example 3-2 Hierarchy Construction Using Group Nodes

scene = pfNewScene();

/* The following loop constructs a sample hierarchy by

* adding children to several different types of group

* nodes. Notice that in this case the terrain was broken
* up spatially into a 4x4 grid, and a switch node is used
* to cause only one vehicle per terrain node to be

* traversed.

*/

for(j=0;j<4;j++)

for(i=0;i<4;i++)

{
pfGroup *spatial_terrain_block = pfNewGroup();
pfSCS *house_offset = pfNewSCS();
pfSCS *terrain_block_offset = pfNewSCS();
pfDCS *car_position = pfNewDCS();
pfDCS *tank_position = pfNewDCS();
pfDCS *heli_position = pfNewDCS();
pfSwitch *current_vehicle_type;
pfGeode *heli, *car, *tank;

pfAddChild(scene, spatial_terrain_block);
pfAddChild(spatial_terrain_block,
terrain_block_offset);
pfAddChild(spatial_terrain_block, house_offset);
pfAddChild(spatial_terrain_block,
current_vehicle_type);
pfAddChild(current_vehicle_type, car_position);
pfAddChild(current_vehicle_type, tank_position);
pfAddChild(current_vehicle_type, heli_position);
pfAddChild(car_position, car);
pfAddChild(tank_position, tank);
pfAddChild(heli_position, heli);

/* The following shows how one might use IRIS Performer to
* manipulate the scene graph at run time by adding and
* removing children from branch nodes in the scene graph.
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*/

for(j = 0; j < 4; j++)
for(i=0; i< 4;i++)
{
pfGroup *this_terrain;
this_terrain = pfGetChild(scene, j*4 +i);
if (pfGetNumChildren(this_terrain) > 2)
this_tank = pfGetChild(this_terrain, 2);
if (is_tank_disable(this_tank))
{
pfRemoveChild(this_terrain, this_tank);
pfAddChild(disabled_tanks, this_tank);
}
}

This section describes the basic concepts involved in working with nodes. It explains
how shared instancing can be used to create multiple copies of an object, and how changes
made to a parent node propagate down to its children. A sample program that illustrates
these concepts is presented at the end of the chapter.

Instancing

A scene graph is typically constructed at application initialization time by creating and
adding new nodes to the graph. If a node is added to two or more parents it is termed
instanced and is shared by all its parents. Instancing is a powerful mechanism that saves
memory and makes modeling easier. libpf supports two kinds of instancing, which are
described in the following sections.

Shared Instancing

Shared instancing is the result of simply adding a node to multiple parents. If an
instanced node has children, then the entire subgraph rooted by the node is considered
to be instanced. Each parent shares the node; thus, modifications to the instanced node
or its subgraph are experienced by all parents. Shared instances can be nested—that is,
an instance can itself instance other nodes.
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In the following sample code, group0 and groupl share a node:

pfAddChild(group0, node);
pfAddChild(groupl, node);

Figure 3-2 shows the structure created by this code. Before the instancing operation, the
two groups and the node to be shared all exist independently, as shown in the left portion
of the figure. After the two function calls shown above, the two groups both reference the
same shared hierarchy. (If the original groups referenced other nodes, those nodes would
remain unchanged.) Note that each of the group nodes considers the shared hierarchy to
be its own child.

Group 1
Group0  Group 1

Group 0

) )
\ \
Figure 3-2 Shared Instances

Cloned Instancing

In many situations shared instancing isn’t desirable. Consider a subgraph that represents
a model of an airplane with articulations for ailerons, elevator, rudder, and landing gear.
Shared instances of the model result in multiple planes that share the same articulations.
Consequently, it’s impossible for one plane to be flying with its landing gear retracted
while another is on a runway with its landing gear down.
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Cloned instancing provides the solution to this problem by cloning—creating new copies
of variable nodes in the subgraph. Leaf nodes containing geometry are not cloned and
are shared to save memory. Cloning the airplane model generates new articulation
nodes, which can be modified independently of any other cloned instance. The cloning
operation, pfClone(), is actually a traversal and is described in detail in Chapter 4.

Figure 3-3 shows the result of cloned instancing. As in the previous figure, the left half of

the drawing represents the situation before the operation, and the right half shows the
result of the operation.

Root

Xi Dynamic
coordinate
system

C—‘)— Leaf
\

Figure 3-3 Cloned Instancing

The cloned instancing operation constructs new copies of each internal node of the
shared hierarchy, but uses the same shared instance of all the leaf nodes. In use, this is an
important distinction, because the number of internal nodes may be relatively few, while
the number and content of geometry-containing leaf nodes is often quite extensive.

Nodes G1 and G2 in Figure 3-3 are the groups that form the root nodes after the cloned
instancing operation is complete. Node P is the parent or root node of the instanced
object, and D is a dynamic coordinate system contained within it. Nodes A, B, and C are
the leaf geometry nodes; they are shared rather than copied.
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The code in Example 3-3 shows how to create cloned instances.

Example 3-3 Creating Cloned Instances

pfGroup *g1, *g2, *p;
pfDCS *d;
pfGeode *a, *b, *c;

/* Create initial instance of scene hierarchy of p under

* group g1: add a DCS to p, then add three pfGeode nodes
* under the DCS.

*/

pfAddChild(g1,p);

pfAddChild(p,d);

pfAddChild(d,a);

pfAddChild(d,b);

pfAddChild(d,c);

/* Create cloned instance version of p under g2 */
pfAddChild(g2, pfClone(p,0));

/* Notice that pfGeodes are cloned by instancing rather than
* copying. Also notice that the second argument to

* pfClone() is 0; that argument is currently required by

* RIS Performer to be zero.

*/

Bounding Volumes

libpf uses bounding volumes for culling and to improve intersection performance. libpf
computes bounding volumes for all nodes in a database hierarchy unless the bound is
explicitly set by the application. The bounding volume of a branch node encompasses the
spatial extent of all its children. libpf automatically recomputes bounds when children are
modified.

By default, bounding volumes are dynamic; that is, libpf automatically recomputes them

when children are modified. For instance, in Example 3-4 when the DCS is rotated
nothing more needs to be done to update the bounding volume for g1.
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Example 3-4 Automatically Updating a Bounding Volume

pfAddChild(gl,dcs);
pfAddChild(dcs, helicopter);

pfDCSRot(dcs, heading+10.0f, pitch,roll);
pfDCSRot(dcs, heading, pitch - 5.0f, roll + 2.0f);

In some cases, you may not want bounding volumes to be recomputed automatically. For
example, in a merry-go-round with horses moving up and down, you know that the
horses stay within a certain volume. Using pfNodeBSphere(), you can specify a
bounding sphere within which the horse always remains and tell IRIS Performer that the
bounding volume is “static”—not to be updated no matter what happens to the node’s
children. You can always force an update by setting the bounding volume to NULL with
pfNodeBSphere(), as follows:

pfNodeBSphere(node, NULL, NULL, PFBOUND_STATIC);

At the lowest level, within pfGeoSets, bounding volumes are maintained as
axially-aligned boxes. When you add a pfGeoSet to a pfGeode or directly invoke
pfGetGSetBBox() on the pfGeoSet, a bounding box is created for the pfGeoSet. Neither
the bounding box of the pfGeoSet nor the bounding volume of the pfGeode is updated
if the geometry changes inside the pfGeoSet. You can force an update by setting the
pfGeoSet bounding box and then the pfGeode bounding volume to a NULL bounding
box, as follows:

< Recompute the pfGeoSet bounding box from the internal geometry:
pfGSetBBox(gset, NULL);

= Recompute the pfGeode bounding volume from the bounding boxes of its
pfGeoSets:

pfNodeBSphere(geode, NULL, PFBOUND_DYNAMIC);
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Node Types

This section describes the node types and the functions for working with each node type.

For more information about pfLPointState and pfLightSource, see Chapter 6, “Creating
Visual Effects.”

pfScene Nodes

A pfScene is a root node that is the parent of a visual database. Use pfNewScene() to
create a new scene node. Before the scene can be drawn, you must call
pfChanScene(channel, scene) to attach it to a pfChannel.

Any nodes that are within the graph that is parented by a pfScene are culled and drawn
once the pfScene is attached to a pfChannel. Because pfScene is a group, it uses pfGroup
routines; however, a pfScene cannot be the child of any other node. The following
statement adds a pfGroup to a scene:

pfAddChild(scene, root);

In the simplest case, the pfScene is the only node you need to add. Once you have a
pfPipe, pfChannel, and pfScene, you have all the necessary elements for generating
graphics using IRIS Performer.

pfScene Default Rendering State

pfScene nodes may specify a global pfGeoState that all other pfGeoStates in nodes below
the pfScene will inherit from. Specification of this scene pfGeoState is done via the
function pfSceneGState(). This functionality allows for the subtle optimization of
pushing the most frequently used pfGeoState attributes for a particular scene graph into
a global state and having the individual states inherit these attributes rather than specify
them. This can save IRIS Performer work during culling (by having to ‘unwrap’ fewer
pfGeoStates) and thus possibly increase frame rate.

There are several database utility functions in libpfdu designed to help with this
optimization. pfdMakeSceneGState() returns an ‘optimal’ pfGeoState based on a list of
pfGeoStates. pfdOptimizeGStateL ist() takes an existing global pfGeoState, a new global
pfGeoState, and a list of pfGeoState’s that should be optimized and cause all attributes
of pfGeoStates in the list of pfGeoStates to be inherited if they are the same as the
attribute in the new global pfGeoState. Lastly pfdMakeSharedScene() will cause this
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optimization to happen for all of the pfGeoStates under the pfScene that was passed into
the function. For more information on pfGeoStates see Chapter 8, “Geometry,” which
discusses libpr in more detail. For more information of the creation and optimization of
databases see Chapter 7, “Importing Databases,” which discusses building database
converters and libpfdu.

pfSCS Nodes

A pfSCS is a branch node that represents a static coordinate system. A pfSCS node
contains a fixed modeling transformation matrix that cannot be changed once it is
created. pfSCS nodes are useful for positioning models within a database. For example,
a house that is modeled at the origin should be placed in the world with a pfSCS because
houses rarely move during program execution.

Use pfNewSCS(matrix) to create a new pfSCS using the transformation defined by
matrix. To find out what matrix was used to create a given pfSCS, call pfGetSCSMat().

For best graphics performance, matrices passed to pfSCS nodes (and the pfDCS node
type described in the next section) should be orthonormal (translations, rotations, and
uniform scales). Nonuniform scaling requires renormalization of normals in the graphics
pipe. Projections and other non-affine transformations are not supported.

While pfSCS nodes are useful in modeling, using too many of them can reduce culling,
rendering, and intersection performance. For this reason, libpf provides the pfFlatten()
traversal. pfFlatten() will traverse a scene graph and apply static transformations
directly to geometry to eliminate the overhead associated with managing the
transformations. pfFlatten() is described in detail in Chapter 4, “Database Traversal.”

pfDCS Nodes

A pfDCS is a branch node that represents a dynamic coordinate system. Use a pfDCS
when you want to apply an initial transformation to a node and also change the
transformation during the application. Use a pfDCS to articulate moving parts and to
show object motion.

Use pfNewDCS() to create a new pfDCS. The initial transformation of a pfDCS is the
identity matrix. Subsequent transformations are set by specifying a new transformation
matrix, or by replacing the rotation, scale, or translation in the current transformation
matrix. The pfDCS transforms each child C(i) to C(i)(Bcale[Rotation[Translation.
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Table 3-3 lists functions for manipulating a pfDCS, including rotating, scaling, and
translating the children of the pfDCS.

Table 3-3 DCS Transformations

Function Name Description

pfNewDCS Create a new pfDCS node.

pfDCSTrans Set the translation coordinates to X, Y, z.
pfDCSRot Set the rotation transformation to h, p, r.
pfDCSCoord Rotate and translate by coord.

pfDCSScale Scale by a uniform scale factor.

pfDCSMat Use a matrix for transformations.
pfGetDCSMat Retrieve the current matrix for a given pfDCS.

pfFCS Nodes

A pfFCS is a branch node that represents a flux coordinate system. The transformation
matrix of a pfFCS is contained in the pfFlux which is linked to it. This linkage allows a
pfEngine to animate the matrix of a pfFCS. The linkage also allows multiple pfFCSs to
share the same transform.

Use pfNewFCS(flux) to create a new pfFCS linked to flux.

Table 3-4 lists functions for manipulating a pfFCS. pfFCS, pfFlux, and pfEngine are fully
described in Chapter 14, “Dynamic Data.”

Table 3-4 FCS Functions

Function Description

pfNewFCS Create a new pfFCS node.

pfFCSFlux Link a flux to a given pfFCS.

pfGetFCSFlux Get a pointer to the flux linked to a given pfFCS.
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Table 3-4 (continued) FCS Functions

Function Description

pfGetFCSMat Retrieve the current matrix for a given pfFCS.
pfGetFCSMatPtr Get a pointer to the current matrix for a given pfFCS.

pfSwitch Nodes

A pfSwitch is a branch node that selects one, all, or none of its children. Use
pfNewSwitch() to return a handle to a new pfSwitch. To select all the children, use the
PFSWITCH_ON argument to pfSwitchVal(). Deselect all the children (turning the
switch off) using PFSWITCH_OFF. To select a single child, give the index of the child
from the child list. To find out the current value of a given switch, call pfGetSwitchVal().
Example 3-5 (in the “pfSequence Nodes” section) illustrates a use of pfSwitch nodes to
control pfSequence nodes.

pfSequence Nodes

A pfSequence is a pfGroup that sequences through a range of its children, drawing each
child for a specified duration. Each child in a sequence can be thought of as a frame in an
animation. A sequence can consist of any number of children, and each child has its own
duration. You can control whether an entire sequence repeats from start to end, repeats
from end to start, or terminates.

Use pfNewsSeq() to create and return a handle to a new pfSequence. Once the
pfSequence has been created, use the group function pfAddChild() to add the children
that you want to animate.

Table 3-5 describes the functions for working with pfSequences.

Table 3-5 pfSequence Functions

Function Description

pfNewsSeq Create a new pfSequence node.

pfSeqTime Set the length of time to display a frame.
pfGetSeqTime Find out the time allotted for a given frame.
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Table 3-5 (continued) pfSequence Functions

Function Description

pfSeqglnterval Set the range of frames and sequence type.

pfGetSeqinterval Find out interval parameters.

pfSegDuration Control the speed and number of repetitions of the entire sequence.

pfGetSeqDuration Retrieve speed and repetition information for the sequence.

pfSegMode Start, stop, pause, and resume the sequence.
pfGetSeqMode Find out the sequence’s current mode.
pfGetSeqFrame Get the current frame.

Example 3-5 demonstrates a possible use of both switches and sequences. First,
sequences are set up to contain animation sequences for explosions, fire, and smoke; then
a switch is used to control which sequences are currently active.

Example 3-5 Using pfSwitch and pfSequence Nodes

pfSwitch *s;
pfSequence *explosion1_seq, *explosion2_seq, *fire_seq,
*smoke_seq;

s = pfNewSwitch();
explosionl_seq = pfNewSeq();
explosion2_seq = pfNewSeq();
fire_seq = pfNewSeq();
smoke_seq = pfNewSeq();

pfAddChild(s, explosionl_seq);
pfAddChild(s, explosion2_seq);
pfAddChild(s, fire_seq);
pfAddChild(s, smoke_seq);
pfSwitchVal(s, PFSWITCH_OFF);

if (direct_hit)
{
pfSwitchVal(s, PFSWITCH_ON); /* Select all sequences */

[* Set first explosion sequence to go double normal
* speed and repeat 3 times. */
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pfSeqMode(explosionl_seq, PFSEQ_START);
pfSeqDuration(explosionl_seq, 2.0f, 3);

/* Set second explosion sequence to display first child
* of sequence for 2 seconds before continuing. */
pfSegMode(explosion2_seq, PFSEQ_START);
pfSeqTime(explosion2, 0.0f, 2.0f);

[* Set fire to wait on first frame of sequence until .3
* seconds after second explosion. */
pfSeqMode(fire_seq, PFSEQ_START);
pfSeqTime(fire_seq, 0.0f, 2.3f);

[* Set smoke to wait until .1 seconds after fire. */
pfSeqMode(smoke_seq, PFSEQ_START);
pfSeqTime(smoke_seq, 0.0f, 2.4f);

else if (explosion && (expl_type == 0))

{
pfSeqMode(explosionl_seq, PFSEQ_START);
pfSwitchVal(s, 0);

}

else if (explosion && (expl_type == 1))

{
pfSeqMode(explosion2_seq, PFSEQ_START);
pfSwitchVal(s, 1);

}

else if (fire_is_burning)

{
pfSeqMode(fire_seq, PFSEQ_START);
pfSwitchVval(s, 2);

else if (smoking)

{
pfSeqMode(smoke_seq, PFSEQ_START);
pfSwitchVval(s, 3);

}

else
pfSwitchVal(s, PFSWITCH_OFF);
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pfLOD Nodes

A pfLOD is a level-of-detail node. Level-of-detail switching is an advanced concept that
is discussed in Chapter 5, “Frame and Load Control.” A level-of-detail node specifies
how its children are to be displayed, based on the visual range from the channel’s
viewpoint. Each child has a defined range, and the entire pfLOD has a defined center.

Table 3-6 describes the functions for working with pfLODs.

Table 3-6 pfLOD Functions

Function Description

pfNewLOD Create a level of detail node.

pfLODRange Set a range at which to use a specified child node.

pfGetLODRange Find out the range for a given node.
pfLODCenter Set the pfLOD center.
pfGetLODCenter Retrieve the pfLOD center.
pfLODTransition Set the width of a specified transition.

pfGetLODTransition Get the width of a specified transition.

pfASD Nodes

pfASD nodes handle dynamic generation and morphing of the visible part of a surface
based on multiple LODs. pfASD nodes allow for the smooth LOD transition of large and
complex surfaces, such as large area terrain. For informaton on pfASD nodes, see
Chapter 15, “Active Surface Definition.”

pfLayer Nodes
A pfLayer is a leaf node that resolves the visual priority of coplanar geometry. A pfLayer
allows the application to define a set of base geometry and a set of layer geometry

(sometimes called decal geometry). The base geometry and the decal geometry should be
coplanar, and the decal geometry must lie within the extent of the base polygons.
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Table 3-7 describes the functions for working with pfLayers.

Table 3-7 pfLayer Functions

Function Description

pfNewLayer Create a pfLayer node.

pfLayerMode Specify a hardware mode to use in drawing decals.

pfGetLayerMode Get current mode.

pfLayerBase Specify the child containing base geometry.
pfGetLayerBase Find out which child contains base geometry.
pfLayerDecal Specify the child containing decal geometry.
pfGetLayerDecal Find out which child contains decal geometry.

pfLayer nodes can be used to overlay any sort of markings on a given polygon and are
important to avoid flimmering. Example 3-6 demonstrates how to display runway
markings as a decal above a coplanar runway. This example uses the performance mode
PFDECAL_BASE_FAST for layering; as described in the pfLayer and pfDecal reference
pages, other available modes are PFDECAL_BASE_HIGH_QUALITY,
PFDECAL_BASE_DISPLACE, and PFDECAL_BASE_STENCIL.

Example 3-6 Marking a Runway With a pfLayer Node

pfLayer *layer;
pfGeode *runway, *runway_markings;

/* avoid flimmering of runway and runway_markings */
layer = pfNewLayer();

pfLayerBase(layer, runway);

pfLayerDecal(layer, runway_markings);
pfLayerMode(layer, PFDECAL_BASE_FAST);
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pfGeode Nodes

pfGeode is short for geometry node and is the primary node for defining geometry in libpf.
A pfGeode contains a list of geometry structures called pfGeoSets, which are part of the
IRIS Performer libpr library. pfGeoSets encapsulate graphics state and geometry and are
described in the “Geometry Sets” section of Chapter 8, “Geometry.” It is important to
understand that pfGeoSets are not nodes but are simply elements of a pfGeode.

Table 3-8 describes the functions for working with pfGeodes.

Table 3-8 pfGeode Functions

Function Description

pfNewGeode Create a pfGeode.

pfAddGSet Add a pfGeoSet.

pfRemoveGSet Remove a pfGeoSet.

pflnsertGSet Insert a pfGeoSet.

pfReplaceGSet Replace a pfGeoSet.

pfGetGSet Supply a pointer to the specified pfGeoSet.
pfGetNumGSets Determine how many pfGeoSets are in the given pfGeode.

Example 3-7 shows how to attach several pfGeoSets to a pfGeode.

Example 3-7 Adding pfGeoSets to a pfGeode

pfGeode *carl;
pfGeoSet *muffler, *frame, *windows, *seats, *tires;

muffler = read_in_muffler_geometry();
frame = read_in_frame_geometry();
seats = read_in_seat_geometry();
tires = read_in_tire_geometry();

pfAddGSet(carl, muffler);
pfAddGSet(carl, frame);
pfAddGSet(carl, seats);
pfAddGSet(carl, tires);
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pfText Nodes

A pfText node is libpf leaf node that contains a set of libpr pfStrings that should be
rendered based on the libpf cull and draw traversals. In this sense a pfText is similar to a
pfGeode except that it renders 3-dimensional text through the libpr pfString and pfFont
mechanisms rather than rendering standard 3-dimensional geometry via libpr pfGeoSet
and pfGeoState functionality. pfText nodes are useful for displaying 3-dimensional text
and other collections of geometry from a fixed index list. Table 3-9 lists the major pfText
functions.

Table 3-9 pfText Functions

Function Description

pfNewText Create a pfText.

pfAddString Add a pfString.

pfRemoveString Remove a pfString.

pflnsertString Insert a pfString.

pfReplaceString Replace a pfString.

pfGetString Supply a pointer to the specified pfString.

pfGetNumStrings Determine how many pfStrings are in the given pfText.

Using the pfText facility is easy. Example 3-8 shows how a pfFont is defined, how
pfStrings are created that reference that font, and then how those pfStrings are added to
a pfText node for display. See the description of pfStrings and pfFonts in Chapter 8,
“Geometry,” for information on setting up individual strings to input into a pfText node

Example 3-8 Adding pfStrings to a pfText

int nStrings,i;

char tmpBuf[8192];

char fontName[128];
pfFont *fnt = NULL;

/* Create a new text node
pfText *txt = pfNewText();

/* Read in font using libpfdu utility function */
scanf(“%s”,fontName);
fnt = pfdLoadFont(“type1” fontName,PFDFONT_EXTRUDED);
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/* Cant render pfText or libpr pfString without a pfFont */
if (fnt == NULL)

pfNotify(PFNFY_WARN,PFNFY_PRINT,
"No Such Font - %s\n”,fontName);

/* Read nStrings text strings from standard input and */
[* Attach them to a pfText */

scanf(“%d”,&nStrings);

for(i=0;i<nStrings;i++)

{

char c;

int j=0;

int done = 0;

pfString *curStr = NULL;

while(done < 2) /* READ STRING - END on ‘||' */

{
¢ = getchar();
if c==")
done++;
else
done = 0;
tmpBuffj++] = c;
}

tmpBUf[PF_MAX2(j-2,0)] = 10’;

/* Create new libpr pfString structure to attach to pfText */

curStr = pfNewString(pfGetSharedArena());

[* Set the font for the libpr pfString */

pfStringFont(curStr, fnt);

/* Assign the char string to the pfString */

pfStringString(curStr, tmpBuf);

/* Add this libpr pfString to the pfText node */
/* Like adding a libpr pfGeoSet to a pfGeode */

}

pfAddString(txt, curStr);

pfAddChild(SceneGroup, txt);
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pfBillboard Nodes

A pfBillboard is a pfGeode that rotates its children’s geometry to follow the view
direction or the eyepoint. Billboards are useful for portraying complex objects that are
roughly symmetrical in one or more axes. The billboard rotates to always present the
same image to the viewer using far fewer polygons than a solid model uses. In this way,
billboards reduce both transformation and pixel fill demands on the graphics subsystem
at the expense of some additional host processing. A classic example is a textured
billboard of a single quadrilateral representing a tree.

Because a pfBillboard is also a pfGeode, you can pass a pfBillboard argument to any
pfGeode routine. To add geometry, call pfAddGSet() (see “pfGeode Nodes” on page 71).
Each pfGeoSetin the pfBillboard is treated as a separate piece of billboard geometry; each
one turns so that it always faces the eye point.

pfBillboards can be either constrained to rotate about an axis, as is done for a tree or a
lamp post, or constrained only by a point, as when simulating a cloud or a puff of smoke.
Specify the rotation mode by calling pfBboardMode(); specify the rotational axis by
calling pfBboardAxis(). Since rotating the geometry to the eyepoint doesn’t fully
constrain the orientation of a point-rotating billboard, modes are available to use the
additional degree of freedom to align the billboard in eye space or world space. Usually
the normals of billboards are specified to be parallel to the rotational axis to avoid
lighting anomalies.

pfFlatten() is highly recommended for billboards. If a billboard lies beneath a pfSCS or
pfDCS, an additional transformation is done for each billboard. This can have a
substantial performance impact on the cull process, where billboards are transformed.

Table 3-10 describes the functions for working with pfBillboards.

Table 3-10 pfBillboard Functions

Function Description

pfNewBboard Create a pfBillboard node.
pfBboardPos Set a billboard’s position.
pfGetBboardPos Find out a billboard’s position.
pfBboardAxis Specify the rotation or alignment axis.
pfGetBboard Axis Find out the rotation or alignment axis.
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Table 3-10 (continued) pfBillboard Functions

Function Description

pfBboardMode Specify a billboard’s rotation type.
pfGetBboardMode Find out a billboard’s rotation type.

Example 3-9 demonstrates the construction of a pfBillboard node. The code can be found
in /usr/share/Performer/src/pguide/libpf/C/billboard.c.

Example 3-9 Setting Up a pfBillboard

static pfVec2 BBTexCoords[] ={{0.0f, 0.0f},
{1.0f, 0.0f},
{1.0f, 1.0f},
{0.0f, 1.0f}};

static pfVec3 BBVertCoords[4] = /* XZ plane for pt bboards */
{{-0.5f, 0.0f, 0.0f},
{0.5f, 0.0f, 0.0f},
{0.5f, 0.0f, 1.0f},
{-0.5f, 0.0f, 1.0f}};

static pfVec3 BBAxes[4] = {{1.0f, 0.0f, 0.0f}, /* X */
{0.0f, 1.0f, 0.0f}, /* Y */
{0.0f, 0.0f, 1.0f}, /*Z*/
{0.0f, 0.0f, 1.0f}}; /*world Zup*/

static int BBPrimLens[] ={4 };

static pfVec4 BBColors[] = {{1.0, 1.0, 1.0, 1.0}};

/* Convert static data to pfMalloc’ed data */
static void*
memdup(void *mem, size_t bytes, void *arena)
{
void *data = pfMalloc(bytes, arena);
memcpy(data, mem, bytes);
return data;

}

/* For pedagogical use only. Reasonable performance
* requires more then one pfGeoSet per pfBillboard.
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pfBillboard*
MakeABill(pfVec3 pos, pfGeoState *gst, long bbType)

pfGeoSet *gset;
pfGeoState *gstate;
pfBillboard *bill;
void *arena = pfGetSharedArena();

gset = pfNewGSet(arena);
gstate = pfNewGState(arena);

pfGStateMode(gstate, PFSTATE_ENLIGHTING, PF_OFF);
pfGStateMode(gstate, PFSTATE_ENTEXTURE, PF_ON);
/*.... Create/load texture map for billboard... */
pfGStateAttr(gstate, PFSTATE_TEXTURE, texture);
pfGSetGState(gset, gstate);

pfGSetAttr(gset, PFGS_COORD3, PFGS_PER_VERTEX,
memdup(BBVertCoords, sizeof(BBVertCoords), arena),
NULL);

pfGSetAttr(gset, PFGS_TEXCOORD2, PFGS_PER_VERTEX,
memdup(BBTexCoords, sizeof(BBTexCoords), arena),
NULL);

pfGSetAttr(gset, PFGS_COLOR4, PFGS_OVERALL,
memdup(BBColors, sizeof(BBColors), arena),
NULL);

pfGSetPrimLengths(gset,
(int*ymemdup(BBPrimLens, sizeof(BBPrimLens), arena));
pfGSetPrimType(gset, PFGS_QUADS);
pfGSetNumPrims(gset, 1);
pfGSetGState(gset, gst);

bill = pfNewBboard();

switch (bbType)

{

case PF_X: /* axial rotate */

case PF_Y:

case PF_Z:
pfBboardAxis(bill, BBAxes[bbType]);
pfBboardMode(bill, PFBB_ROT, PFBB_AXIAL_ROT);
break;
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case 3: /* point rotate */
pfBboardAxis(bill, BBAxes[bbTypel]);
pfBboardMode(bill, PFBB_ROT, PFBB_POINT_ROT_WORLD);
break;

}
pfAddGSet(bill, gset);

pfBboardPos(hill, 0, pos);

return bill;

pfPartition Nodes

A pfPartition is a pfGroup that organizes the scene graphs of its children into a static data
structure that can be more efficient for intersections. Currently, partitions are only useful
for data that lies more or less on an XY plane, such as terrain. A pfPartition would
therefore be inappropriate for a skyscraper model.

Partition construction comes in two phases. After a piece of the scene graph has been
placed under the pfPartition, pfBuildPart() examines the spatial arrangement of
geometry beneath the pfPartition and determines an appropriate origin and spacing for
the grid. Because the search is exhaustive, this examination can be time-consuming the
first time through. Once a good partitioning is determined, the search space can be
restricted for future database loads using the partition attributes.

The second phase is invoked by pfUpdatePart(), which distributes the pfGeoSets under
the pfPartition into cells in the spatial partition created by pfBuildPart(). pfUpdatePart()
needs to be called if any geometry under the pfPartition node changes.

During intersection traversal, the segments in a pfSegSet (see “Intersection Requests:
pfSegSets” in Chapter 4) are scan-converted onto the grid, yielding faster access to those
pfGeoSets that potentially intersect the segment. A pfPartition can be made to function
as a normal pfGroup during intersection traversal by OR-ing PFTRAV_IS_NO_PART
into the intersection traversal mode in the pfSegSet.
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Table 3-11 describes the functions for working with pfPartitions.

Table 3-11 pfPartition Functions

Function Description

pfNewPart Create a pfPartition.

pfPartVal Set the desired pfPartition value.

pfGetPartVal Find out the attributes of specified value.

pfPartAttr Set the desired pfPartition attribute.

pfGetPartAttr Find out the attributes of specified attribute.

pfBuildPart Construct a spatial partitioning based on the attributes.
pfUpdatePart Traverse the partition’s children and incorporate changes.
pfGetPartType Determine what kind of partition is being used.

Example 3-10 demonstrates setting up and using a pfPartition node.

Example 3-10 Setting Up a Partition

pfGroup *terrain;
pfPartition *partition;
pfScene *scene;

terrain = read_in_grid_aligned_terrain();

/* create a default partitioning of a terrain grid */
partition = pfNewPart();

pfAddChild(scene, partition);
pfAddChild(partition, terrain);
pfBuildPart(partition);



Sample Program

Sample Program

/* use the partitions to perform efficient intersections
* of sets of segments with the terrain */
for(i = 0; i < numVehicles; i++)
pfNodelsectSegs(partition, vehicle_segment_set][i],
hit_struct);

The sample program shown in Example 3-11 demonstrates scene graph construction,
shared instancing, and transformation inheritance. The program uses IRIS Performer
objects and functions that are described fully in later chapters.

This program reads the names of two objects from the command line, although defaults
are supplied if file names are not given. These files are loaded and a second instance of
each object is created. In each case, this instance is made to orbit the original object, and
the second pair are also placed in orbit around the first. This program is “inherit.c” and is
part of the suite of IRIS Performer Programmer’s Guide example programs.

Example 3-11 Inheritance Demonstration Program
/*

* inherit.c - transform inheritance example

*/

#include <math.h>
#include <Performer/pf.h>
#include <Performer/pfdu.h>

int

main(int argc, char *argv[])

{
pfPipe *pipe;
pfPipeWindow *pw;
pfScene *scene;
pfChannel *chan;
pfCoord view;
float z, s, c;
pfNode *modell, *model?2;
pfDCS *nodel, *node2;
pfDCS *dcs1, *dcs2, *dcs3, *dcs4;
pfSphere sphere;

79



Chapter 3: Nodes and Node Types

80

char *filel, *file2;

/* choose default objects of none specified */
filel = (argc > 1) ? argv[1] : “blob.nff";
file2 = (argc > 1) ? argv[1] : “torus.nff";

/* Initialize Performer */
pfinit();

pfFilePath(

“:./data”

“:../data”

“.../../data”

“..l../../data”

“..M.1..1../data”
“:/usr/share/Performer/data”);

/* Single thread for simplicity */
pfMultiprocess(PFMP_DEFAULT);

/* Load all loader DSO'’s before pfConfig() forks */
pfdinitConverter(filel);
pfdinitConverter(file2);

[* Configure */
pfConfig();

/* Load the files */
if ((modell = pfdLoadFile(filel)) == NULL)
{

pfEXit();
exit(-1);
}
if ((model2 = pfdLoadFile(file2)) == NULL)
pfEXit();
exit(-1);

}

/* scale models to unit size */

nodel = pfNewDCS();
pfAddChild(nodel, modell);
pfGetNodeBSphere(modell, &sphere);
if (sphere.radius > 0.0f)
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pfDCSScale(nodel, 1.0f/sphere.radius);

node2 = pfNewDCS();
pfAddChild(node2, model2);
pfGetNodeBSphere(model2, &sphere);
if (sphere.radius > 0.0f)

pfDCSScale(node2, 1.0f/sphere.radius);

/* Create the hierarchy */
dcs4 = pfNewDCS();
pfAddChild(dcs4, nodel);
pfDCSScale(dcs4, 0.5f);

dcs3 = pfNewDCS();
pfAddChild(dcs3, nodel);
pfAddChild(dcs3, dcs4);

dcsl = pfNewDCS();
pfAddChild(dcs1, node2);

dcs2 = pfNewDCS();
pfAddChild(dcs2, node2);
pfDCSScale(dcs2, 0.5f);
pfAddChild(dcs1, dcs2);

scene = pfNewScene();
pfAddChild(scene, dcsl);
pfAddChild(scene, dcs3);
pfAddChild(scene, pfNewLSource());

/* Configure and open GL window */
pipe = pfGetPipe(0);

pw = pfNewPWin(pipe);
pfPWinType(pw, PFPWIN_TYPE_X);
pfPWinName(pw, “IRIS Performer”);
pfPWinOriginSize(pw, 0, 0, 500, 500);
pfOpenPWin(pw);

chan = pfNewChan(pipe);
pfChanScene(chan, scene);

pfSetVec3(view.xyz, 0.0f, 0.0f, 15.0f);
pfSetVec3(view.hpr, 0.0f, -90.0f, 0.0f);
pfChanView(chan, view.xyz, view.hpr);
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/* Loop through various transformations of the DCS’s */
for (z = 0.0f; z < 1084; z += 4.0f)

{
pfDCSRot(dcs1,
(z < 360) ? (int) z % 360 : 0.0f,
(z > 360 && z < 720) ? (int) z % 360 : 0.0f,
(z > 720) ? (int) z % 360 : 0.0f);
pfSinCos(z, &s, &c);
pfDCSTrans(dcs2, 1.0f * ¢, 1.0f * s, 0.0f);
pfDCSRot(dcs3, z, 0, 0);
pfDCSTrans(dcs3, 4.0f * ¢, 4.0f * s, 4.0f * s);
pfDCSRot(dcs4, 0, 0, z);
pfDCSTrans(dcs4, 1.0f * ¢, 1.0f * s, 0.0f);
pfFrame();

}

/* show objects static for three seconds */
sleep(3);

pfEXit();
exit(0);
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“Database Traversal”

This chapter explains how to manipulate, traverse, and examine a scene graph.






Chapter 4

Database Traversal

Chapter 3, “Nodes and Node Types,” described the node types used by libpf. This
chapter describes the operations that can be performed on the run-time database defined
by a scene graph. These operations typically work with part or all of a scene graph and
are known as traversals because they traverse the database hierarchy. IRIS Performer
supports four major kinds of database traversals:

= Application

e Cull

e Draw

= Intersection

The application traversal updates the active elements in the scene graph for the next

frame. This includes processing active nodes and invoking user supplied callbacks for
animations or other embedded behaviors.

Visual processing consists of two basic traversals: culling and drawing. The cull traversal
selects the visible portions of the database and puts them into a display list. The draw
traversal then runs through that display list and sends rendering commands to the
Geometry Pipeline. Once you have set up all the necessary elements, culling and
drawing are automatic, although you can customize each traversal for special purposes.

The intersection traversal computes the intersection of one or more line segments with
the database. The intersection traversal is user-directed. Intersections are used to
determine

= height above terrain
= line-of-sight visibility

= collisions with database objects
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Like other traversals, intersection traversals can be directed by the application through
identification masks and function callbacks. Table 4-1 lists the routines and data types
relevant to each of the major traversals; more information about the listed traversal
attributes can be found later in this chapter and in the appropriate reference pages.

Table 4-1 Traversal Attributes for the Major Traversals

Traversal Application Cull Draw Intersection

Attribute PFTRAV_APP PFTRAV_CULL PFTRAV_DRAW PFTRAV_ISECT

Controllers pfChannel pfChannel pfChannel pfSegSet

Global pfFrame() pfFrame() pfFrame() pfFrame()

Activation pfSync() pfNodelsect-

pfAppFrame() Segs(), pfChan-

NodelsectSegs()

Global pfChanTrav-  pfChanTrav- pfChanTrav-  pflsectFunc()

Callbacks Func() Func() Func()

Activation pfApp() pfCull() pfDraw() pfFrame()

within pfNodelsect-

Callback Segs(), pfChan-
NodelsectSegs()

Path NA pfCullPath() NA NA

Activation

Modes pfChanTrav- pfChanTrav- pfChanTrav- pfSegSet (also

Mode() Mode() Mode()  discriminator

callback)

Node pfNodeTrav- pfNodeTrav- pfNodeTrav-  pfNodeTrav-

Callbacks Funcs() Funcs() Funcs() Funcs()

Traverser pfChanTrav- pfChanTrav- pfChanTrav- pfSegSet mask

Masks Mask() Mask() Mask()

Traversee pfNodeTrav- pfNodeTrav- pfNodeTrav-  pfNodeTrav-

Masks Mask() Mask() Mask() Mask()

pfGSetlsect-
Mask()
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Scene Graph Hierarchy

A visual database, also known as a scene, contains state information and geometry. A
scene is organized into a hierarchical structure known as a graph. The graph is composed
of connected database units called nodes. Nodes that are attached below other nodes in
the tree are called children. Children belong to their parent node. Nodes with the same
parent are called siblings.

Database Traversals

The scene hierarchy supplies definitions of how items in the database relate to one
another. It contains information about the logical and spatial organization of the
database. The scene hierarchy is processed by visiting the nodes in depth-first order and
operating on them. The process of visiting, or touching, the nodes is called traversing the
hierarchy. The tree is traversed from top to bottom and from left to right. IRIS Performer
implements several types of database traversals, including application, clone, cull,
delete, draw, flatten, and intersect. These traversals are described in more detail later in
this chapter.

The principal traversals (application, cull, draw and intersect) all use a similar traversal
mechanism that employs traversal masks and callbacks to control the traversal. When a
node is visited during the traversal, processing is performed in the following order:

1. Prune the node based on the bitwise AND of the traversal masks of the node and
the pfChannel (or pfSegSet). If pruned, traversal continues with the nodes siblings.

2. Invoke the node’s pre-traversal callback, if any, and either prune, continue, or
terminate the traversal, depending on callback’s return value.

3. Traverse, beginning again at step 1, the node’s children or geometry (pfGeoSets). If
the node is a pfSwitch, a pfSequence, or a pfLOD, the state of the node affects which
children are traversed.

4. Invoke the node’s post-traversal callback, if any.
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State Inheritance

In addition to imposing a logical and spatial ordering of the database, the hierarchy also
defines how state is inherited between parent and child nodes during scene graph
traversals. For example, a parent node that represents a transformation causes the
subsequent transformation of each of its children when it and they are traversed. In other
words, the children inherit state, which includes the current coordinate transformation,
from their parent node during database traversal.

A transformation is a 4x4 homogeneous matrix that defines a 3D transformation of
geometry, which typically consist of scaling, rotation, and translation. The node types
pfSCS and pfDCS both represent transformations. Transformations are inherited through
the scene graph with each new transformation being concatenated onto the ones above
it in the scene graph This allows chained articulations and complex modeling
hierarchies.

The effects of state are propagated downward only, not from left to right nor upward.
This means that only parents can affect their children—siblings have no effect on each
other nor on their parents. This behavior results in an easy-to-understand hierarchy that
is well suited for high-performance traversals.

Graphics state such as textures and materials are not inherited by way of the scene graph,
but are encapsulated in leaf geometry nodes called pfGeode nodes, which are described
in the section “Node Types” in Chapter 3.

Database Organization

IRIS Performer uses the spatial organization of the database to increase the performance
of certain operations such as drawing and intersections. It is therefore recommended that
you consider the spatial arrangement of your database. What you might think of as a
logical arrangement of items in the database may not match the spatial arrangement of
those items in the visual environment, which can reduce IRIS Performer’s ability to
optimize operations on the database. See “Organizing a Database for Efficient Culling”
on page 94 for more information about spatial organization in a visual database and the
efficiency of database operations.
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Application Traversal

The application traversal is the first traversal that occurs during the processing of the
scene graph in preparation for rendering a frame. It is initiated by calling pfAppFrame().
If pfAppFrame() is not explicitly called, the traversal is automatically invoked by
pfSync() or pfFrame(). An application traversal can be invoked for each channel, but
usually channels share the same application traversal (see pfChanShare()).

The application traversal updates dynamic elements in the scene graph, such as
geometric morphing. The application traversal is also often used for implementing
animations or other custom processing when it is desirable to have those behaviors
embedded in the scene graph and invoked by IRIS Performer rather than requiring
application code to invoke them every frame.

The traversal proceeds as described in “Database Traversals”. The selection of which
children to traverse is also affected by the application traversal mode of the channel, in
particular the choice of all, none or one of the children of pfLOD, pfSequence and
pfSwitch nodes is possible. By default, the traversal obeys the current selection dictated
by these nodes.

The following example (this loader reads both Open Inventor and VRML files) shows a
simple callback changing the transformation on a pfDCS every frame.

Example 4-1 Application Callback to Make a Pendulum

int

AttachPendulum(pfDCS *dcs, PendulumData *pd)

{
pfNodeTravFuncs(dcs, PFTRAV_APP, PendulumFunc, NULL);
pfNodeTravData(dcs, PFTRAV_APP, pd);

}

int

PendulumFunc(pfTraverser *trav, void *userData)

{
PendulumData *pd = (PendulumData*)userData;
pfDCS *dcs = (pfDCS*)pfGetTravNode(trav);

if (pd->on)

{
pfMatrix mat;
double now = pfGetFrameTimeStamp();
float frac, dummy;
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pd->lastAngle += (now - pd->lastTime)*360.0f*pd->frequency;
if (pd->lastAngle > 360.0f)
pd->lastAngle -= 360.0f;

/I using sinusoidally generated angle
pfSinCos(pd->lastAngle, &frac, &dummy);

frac = 0.5f + 0.5f * frac;

frac = (1.0f - frac)*pd->angle0 + frac*pd->anglel;

pfMakeRotMat(mat,

frac, pd->axis[0], pd->axis[1], pd->axis[2]);
pfDCSMat(dcs, mat);
pd->lastTime = now;

}

return PFTRAV_CONT;
}

The cull traversal occurs in the cull phase of the libpf rendering pipeline and is initiated
by calling pfFrame(). A cull traversal is performed for each pfChannel and determines
the portion of the scene to be rendered. The traversal processes the subgraphs of the
scene that are both visible and selected by nodes in the scene graph that control traversal
(e.g. pfLOD, pfSequence, pfSwitch). The visibility culling itself is performed by testing
bounding volumes in the scene graph against the channel’s viewing frustum.

For customizing the cull traversal, libpf provides traversal masks and function callbacks
for each node in the database, as well as a function callback in which the application can
do its own culling of custom data structures.

Traversal Order

The cull is a depth-first, left-to-right traversal of the database hierarchy beginning at a
pfScene, which is the hierarchy’s root node. For each node, a series of tests is made to
determine whether the traversal should prune the node—that is, eliminate it from further
consideration—or continue on to that node’s children. The cull traversal processing is
much as described earlier, in particular the draw traversal masks are compared and the
node is checked for visibility before the traversal continues on to the nodes children:
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1. Prune the node, based on the channel’s draw traversal mask and the node’s draw
mask.

2. Invoke the node’s pre-cull callback and either prune, continue, or terminate the
traversal, depending on callback’s return value.

3. Prune the node if its bounding volume is completely outside the viewing frustum.

4. Traverse, beginning again at step 1, the node’s children or geometry (pfGeoSets) if
the node is completely or partially in the viewing frustum. If the node is a pfSwitch,
a pfSequence, or a pfLOD, the state of the node affects which children are traversed.

5. Invoke the node’s post-cull callback.

The following sections discuss these steps in more detail.

Visibility Culling

Culling determines whether a node is within a pfChannel’s viewing frustum for the
current frame. Nodes that are not visible are pruned—omitted from the list of objects to
be drawn—so that the Geometry Pipeline doesn’t waste time processing primitives that
couldn’t possibly appear in the final image.

Hierarchical Bounding Volumes

Testing a node for visibility compares the bounding volume of each object in the scene
against a viewing frustum that is bounded by the near and far clip planes and the four
sides of the viewing pyramid. Both nodes (see Chapter 3, “Nodes and Node Types”), and
pfGeoSets (see Chapter 8, “Geometry”), have bounding volumes that surround the
geometry that they contain. Bounding volumes are simple geometric shapes whose
centers and edges are easy to locate. Bounding volumes are organized hierarchically so
that the bounding volume of a parent encloses the bounding volumes of all its children.
You can specify bounding volumes or let IRIS Performer generate them for you (see
“Bounding Volumes” in Chapter 3).

Figure 4-1 shows a frustum and three objects surrounded by bounding boxes. Two of the
objects are outside the frustum; one is within it. One of the objects outside the frustum
has a bounding box whose edges intersect the frustum, as shown by the shaded area. The
visibility test for this object returns TRUE, because its bounding box does intersect the
view frustum even though the object itself doesn’t.
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PFIS_FALSE

PFIS_ALL_IN

PFIS_TRUE

Figure 4-1 Culling to the Frustum
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Visibility Testing

The cull traversal begins at the root node of a channel’s scene graph (the pfScene node)
and continues downward, directed by the results of the cull test at each node. At each
node the cull test determines the relationship of the node’s bounding volume to the
viewing frustum. Possible results are that the bounding volume is entirely outside, is
entirely within, is partially within, or completely contains the viewing frustum.

If the intersection test indicates that the bounding volume is entirely outside the frustum,
the traversal prunes that node—that is, it doesn’t consider the children of that node and
continues with the node’s next sibling.

If the intersection test indicates that the bounding volume is entirely inside the frustum,
the node’s children are not cull tested because the hierarchical nature of bounding
volumes implies that the children must also be entirely within the frustum.

If the intersection test indicates that the bounding volume is partially within the frustum,
or that the bounding volume completely contains the frustum, the testing process
continues with the children of that node. Because a bounding volume is larger than the
object it surrounds, it is possible for a bounding volume to be partially within a frustum
even when none of its enclosed geometry is visible.

By default, IRIS Performer tests bounding volumes all the way down to the pfGeoSet
level (see Chapter 8, “Geometry”) to provide fine-grained culling. However, if your
application is spending too much time culling, you can stop culling at the pfGeode level
by calling pfChanTravMode(). Then if part of a pfGeode is potentially visible, all
geometry in that pfGeode is drawn without cull-testing it first.

Visibility Culling Example
Figure 4-2 portrays a simple database that contains a toy block, train, and car. The block

is outside the frustum, the bounding volume of the car is partially inside the frustum,
and the train is completely inside the frustum.
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Figure 4-2 Sample Database Objects and Bounding Volumes

Organizing a Database for Efficient Culling

Efficient culling depends on having a database whose hierarchy is organized spatially. A
good technique is to partition the database into regions, called tiles. Tiling is also required
for database paging. Instead of culling the entire database, only the tiles that are within the
view frustum need to be traversed.
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The worst case for the cull traversal performance is to have a very flat hierarchy—that is,
a pfScene with all the pfGeodes directly under it and many pfGeoSets in each pfGeode—
or a hierarchy that is organized by object type (for example, having all trees in the
database grouped under one pine tree node, rather than arranged spatially).

Figure 4-3 shows a sample database represented by cubes, cones, pyramids, and spheres.
Organizing this database spatially, rather than by object type, promotes efficient culling.
This type of spatial organization is the most effective control you have over efficient
traversal.
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Figure 4-3 How to Partition a Database for Maximum Efficiency
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When modeling a database, you should consider other trade-offs as well. Small amounts
of geometry in each culling unit, whether pfGeode or pfGeoSet, provide better culling
resolution and result in sending less non-visible geometry to the pipeline. Small pieces
also improve the performance of line-segment intersection inquiries (see“Database
Concerns” in Chapter 19). However, using many small pieces of geometry can increase
the traversal time and can also reduce drawing performance. The optimal amount of
geometry to place in each pfGeoSet depends on the application, database, system CPU,
and graphics hardware.

Custom Visibility Culling

Existence within the frustum isn’t the only criterion that determines an object’s visibility.
The item may be too distant to be seen from the viewpoint, or it may be obscured by other
objects between it and the viewer, such as a wall or a hill. Atmospheric conditions can
also affect object visibility. An object that is normally visible at a certain distance may not
be visible at that same distance in dense fog.

Implementing more sophisticated culling requires knowledge of visibility conditions
and control over the cull traversal. The cull traversal can be controlled through traversal
masks, which are described in the section titled “Controlling and Customizing
Traversals.”

Knowing whether an object is visible requires either prior information about the spatial
organization of a database, such as cell-to-cell visibilities, or run-time testing such as
computing line-of-sight visibility (LOS). You can compute simple LOS visibility by
intersecting line segments that start at the eyepoint with the database. See the
“Intersection Traversal” section of this chapter.

Sorting the Scene

During the cull traversal, a pfChannel can rearrange the order in which pfGeoSets are
rendered for improved performance and image quality. It does this by binning and
sorting. Binning is the act of placing pfGeoSets into specific bins which are rendered in a
specific order. IRIS Performer provides two default bins: one for opaque geometry and
one for blended, transparent geometry. The opaque bin is drawn before the transparent
bin so transparent surfaces are properly blended with the background scene.
Applications are free to add new bins and specify arbitrary bin orderings.
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Sorting is done on a per-bin basis. pfGeoSets within a given bin are sorted by a specific
criterion. Two useful criteria provided by IRIS Performer are sorting by graphics state
and sorting by range. When sorting by state, pfGeoSets are sorted first by their
pfGeoState, then by an application-specified hierarchy of state modes, values, and
attributes which are identified by PFSTATE_* tokens and are described in the libpr
chapter. State sorting can offer a huge performance advantage since it greatly reduces the
number of mode changes carried out by the Geometry Pipeline. State sorting is the
default sorting configuration for the opaque bin.

Range sorting is required for proper rendering of blended, transparent surfaces which
must be rendered in back-to-front order so that each surface is properly blended with the
current background color. Front-to-back sorting is also supported. The default sorting for
the transparent bin is back-to-front sorting (Note that the sorting granularity is
per-pfGeoSet, not per-triangle so transparency sorting is not perfect).

pfChannel bins are given rendering order and sorting configuration with
pfChanBinOrder() and pfChanBinSort() respectively. A bin’s order is simply an integer
identifying its place in the list of bins. An order less than 0 or PFSORT_NO_ORDER
means that pfGeoSets which fall into the bin are drawn immediately without any
ordering or sorting. Multiple bins may have the same order but the rendering precedence
among these bins is undefined.

A bin’s sorting configuration is given as a token identifying the major sorting criterion
and then an optional list of tokens, terminated with the PFSORT_END token, that defines
a state sorting hierarchy.

PFSORT_BY_STATE
pfGeoSets are sorted first by pfGeoState then by the state elements
found between the PFSORT_STATE_BGN and PFSORT_STATE_END
tokens, for example.

PFSORT_FRONT_TO_BACK
pfGeoSets are sorted by nearest to farthest range from the eyepoint.
Range is computed from eyepoint to the center of the pfGeoSet’s
bounding volume.
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PFSORT_BACK_TO_FRONT
pfGeoSets are sorted by farthest to nearest range from the eyepoint.
Range is computed from eyepoint to the center of the pfGeoSet’s
bounding volume.

PFSORT_QUICK
A special, low-cost sorting technique. pfGeoSets must fall into a bin
whose order is 0 in which case they will be sorted by pfGeoState and
drawn immediately. This is the default sorting mode for the
PFSORT_OPAQUE_BIN bin.

For example, the specification:

static int sort[] = {PFSORT_STATE_BGN,
PFSTATE_TEXTURE, PFSTATE_FRONTMTL,
PFSORT_STATE_END, PFSORT_END};
pfChanBinSort(chan, PFSORT_OPAQUE_BIN, PFSORT_BY_STATE,
sort);

will sort the opaque bin by pfGeoState, then by pfTexture, then by pfMaterial.

A pfGeoSet’s draw bin may be set directly by the application with pfGSetDrawBin().
Otherwise IRIS Performer automatically determines if the pfGeoSet belongs in the
default opaque or transparent bins.

Paths Through the Scene Graph

You can define a chain, or path, of nodes in a scene graph using the pfPath data structure.
(Note that a pfPath has nothing to do with filesystem paths as specified with the PFPATH
environment variable or with specifying a path for a user to travel through a scene.) Once
you've specified a pfPath with a call to pfNewPath(), you can traverse and cull that path
as a subset of the entire scene graph using pfCullPath(). The function pfCullPath() must
only be called from the cull callback function set by pfChanTravFunc()—see “Process
Callbacks” on page 105 for details. For more information about the pfPath structure, see
the pfPath(3pf) and pfList(3pf) reference pages.

When IRIS Performer looks for intersections, it can return a pfPath to the node containing
the intersection. This feature is particularly useful when you’re using instancing, in
which case you can’t use pfGetParent() to find out where in the scene graph the given
node is. Finding out the pfPath to a given node is also useful in implementing picking.
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Draw Traversal

The cull traversal generates a libpr display list of geometry and state commands (see
“Display Lists” in Chapter 9), which describes the scene that is visible from a pfChannel.
The draw traversal simply traverses the display list and sends commands to the
Geometry Pipeline to generate the image.

Traversing a pfDispList is much faster than traversing the database hierarchy because the
pfDispList flattens the hierarchy into a simple, efficient structure. In this way, the cull
traversal removes much of the processing burden from the draw traversal; throughput
greatly increases when both traversals are running in parallel.

Controlling and Customizing Traversals
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The result of the cull traversal is a display list of geometry to be rendered by the draw
traversal. What gets placed in the display list is determined by both visibility and by
other user-specified modes and tests.

pfChannel Traversal Modes

The PFTRAV_CULL argument to pfChanTravMode() modifies the culling traversal. The
cull mode is a bitmask that specifies the modes to enable, it is formed by the logical OR
of one or more of these tokens:

e PFCULL_VIEW

e PFCULL_GSET

e PFCULL_SORT

e PFCULL_IGNORE_LSOURCES

Culling to the view frustum is enabled by PFCULL_VIEW. Culling to the pfGeoSet-level

is enabled by PFCULL_GSET and can produce a tighter cull that improves rendering
performance at the expense of culling time.

PFCULL_SORT causes the cull to sort geometry by state—for example, by texture or by
material, in order to optimize rendering performance. It also causes transparent
geometry to be drawn after opaque geometry for proper transparency effects.



Controlling and Customizing Traversals

By default, the enabled culling modes are PFCULL_VIEW | PFCULL_GSET |
PFCULL_SORT. Itis recommended that these modes be enabled unless the cull traversal
becomes a significant bottleneck in the processing pipeline. In this case, try disabling
PFCULL_GSET first, then PFCULL_SORT.

Normally, a pfChannel’s cull traversal pre-traverses the scene, following all paths from
the scene to all pfLightSources in the scene so that light sources can be set up before the
normal scene traversal. If you with to disable this pre-traversal, set the
PFCULL_IGNORE_LSOURCES cull enable bit but your pfLightSources will not
illuminate the scene.

The PFTRAV_DRAW argument to pfChanTravMode() modifies the draw traversal. A
mode of PFDRAW_ON is the default and will cause the pfChannel to be rendered. A
mode of PFDRAW_OFF indicates that the pfChannel should not be drawn and
essentially turns off the pfChannel.

pfNode Draw Mask

Each node in the database hierarchy can be assigned a mask that dictates whether the
node is added to the display list and thereby whether it is drawn. This mask is called the
draw mask (even though it is evaluated in the cull traversal) because it tells the cull
process whether the node is drawable or not.

The draw mask of a node is set with pfNodeTravMask(). The channel also has a draw
mask, which you set with pfChanTravMask(). By default, the masks are all 1s, or
OXFFFFffS.

Before testing a node for visibility, the cull traversal ANDs the two masks together. If the
resultis zero, the cull prunes the node. If the result is nonzero, the cull proceeds normally.
Mask testing occurs before all visibility testing and function callbacks.

Masks allow you to draw different subgraphs of the scene on different channels, to turn

portions of the scene graph on and off, or to ignore hidden portions of the scene graph
while drawing but make them active during intersection testing.
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pfNode Cull and Draw Callbacks

One of the primary mechanisms for extending IRIS Performer is through the use of
function callbacks, which can be specified on a per-node basis. IRIS Performer allows
separate cull and draw callbacks, which are invoked both before and after node
processing. Node callbacks are set with pfNodeTravFuncs().

Cull callbacks can direct the cull traversal, while draw callbacks are added to the display
list and later executed in the draw traversal for custom rendering. There are pre-cull and
pre-draw callbacks, invoked before a node is processed, and post-cull and post-draw
callbacks, invoked after the node is processed.

The cull callbacks return a value indicating how the cull traversal should proceed, as
shown in Table 4-2.

Table 4-2 Cull Callback Return Values
Value Action
PFTRAV_CONT Continue and traverse the children of this node.

PFTRAV_PRUNE Skip the subgraph rooted at this node and continue.

PFTRAV_TERM Terminate the entire traversal.

Callbacks are processed by the cull traversal in the following order:

1. Ifapre-cull callback is defined, then call the pre-cull callback to get a cull result and
find out whether traversal should continue. Possible return values are listed in
Table 4-2.

2. If the pre-cull callback returns PFTRAV_PRUNE, the traversal returns to the parent
and continues with the node’s siblings, if any. If the callback returns
PFTRAV_TERM, the traversal terminates immediately. Otherwise, cull processing
continues.

3. If the pre-cull callback doesn’t set the cull result using pfCullResult(), and
view-frustum culling is enabled, then perform the standard node-within-frustum
test and set the cull result accordingly.

4. If the cull result is PFIS_FALSE, skip the traversal of children. The post-cull callback
is invoked and traversal returns so that the parent node can traverse any siblings.
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5. If a pre-draw callback is defined, then place a libpr display-list packet in the display
list so that the node’s pre-draw callback will be called by the draw process. If
running a combined CULLDRAW traversal, invoke the pre-draw callback directly
instead.

6. Process the node, continuing the cull traversal with each of the node’s children or
adding the node’s geometry to a display list (for pfGeodes). If the cull result was
PFIS_ALL_IN, view-frustum culling is disabled during the traversal of the children.

7. If apost-draw callback is defined, then place a libpr display-list packet in the display
list so that the node’s post-draw callback will be called by the draw process. If
running a combined CULLDRAW traversal, invoke the post-draw callback directly
instead.

8. Ifa post-cull callback is defined, then call the post-cull callback.

Draw callbacks are commonly used to place tags or change state while a subgraph is
rendered. Note that if the pre-draw callback is called, the post-draw callback is
guaranteed to be invoked. This way the callback can restore any state modified by the
pre-draw callback. This is useful for state changes such as pfPushMatrix() and
pfPopMatrix(), as shown in the environment-mapping code that’s part of Example 4-2.

For doing customized culling, the pre-cull callback can determine whether a
PFIS_ALL_IN has already turned off view-frustum culling using
pfGetParentCullResult(), in which case it may not wish to do its own cull testing. It can
also find out the result of the standard cull test by calling pfGetCullResult().

Cull callbacks can also be used to render geometry (pfGeoSets) or change graphics state.
Any libpr drawing commands are captured in a display list and are later executed during
the draw traversal (see “Display Lists” in Chapter 9). However, direct graphics library

calls can be made safely only in draw function callbacks, because only the draw process
of multiprocess IRIS Performer configurations is known to be associated with a window.

Example 4-2 shows some sample node callbacks.

Example 4-2 pfNode Draw Callbacks
void
LoadScene(char *filename)

{

pfScene *scene = pfNewScene();
pfGroup *root = pfNewGroup();
pfGroup *reflectiveGeodes = NULL;
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root = pfdLoadFile(filename);

reflectiveGeodes =
ReturnListofGeodesWithReflectiveMaterials(root);

[* Use a node callback in the Draw process to turn on

* and off graphics library environment mapping before

* and after drawing all of the pfGeodes that have

* pfGeoStates with reflective materials.

*/

pfNodeTravFuncs(reflectiveGeodes, PFTRAV_DRAW,
pfdPreDrawReflMap, pfdPostDrawReflMap);

}

/* This callback turns on graphics library environment
* mapping. Because it changes graphics state it must be a
* Draw process node callback. */
long
pfdPreDrawRefIMap(pfTraverser *trav, void *data)
{
texgen(TX_S, TG_SPHEREMAP, 0);
texgen(TX_T, TG_SPHEREMAP, 0);
texgen(TX_S, TG_ON, NULL);
texgen(TX_T, TG_ON, NULL);
return NULL;
}

/* This callback turns off graphics library environment
* mapping. Because it also changes graphics state it also
* must be a Draw process node callback. Also notice that
* it is important to return the graphics library’s state to
* the state at which it was in before the preNode callback
* was even made.
*/
long
pfdPostDrawReflMap(pfTraverser *trav, void *data)
{
texgen(TX_S, TG_OFF, NULL);
texgen(TX_T, TG_OFF, NULL);
return NULL;
}
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Process Callbacks

libpf processes a visual database with a software-rendering pipeline composed of
application, cull, and draw stages. The system of process callbacks allows you to insert
your own custom culling and drawing functions into the rendering pipeline.
Furthermore, these callbacks are invoked by the proper process when your IRIS
Performer application is configured for multiprocessing.

By default, IRIS Performer culls and draws all active pfChannels when pfFrame() is
called. However, you can specify cull and draw function callbacks so that pfFrame() will
cause IRIS Performer to call your custom functions instead. These functions have the
option of using the default IRIS Performer processing in addition to their own custom
processing.

When multiprocessing is used, the rendering pipeline works on multiple frames at once.
For example, when the draw process is rendering frame n, the cull process is working on
frame n+1, and the application process is working on frame n+2. This situation requires
careful management of data so that data generated by the application is propagated to
the cull process and then to the draw process at the right time. IRIS Performer manages
data that is passed to the process callbacks to ensure that the data is frame-coherent and
isn’t corrupted.

Example 4-3 illustrates the use of a cull-process callback.

Example 4-3 Cull-Process Callbacks

InitChannels()

{

[* create and configure all channels*/

[* define callbacks for cull and draw processes */
pfChanTravFunc(chan, PFTRAV_CULL, CullFunc);
pfChanTravFunc(chan, PFTRAV_DRAW, DrawFunc);

}

/* The Cull callback. Any work that needs to be done in the
* Cull process should happen in this function.

*/

void

CullFunc(pfChannel * chan, void *data)

{
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static long first = 1;

[* Lock down whatever processor the cull is using when
* the cull callback is first called.

*/

if (first)

if ((pfGetMultiprocess() & PFMP_FORK_CULL) &&
(ViewState->procLock & PFMP_FORK_CULL))
pfuLockDownCull(pfGetChanPipe(chan));

first = 0;

}

I* User-defined pre-cull processing. Application-

* specific cull knowledge might be used to provide
* things like line-of-sight culling.

*/

PreCull(chan, data);

[* standard Performer culling to the viewing frustum */
pfCull();

[* User-defined post-cull processing; this routine might
* be used to do things like record cull state from this
* cull to be used in future culls.
*/
PostCull(chan, data);
}

/* The draw function callback. 1/0 with IRIS GL devices must

* happen here. Any graphics library functionality outside

* IRIS Performer must be done here.

*/

void

DrawFunc(pfChannel *chan, void *data)

{
[* pre-Draw tasks like clearing the viewport */
PreDraw(chan, data);

pfDraw(); [* render the frame */

/* draw HUD, read IRIS GL devices, and so on */
PostDraw(chan, data);
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Process Callbacks and Passthrough Data

Cull and draw callbacks are specified on a per-pfChannel basis using the functions
pfChanTravFunc() with PFTRAV_CULL and PFTRAV_DRAW, respectively.
pfAllocChanData() allocates passthrough data, data which is passed down the rendering
pipeline to the callbacks.

In the cull phase of the rendering pipeline, IRIS Performer invokes the cull callback with
a pointer to the pfChannel that is being culled and a pointer to the pfChannel’s
passthrough data buffer. The cull callback may modify data in the buffer. The potentially
modified buffer is then copied and passed to the user’s draw callback.

Default IRIS Performer processing is triggered by pfCull() and pfDraw(). By default,
pfFrame() calls pfCull() first, then calls pfDraw(). If process callbacks are defined,
however, pfCull() and pfDraw() are not invoked automatically and must be called by the
callbacks to use IRIS Performer’s default processing. pfCull() should be called only in the
cull callback; it causes IRIS Performer to cull the current channel and to generate a
display list suitable for rendering.

Channels culled by pfCull() may be drawn in the draw callback by pfDraw(). It is legal
for the draw callback to call pfDraw/() more than once. Multi-pass renderings performed
with multiple calls to pfDraw() are typical when you use accumulation buffer
techniques.

When the draw callback is invoked, the window will have already been properly
configured for drawing the pfChannel. Specifically, the viewport, perspective, and
viewing matrices are set to their correct values. User modifications of these values are not
reset by pfDraw(). If a draw callback is specified, IRIS Performer doesn’t automatically
clear the viewport; it leaves that responsibility to the application. pfClearChan() can be
called from the draw callback to clear the channel viewport. If chan has a pfEarthSky(),
then the pfEarthSky() is drawn. Otherwise, the viewport is cleared to black and the
z-buffer is cleared to its maximum value.

You should call pfPassChanData() to indicate that user data should be passed through
the rendering pipeline, which propagate the data downstream to cull and draw
callbacks. The next call to pfFrame() copies the channel buffer into internal buffers, so
that the application is then free to modify data in the buffer without fear of corruption.
The pfPassChanData() function should be called only when necessary, since calling it
imposes some buffer-copying overhead. In addition, passthrough data should be as
small as possible to reduce the time spent copying data.
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The code fragment in Example 4-4 is an example of cull and draw callbacks and the
passthrough data that is used to communicate with them.

Example 4-4 Using Passthrough Data to Communicate With Callback Routines

typedef struct
{

long val;
} PassData;

void cullFunc(pfChannel *chan, void *data);
void drawFunc(pfChannel *chan, void *data);

int main()

{
PassData *pd;

/* allocate passthrough data */
pd = (PassData*)pfAllocChanData(chan,sizeof(PassData));

[* initialize channel callbacks */
pfChanTravFunc(chan, PFTRAV_CULL, cullFunc);
pfChanTravFunc(chan, PFTRAV_DRAW, drawFunc);

/* main simulation loop */

while (1)

{
pfSync();
pd->val = 0;
pfPassChanData(chan);
pfFrame();

}

}

void
cullFunc(pfChannel *chan, void *data)

{

PassData *pd = (PassData*)data;

pd->val++;
pfCull();
}

void
drawFunc(pfChannel *chan, void *data)
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PassData *pd = (PassData*)data;
fprintf(stderr, "%ld\n", pd->val);
pfClearChan(chan);

pfDraw();

}

This example would, regardless of the multiprocessing mode, have the values 0, 1, and 1
for pd->val at the points where pfFrame(), pfCull(), and pfDraw() are called. In this way,
control data can be sent down the pipeline from the application, through the cull, and on
to the draw process with frame synchronization without regard to the active
multiprocessing mode.

When configured as a process separate from the draw, the cull callback should not
attempt to send graphics commands to an IRIS Performer window because only the
draw process is attached to the window. Callbacks should not modify the IRIS Performer
database, but they can use pfGet() routines to inquire about database information. The
draw callback should not call swapbuffers() (or an equivalent function when using
OpenGL) because IRIS Performer must control buffer swapping in order to manage the
necessary frame and channel synchronization. However, if you need special control over
buffer swapping, use pfPipeSwapFunc() to register a function as the given pipe’s
buffer-swapping function. Once your function is registered, it will be called instead of
swapbuffers() and may then invoke either of these functions.

Intersection Traversal

You can make spatial inquiries in IRIS Performer by testing the intersection of line
segments with geometry in the database. For example, a single line segment pointing
straight down from the eyepoint can determine your height above terrain, four such
segments can simulate the four tires of a car, and segments swept out by points on a
moving object can determine collisions with other objects.
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Testing Line Segment Intersections

The testing of each line segment or group of spatially grouped segments requires a
traversal of part or all of a scene graph. You make these inquiries using
pfNodelsectSegs(), which intersects the specified group of segments with the subgraph
rooted at the specified node. pfChanNodelsectSegs() functions similarly, but includes a
channel so that the traversal can make decisions based on the level-of-detail specified by
pfLOD nodes.

Intersection Requests: pfSegSets

A pfSegSet is a structure that embodies an intersection request.

typedef struct _pfSegSet
{

long mode;
void* userData;
pfSeg segs[PFIS_MAX_SEGS];
ulong activeMask;
ulong isectMask;
void* bound;
long (*discFunc)(pfHit*);
} pfSegSet;

The segs field is an array of line segments making up the query. You tell
pfNodelsectSegs() which segments to test with by setting the corresponding bit in the
activeMask field. If your pfSegSet contains many closely-grouped line segments, you can
specify a bounding volume using the data structure’s bound field. pfNodelsectSegs() can
use that bounding volume to more quickly test the request against bounding volumes in
the scene graph. The userData field is a pointer with which you can point to other
information about the request that you might want access to in a callback. The other
fields are described below. The pfSegSet isn’t modified during the traversal.
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Intersection Return Data: pfHit Objects

Intersection information is returned in pfHit objects. These can be queried using
pfQueryHit() and pfMQueryHit(). Table 4-3 lists the items that can be queried from a
pfHit object.

Table 4-3 Intersection-Query Token Names

Query Token Description

PFQHIT_FLAGS Status and validity information
PFQHIT_SEGNUM Index of the segment in pfSegSet request
PFQHIT_SEG Line segment as currently clipped
PFQHIT_POINT Intersection point in object coordinates
PFQHIT_NORM Geometric normal of an intersected triangle
PFQHIT_VERTS Vertices of an intersected triangle
PFQHIT_TRI Index of an intersected triangle
PFQHIT_PRIM Index of an intersected primitive in pfGeoSet
PFQHIT_GSET pfGeoSet of an intersection
PFQHIT_NODE pfGeode of an intersection

PFQHIT_NAME Name of pfGeode

PFQHIT_XFORM Current transformation matrix
PFQHIT_PATH Path in scene graph of intersection

The PFQHIT_FLAGS field is bit vector with bits that indicate whether an intersection
occurred and whether the point, normal, primitive and transformation information is
valid. For some types of intersections only some of the information has meaning; for
instance, for a pfSegSet bounding volume intersecting a pfNode bounding sphere, the
point information may not be valid.

Queries can be performed singly by calling pfQueryHit() with a single query token, or

several at a time by using pfMQueryHit() with an array of tokens. In the latter case, the
return information is placed in the specified order into a return array.
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Intersection Masks

Before using pfNodelsectSegs() to intersect the geometry in the scene graph, you must
set intersection masks for the nodes in the scene graph and correspondingly in your
search request.

Setting the Intersection Mask

pfNodeTravMask() sets the intersection masks in a subgraph of the scene down through
GeoSets. For example:

pfNodeTravMask(root, PFTRAV_ISECT, 0x01,
PFTRAV_SELF | PFTRAV_DESCEND, PF_SET)

sets the intersection mask of all nodes and GeoSets in the scene graph to 0x01. A
subsequent intersection request would then use 0x01 as the mask in pfNodelsectSegs().
A description of how to use this mask follows.

Specifying Different Classes of Geometry

Databases can contain different classes of objects, and only some of those may be relevant
for a particular intersection request. For example, the wheels on a truck follow the
ground, even through a small pond; therefore, you only want to test for intersection with
the ground and not with the water. For a boat, on the other hand, intersections with both
water and the lake bottom have significance.

To accommodate distinctions between classes of objects, each node and GeoSet in a scene
graph has an intersection mask. This mask allows traversals, such as intersections, to
either consider or ignore geometry by class.

For example, you could use four classes of geometry to control tests for collision
detection of a moving ship, collision detection for a falling bowling ball, and line-of-sight
visibility. Table 4-4 matches database classes with the pfNodeTravMask and
pfGSetlsectMask values used to support the traversal tests listed above.
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Table 4-4 Database Classes and Corresponding Node Masks
Database Class Node Mask

Water 0x01

Ground 0x02

Pier 0x04

Clouds 0x08

Once the mask values at nodes in the database have been set, intersection traversals can
be directed by them. For example, the line segments for ship collision detection should
be sensitive to the water, ground, and pier, while a those for a bowling ball would ignore
intersections with water and the clouds, testing only against the ground and pier.
Line-of-sight ranging should be sensitive to all the geometry in the scene. Table 4-5 lists
the traversal mask values and mask representations that would achieve the proper
intersection tests.

Table 4-5 Representing Traversal Mask Values

Intersection Class Mask Value Mask Representation

Ship 0x07 (Water | Ground | Pier)

Bowling ball 0x06 (Ground | Pier)

Line-of-sight ranging  OxOf (Water | Ground | Pier | Clouds)

The intersection traversal prunes a node as soon as it gets a zero result from doing a
bitwise AND of the node intersection mask and the traversal mask specified by the
pfSegSet’s isectMask field. Thus, all nodes in the scene graph should normally be set to be
the bitwise OR of the masks of their children. After setting the class-specific masks for
different subgraphs of the scene, this can be accomplished by calling

pfNodeTravMask(root, PFSET_OR, PFTRAV_SET_FROM_CHILD, 0x0);

which sets each node’s mask by OR-ing 0x0 with the current mask and the masks of the
node’s children.
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Note that this traversal, like that used to update node bounding volumes, is unusual in
that it propagates information up the graph from leaf nodes to root.

Discriminator Callbacks

If you need to make a more sophisticated discrimination than node masks allow about
when an intersection is valid, IRIS Performer can issue a callback on each successful
intersection and let you decide whether the intersection is valid in the current context.

If a callback is specified in pfNodelsectSegs(), then at each level where an intersection
occurs—for example, with bounding volumes of libpf pfGeodes (mode
PFTRAV_IS_GEODE), libpr GeoSets (mode PFTRAV _IS_GSET), or individual geometric
primitives (mode PFTRAV_IS PRIM)—IRIS Performer invokes the callback, giving it
information about the candidate intersection. The value you return from the callback
determines whether the intersection should be ignored and how the intersection
traversal should proceed.

If the return value includes the bit PFTRAV _IS_IGNORE, the intersection is ignored. The
intersection traversal itself can also be influenced by the callback. The traversal is subject
to three possible fates, as detailed in Table 4-6.

Table 4-6 Possible Traversal Results

Set Bits Meaning

PFTRAV_CONT Continue the traversal inside this subgraph or GeoSet.
PFTRAV_PRUNE Continue the traversal but skip the rest of this subgraph or GeoSet.

PFTRAV_TERM Terminate the traversal here.

Line Segment Clipping

Usually, the intersection point of most interest is the one that is nearest to the beginning
of the segment. By default, after each successful intersection, the end of the segment is
clipped so that the segment now ends at the intersection point. Upon the final return
from the traversal, it contains the closest intersection point.



Intersection Traversal

However, if you want to examine all intersections along a segment you can use a
discriminator callback to tell IRIS Performer not to clip segments—simply leave out the
PFTRAV_IS_CLIP_END bit in the return value. If you want the farthest intersection
point, you can use PFTRAV_IS_CLIP_START so that after each intersection the new
segment starts at the intersection point and extends outward.

Traversing Special Nodes

Level-of-detail nodes are intersected against the model for range zero, which is typically
the highest level-of-detail. If you want to select a different model, you can turn off the
intersection mask for the LOD node and place a switch node in parallel (having the same
parent and children as the LOD) and set it to the desired model.

Sequences and switches intersect using the currently active child or children. Billboards
are not intersected, since no eyepoint is defined for intersection traversals.

Picking

pfChanPick() provides a simple interface for intersection testing by enabling the user to
move a mouse to select one or more geometries. The method uses pfNodelsectSegs()
and uses the high bit, PFIS_PICK_MASK, of the intersection mask in the scene graph.
Setting up picking with pfNodePickSetup() sets this bit in the intersection mask
throughout the specified subgraph, but does not enable caching inside pfGeoSets. See
“Performance” on page 115.

pfChanPick() has an extra feature: it can either return the closest intersection
(PFPK_M_NEAREST) or return all pfHits along the picking ray (PFPK_M_ALL).

Performance

The intersection traversal uses the hierarchical bounding volumes in the scene graph to
allow culling of the database and then processes candidate GeoSets by testing against
their internal geometry. For this reason, the hierarchy should reflect the spatial
organization of the database. High-performance culling has similar requirements (see
Chapter 19, “Performance Tuning and Debugging”).
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Performance Trade-offs

IRIS Performer currently retains no information about spatial organization of data within
GeoSets, so each triangle in the GeoSet must be tested. Although large GeoSets are good
for rendering performance in the absence of culling, spatially localized GeoSets are best
for culling (since a GeoSet is the smallest culling unit), and spatially localized GeoSets
with few primitives are best for intersections.

Front Face/Back Face

One way to speed up intersection testing is to turn on PFTRAV_IS_CULL_BACK. When
this flag is enabled, only front-facing geometry is tested.

Enabling Caching

Precomputing information about normals and projections speeds up intersections inside
GeoSets. For the best performance, you should enable caching in GeoSets when you set
the intersection masks with pfNodeTravMask().

If the geometry within a GeoSet is dynamic, such as waves on a lake, caching can cause
incorrect results. However, for geometry that changes only rarely, you can use
pfGSetlsectMask() to recompute the cache as needed.

Intersection Methods for Segments

Normally, when intersecting down to the primitive level each line segment is separately
tested against each bounding volume in the scene graph, and after passing those tests is
intersected against the pfGeoSet bounding box. Segments that intersect the bounding
box are eventually tested against actual geometry.

When a pfSegSet has a spatially localized group of at least several line segments, you can
speed up the traversal by providing a bounding volume. You can use
pfCylAroundSegs() to create a bounding cylinder for the segments, and place a pointer
to the resulting cylinder in the pfSegSet’s bound field; then OR the PFTRAV_IS BCYL bit
into the pfSegSet’s mode field.

If only a rough volume-volume intersection is required, you can specify a bounding
cylinder in the pfSegSet without any line segments at all and request discriminator
callbacks at the PFTRAV_IS NODE or PFTRAV_IS_GSET level.
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Figure 4-4 illustrates some aspects of this process. The portion of the figure labeled A
represents a single segment; B is a collection of nonparallel segments, not suitable for
tightly bounding with a cylinder; and C shows parallel segments surrounded by a
bounding cylinder. In the bottom portion of the figure, the bounding cylinder around the
segments intersects the bounding box around the object; each segment in the cylinder
thus must be tested individually to see if any of them intersect.

/
>

Figure 4-4 Intersection Methods
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“Frame and Load Control”

This chapter explains how to control frame rate, synchronization, and
dynamic load management.






Chapter 5

Frame and Load Control

This chapter describes how to manage the display operations of a visual simulation
application to maintain the desired frame rate and visual performance level.In addition
this chapter covers advanced topics including multiprocessing and shared memory
management.

Frame-Rate Management

A frame is the period of time in which all processing must be completed before updating
the display with a new image, for example, a frame rate of 60Hz means the display is
updated 60 times per second and the time extent of a frame is 16.7ms. The ability to fit all
processing within a frame depends on several variables, some of which are:

= the number of pixels being filled
= the number of transformations and modal changes being made
= the amount of processing required to create a display list for a single frame

= the quantity of information being sent to the graphics subsystem

Through intelligent management of Silicon Graphics CPU and graphics hardware, IRIS
Performer minimizes the above variables in order to achieve the desired frame rate.
However, in some cases, peak frame rate is less important than a fixed frame rate. Fixed
frame rate means that the display is updated at a consistent, unvarying rate. While a
simple step towards achieving a fixed frame rate is to reduce the maximum frame rate to
an easily achievable level, we shall explore other (less Draconian) mechanisms in this
chapter that do not adversely impact frame rates.

As discussed in the following sections, IRIS Performer lets you select the frame rate and
has built-in functionality to maintain that frame rate and control overload situations
when the draw time exceeds or grows uncomfortably close to a frame time. While these
methods can be effective, they do require some cooperation from the run-time database.
In particular, databases should be modeled with levels-of-detail and be spatially
arranged.
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Selecting the Frame Rate

IRIS Performer is designed to run at the fixed frame rate as specified by pfFrameRate().
Selecting a fixed frame rate does not in itself guarantee that each frame can be completed
within the desired time. It is possible that some frames might require more computation
time than is allotted by the frame rate. By taking too long, these frames cause dropped or
skipped frames. A situation in which frames are dropped is called an overload or overrun
situation. A system that is close to dropping frames is said to be in stress.

Achieving the Frame Rate

The first step towards achieving a frame rate is to make sure that the scene can be
processed in less than a frame’s time—hopefully much less than a frame’s time.
Although minimizing the processing time of a frame is a huge effort, rife with tricks and
black magic, certain techniques stand out as IRIS Performer’s main weapons against
slothful performance:

= Multiprocessing. The use of multiple processes on multi-CPU systems can
drastically increase throughput.

= View culling. By trivially rejecting portions of the database outside the viewing
volume, performance can be increased by orders of magnitude.

= State sorting. Many graphics pipelines are sensitive to graphics mode changes.
Sorting a scene by graphics state greatly reduces mode changes, increasing the
efficiency of the hardware.

= Level-of-detail. Objects that are far away project to a relatively small area of the
display so fewer polygons can be used to render the object without substantial loss
of image quality. The overall result is fewer polygons to draw and improved
performance.

Multiprocessing and level-of-detail is discussed in this chapter while view culling and
state sorting are discussed in Chapter 4, “Database Traversal.” More information on
sorting in the context of performance tuning can be found in Chapter 19, “Performance
Tuning and Debugging.”
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Fixing the Frame Rate

Frame intervals are fixed periods of time but frame processing is variable in nature.
Because things change in a scene, such as when objects come into the field of view, frame
processing cannot be fixed. In order to maintain a fixed frame rate, the average frame
processing time must be less than the frame time so that fluctuations don’t exceed the
selected frame time. Alternately, the scene complexity can be automatically reduced or
increased so that the frame rate stays within a user-defined “sweet spot”. This
mechanism requires that the scene be modeled with levels-of-detail (pfLOD nodes).

Each frame, IRIS Performer calculates the system load for each frame. Load is calculated
as the percentage of the frame period it took to process the frame. Then if the default IRIS
Performer fixed frame rate mechanisms are enabled, load is used to calculate system
stress, which is in turn used to adjust the level of detail (LOD) of visible models. LOD
management is IRIS Performer’s primary method of managing system load.

Table 5-1 shows the IRIS Performer functions for controlling frame processing.

Table 5-1 Frame Control Functions

Function Description

pfFrameRate Set the desired frame rate.

pfSync Synchronize processing to frame boundaries.
pfFrame Initiate frame processing.

pfPhase Control frame boundaries.

pfChanStressFilter ~ Control how stress is applied to LOD ranges.
pfChanStress Manually control the stress value.
pfGetChanLoad Determine the current system load.

pfChanLODALttr Control how LOD is performed, including global LOD
adjustment and blending (fade).

Figure 5-1 shows a frame-timing diagram that illustrates what occurs when frame
computations are not completed within the required interval. The solid vertical lines in
Figure 5-1 represent frame-display intervals. The dashed vertical lines represent video
refresh intervals.
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Figure 5-1 Frame Rate and Phase Control

In this example, the video scan rate is 60 Hz and the frame rate is 20 Hz. With the video
hardware running at 60 Hz, each of the 20 Hz frames should be scanned to the video
display three times, and the system should wait for every third vertical retrace signal
before displaying the next image. The numbers across the top of the figure represent the
refresh count modulo three. New images are displayed on refreshes whose count modulo
three is zero, as shown by the solid lines.

In the first frame of this example, the new image isn’t yet completed when the third
vertical retrace signal occurs; the same image must therefore be displayed again during
the next interval. This situation is known as frame overrun, because the frame
computation time extends past a refresh boundary.

Frame Synchronization

Because of the overrun, the frame and refresh interval timing is no longer synchronized,;
it’s out of phase. A decision must be made either to display the same image for the
remaining two intervals, or to switch to the next image even though the refresh isn’t
aligned on a frame boundary. The frame-rate control mode, discussed in the next section,
determines which choice is selected.

Knowing that the situation illustrated in Figure 5-1 is a possibility, you can specify a
frame control mode to indicate what you would like the system to do when a frame
overrun occurs.
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To specify a method of frame-rate control, call pfPhase(). There are the following choices:

= Free run without phase control (PFPHASE_FREE_RUN) tells the application to run
as fast as possible—to display each new frame as soon as it’s ready, without
attempting to maintain a constant frame rate.

= Free run without phase control but with a limit on the maximum frame rate
(PFPHASE_LIMIT) tells the application to run no faster the rate specified by
pfFrameRate.

= Fixed frame rate with floating phase (PFPHASE_FLOAT) allows the drawing
process to display a new frame (using swapbuffers(3G)) at any time, regardless of
frame boundaries.

= Fixed frame rate with locked phase (PFPHASE_LOCK) requires the draw process to
wait for a frame boundary before displaying a new frame.

= The draw by default will wait for a new cull result to execute its stage functions.
This behavior can be changed by including the token PFPHASE_SPIN_DRAW with
the desired mode token from the above choices. This will allow the draw to run
every frame, redrawing the previous cull result. This can allow you to make
changes of your own in draw callback functions. Objects such as viewing frustum,
pfLODs, pfDCSs, and anything else normally processed by the CULL or application
processes will not be updated until the next full cull result is available.

Free-Running Frame-Rate Control

The simplest form of frame-rate control, called free-running, is to have no control at all.
This uncontrolled mode draws frames as quickly as the hardware is able to process them.
In free-running mode, the frame rate may be 60 Hz in the areas of low database
complexity, but could drop to a slower rate in views that place greater demand on the
system. Use pfPhase(PFPHASE_FREE_RUN) to specify a free-running frame rate.

In applications in which real-time graphics provide the majority of visual cues to an
observer, the variable frame rates produced by the free-running mode may be
undesirable. The variable lag in image update associated with variable frame rate can
lead to motion sickness for the simulation participants, especially in motion
platform-based trainers or ingressive head-mounted displays. For these and other
reasons it is usually preferable to maintain a steady, consistent frame-update rate.
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Fixed Frame-Rate Control

Assume that the overrun frame in Figure 5-1 completes processing during the next
refresh period, as shown. After the overrun frame, the simulation is still running at the
chosen 20-Hz rate and is updating at every third vertical retrace. If a new image is
displayed at the next refresh, its start time lags by 1/60th of a second, and therefore it is
out of phase by that much.

Subsequent images are displayed when the refresh count modulo three is one. As the
simulation continues and additional extended frames occur, the phase continues to drift.
This mode of operation is called floating phase, as shown by the frame in Figure 5-1
labeled Floating. Use pfPhase(PFPHASE_FLOAT) to select floating-phase frame control.

The alternative to displaying a new image out of phase is to display the old image for the
remainder of the current update period, then change to the new image at the normal
time. This locked phase extends each frame overrun to an integral multiple of the selected
frame time, making the overrun more evident but also maintaining phase throughout the
simulation. This timing is shown by the frame in Figure 5-1 labeled Locked. Although this
mode is the most restrictive, it is also the most desirable in many cases. Use
pfPhase(PFPHASE_LOCK) to select phase-locked frame control.

For example, a 20-Hz phase-locked frame rate is selected by specifying:

pfPhase(PFPHASE_LOCK);
pfFrameRate(20.0f);

These specifications prevent the system from switching to a newly computed image until
a display period of 1/20th second has passed from the time the previous image was
displayed. The frame rate remains fixed even when the Geometry Pipeline finishes its
work in less time. Fixed frame-rate display therefore involves setting the desired frame
rate and selecting one of the two fixed-frame-rate control modes.

Frame Skipping

When multiple frame times elapse during the rendering of a single frame, the system
must choose which frame to draw next. If the per-frame display lists are processed in
strict succession even after a frame overrun, the visual image slowly recedes in time and
the positional correlation between display and simulation is lost. To avoid this problem,
only the most recent frame definition received by the draw process is sent to the
Geometry Pipeline, and all intervening frame definitions are abandoned. This is known
as dropping or skipping frames and is performed in both of the fixed frame-rate modes.
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Because the effects of variable frame rates, phase variance, and frame dropping are
distracting, you should choose a frame rate with care. Steady frame rates are achieved
when the frame time allows the worst-case view to be computed without overload. The
structure of the visual database, particularly in terms of uniform “complexity density,”
can be important in maximizing the system frame rate. See “Organizing a Database for
Efficient Culling” in Chapter 4 and Figure 4-3 for examples of the importance of database
structure.

Maintaining a fixed frame rate involves managing future system load by adjusting
graphics display actions to compensate for varying past and present loads. The theory
behind load management and suggested methods for dealing with variable load
situations are discussed in the “Level-of-Detail Management” section of this chapter.

Sample Code

Example 5-1 demonstrates a common approach to frame control. The code is based on
part of the main.c source file used in the perfly sample application.

Example 5-1 Frame Control Excerpt

/* Set the desired frame rate. */
pfFrameRate(ViewState->frameRate);

/* Set the MP synchronization phase. */
pfPhase(ViewState->phase);

/* Application main loop */
while (!SimDone())
{

[* Sleep until next frame */
pfSync();

/* Should do all latency-critical processing between
* pfSync() and pfFrame(). Such processing usually
* involves changing the viewing position.

*

PreFrame();

[* Trigger cull and draw processing for this frame. */
pfFrame();

[* Perform non-latency-critical simulation updates. */
PostFrame();
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When frame rate is not maintained, some frames display longer than others. If, for
example, when the frame rate is 30 frames per second, a frame takes longer than 1/30th
of a second to fill the frame buffer, the frame is not displayed. Consequently, the current
frame is displayed for two instead of one 1/30ths of a second. The result of inconsistent
frame rates is jerky motion within the scene.

Note: You have some control over what happens when a frame rate is missed. You can
choose, for example, to begin the next frame in the next 1/60th of a second, or wait for

the start of the next 1/30th second. For more information about handling frame drawing
overruns, see pfPhase in “Free-Running Frame-Rate Control” on page 125.

The key to maintaining frame rate is limiting the amount of information to be rendered.
IRIS Performer can take care of this problem automatically for you when you use the
PFPVC_DVR_AUTO token with pfPVVChanDVRMode().

In PFPVC_DVR_AUTO mode, IRIS Performer checks every rendered frame to see if it
took too long to render. If it did, IRIS Performer reduces the size of the image, and
correspondingly, the number of pixels in it. Afterwards, the video hardware enlarges the
images to the same size as the pfChannel; in this way, the image is the correct size, but it
contains a reduced number of pixels, as suggested in Figure 5-2.

Figure 5-2 Real Size of Viewport Rendered Under Increasing Stress

Although the viewport is reduced as stress increases, the viewer never sees the image
grow smaller because bipolar filtering is used to enlarge the image to the size of the
channel.
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The Channel in DVR

When using Dynamic Video Resolution (DVR), the origin and size of a channel are
dynamic. For example, a viewport whose lower-left corner is at the center of a pfPipe
(with coordinates 0.5, 0.5) would be changed to an origin of (0.25, 0.25) with respect to
the full pfPipe window if the DVR settings were scaled by a factors of 0.5 in both X and
Y dimensions.

If you are doing additional rendering into a pfChannel, you may need to know the size
and the actual rendered area of the pfChannel. Use pfGetChanOutputOrigin() and
pfGetChanOutputSize() to get the actual rendered origin and size, respectively, of a
pfChannel. pfGetChanOrigin() and pfGetChanSize() gives the displayed origin and
size of the pfChannel and these functions should be used for mapping mouse positions
or other window-relative non-rendering positions to the pfChannel area.

Additionally, if DVR alters the rendered size of a pfChannel, a corresponding change
should be made to the width of points and lines. For example, when a channel is scaled
in size by one half, lines and points must be drawn half as wide as well so that when the
final image is enlarged, in this case by a factor of two, the lines and points scale correctly.
pfChanPixScale() sets the pixel scale factor. pfGetChanPixScale() returns this value for
a channel. pfChannels set this pixel scale automatically.

DVR Scaling

DVR scales linearly in response to the most common cause of draw overload: filling the
polygons. For example, if the DRAW stage process overran by 50%, to get back in under
the frame time, the new scene must draw 30% fewer pixels. We can do this with DVR by
rendering to a smaller viewport and letting the video hardware rescale the image to the
correct display size.

If pfPVChanMode() is set to PFPVC_DVR_AUTO, IRIS Performer automatically scales
each of the pfChannels. pfChannels automatically scale themselves according to the scale
set on the pfPipeVideoChannel they are using.

If the pfPVVChanMode() is PFPVC_DVR_MANUAL, you control scaling according to
your own policy by setting the scale and size of the pfPipeVideoChannel in the
application process between pfSync() and pfFrame(). For example:

Total pixels drawn last frame = ChanOutX * ChanOutY * Depth Complexity
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To make the total pixels drawn 30% less, do the following:

NewChanOutX = NewChanOutY =.7 * (Chan OutX * ChanOut.)
New ChanOut X = sqrt (.7) * ChanOutX

New ChanOut X = sqrt (.7) * ChanOut X

NewChanOut = sqrt (.7) * ChanOut

Customizing DVR

Your application has full control over DVR behavior. You can either configure the
automatic mode or implement your own response control.

Automatic resizing can cause problems when an image has so much information in it the
viewport is reduced too drastically, perhaps to only a few hundred pixels, so that when
the image is enlarged, the image resolution is unacceptably blurry. To remedy this
problem, pfPipeVideoChannel includes the following methods to limit the reduction of
a video channel:

pfPVChanMaxDecScale()
sets the maximum X and Y decrement scaling that can happen in asingle
step of automatic dynamic video resizing. A scale value of (-1), the
default, removes the upper bound on decremental scales.

pfPVChanMaxIncScale()
sets the maximum X and Y increment scaling that can happen in asingle
step of automatic dynamic video resizing. A scale value of (-1), the
default, removes the upper bound on incremental scales.

pfPVChanMinDecScale()
sets the minimum X and Y decrement scaling that can happen in asingle
step of automatic dynamic video resizing. The default value is 0.0.

pfPVChanMinlncScale()
sets the minimum X and Y increment scaling that can happen in a single
step of automatic dynamic video resizing. The default value is 0.0.

pfPVChanStress()
sets the stress of the pfPipeVideoChannel for the current frame. This call
should be made in the application process after pfSync and before
pfFrame to affect the next immediate draw process frame.

pfPVChansStressFilter()
sets the parameters for computing stress if it is not explicitly set for the
current frame by pfPVChanStress.
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Each of these methods have corresponding Get methods that return the values set by
these methods.

To resize the video channel manually, use pfPipeVideoChannel sizing methods, such as
pfPVChanOutputSize(), pfPVChanAreaScale(), and pfPVVChanScale().

The pfPipeVideoChannel associated with a channel is returned by pfGetChanPVChan().
If there is more than one pfPipeVideoChannel associated with a pfPipeWindow, each one
is identified by an index number. In the case of multiple pfPipeVideoChannels, the
pfPipeVideoChannel index is set using pfChanPWinPVChanlIndex() and returned by
pfGetChanPWinPVChanlndex().

Understanding the Stress Filter

pfPVChanStressFilter() sets the parameters for computing stress for a
pfPipeVideoChannel when the stress is not explicitly set for the current frame by
pfPVChanStress().

void pfPipeVideoChannel::setStressFilter(float *frameFrac,
float *lowLoad, float *highLoad, float *pipeLoadScale,
float *stressScale, float *maxStress);

frameFrac is the fraction of a frame that pfPipeVideoChannel is expected to take to render
the frame, for example, if the rendering time is equal to the period of the frame rate,
frameFrac is 1.

If there is only one pfPipeVideoChannel, it is best if frameFrac is 1. If there are more than
one pfPipeVideoChannels on the pfPipe, by default frameFrac is divided among the
pfPipeVideoChannels. You can set frameFrac explicitly for each pfPipeVideoChannel
such that a channel rendering visually-complex scenes is allocated more time than a
channel rendering simple scenes.

pfGetPFChansStressFilter() returns the stress filter parameters for pfPipeVideoChannel.
If stressScale is non-zero, stress is computed for the pfPipeVideoChannel every frame. low
and high define a hysteresis band for system load. When the load is above lowLoad and
below highLoad, stress is held constant. When the load falls outside of the lowLoad and
highLoad parameters, IRIS Performer reduces or increases stress respectively by
dynamically resizing the output area of the pfPipeVideoChannel until the load stabilizes
between lowLoad and highLoad.
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If pipeStressScale is non-zero, the load of the pfPipe of the pfPipeVideoChannel are
considered in computing the stress. maxsStress is the clamping value above which the
stress value cannot go. For more information about the stress filter, see the reference page
for pfPipeVideoChannel.
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All graphics systems have finite capabilities that affect the number of geometric
primitives that can be displayed per frame at a specified frame rate. Because of these
limitations, maximizing visual cues while minimizing the polygon count in a database is
often an important aspect of database development. Level-of-detail processing is one of
the most beneficial tools available for managing database complexity for the purpose of
improving display performance.

The basic premise of LOD processing is that objects that are barely visible, either because
they are located a great distance from the eyepoint or because atmospheric conditions
reduce visibility, don’t need to be rendered in great detail in order to be recognizable.
This is in stark contrast to brutishly mandating that all polygons be rendered regardless
of their contribution to the visual scene. Both atmospheric effects and the visual effect of
perspective decrease the importance of details as range from the eyepoint increases. The
predominant visual effect of distance is the perspective foreshortening of objects, which
makes them appear to shrink in size as they recede into the distance.

To save rendering time, objects that are visually less important in a frame can be rendered
with less detail. The LOD approach to optimizing the display of complex objects is to
construct a number of progressively simpler versions of an object and to select one of
them for display as a function of range.

This requires you to create multiple models of an object with varying levels of detail. You
also must supply a rule to determine how much detail is appropriate for a given distance
to the eyepoint. The sections that follow describe how to create multiple LOD models
and how to control when the changeover to a different LOD occurs.
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Level-of-Detail Models

Most objects comprise smaller objects that become visually insignificant at ranges where
the conglomerate object itself is still quite prominent. For example, a complex model of
an automobile might have door handles, side- and rear-view mirrors, license plates, and
other small details.

A short distance away, these features may no longer be visible, even though the car itself
is still a visually significant element of the scene. It is important to realize that as a group,
these small features may contain as many polygons as the larger car itself, and thus have
a detrimental effect on rendering speed.

You can construct two LOD models simply by providing one model that contains all of
the detailed features and another model that contains only the car body itself and none
of the detailed features. A more sophisticated scheme uses multiple LOD models that are
grouped under an LOD node.

Figure 5-3 shows an LOD node with multiple children numbered 1 through n. In this
case, the model named LOD 1 is the most detailed model and models LOD 2 through
LOD n represent progressively coarser models. Each of these LOD models might contain
children that also have LOD components. Associated with the LOD node is a list of
ranges that define the distance at which each model is appropriate to display. There is no
limit to the number of levels of detail that can be used.

Level
Detail

LOD 1 LOD 2 [ [ ] { [ ] [ LOD n

Figure 5-3 Level-of-Detail Node Structure
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The object can be transformed as needed. During the culling phase of frame processing,
the distance from the eyepoint to the object is computed and used (with other factors) to
select which LOD model to display.

The IRIS Performer pfLOD node contains a value known as the center of LOD
processing. The LOD center point is an x, y, z location that defines the point used in
conjunction with the eyepoint for LOD range-switching calculations, as described in the
“Level-of-Detail Range Processing” section of this chapter.

Figure 5-4 shows an example in which multiple LOD models grouped under a parent
LOD node are used to represent a toy race car.
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Blend
zones

Switch
ranges

Figure 5-4 Level-of-Detail Processing

Figure 5-4 demonstrates that each car in a row of identical cars placed at increasing range
from the eyepoint is drawn using a different child of the tree’s LOD node.
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The double-ended arrows indicate a switch range for each level of detail. When the car
is closer to the eyepoint than the first range, nothing is drawn. When the car is between
the first and second ranges, LOD 1 is drawn. When the car is between the second and
third ranges, LOD 2 is drawn.

This range bracketing continues until the final range is passed, at which point nothing is
drawn. The pfLOD node’s switch range list contains one more entry than the number of
child nodes to allow for this range bracketing.

IRIS Performer provides the ability to specify a blend zone for each switch between LOD
models. Such that pfLOD nodes now also hold a list of these transition distances over
which IRIS Performer should ‘blend’ between neighboring LODs. These blend zones will
be discussed in more detail in “Level-of-Detail Transition Blending” on page 141.

Level of Detail States

In addition to standard LOD nodes, IRIS Performer also supports LOD state—the
pfLODState. A pfLODState is an essence a way of creating classes or priorities among
LODs. A pfLODstate contains eight parameters used to modify four different ways in
which IRIS Performer calculates LOD switch ranges and LOD transition distances. LOD
states contain the following parameters:

= Scale for LODs switch Ranges.

= Offset for LODs switch Ranges.

= Scale for the effect of Stress of switch Ranges.

= Offset for the effect of Stress on switch Ranges.

= Scale for the transition distances per LOD switch
= Offset for the transition distances per LOD switch
= Scale for the effect of Stress on transition distances

= Offset for the effect of Stress on transition distances
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These LOD states can then be attached to either single or multiple LOD nodes such that
the LOD behavior of groups or classes of objects can be different and be easily modified.
The reference pages for pfLODLODState() and pfLODLODStatelndex() contain
detailed information on how to attach pfLODStates.

LOD states are useful because in a particular scene there often exists an object of focus
such as a sign, a target, or some other object of particular visual significance that needs
to be treated specially with regard to visual importance and thus LOD behavior. It stands
to reason, that this particular object (or small group of objects) should be at the highest
detail possible despite being farther away than other elements in the scene which might
not be as visually significant. In fact, it might be feasible to diminish the detail of these
less important objects (like rocks and trees) in favor of the other more important objects
(despite these objects being further relatively in range). In this case one would just create
two LOD states. The first would be for the important objects and would effectively
disable the effect of stress on these nodes as well as scale the switch ranges such that the
object(s) would maintain more detail for further ranges. The second LOD state would be
used to make the objects of less importance be more responsive to system stress and
possibly scale their switch ranges such that they would show even less detail than
normal. In this way, LOD states allow biasing among different LODs to maintain
desirable rendering speeds while maintaining the visual integrity of various objects
depending on their subjective importance (rather than solely on their current visual
significance).

In some multichannel applications, LOD states are used to control the action of LODs in
different viewing channels that have different visual significance criteria—for instance
one channel might be a normal channel while a second might represent an infra-red
display. Rather than simple use of LOD states, it is also possible to specify a list of LOD
states to a channel and use indexes from this list for particular LODs (via
pfChanLODStateL ist() and pfLODLODStatelndex()). In this way, in the normal
channel a car’s geometry might be particularly important while in the infra-red channel,
the hot exhaust of the same car might be much more important to observe. This type of
channel dependent LOD can be set up by using two distinct and different LOD states for
the same index in the lists of LOD states specified for unique channels.

Note that because IRIS Performer performs LOD calculations in a range squared space
as much as possible for efficiency reasons, LOD computation becomes more costly when
LOD states contain scales that are not equal to 1.0 or offsets not equal to 0.0 for transitions
or switch ranges—these offsets force IRIS Performer to perform otherwise avoidable
square roots calculations in order to correctly calculate the effects of scale and offset on
the LOD.
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Level-of-Detail Range Processing

The LOD switch ranges present in LOD nodes are processed before being used to make
the level of detail selection. The goal of range setting is to switch LODs as objects reach
certain levels of perceptibility. The size of a channel in pixels, the field of view used in
viewing, and the distance from the observer to the display surface all affect object
perceptibility.

IRIS Performer uses a channel size of 1024x1024 pixels and a 45-degree field of view as
the basis for calculating LOD switching ranges. The screen space size of a channel and
the current field of view are used to compute an LOD scale factor that is updated
whenever the channel size or the field of view changes.

There is an additional global LOD scale factor that can be used to adjust switch ranges
based on the relationship between the observer and the display surface. The default
global scale factor is 1.

Note that LOD switch ranges are also effected by LOD states that have been attached to
either a particular LOD or to a channel that contains the LOD. These LOD states provide
the mechanism to apply both a scale and an offset for an LODs switch ranges and to the
effect of system stress on those switch ranges. See “Level of Detail States” on page 136 for
more information of pfLODStates.

Ultimately a LODs switch range without regard to system stress can be computed as
follows:

switch_rangeJi] =

(rangel[i] *
LODStateRangeScale *
ChannelLODStateRangeScale +
LODStateRangeOffset +
ChannelLODStateRangeOffset) *

ChannelLODScale *

ChannelSizeAndFOVFactor;
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If IRIS Performer channel stress processing is active, the computed range is modified as
follows:

switch_rangel[i] *=
(ChannelLODStress *
LODStateRangeStressScale *
ChannelLODStateRangeStressScale +
LODStateRangeStressOffset +
ChannelLODStateRangeStressOffset);

Example 5-2 illustrates how to set LOD ranges.

Example 5-2 Setting LOD Ranges

/* setLODRanges() -- sets the ranges for the LOD node. The
* ranges from 0 to NumLODs are equally spaced between min
* and max. The last range, which determines how far you
* can get from the object and still see it, is set to
* visMax.
*/
void
setLODRanges(pfLOD *lod,float min, float max, float visMax)
{ . .

inti;

float range, rangelnc;

rangelnc = (max - min)/(ViewState->shellLOD + 1);
for (range = min, i = 0; i < ViewState->shellLOD; i++)
{
ViewState->rangeli] = range;
pfLODRange(lod, i, range);
range += rangelnc;
}
ViewState->range[i] = visMax;
pfLODRange(lod, i, visMax);
}

/* generateShellLODs() -- creates shell LOD nodes according
* to the parameters specified in the shared data structure.
*/
void
generateShellLODs(void)
{ . .
int i;
pfGroup *grp;
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pfVec4 clr;

long numLOD = ViewState->shellLOD;
long numPnts = ViewState->shellPnts;
long numPcs = ViewState->shellPcs;

for (i=1; i <= numLOD; i++)
{
if (ViewState->shellColor == SHELL_COLOR_SING)
pfSetVec4(clr, 0.9f, 0.1f, 0.1f, 1.0f);
else
/* set the color. highest level = RED;
* middle LOD = GREEN; lowest LOD = BLUE
*/
pfSetVec4(clr,

(i <= (long)floor((double)(numLOD/2.0f)))?
(-2.0f/numLOD) *i + 1.0f + 2.0f/numLOD:
0.0f,

(i <= (long)floor((double)(numLOD/2)))?
(2.0f/numLOD) * (i - 1):

(-2.0f/numLOD) *i + 2.0f,

(i <= (long)floor((double)(humLOD/2)))?
0.0f:

(2.0f/numLOD) *i - 1.0f,
1.0f);

/* build a shell GeoSet */

grp = createShell(numPcs, numPnts,
ViewState->shellSweep, &clr,
ViewState->shellDraw);

normalizeNode((pfNode *)grp);

/* add geode as another level of detail node */
pfAddChild(ViewState->LOD, grp);

[* simplify the geometry, but don’t have less than
* 4 points per circle or less than 3 pieces */

numPnts = (humPnts > 7) ? numPnts-4 : 4;
numPcs = (numPcs > 6) ? numPcs-4 : 3;

ViewState->LOD = pfNewLOD();

generateShellLODs();

140



Level-of-Detail Management

[* get the LOD'’s extents */

pfGetNodeBSphere(ViewState->LOD, &(ViewState->bSphere));

pfLODCenter(ViewState->LOD, ViewState->bSphere.center);

[* set ranges for LODs; there should be (num LODs + 1)

* range entries */

setLODRanges(ViewState->LOD, ViewState->minRange,
ViewState->maxRange, ViewState->max);

Level-of-Detail Transition Blending

An undesirable effect called popping occurs when the sudden transition from one LOD to
the next LOD is visually noticeable. This distracting image artifact can be ameliorated
with a slight modification to the normal LOD-switching process.

In this modified method a transition per LOD switch is established rather than making a
sudden substitution of models at the indicated switch range. These transitions specify
distances over which to blend between the previous and next LOD. These zones are
considered to be centered at the specified LOD switch distance, as shown by the
horizontal shaded bars of Figure 7-3. Note that IRIS Performer limits the transition
distances to be equal to the shortest distance between the switch range and the two
neighboring switch ranges. For more information, see the pfLODTransition() reference

page.

As the range from eyepoint to LOD center-point transitions the blend zone, each of the
neighboring LOD levels is drawn by using transparency to composite samples taken
from the present LOD model with samples taken from the next LOD model. For example,
at the near, center, and far points of the transition blend zone between LOD 1 and LOD
2, samples from both LOD 1 and LOD 2 are composited until the end of the transition
zone is reached, where all the samples are obtained from LOD 2.

Table 5-2 lists the transparency factors used for transitioning from one LOD range to
another LOD range.

Table 5-2 LOD Transition Zones

Distance LOD 1 LOD 2

Near edge of blend zone  100% opaque 0% opaque
Center of blend zone 50% opaque 50% opaque
Far edge of blend zone 0% opaque 100% opaque
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LOD transitions are made smoother and much less noticeable by applying a blending
technique rather than making a sudden transition. Blending allows LOD transitions to
look good at ranges closer to the eye than LOD popping allows. Decreasing switch
ranges in this way improves the ability of LOD processing to maximize the visual impact
of each polygon in the scene without creating distracting visual artifacts.

The benefits of smooth LOD transition have an associated cost. The expense lies in the
fact that when an object is within a blend zone, two versions of that object are drawn.
This causes blended LOD transitions to increase the scene polygon complexity during
the time of transition. For this reason, the blend zone is best kept to the shortest distance
that avoids distracting LOD-popping artifacts. Currently, fade level of detail is
supported only on RealityEngine graphics systems.

Note that the actual ‘blend’ or ‘fade’ distance used by IRIS Performer can also be adjusted
by the LOD priority structures called pfLODStates. pfLODStates hold an offset and scale
for the size of transition zones as well as an offset and scale for how system stress can
affect the size of the transition zones. See “Level of Detail States” on page 136 for more
information on pfLODStates.

Note also, that there exists a global LOD transition scale on a per channel basis that can
affect all transition distances uniformly.

Thus for an LOD with 5 switch ranges RO, R1, R2, R3, R4 to switch between four models
(MO0, M1, M2, M3), there are 5 transition zones T0 (fade in MQ0), T1 (blend between MO
and M1), T2 (blend between M1 and M2), T3 (blend between M2 and M3), T4 (fade out
M3). The actual fade distances (without regard to channel stress) are as follows.

fadeDistance[i] =
(transition[i] *
LODStateTransitionScale *
ChannelLODStateTransitionScale +
LODStateTransitionOffset +
ChannelLODStateTransitionOffset) *
ChannelLODFadeScale;
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If IRIS Performer management of channel stress is turned on then the above fade distance
is modified as follows:

fadeDistance[i] /=
(ChannelStress *
LODStateTransitionStressScale *
ChannelLODStateTransitionStressScale +
LODStateTransitionStressOffset +
ChannelLODStateTransitionStressOffset);

Terrain Level of Detail

In creating LOD models and transitions for objects, it’s often safe to assume that the entire
model should transition at the same time. It’s quite reasonable to make features of an

automobile such as door handles disappear from the scene at the same time even when
the passenger door is slightly closer than the driver’s door. It is much less clear that this
approach would work for very large objects such as an aircraft carrier or a space station,
and it’s clearly not acceptable for objects that span a large extent, such as a terrain surface.

Attempts to handle large-extent objects with discrete LOD tools focus on breaking the big
object into myriad small objects and treating each small object independently. This works
in some cases but often fails at the junction between two or more independent objects
where cracks or seams exist when different detail levels apply to the objects. Some terrain
processing systems have attempted to provide a hierarchy of crack filling geometry that
is enabled based on the LOD selections of two neighboring terrain patches. This “digital
grout” becomes untenable when more than a few patches share a common vertex.

You can always make the transitions between LODs smooth by using active surface
definition (ASD). ASD treats the entire terrain as a single connected surface rather than
multiple patches that are loaded into memory as necessary. The surface is modeled with
several hierarchical level-of-detail (LOD) meshes in data structures that allow for the
rapid evaluation of smooth LOD transitions, load management on the evaluation itself,
and efficient generation of a meshed terrain surface of the visible triangles for the current
frame. For more information, refer to the Chapter 15, “Active Surface Definition.”
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Arbitrary Morphing

Terrain level of detail using an interpolative active surface definition is a restricted form
of the more general notion of object morphing. Morphing of models such as the car in a
previous example can simply involve scaling a small detail to a single point and then
removing it from the scene. Morphing is possible even when the topologies of
neighboring pairs do not match. Both models and terrain can have vertex, normal, color,
and appearance information interpolated between two or more representations. The
advantages of this approach include: reduced graphics complexity since blending is not
used, constant intersection truth for collision and similar tasks, and monotonic database
complexity that makes system load management much simpler. Such evaluation might
make use of the compute process and pfFlux objects to hold the vertex data and to
modify the scene graph control to chose the proper form of the object. pfSwitch nodes
can take a pfFlux for holding its value; see the pfSwitchValFlux() reference page. pfLOD
nodes can take a flux for controlling range with pfLODRangeFlux(). See the pfLOD and
pfEngine reference pages for more information on morphing.
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Because the effects of variable image update rates can be objectionable, many simulation
applications are designed to operate at a fixed frame rate. One approach to selecting this
fixed frame rate is to select an update rate constrained by the most complex portion of
the visual database. Although this conservative approach may be acceptable in some
cases, IRIS Performer supports a more sophisticated approach using dynamic LOD
scaling.

Using multiple LOD models throughout a database provides the traversal system with a
parameter that can be used to control the polygonal complexity of models in the scene.
The complexity of database objects can be reduced or increased by adjusting a global
LOD range multiplier that determines which LOD level is drawn.

Using this facility, a closed-loop control system can be constructed that adjusts the
LOD-switching criteria based on the system load, also called stress, in order to maintain
a selected frame rate.

Figure 5-5 illustrates a stress-processing control system.
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Desired Frame Time

Actual Frame Time

Figure 5-5 Stress Processing

In Figure 5-5, the desired and actual frame times are compared by the stress filter. Based
on the user-supplied stress parameters, the stress filter adjusts the global LOD scale
factor by increasing it when the system is overloaded and decreasing it when the system
is underloaded. In this way, the system load is monitored and adjusted before each frame
is generated.

The degree of stability for the closed-loop control system is an important issue. The ideal
situation is to have a critically damped control system—that is, one in which just the right
amount of control is supplied to maintain the frame rate without introducing
undesirable effects. The effects of overdamped and underdamped systems are visually
distracting. An underdamped system oscillates, causing the system to continuously
alternate between two different LOD models without reaching equilibrium.
Overdamped systems may fail to react within the time required to maintain the desired
frame rate. In practice, though, dynamic load management works well, and simple stress
functions can handle the slowly changing loads presented by many databases.
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The default stress function is controlled with user-selectable parameters. These
parameters are set using the function pfChanStressFilter().

The default stress function is implemented by the code fragment in Example 5-3.

Example 5-3 Default Stress Function

/* current load */
curLoad = drawTime * frameRate * frameFrac;

/* integrated over time */
if (curLoad < lowLoad)
stressLevel -= stressParam * stressLevel;
else
if (curLoad > highLoad)
stressLevel += stressParam * stressLevel;

/* limited to desired range */

if (stressLevel < 1.0)
stressLevel = 1.0;

else

if (stressLevel > maxStress)
stressLevel = maxStress;

The parameters lowLoad and highLoad define a “comfort zone” for the control system. The
first if-test in the code fragment demonstrates that this comfort zone acts as a dead band.
Instantaneous system load within the bounds of the dead band doesn’t result in a change
in the system stress level. If the size of the comfort zone is too small, oscillatory distress
is the probable result. Itis often necessary to keep the highLoad level below the 100% point

so that blended LOD transitions don’t drive the system into overload situations.

For those applications in which the default stress function is either inappropriate or
insufficient, you can compute the system stress yourself and then set the stress load
factor. Your filter function can access the same system measures that the default stress
function uses, but it’s also free to keep historical data and perform any feedback-transfer

processing that application-specific dynamic load management may require.
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The primary limitation of the default stress function is that it has a reactive rather than
predictive nature. One of the major advantages of user-written stress filters is their ability
to predict future stress levels before increased or decreased load situations reach the
pipeline. Often the simulation application knows, for example, when a large number of
moving models will soon enter the viewing frustum. If their presence is anticipated, then
stress can be artificially increased so that no sudden LOD changes are required as they
actually enter the field of view.

Successful Multiprocessing With IRIS Performer

= Advanced

This section describes an advanced topic that applies only to systems with more than one
CPU. If you don’t have a multiple-CPU system, you may want to skip this
section.

IRIS Performer uses multiprocessing to increase throughput for both rendering and
intersection detection. Multiprocessing can also be used for tasks that run
asynchronously from the main application like database management. Although IRIS
Performer hides much of the complexity involved, you need to know something about
how multiprocessing works in order to use multiple processors well.

Review of Rendering Stages

IRIS Performer application renders images using one or more pfPipes as independent
software-rendering pipelines. The flow through the rendering pipeline can be modeled
using these functional stages:

Intersection Test for intersections between segments and geometry to simulate
collision detection or line-of-sight for example.

Application Do requisite processing for the visual simulation application, including
reading input from control devices, simulating the vehicle dynamics of
moving models, updating the visual database, and interacting with
other networked simulation stations.

Cull Traverse the visual database and determine which portions of it are
potentially visible, perform level-of-detail selection for models with
multiple representations, and build sorted, optimized display list for the
draw stage.

Draw Issue graphics library commands to a Geometry Pipeline in order to
create an image for subsequent display.
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You can partition these stages into separate parallel processes in order to distribute the
work among multiple CPUs. Depending on your system type and configuration, you can
use any of several available multiprocessing models.

Choosing a Multiprocessing Model

Use pfMultiprocess() to specify which functional stages, if any, should be forked into
separate processes. The multiprocessing mode is actually a bitmask where each bit
indicates that a particular stage should be configured as a separate process. For example,
the bit PFMP_FORK_DRAW means the draw stage should be split into its own process.
Table 5-3 lists some convenience tokens that represent common multiprocessing modes:

Table 5-3 Multiprocessing Models

Model Name Description

PFMP_APPCULLDRAW Combine the application, cull, and draw stages into a single
process. In this model, all of the stages execute within a single frame
period. This is the minimum-latency mode of operation.

PFMP_APP_CULLDRAW Combine the cull and draw stages in a process that is separate from
or the application process. This model provides a full frame period for

the application process, while culling and drawing share this same
PFMP_FORK_CULL interval. This mode is appropriate when the host’s simulation tasks
are extensive but graphic demands are light, as might be the case
when complex vehicle dynamics are performed but only a simple
dashboard gauge is drawn to indicate the results.

PFMP_APPCULL_DRAW Combine the application and cull stages in a process that is separate
or from the draw process. This mode is appropriate for many
simulation applications when application and culling demands are
PFMP_FORK_DRAW light. It allocates a full CPU for drawing and has the APP and CULL
stages share a frame period. Like the PFMP_APP_CULLDRAW
mode, this mode has a single frame period of pre-draw latency.

PFMP_APP_CULL_DRAW  Perform the application, cull, and draw stages as separate

or processes. This is the full maximum-throughput multiprocessing
mode of IRIS Performer operation. In this mode, each pipeline stage

PFMP_FORK_CULL | is allotted a full frame period for its processing. Two frame periods

PFMP_FORK_DRAW of latency exist when using this high degree of parallelism.
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You can also use pfMultiprocess() to specify the method of communication between the
cull and draw stages, using the bitmasks PFMP_CULL0oDRAW and
PFMP_CULL_DL_DRAW.

Cull-Overlap-Draw Mode

Setting PFMP_CULLoDRAW specifies that the cull and draw processes for a given frame
should overlap—that is, that they should run concurrently. For this to work, the cull and
draw stages must be separate processes (PFMP_FORK_DRAW must be true). In this
mode the two stages communicate in the classic producer-consumer model, by way of a
pfDispList that is configured as a ring (FIFO) buffer; the cull process puts commands on
the ring while the draw process simultaneously consumes these commands.

The main benefit of using PFMP_CULL0oDRAW is reduced latency, since the number of
pipeline stages is reduced by one and the resulting latency is reduced by an entire frame
time. The main drawback is that the draw process must wait for the cull process to begin
filling the ring buffer.

Forcing pfDisplayList Generation

When the cull and draw stages are in separate processes, they communicate through a
pfDispList; the cull process generates the display list, and the draw process traverses and
renders it. (The display list is configured as a ring buffer when using
PFMP_CULLoDRAW mode, as described in the “Cull-Overlap-Draw Mode” section).

However, when the cull and draw stages are in the same process (as occurs with the
PFMP_APPCULLDRAW or PFMP_APP_CULLDRAW multiprocessing models) a
display listisn’t required and by default one will not be used. Leaving out the pfDispList
eliminates overhead. When no display list is used, the cull trigger function pfCull() has
no effect; the cull traversal takes place when the draw trigger function pfDraw() is
invoked.

In some cases you may want an intermediate pfDispList between the cull and draw
stages even though those stages are in the same process. The most common situation that
calls for such a setup is multipass rendering, when you want to cull only once but render
multiple times. With PFMP_CULL_DL_DRAW enabled, pfCull() generates a pfDispList
that can be rendered multiple times by multiple calls to pfDraw().
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Intersection Pipeline

The intersection pipeline is a two-stage pipeline consisting of the application and the
intersection stages. The intersection stage may be configured as a separate process by
setting the PFMP_FORK_ISECT bit in the bitmask given to pfMultiprocess(). When
configured as such, the intersection process is triggered for the current frame when the
application process calls pfFrame(). Then in the special intersection callback set with
pflsectFunc(), you can invoke any nhumber of intersection requests with
pfNodelsectSegs(). To support this operation, the intersection process keeps a copy of
the scene graph pfNodes.

The intersection process is asynchronous so that if it does not finish within a frame time
it does not slow down the rendering pipeline(s).

The Compute Process

The compute process is an asynchronous process provided for doing extensive
asynchronous computation. The compute stage is done as part of pfFrame() in the
application process unless it is configured to run as separate process by setting the
PFMP_FORK_COMPUTE bit in the pfMultiprocess() bitmask. The compute process is
asynchronous so that if it does not finish within a frame time, it will not slow down the
rendering pipeline. The compute process is intended to work with pfFlux objects, placing
the results of asynchronous computation in pfFluxes. pfFlux will automatically manage
the needed multibuffering and frame consistency requirements for the data.See
Chapter 14, “Dynamic Data,” for more information on pfFlux. Some IRIS Performer
objects, such as pfASD, do their computation in the compute stage so pfCompute() must
be called from any compute user callback if one has been specified with
pfComputeFunc().

Multiple Rendering Pipelines

By default, IRIS Performer uses a single pfPipe, which in turn draws one or more
pfChannels into one or more pfPipeWindows. If you want to use multiple rendering
pipelines, as on two- or three-Geometry Pipeline Onyx RealityEngine? systems, use
pfMultipipe() to specify the number of pfPipes required. When using multiple pipelines,
the PFMP_APPCULLDRAW and PFMP_APPCULL_DRAW modes are not supported
and IRIS Performer defaults to the PFMP_APP_CULL_DRAW multiprocessing
configuration. Regardless of the number of pfPipes, there is always a single application
process which triggers the rendering of all pipes with pfFrame().
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Multithreading

For additional multiprocessing and attendant increased throughput, the CULL stage of
the rendering pipeline may be multithreaded. Multithreading means that a single pipeline
stage is split into multiple processes, or threads which concurrently work on the same
frame. Use pfMultithread() to allocate a number of threads for the cull stage of a
particular rendering pipeline.

Cull multithreading takes place on a per-pfChannel basis, that is, each thread does all
the culling work for a given pfChannel. Thus, an application with only a single channel
will not benefit from multithreading the cull and an application with multiple, equally
complex channels will benefit most by allocating a number of cull threads equal to the
number of channels. However, it is legal to allocate fewer cull threads if you do not have
enough CPUs—in this case the threads are assigned to channels on a need basis.

Order of Calls

The multiprocessing model set by pfMultiprocess() is used for each of the rendering
pipelines. In programs that configures the application stage as a separate process, all IRIS
Performer calls must be made from the process that calls pfConfig() or the results are
undefined. Both pfMultiprocess(), pfMultithread(), and pfMultipipe() must be called
after pfinit() but before pfConfig(). pfConfig() configures IRIS Performer according to
the required number of pipelines and the desired multiprocessing and multithreading
modes, forks the appropriate number of processes, and then returns control to the
application. pfConfig() should be called only once during each IRIS Performer
application.

Comparative Structure of Models

Figure 5-6 shows timing diagrams for each of the process models. The vertical lines are
frame boundaries. Five frames of the simulation are shown to allow the system to reach
steady-state operation. Only one of these models can be selected at a time, but they are
shown together so that you can compare their structures.

Boxes represent the functional stages and are labeled as follows:
A, application process for the nth frame
C

D draw process for the nth frame

n

cull process for the nth frame

n
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Notice that when a stage is split into its own process, the amount of time available for all
stages increases. For example, in the case where the application, cull, and draw stages are
3 separate processes, it is possible for total system performance to be tripled over the
single process configuration.

Asynchronous Database Processing

Many databases are too large to fit into main memory. A common solution to this
problem is called database paging where the database is divided into manageable chunks
on disk and loaded into main memory when needed. Usually chunks are paged in just
before they come into view and are deleted from the scene when they are comfortably
out of viewing range.

All this paging from disk and deleting from main memory takes a lot of time and is
certainly not amenable to maintaining a fixed frame rate. The solution supported by IRIS
Performer is asynchronous database paging in which a process, completely separate from
the main processing pipeline(s), handles all disk /0 and memory allocations and
deletions. To facilitate asynchronous database paging, IRIS Performer provides the
pfBuffer structure and the DBASE process.

DBASE Process

The database (or DBASE) process is forked by pfConfig() if the PFMP_FORK_DBASE bit
was set in the mode given to pfMultiprocess(). The database process is triggered when
the application process calls pfFrame() and invokes the user-defined callback set with
pfDBaseFunc(). The database process is totally asynchronous. If it exceeds a frame time
it does not slow down any rendering or intersection pipelines.

The DBASE process is intended for asynchronous database management when used
with pfBuffer.

pfBuffer

A pfBuffer is a logical buffer which isolates database changes to a single process,
avoiding disastrous collisions on data from multiple processes. In typical use, a pfBuffer
is created with pfNewBuffer(), made current with pfSelectBuffer() and merged with the
main IRIS Performer buffer with pfMergeBuffer(). While the DBASE process is intended
for pfBuffer use, other processes forked by the application may also use different
pfBuffers in parallel for multithreaded database management. By ensuring that only a
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single process uses a given pfBuffer at a given time and following a few scoping rules
discussed below, the application can safely and efficiently implement asynchronous
database paging

A pfNode is said to have buffer scope or be “in” a particular pfBuffer. This is an important
concept because it affects what you can do with a given node. A newly-created node is
automatically “in” the currently active pfBuffer until that pfBuffer is merged using
pfMergeBuffer(). At that instant, the pfNode is moved into the main IRIS Performer
buffer, otherwise known as the application buffer.

A rule in pfBuffer management is that a process may only access nodes that are in its
current pfBuffer. As a result, a database process may not directly add a newly created
subgraph of nodes to the main scene graph because all nodes in the main scene graph
have application buffer scope only—they are isolated from the database pfBuffer. This
may seem inconvenient at first but it eliminates catastrophic errors like, for example, the
application process traverses a group at the same time you add a child, changing its child
list and causing the traversal to chase a bad pointer.

Remedies to the inconveniences stated above are the pfBufferAddChild(),
pfBufferRemoveChild() and pfBufferClone() routines. The first two routines are
identical to their non-buffer counterparts pfAddChild() and pfRemoveChild() except
the buffer versions do not happen immediately. Other functions, pfBufferAdd(),
pfBufferinsert(), pfBufferReplace(), and pfBufferRemove(), perform the
buffer-oriented delayed-action versions of the corresponding non-buffer pfList
functions. In all cases the add, insert, replace, or removal request is placed on a list in the
current pfBuffer and is processed later at pfMergeBuffer() time.

pfBufferClone() supports the notion of maintaining a “library” of common objects like
trees or houses in a special library pfBuffer. The main database process then clones
objects from the library pfBuffer into the database pfBuffer, possibly pfFlatten()ing them
for improved rendering performance. pfBufferClone() is identical to pfClone() except
the buffer version requires that the source pfBuffer be specified and that all cloned nodes
have scope in the source pfBuffer.

pfAsyncDelete

We’ve discussed how to create subgraphs for database paging: create and select a current
pfBuffer, create nodes and build the subgraph, call pfBufferAddChild() and finally

pfMergeBuffer() to incorporate the subgraph into the application’s scene. But what about
freeing the memory of old, unwanted subgraphs? For this we turn to pfAsyncDelete().
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pfDelete() is the normal mechanism for deleting objects and freeing their associated
memory. However, pfDelete() can be a very costly routine since it must traverse,
unreference, and register a deletion request for every IRIS Performer object it encounters
which has a 0 reference count. pfAsyncDelete(), in conjunction with a forked DBASE
process, moves the burden of deletion to the asynchronous database process so that all
rendering and intersection pipelines are not adversely affected.

pfAsyncDelete() may be called from any process and places an asynchronous deletion
request on a global list that is processed later by the DBASE stage when its trigger
routine, pfDBase() is called. A major difference from pfDelete() is that pfAsyncDelete()
does not immediately check the reference count of the object to be deleted and so does
not return a value indicating whether the deletion was successful or not. At this time
there is no way of querying the result of a pfAsyncDelete() request so care should be
taken that the object to be deleted has no reference counts or memory leaks will result.

Rules for Invoking Functions While Multiprocessing

There are some restrictions on which functions can be called from an IRIS Performer
process while multiple processes are running. Some specialized processes (such as the
process handling the draw stage) can call only a few specific IRIS Performer functions,
and can’t call any other kinds of functions. This section lists general and specific rules
concerning function invocation in the various IRIS Performer and user processes.

In this section, the term “the draw process” refers to whichever process is handling the
draw stage, regardless of whether that process is also handling other stages. Similarly,
“the cull process” and “the application process” refer to the processes handling the cull
and application stages, respectively.

This is a general list of the kinds of routines you can call from each process:

application configuration routines, creation and deletion routines, set and get
routines, and trigger routines such as pfAppFrame(), pfSync(),
pfFrame()

database creation and deletion routines, set and get routines, pfDBase(),
pfMergeBuffer()

cull pfCull(), pfCullPath(), IRIS Performer graphics routines

draw pfClearChan(), pfDraw(), pfDrawChanStats(), IRIS Performer

graphics routines, graphics library routines
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More specific elaborations:

You should call configuration routines only from the application process, and only
after pfinit() and before pfConfig(). pfinit() must be the first IRIS Performer call
except for those routines that configure shared memory (see “Memory Allocation”
in Chapter 13). Configuration routines don’t take effect until pfConfig() is called.
These are the configuration routines:

— pfMultipipe()
— pfMultiprocess()
—  pfMultithread()

- pfHyperpipe()

You should call creation routines, such as pfNewChan(), pfNewScene(), and
pfAlloclsectData(), only in the application process after calling pfConfig() or in a
process which has an active pfBuffer. There is no restriction on creating libpr objects
like pfGeoSets and pfTextures.

pfDelete() should only be called from the application or database processes.
pfAsyncDelete() may be called from any process.

Read-only routines—that is, the pfGet*() functions—can be called from any IRIS
Performer process. However, if a forked draw process queries a pfNode, the data
returned will not be frame-accurate. (See “Multiprocessing and Memory” on
page 158.)

Write routines—functions that set parameters—should be called only from the
application process or a process with an active pfBuffer. It is possible to call a write
routine from the cull process, but it isn’t recommended since any modifications to
the database will not be visible to the application process if it is separate from the
cull (as when using PFMP_APP_CULLDRAW or PFMP_APP_CULL_DRAW).
However, for transient modifications like custom level-of-detail switching, it is
reasonable for the cull process to modify the database. The draw process should
never modify any pfNode.
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= |RIS Performer graphics routines should be called only from the cull or draw
processes. These routines may modify hardware graphics state. They are the
routines which can be captured by an open pfDispList. (See “Display Lists” in
Chapter 9.) If invoked in the cull process, these routines are captured by an internal
pfDispList and later invoked in the draw process; but if they are invoked in the
draw process they immediately affect the current window. These graphics routines
can be roughly partitioned into those that

— apply a graphics entity: pfApplyMtl(), pfApplyTex(), and pfLightOn()

— enable or disable a graphics mode: pfEnable(), pfDisable()

— set or modify graphics state: pfTransparency(), pfPushState(), pfMultMatrix()

— draw geometry or modify the screen: pfDrawGSet(), pfDrawsString(),

pfClear()

= Graphics library routines should be called only from the draw process. Since there
is no open display list to capture these commands, an open window is required to

accept them.

= “Trigger” routines should be called only from the appropriate processes (see

Table 5-4).

Table 5-4 Trigger Routines and Associated Processes

Trigger Routine

Process/Context

pfAppFrame
pfSync
pfFrame

pfPassChanData
pfPasslsectData

pfApp

pfCull
pfCullPath

pfDraw
pfDrawBin

pfNodelsectSegs
pfChanNodelsectSegs

pfDBase

APP/main loop

APP/main loop

APP/channel APP callback

CULL/channel CULL callback

DRAW/channel DRAW callback

ISECT/callback or APP/main loop

DBASE/callback
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User-spawned processes created with sproc() can trigger parallel intersection
traversals through multiple calls to pfNodelsectSegs() and
pfChanNodelsectSegs().

Functions pfApp(), pfCull(), pfDraw(), and pfDBase() are only called from within
the corresponding callback specified by pfChanTravFunc() or pfDBaseFunc().

Multiprocessing and Memory

In IRIS Performer, as is often true of multiprocessing systems, memory management is
the most difficult aspect of multiprocessing. Most data management problems in an IRIS
Performer application can be partitioned into three categories:

Memory visibility. IRIS Performer uses fork(), which—unlike sproc()— generates
processes that don’t share the same address space. The processes also cannot share
global variables that are modified after the fork() call. After calling fork(), processes
must communicate through explicit shared memory.

Memory exclusion. If multiple processes read or write the same chunk of data at the
same time, consequences can be dire. For example, one process might read the data
while in an inconsistent state and end up dumping core while dereferencing a
NULL pointer.

Memory synchronization. IRIS Performer is configured as a pipeline where
different processes are working on different frames at the same time. This pipelined
nature is illustrated in Figure 5-6, which shows that, for instance, in the
PFMP_APP_CULL_DRAW configuration the application process is working on
frame n while the draw process is working on frame n-2. If, in this case, if we have
only a single memory location representing the viewpoint, then it is possible for the
application to set the viewpoint to that of frame n and the draw process to
incorrectly use that same viewpoint for frame n-2. Properly synchronized data is
called frame accurate.

Fortunately, IRIS Performer transparently solves all of the above problems for most IRIS
Performer data structures and also provides powerful tools and mechanisms that the
application can use to manage its own memory.
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Shared Memory and pfinit()

pflnit() creates a shared memory arena that is shared by all processes spawned by IRIS
Performer and all user processes that are spawned from any IRIS Performer process. A
handle to this arenais returned by pfGetSharedArena() and should be used as the arena
argument to routines that create data that must be visible to all processes. Routines that
accept an arena argument are the pfNew*() routines found in the libpr library and the
IRIS Performer memory allocator, pfMalloc(). In practice, it is usually safest to create
libpr objects like pfGeoSets and pfMaterials in shared memory. libpf objects like pfNodes
are always created in shared memory.

Allocating shared memory does not by itself solve the memory visibility problem
discussed above. You must also make sure that the pointer that references the memory is
visible to all processes. IRIS Performer objects, once incorporated into the database via
routines like pfAddGSet(), pfAddChild(), and pfChanScene(), automatically ensure
that the object pointers are visible to all IRIS Performer processes.

However, pointers to application data must be explicitly shared. A common way of
doing this is to allocate the shared memory after pfinit() but before pfConfig() and to
reference the memory with a global pointer. Since the pointer is set before pfConfig()
forks any processes, these processes will all share the pointer’s value and can thereby
access the same shared memory region. However, if this pointer value changes in a
process, its value will not change in any other process, since forked processes don’t share
the same address space.

Even with data visible to all processes, data exclusion is still a problem. The usual
solution is to use hardware spin locks so that a process can lock the data segment while
reading or writing data. If all processes must acquire the lock before accessing the data,
then a process is guaranteed that no other processes will be accessing the data at the same
time. All processes must adhere to this locking protocol, however, or exclusion isn’t
guaranteed.

In addition to a shared memory arena, pflnit() creates a semaphore arena whose handle

is returned by pfGetSemaArena(). Locks can be allocated from this semaphore arena by
usnewlock() and can be set and unset by ussetlock() and usunsetlock(), respectively.
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pfDataPools

pfDataPools—named shared memory arenas with named allocation blocks—provide a
complete solution to the memory visibility and memory exclusion problems, thereby
obviating the need to set global pointers between pflnit() and pfConfig(). For more
information about pfDataPools, see the pfDataPools reference page.

Passthrough Data

The techniques discussed thus far don’t solve the memory synchronization problem.

IRIS Performer’s libpf library provides a solution in the form of passthrough data. When
using pipelined multiprocessing, data must be passed through the processing pipeline
so that data modifications reach the appropriate pipeline stage at the appropriate time.

Passthrough data is implemented by allocating a data buffer for each stage in the
processing pipeline. Then, at well-defined points in time, the passthrough data is copied
from its buffer into the next buffer along the pipeline. This copying guarantees memory
exclusion, but you should minimize the amount of passthrough data to reduce the time
spent copying.

Allocate a passthrough data buffer for the rendering pipeline using pfAllocChanData();
for data to be passed down the intersection pipeline, call pfAlloclsectData(). Data
returned from pfAllocChanData() is passed to the channel cull and draw callbacks that
are set by pfChanTravFunc(). Data returned from pfAlloclsectData() is passed to the
intersection callback specified by pflsectFunc().

Passthrough data isn’t automatically passed through the processing pipeline. You must
first call pfPassChanData() or pfPasslsectData() to indicate that the data should be
copied downstream. This requirement allows you to copy only when necessary—if your
data hasn’t changed in a given frame, simply don’t call a pfPass*() routine, and you’ll
avoid the copy overhead. When you do call a pfPass*() routine, the data isn’t
immediately copied but is delayed until the next call to pfFrame(). The data is then
copied into internal IRIS Performer memory and you’re free to modify your passthrough
data segment for the next frame.
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Modifications to all libpf objects—such as pfNodes and pfChannels—are automatically
passed through the processing pipeline, so frame-accurate behavior is guaranteed for
these objects. However, in order to save substantial amounts of memory, libpr objects
such as pfGeoSets and pfGeoStates don’t have frame-accurate behavior; modifications to
such objects are immediately visible to all processes. If you want frame-accurate
modifications to libpr objects you must use the passthrough data mechanism, use a
frame-accurate pfSwitch to select among multiple copies of the objects you want to
change or use the pfCycleBuffer memory type.
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“Creating Visual Effects”

This chapter describes how to use environmental, atmospheric, lighting, and
other visual effects to enhance the realism of your application.






Chapter 6

Using pfEarthSky

Creating Visual Effects

This chapter describes how to use environmental, atmospheric, lighting, and other visual
effects to enhance the realism of your application.

A pfEarthSKky is a special set of functions that clears a pfChannel’s viewport efficiently
and implements various atmospheric effects. A pfEarthSky is attached to a pfChannel
with pfChanESky(). Several pfEarthSky definitions can be created, but only one can be
in effect for any given channel at a time.

A pfEarthSky can be used to draw a sky and horizon, to draw sky, horizon, and ground,
or just to clear the entire screen to a specific color and depth. The colors of the sky,
horizon, and ground can be changed in real time to simulate a specific time of day. At the
horizon boundary, the ground and sky share a common color, so that there is a smooth
transition from sky to horizon color. The width of the horizon band can be defined in
degrees.

A pfChannel’s earth-sky model is automatically drawn by IRIS Performer before the
scene is drawn unless the pfChannel has a draw callback set with pfChanTravFunc(). In
this case it is the application’s responsibility to clear the viewport. Within the callback
pfClearChan() draws the channel’s pfEarthSky.
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Example 6-1 shows how to set up an pfEarthSky().

Example 6-1 How to Configure a pfEarthSky

pfEarthSky *esky;
pfChannel *chan;

sky = pfNewESky();

pfESkyMode(esky, PFES_BUFFER_CLEAR, PFES_SKY_GRND);
pfESkyAttr(esky, PFES_GRND_HT, -1.0f);

pfESkyColor(esky, PFES_GRND_FAR, 0.3f, 0.1f, 0.0f, 1.0f);
pfESkyColor(esky, PFES_GRND_NEAR, 0.5f, 0.3f, 0.1f,1.0f);
pfChanESky(chan, esky);

The complexities of atmospheric effects on visibility are approximated within IRIS
Performer using a multiple-layer sky model, set up as part of the pfEarthSky function. In
this design, individual layers are used to represent the effects of ground fog, clear sky,
and clouds. Figure 6-1 shows the identity and arrangement of these layers.



Atmospheric Effects
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Figure 6-1 Layered Atmosphere Model
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The lowest layer consists of ground fog, extending from the ground up to a user-selected
altitude. The fog thins out with increasing altitude, disappearing entirely at the bottom
of the general visibility layer. This layer extends from the top of the ground fog layer to
the bottom of the cloud layer’s lower transition zone, if such a zone exists. The transition
zone provides a smooth transition between general visibility and the cloud layer. (If there
is no cloud layer, then general visibility extends upward forever.) The cloud layer is
defined as an opaque region of near-zero visibility; you can set its upper and lower
boundaries. You can also place another transition zone above the cloud layer to make the
clouds gradually thin out into clear air.

Set up the atmospheric simulation with the commands listed in Table 6-1

Table 6-1 pfEarthSky Routines

Function Action

pfNewESky Create a pfEarthSky

pfESkyMode Set the render mode

pfESkyAttr Set the attributes of the earth and sky models
pfESkyColor Set the colors for earth and sky and clear
pfESkyFog Set the fog functions

You can set any pfEarthSky attribute, mode, or color in real time. Selecting the active
pfFog definition can also be done in real time. However, changing the parameters of a
pfFog once they are set isn’t advised when in multiprocessing mode.

The default characteristics of a pfEarthSky are listed in Table 6-2.

Table 6-2 pfEarthSky Attributes

Attribute Default

Clear method PFES_FAST (full screen clear)
Clear color 0.00.00.0

Sky top color 0.00.00.44

Sky bottom color 0.0040.7

Ground near color 0.50.30.0




Atmospheric Effects

Table 6-2 (continued) pfEarthSky Attributes
Attribute Default

Ground far color 0.40.20.0
Horizon color 0.80.81.0
Ground fog NULL (no fog)
General visibility NULL (no fog)
Cloud top 20000.0

Cloud bottom 20000.0

Cloud bottom color 0.80.80.8
Cloud top color 0.80.80.8
Transition zone bottom  15000.0
Transition zone top 25000.0
Ground height 0

Horizon angle 10 degrees

By default, an earth-sky model isn’t drawn. Instead, the channel is simply cleared to
black and the Z-buffer is set to its maximum value. This default action also disables all
other atmospheric attributes. To enable atmospheric effects, select PFES_SKY,
PFES_SKY_GRND, or PFES_SKY_CLEAR when turning on the earth-sky model.

Clouds are disabled when the cloud top is less than or equal to the cloud bottom. Cloud

transition zones are disabled when clouds are disabled.

Fog is enabled when either the general or ground fog is set to a valid pfFog. If ground fog
isn’t enabled, no ground fog layer will be present and fog will be used to support general
visibility. Setting a fog attribute to NULL disables it. See “Atmospheric Effects” on

page 166 for further information on fog parameters and operation.

The earth-sky model is an attribute of the channel and thus accesses information about
the viewer’s position, current field of view, and other pertinent information directly from

pfChannel. To set the pfEarthSky in a channel, use pfChanESky().
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“Importing Databases”

This chapter describes a variety of database formats and their corresponding
conversion utilities.






Chapter 7

Importing Databases

Once you've learned how to create visual simulation applications with IRIS Performer
your next task is to import visual databases into those applications. IRIS Performer
provides import and export functions for more than 30 popular database formats to ease
this effort.

This chapter describes:

= The steps involved in creating custom loaders for other data formats.

= Each pre-existing file-loading utilities.

= Several utility functions in the IRIS Performer database utility library that can make
the process of database conversion easier for you.

Overview of IRIS Performer Database Creation and Conversion

Source code is provided for most of the tools discussed in this chapter. In most cases the
loaders are short, easy to understand, and easy to modify.

Table 7-1 lists the subdirectories of /usr/share/Performer/src/lib where you can find the
source code for the database processing tools.

Table 7-1 Database-Importer Source Directories

Directory Name Directory Contents

libpfdu General database processing tools and utilities
libpfdb Load, convert, and store specific database formats
libpfutil Additional utility functions
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Before you can import a database, you must create it. Some simulation applications
create data procedurally; for examples of this approach, see the “Silicon Graphics PHD
Format” on page 219 or the “Sierpinski Sponge Format” sections of this chapter.

In most cases, however, you must create visual databases manually. Several software
packages are available to help with this task, and most such systems facilitate geometric
modeling, texture creation, and interactive specification of colors and material
properties. Some advanced systems support level-of-detail specification, animation
sequences, motion planning for jointed objects, automated roadway and terrain
generation, and other specialized functions.

libpfdu - Utilities for Creation of Efficient IRIS Performer Run-Time Structures
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There are several layers of support in IRIS Performer for loading 3-D models and 3-D
environments into IRIS Performer run-time scene graphs. IRIS Performer contains the
libpfdu library devoted to the import of data into (and export of data from) IRIS Performer
run-time structures. Note that two database exporters have already been written for the
Medit and DWB database formats.

At the top level of the API, IRIS Performer provides a standard set of functions to read in
files and convert databases of unknown type. This functionality is centered around the
notion of a database converter. A database converter is an abstract entity that knows how
to perform some or all of a set of database format conversion functions with a particular
database format. Moreover, converters must follow certain APl guidelines for standard
functionality such that they can be easily integrated into IRIS Performer in a run-time
environment without IRIS Performer needing any prior knowledge of a particular
converter’s existence. This run-time integration is done through the use of dynamic
shared object (DSO) libraries.
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pfdLoadFile - Loading Arbitrary Databases into IRIS Performer

Table 7-2 describes the general routines for 3-D databases provided by libpfdu.

Table 7-2 libpfdu Database Converter Functions

Function Name Description

pfdinitConverter Initialize the library and its classes for the desired format

pfdLoadFile Load a database file into an IRIS Performer scene graph

pfdStoreFile Store a run-time scene graph into a database file

pfdConvertFrom Convert an external run-time format into an IRIS Performer scene graph
pfdConvertTo Convert an IRIS Performer scene graph into an external run-time format

The database loader utility library, libpfdu, provides a convenient function, named
pfdLoadFile(), that imports database files stored in any of the supported format listed in
Table 7-6.

Loading database files with pfdLoadFile() is easy. The function prototype is
pfNode *pfdLoadFile(char *fileName);

pfdLoadFile() tests the filename-extension portion of fileName (the substring starting at
the last period in fileName, if any) for one of the format-name codes listed in Table 7-6,
then calls the appropriate importer.

The file-format selection process is implemented using dynamic loading of DSOs, which
are IRIX Dynamic Shared Objects. This process allows new loaders that are developed as
database formats change to be used with IRIS Performer-based applications without
requiring recompilation of the IRIS Performer application. If at all possible,
pfdinitConverter() should be called before pfConfig() for the potential formats that may
be loaded. This will pre-load the DSO and allow it to initialize any of its own data
structures and classes. This is required if the loader DSO extends IRIS Performer classes
or uses any node traversal callbacks so that if multiprocessing these data elements will
all have been pre-created and be valid in all potential processes. pfdInitConverter()
automatically calls pfdLoadNeededDSOs_EXT() to pre-load additional DSOs needed
by the loader if the given loader has defined that routine. These routines take a file name
so that the loader has the option to search through the file for possible DSO references in
the file.
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Loading Process Internals

The details of the loading process internal to pfdLoadFile() include:

1.
2.
3.

Searching for the named file using the current IRIS Performer file path.
Extraction of the file-type extension.

Translation of the extension using a registered alias facility, formation of the DSO
name.

Formation of a loader function name.
Finding that function within the DSO using disym().

Searching first the current executable and loaded DSOs for the proper load function
and then searching through a list of user-defined and standard directories for that
DSO. Dynamic loading of the indicated DSO using dlopen().

Invocation of the loader function.

Loader Name

The loader function name is constructed from two components:

L1

A prefix always consisting of “pfdLoadFile_".

Loader suffix, which is the file extension string.

Examples of several complete loader function names are shown in Table 7-3.

Table 7-3 Loader Name Composition
File Extension Loader Function Name
dwb pfdLoadFile_dwb
fit pfdLoadFile_fit
medit pfdLoadFile_medit
obj pfdLoadFile_obj

pfb

pfdLoadFile_pfb
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Shell Environment Variables

Several shell environment variables are used in the loader location process. These are
PFLD_LIBRARY{N32,64} PATH, LD_LIBRARY{N32,64} PATH, and PFHOME.
Confusion about loader locations can be resolved by consulting the sources mentioned
above to understand the use of these directory lists and reading the following section,
“Database Loading Details” on page 177. When the pfNotifyLevel is set to the value for
PFNFY_DEBUG (5)or greater, the DSO and loader function names are printed as
database are loaded, as is the name of each directory that is searched for the DSO.

The IRIS Performer sample programs, including perfly, use pfdLoadFile() for database
importing. This allows them to simultaneously load and display databases in many
disparate formats. As you develop your own database loaders, follow the source code
examples in any of the libpfdb loaders. Then you will be able to load your data into any
IRIS Performer application. You will not need to rebuild perfly or other applications to
view your databases.

Database Loading Details

Details about the database loading process are described further in this section, the
pfdLoadFile reference page, and the source code which is in
/usr/share/Performer/src/lib/libpfdu/pfdLoadFile.c.

The routines pfdlnitConverter(), pfdLoadFile(), pfdStoreFile(), pfdConvertFrom(), and
pfdConvertTo() exist only as a level of indirection to allow a user to manipulate all
databases regardless of format through a central API. They are in fact merely a
mechanism for creating an open environment for data sharing among the multitudes of
three-dimensional database formats. Each of these routines determines, using file-type
extensions, which database converter to load as a run-time DSO. The routine then calls
the appropriate functionality from that converter’s DSO. All converters must provide
API that is exactly the same as the corresponding libpfdu API with EXT added to the
routine names (for example, for “.medit” files, the suffix is “_medit”). Note that multiple
physical extensions can be mapped to one converter extension via calls to
pfdAddExtAlias(). Several aliases are pre-defined upon initialization of libpfdu.
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It is also important to note that because each of these converters are unique entities that
they each may have state that is important to their proper function. Moreover, their
database format may allow for multiple IRIS Performer interpretations and so there
exists API, shown in Table 7-4, not only to initialize and exit database converters, but also
to set and get modes, attributes, and values that might affect the converter’s
methodology.

Table 7-4 libpfdu Database Converter Management Functions
Function Name Description

pfdinitConverter Initialize a database conversion DSO
pfdExitConverter Exit a database conversion DSO
pfdConverterMode Specify a mode for a specific conversion DSO

pfdGetConverterMode Get a mode setting from a specific conversion DSO
pfdConverterAttr Specify an attribute for a conversion DSO
pfdGetConverterAttr  Get an attribute setting from a conversion DSO
pfdConverterVal Specify a value for a conversion DSO

pfdGetConverterVal Get a value setting from a conversion DSO

Once again each converter provides the equivalent routines with EXT added to the
function name.

For example, the converter for the Open Inventor format would define the function
pfdinitConverter_iv() if it needed to be initialized before it was used. Likewise, it would
define the function pfdLoadFile_iv() to read an Open Inventor “.iv” file into an IRIS
Performer scene graph.

Note: Because each converter is an individual entity (DSO) and deals with a particular
type of database, it may be the case that a converter will not provide all of the
functionality listed above, but rather only a subset. For instance, most converters that
come with IRIS Performer only implement their version of pfdLoadFile but not
pfdStoreFile, pfdConvertFrom, or pfdConvertTo. However, users are free to add this
functionality to the converters via compliant APl and IRIS Performer’s libpfdu will
immediately recognize this functionality. Also, libpfdu traps access to non-existent
converter functionality and returns gracefully to the calling code while notifying the user
that the functionality could not be found.
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Finding and initializing a Converter

When one of the general database converter functions is called, it in turn calls the
corresponding routine provided by the converter, passing on the arguments it was given.

But the first time a converter is called, a search occurs to identify the converter and the
functions it provides. This is accomplished as follows.

Parse the extension - what appears after the final “.” in the filename. This is referred
to as EXT in the following bulleted items.

Check to see if any alias was created for the EXT extension with pfdAddExtAlias().
If a translation is defined, EXT is replaced with that extension.

Check the current executable to see if the symbol pfdLoadFile_EXT is already
defined, i.e. if the loader was statically linked into the executable or a DSO was
previously loaded by some other mechanism. If not, the search continues.

Generate a DSO library name to search for using on the extension prototype
“libpfEXT_{igl,0gl}{-g,}.s0”. This means the following strings will be
constructed based upon whether OpenGL or IRIS GL is being used with IRIS
Performer:

libpfEXT _igl.so for the optimized IRIS GL loader
libpfEXT _igl-g.so for the debug IRIS GL loader
libpfEXT _ogl.so for the optimized OpenGL loader
libpfEXT _ogl-g.so for the debug OpenGL loader

Look for the DSO in several places including:

$PFLD_LIBRARY_PATH
$LD_LIBRARY_PATH
$PFHOME/usr/lib{,32,64}/libpfdb
$PFHOME/usr/share/Performer/lib/libpfdb

Open the DSO via dlopen().
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= Once the object has been found, processing continues.

— Query all libpfdu converter functionality from the symbol table of the DSO
using dlsym() with function names generated by appending _EXT to the name
of the corresponding pfd routine name. This symbol dictionary is retained for
future use.

— Invoke the converter’s initialization function, pfdlnitConverter EXT(), if it
exists.

— Invoke pfdLoadNeededDSOs_EXTY() if it exists. This routine can then
recursively call pfdInitConverter_EXT(), as needed.

Developing Custom Importers
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Having fully described how database converters can be integrated into IRIS Performer
and the types of functionality they provide, the next undertaking is actually
implementing a converter from scratch. IRIS Performer makes a great effort at allowing
the quick and easy development of effective and efficient database converters.

While creating a new file loader for IRIS Performer isn’t inherently difficult, it does
require a solid understanding of the following issues:

= The structure and interpretation of the data file to be read

= The scene graph concepts and nodes of libpf

= The geometry and attribute definition objects of libpr

Structure and Interpretation of the Database File Format

In order to effectively convert a database into an IRIS Performer scene graph it is
important to have a substantial understanding of several concepts related to the original
database format:

= the parsing of the file based on the database format
= the data types represented in the format and their IRIS Performer correspondence
= the scene graph structure of the file (if any)

< the method of graphics state definition and inheritance defined in the format.
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Before trying to convert sophisticated 3-D database formats into IRIS Performer it is
important to have a thorough grasp of how every structure in the format needs to affect
how IRIS Performer performs its run-time management of a scene graph. However,
although it requires a great deal of understanding to convert complex behaviors of
external formats into IRIS Performer, it is still very straight forward to migrate basic
structure, geometry, and graphics state into efficient IRIS Performer run-time structures
via the functionality provided in the IRIS Performer database builder - pfdBuilder.

Scene Graph Creation using Nodes as defined in libpf

Creating an IRIS Performer scene graph requires a definite knowledge of the following
IRIS Performer libpf node types - pfScene, pfGroup, and pfGeode.

These nodes can be used to define a minimally functional IRIS Performer scene graph.
See Chapter 5 for more details on libpf and IRIS Performer scene graphs and node types.

Defining Geometry and Graphics State for  libpr

In order to input geometry and graphics into IRIS Performer, it is important to have an
understanding of how IRIS Performer’s low level rendering objects work in libpr, IRIS
Performer’s performance rendering library. The main libpr rendering primitives are a
pfGeoSet and a pfGeoState. A pfGeoSet is a collection of like geometric primitives that
can all be rendered in exactly the same way in one large continuous chunk. A pfGeoState
is a complete definition of graphics mode settings for the rendering hardware and
software. It contains many attributes such as texture and material. Given a pfGeoSet and
a corresponding pfGeoState, libpr can completely and efficiently render all of the
geometry in the pfGeoSet. For a more detailed description of pfGeoSets and pfGeoStates
see Chapter 10 which goes into detail on all libpr primitives and how IRIS Performer will
use them.

However, realizing that IRIS Performer’s structuring of geometry and graphics state is
optimized for rendering speed and not for modelling ease or general conceptual
partitioning, IRIS Performer now contains a new mechanism for translating external
graphics state and geometry into efficient libpr structures. This new mechanism is the
pfdBuilder that exists in libpfdu.
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The pfdBuilder allows the immediate mode input of graphics state and primitives
through very simple and exposed data structures. After having received all of the
relevant information, the pfdBuilder builds efficient and somewhat optimized libpr data
structures and returns a low-level libpf node that can be attached to an IRIS Performer
scene graph. The pfdBuilder is the recommended method of importing data from non
IRIS Performer-based formats into IRIS Performer.

Creation of a IRIS Performer Database Converter using libpfdu

Creating a new format converter is very simple process. More than thirty database
loaders are shipped with IRIS Performer in source code form to serve as practical
examples of this process. The loaders read formats that range from trivial to complex,
and should serve as an instructive starting point for those developing loaders for other
formats. These loaders can be found in the directory
/usr/share/Performer/src/lib/libpfdb/libpf*.

This section describes the libpfdu framework for creating a 3-D database format
converter. Let’s consider writing a converter for a simple ASCII format that is called the
Imaginary Immediate Mode format with the file type extension “.iim”. This format is
much like the more elaborate “.im” format loader used at SGI for the purposes of testing
basic IRIS Performer functionality.

The first thing to do is set up the routine that pfdLoadFile() will call when it attempts to

load a file with the extension “.iim”.

extern pfNode *pfdLoadFile_iim(char *fileName)

{
}

This function needs to perform several basic actions:

1. Find and open the given file.

2. Reset the libpfdu pfdBuilder for input of new geometry and state.
3. Setup any pfdBuilder modes that the converter needs enabled.
4

Setup local data structures that can be used to communicate geometry and graphics
state with the pfdBuilder.

5. Setup a libpf pfGroup which can hold all of the logical partitions of geometry in the
file (or hold a subordinate collection of nodes as a general scene graph if the format
supports it).
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6. Optionally set up a default state to use for geometry with unspecified graphics state.

7. Parse the file which entails:

Filling in the local geometry and graphics state data structures.
Passing them to the pfdBuilder as inputted from the file

Ask the pfdBuilder to build the data structures into IRIS Performer data
structures when a logical partition of the file has ended.

Attach the IRIS Performer node returned by the build to the higher level group
which will hold the entire IRIS Performer representation of this file. Note that
this step becomes more complex if the format supports the notion of hierarchy
only in that the appropriate libpf nodes must be created and attached to each
other via pfAddChild() to build the hierarchy. In this case requests are made for
the builder to build after inputting all of the geometry and state found in a
particular leaf node in the database.

8. Delete local data structures used to input geometry and graphics state.
9. Close the file.

10. Perform any optional optimization of the IRIS Performer scene graph.
Optimizations might include calls to pfdFreezeTransforms(), pfFlatten() or
pfdCleanTree().

11. Return the pfGroup containing the entire IRIS Performer representation of the
database file.

Steps 1-8 expand the function outline to the following:

extern pfNode *pfdLoadFile_iim(char *fileName)

{

FILE* iimFile;
pfdGeom* polygon;
pfGroup* root;

/* Performer has utility for finding and opening file */
if ((iimFile = pfdOpenFile(fileName)) == NULL)
return NULL;

/* Clear builder from previous converter invocations */
pfdResetBldrGeometry();
pfdResetBldrState();

/* Call pfdBldrMode for any needed modes here */
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/* Create polygon structure */
/* holds one N-sided polygon where N is < 300 */
polygon = pfdNewGeom(300);

/* Create pfGroup to hold entire database */
/* loaded from this file */
root = pfNewGroup();

/* Specify state for geometry with no graphics state */
/* As well as default enables, etc. This routine */

/* should invoke pfdCaptureDefaultBldrState()*/
SetupDefaultGraphicsStatelfTherelsOne();

/* Do all the real work in parsing the file and */
/* converting into Performer */
ParsellMFile(iimFile, root, polygon);

/* Delete local polygon struct */
pfdDelGeom(polygon);

/* Close File */
fclose(iimFile);

/* Optimize IRIS Performer scene graph */
/* via use of pfFlatten, pfdCleanTree, etc. */
OptimizeGraph(root);

return (pfNode*)root;
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Now, for at the heart of the file loader lies the ParselIMFile() function. The specifics of
parsing a file are completely dependent on the format so the parsing will be left as an
exercise to the reader. However, the following code fragments should show a framework
for what goes into integrating the parser with the pfdBuilder framework for geometry
and graphics state data conversion. Note that several possible graphics state inheritance
models might be used in external formats and that the pfdBuilder is designed to support
all of them:

The default pfdBuilder state inheritance is that of immediate mode graphics state.
Immediate mode state is specified through calls to pfdBldrStateMode(),
pfdBldrStateAttr(), and pfdBldrStateVal().

There also exists a pfdBuilder state stack for hierarchical state application to
geometry. This is accomplished through the use of pfdPushBldrState() and
pfdPopBIldrState() in conjuncture with the normal use of the immediate mode
pfdBuilder state API.

Lastly, there is a pfdBuilder named state list that can be used to define a number of
‘named materials’ or ‘named state definitions’ that can then be recalled in one API
called (for instance a user might define a ‘brick’ state with a red material and a brick
texture. Later he might just want to say ‘brick’ is the current state and then input the
walls of several buildings). This type of state naming is accomplished by fully
specifying the state to be named via the immediate mode API, and then calling
pfdSaveBldrState(). This state can then be recalled via pfdLoadBldrState().

ParsellMFile(FILE *iimFile, pfGroup *root, pfdGeom *poly)

{
while((op = GetNextOp(iimFile)) '= NULL)

switch(op)
{
case GEOMETRY_POLYGON:
polygon->numVerts = GetNumVerts(iimFile);

/* Determine if polygon has Texture Coords */

if (pfdGetBldrStateMode(PFSTATE_ENTEXTURE)==PF_ON)
polygon->tbind = PFGS_PER_VERTEX;

else
polygon->tbind = PFGS_OFF,;

/* Determine if Polygon has normals */

if (AreThereNormalsPerVertex() == TRUE)
polygon->nbind = PFGS_PER_VERTEX;

else if
(pfdGetBldrStateMode(PFSTATE_ENLIGHTING)==PF_ON)
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polygon->nbind = PFGS_PER_PRIM;
else
polygon->nbind = PFGS_OFF;

/* Determine if Polygon has colors */

if (AreThereColorsPerVertex() == TRUE)
polygon->cbind = PFGS_PER_VERTEX;

else if (AreThereColorsPerPrim() == TRUE)
polygon->cbind = PFGS_PER_PRIM,;

else
polygon->cbind = PFGS_OFF;

for(i=0;i<polygon->numVerts;i++)

{
/* Read ith Vertex into local data structure */
polygon->coords[i][0] = GetNextVertexFloat();
polygon->coords[i][1] = GetNextVertexFloat();
polygon->coords[i][2] = GetNextVertexFloat();

/* Read texture coord for ith vertex if any */

if (polygon->thind == PFGS_PER_VERTEX)

{
polygon->texCoords|i][0] = GetNextTexFloat();
polygon->texCoords|i][1] = GetNextTexFloat();

}

/* Read normal for ith Vertex if normals bound*/
if (polygon->nbind == PFGS_PER_VERTEX)
{
polygon->normsl[i][0] = GetNextNormFloat();
polygon->norms]i][1] = GetNextNormFloat();
polygon->norms]i][2] = GetNextNormFloat();
}
/* Read only one normal per prim if necessary */
else if ((polygon->nbind == PFGS_PER_PRIM) &&
(i==0)
{
polygon->norms[0][0] = GetNextNormFloat();
polygon->norms[0][1] = GetNextNormFloat();
polygon->norms[0][2] = GetNextNormFloat();

}

/* Get Color for the ith Vertex if color bound*/
if (polygon->chind == PFGS_PER_VERTEX)
{

polygon->colorsJi][0] =
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GetNextColorFloat();
polygon->colorsl[i][1] =
GetNextColorFloat();
polygon->colorsJi][2] =
GetNextColorFloat();
}

[* Get one color per prim if necessary */
else if ((polygon->chind == PFGS_PER_PRIM) &&
(i==0))
{
polygon->colors[0][0] =
GetNextColorFloat();
polygon->colors[0][1] =
GetNextColorFloat();
polygon->colors[0][2] =
GetNextColorFloat();
}
}
[* Add this polygon to pfdBuilder */
[* Because it is a single poly, 1 */
I* is specified here */
pfdAddBldrGeom(1);
break;
case GRAPHICS_STATE_TEXTURE:
{
char *texName;
pfTexture *tex;
texName = ReadTextureName(iimFile);
if (texName != NULL)
{
[* Get prototype tex from pfdBuilder*/
tex =
pfdGetTemplateObject(pfGetTexClassType());

[* This clears that object to default */
pfdResetObject(tex);

I* If just the name of a pfTexture is */

[* set, pfdBuilder will auto find & Load */
[* the texture*/
pfTexName(tex,texName);

[* This is the current pfdBuilder */

[* texture and texturing is on */
pfdBldrStateAttr(PFSTATE_TEXTURE,tex);
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pfdBldrStateMode(PFSTATE_ENTEXTURE, PF_ON);
}

else

{
/* No texture means disable texturing */
* And set current texture to NULL */
pfdBldrStateMode(PFSTATE_ENTEXTURE,PF_OFF);
pfdBldrStateAttr(PFSTATE_TEXTURE, NULL);

}
}

break;
case GRAPHICS_STATE_MATERIAL:
{
pfMaterial *mtl;
mtl = pfdGetTemplateObject(pfGetMtiClassType());
pfdResetObject(mtl);
pfMtiColor(mtl, PFMTL_AMBIENT,
GetAmRed(), GetAmGreen(), GetAmBIlue());
pfMtiColor(mtl, PFMTL_DIFFUSE,
GetDfRed(), GetDfGreen(), GetDfBlue());
pfMtiColor(mtl, PFMTL_SPECULAR,
GetSpRed(), GetSpGreen(), GetSpBlue());
pfMtIShininess(mtl, GetMtIShininess());
pfMtlAlpha(mtl, GetMtlAlpha());
pfdBldrState Attr(PFSTATE_FRONTMTL, mtl);
pfdBldrStateAttr(PFSTATE_BACKMTL, mtl);
}
break;
case GRAPHICS_STATE_STORE:
pfdSaveBldrState(GetStateName());
break;
case GRAPHICS_STATE_LOAD:
pfdLoadBIdrState(GetStateName());
break;
case GRAPHICS_STATE_PUSH:
pfdPushBldrState();
break;
case GRAPHICS_STATE_POP:
pfdPopBldrState();
break;
case GRAPHICS_STATE_RESET:
pfdResetBldrState();
break;
case GRAPHICS_STATE_CAPTURE_DEFAULT:
pfdCaptureDefaultBldrState();
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break;
case BEGIN_LEAF_NODE:
/* Not really necessary because it is */
/* destroyed on build*/
pfdResetBldrGeometry();
break;
case END_LEAF_NODE:
{
pfNode *nd = pfdBuild();
if (nd = NULL)
pfAddChild(root,nd);
}

break;
}
}
}

One of the fundamental structures involved in the above routine outline is the pfdGeom
structure which users fill in with information about a single primitive, or a single strip of
primitives. The pfdGeom structure is essential in communicating with the pfdBuilder
and is defined as follows:

typedef struct _pfdGeom

int flags;
int nbind, cbind, tbind;

int numVerts;
short primtype;
float pixelsize;

/* Non-indexed attributes */

[* ..do not set if poly is indexed */
pfVec3 *coords;

pfVec3 *norms;

pfVec4 *colors;

pfVec2 *texCoords;

/* Indexed attributes */

[* ..do not set if poly is non-indexed */
pfVec3 *coordList;

pfVec3 *normList;

pfVec4 *colorList;

pfVec2 *texCoordList;

/* Index lists*/
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[* ..do not set if poly is non-indexed */
ushort *icoords;

ushort *inorms;

ushort *icolors;

ushort *itexCoords;

struct _pfdGeom *next;
} pfdGeom;

See the pfdGeoBuilder(3pf) reference pages for more information on using this structure
along with its sister structure, the pfdPrim.

The above should provide a well-defined framework for creating a database converter
that can be used with any IRIS Performer applications via the pfdLoadFile()
functionality.

However, it is also important to note that there are a multitude of pfdBuilder modes and
attributes that can be used to affect some of the basic methods that the builder actually
uses:
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Table 7-5 pfdBuilder Modes and Attributes

Function Name

Token Description

pfd{Get}BldrMode

pfd{Get}BldrAttr

PFDBLDR_MESH_ENABLE
PFDBLDR_MESH_SHOW_TSTRIPS
PFDBLDR_MESH_INDEXED
PFDBLDR_MESH_MAX_TRIS
PFDBLDR_MESH_RETESSELLATE
PFDBLDR_MESH_LOCAL_LIGHTING
PFDBLDR_AUTO_COLORS
PFDBLDR_AUTO_NORMALS
PFDBLDR_AUTO_ORIENT
PFDBLDR_AUTO_ENABLES
PFDBLDR_AUTO_CMODE
PFDBLDR_AUTO_DISABLE_TCOORDS_BY_STATE
PFDBLDR_AUTO_DISABLE_NCOORDS_BY_STATE
PFDBLDR_AUTO_LIGHTING_STATE_BY_NCOORDS
PFDBLDR_AUTO_LIGHTING_STATE_BY_MATERIALS
PFDBLDR_AUTO_TEXTURE_STATE_BY_ TEXTURES
PFDBLDR_AUTO_TEXTURE_STATE_BY TCOORDS
PFDBLDR_BREAKUP

PFDBLDR_BREAKUP_SIZE
PFDBLDR_BREAKUP_BRANCH
PFDBLDR_BREAKUP_STRIP_LENGTH
PFDBLDR_SHARE_MASK
PFDBLDR_ATTACH_NODE_NAMES
PFDBLDR_DESTROY_DATA_UPON_BUILD
PFDBLDR_PF12_STATE_COMPATIBLE
PFDBLDR_BUILD_LIMIT
PFDBLDR_GEN_OPENGL_CLAMPED_TEXTURE_COORDS
PFDBLDR_OPTIMIZE_COUNTS_NULL_ATTRS

PFDBLDR_NODE_NAME_COMPARE
PFDBLDR_STATE_NAME_COMPARE
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Because the pfdBuilder is released as source code, it is easy to add further functionality
and more modes and attributes to even further customize this central functionality.

In fact, because the pfdBuilder acts as a “data funnel” in converting data into IRIS
Performer run-time structures, it is easy to control the behavior of many standard
conversion tasks through merely globally setting builder modes which will subsequently
affect all converters that use the pfdBuilder to process their data.

Maximizing Database Loading and Paging Performance with PFB and PFI Formats

192

“Description of Supported Formats” on page 195 describes all of the file formats
supported by IRIS Performer. Although you can use files in these formats directly, you
can dramatically reduce database loading time by pre-converting databases into the PFB
format and images into the PFI format.

To convert to the PFB file format or the PFI image format, use the pfconv and pficonv
utilities.

pfconv

The pfconv utility converts from any format for which a pfdLoadFile...() function exists
into any format for which a pfdStoreFile...() exists. The most common format to convert
to is the PFB format. For example, to convert cow.obj into the PFB format, use the
following command:

% pfconv cow.obj cow.pfb

By default, pfconv optimizes the scene graph when doing the conversion. The
optimizations are controlled with the -0 and -O command line options. Builder options
are controlled with the -b and -B command line options. Converter modes are controlled
with the -m and -M command line options. Refer to the help page for more specific
information about the command line options by entering:

% pfconv -h
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Example Conversion

When converting to the PFB format, texture files can be converted to the PFI format using
the following command line options:

% pfconv -M pfb, 5, 1
5 means PFPFB_SAVE_TEXTURE_PFI.

1 means convert .rgb texture images to .pfi.

pficonv

The pficonv utility converts from IRIS libimage format to PFI format image files. For
example, to convert cafe.rgb into the PFI format, use the following command:

% pficonv cafe.rgb cafe.pfi

Mipmaps can be automatically generated and stored in the resulting PFI files by adding
-m to the command line.

Supported Database Formats

Vendors of several leading database construction and processing tools have provided
database-loading software for you to use with IRIS Performer. This section describes
these loaders, the loaders developed by the IRIS Performer engineering team, and
several loaders developed in the IRIS Performer user community for other database
formats.

Importing your databases is simple if they’re in formats for which IRIS Performer
database loaders have already been written. Each of the loaders listed in Table 7-6 is
included with IRIS Performer. If you want to import or export databases in any of these
formats, refer to the appropriate section of this chapter for specific details about the
individual loaders.
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Table 7-6 Supported Database Formats

Name Description

3ds AutoDesk 3DStudio binary data

bin SGI format used by powerflip

bpoly Side Effects Software PRISMS binary data

byu Brigham Young University CAD/FEA data

csb OpenGL Optimizer Format

ct Cliptexture config file loader - auto-generates viewing geometry
dwb Coryphaeus Software Designer’s Workbench data
dxf AutoDesk AutoCAD ASCII format

flt11 MultiGen public domain Flight v11 format

flt MultiGen OpenFlight format provided by MultiGen
gds McDonnell-Douglas GDS things data

gfo Old SGI radiosity data format

im Simple IRIS Performer data format

irtp AAI/Graphicon Interactive Real-Time PHIGS

iv SGI Open Inventor format (VRML 1.0 superset)
Isa Lightscape Technologies ASCII radiosity data

Isb Lightscape Technologies binary radiosity data
medit Medit Productions medit modeling data

nff Eric Haines’ ray tracing test data

pfb IRIS Performer fast binary format

obj Wavefront Technologies data format

pegg Radiosity research data format

phd SGI polyhedron data format
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Table 7-6 (continued) Supported Database Formats

Name Description

poly Side Effects Software PRISMS ASCII data

ptu Simple IRIS Performer terrain data format

sof US Naval Academy standard graphics format
sgo Paul Haeberli’s graphics data format

spf US Naval Academy simple polygon format
sponge Sierpinski sponge 3D fractal generator

star Astronomical data from Yale University star chart
stla 3D Structures ASCII stereolithography data

stlb 3D Structures binary stereolithography data

stm Michael Garland’s terrain data format

sv John Kichury’s i3dm modeler format

tri University of Minnesota Geometry Center data
unc University of North Carolina walkthrough data
wrl OpenWorlds VMRL 2.0 provided by DRaW Computing

Description of Supported Formats

This section describes the different database file for mats that IRIS Performer supports.

AutoDesk 3DS Format

The AutoDesk 3DS format is used by the 3DStudio program and by a number of 3D
file-interchange tools. The IRIS Performer loader for 3DS files is located in the
/usr/share/Performer/src/lib/libpfdb/libpf3ds directory. This loader uses an auxiliary library,
3dsftk.a, to parse and interpret the 3ds file.
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pfdLoadFile() uses the function pfdLoadFile_3ds() to import data from 3DStudio files
into IRIS Performer run-time data structures.

Silicon Graphics BIN Format

The Silicon Graphics BIN format is supported by both Showcase™ and the powerflip
demonstration program. BIN files are in a simple format that specifies only independent
guadrilaterals.

The image in Figure 7-1 shows several of the BIN-format objects provided in the IRIS
Performer sample data directory.

1
é%

Figure 7-1 BIN-Format Data Objects

The source code for the BIN-format importer pfdLoadFile_bin() is provided in the file
pfbin.c. This code shows how easy it can be to implement an importer. Since
pfdLoadFile_bin() is based on the pfdBuilder() utility function, it will build efficient
triangle-strip pfGeoSets from the quadrilaterals of a given BIN file. The BIN format has
the following structure:
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1. A 4-byte magic number, 0x5432, which identifies the file as a BIN file.

2. A 4-byte number that contains the number of vertices, which is four times the
number of quadrilaterals.

3. Four bytes of zero.

4. Alist of polygon data for each vertex in the object. The data consists of three
floating-point words of information about normals, followed by three floating-point
words of vertex information.

The BIN format uses these data structures:

typedef struct
{

float normal[3];
float coordinate[3];
} Vertex;

typedef struct
{

long magic;

long vertices;

long zero;

Vertex vertex[1];
} BinFile;

pfdLoadFile() uses the function pfdLoadFile_bin() to import data from BIN format files
into IRIS Performer run-time data structures:

The pfdLoadFile_bin() function composes a random color for each file it reads. The
chosen color has red, green, and blue components uniformly distributed within the
range 0.2 to 0.7 and is fully opaque.

Side Effects POLY Format

The Side Effects software PRISMS database modeler format supports both ASCII and
binary forms of the POLY format. The IRIS Performer loader for ASCII “.poly” files is
located in the /usr/share/Performer/src/lib/libpfdb/libpfpoly directory. The binary format
“.bpoly” loader is located in the directory /usr/share/Performer/src/lib/libpfdb/libpfopoly.
These formats are equivalent in content and differ only in representation.
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The POLY format is an easy to understand ASCII data representation with the following

structure:

1. A text line containing the keyword “POINTS”

2. One text line for each vertex in the file. Each line begins with a vertex number,
followed by a colon, followed by the X, Y, and Z axis coordinates of the vertex,
optional additional information, and a new-line character. The optional information
includes color specification in the form “c(R,G,B,A)”, a nhormal vector of the form
“n(NX,NY,NZ)”, or a texture coordinate in the form “uv(S,T)” where each of the
values shown are floating point numbers.

3. Atext line containing the keyword “POLYS”

4. One text line for each polygon in the file. Each line begins with a polygon number,

followed by a colon, followed by a series of vertex indices, optional additional
information, an optional “<*character, and a new-line. The optional information
includes color specification in the form “c(R,G,B,A)”, a nhormal vector of the form
“n(NX,NY,NZ)”, or a texture coordinate in the form “uv(S,T)” where the values in
parentheses are floating point numbers.

Here is a sample POLY format file for a cube with colors, texture coordinates, and
normals specified at each vertex:

POINTS

A

-0.5-0.5-0.5 ¢(0, 0, 0, 1) uv(0, 0) n(0, -1, 0)

:-0.5-0.5 0.5 ¢(0, 0, 1, 1) uv(0, 0) n(0, -1, 0)
©0.5-0.50.5¢(1, 0, 1, 1) uv(1, 0) n(0, -1, 0)
:0.5-0.5-0.5c(1, 0, 0, 1) uv(1, 0) n(0, -1, 0)
:-0.5-0.5 0.5 ¢(0, 0, 1, 1) uv(0, 0) n(0, 0, 1)
:-0.50.5 0.5 ¢(0, 1, 1, 1) uv(0, 1) n(0, 0, 1)
©0.50.50.5¢(1, 1, 1, 1) uv(1, 1) n(0, 0, 1)
©0.5-0.50.5¢(1, 0, 1, 1) uv(1, 0) n(0, 0, 1)
©-0.50.5 0.5 ¢(0, 1, 1, 1) uv(0, 1) n(0, 1, 0)

:-0.50.5-0.5 ¢(0, 1, 0, 1) uv(0, 1) n(0, 1, 0)
©0.50.5-0.5¢(1, 1, 0, 1) uv(1, 1) n(0, 1, 0)
©0.50.50.5¢(1, 1, 1, 1) uv(l, 1) n(0, 1, 0)
:-0.5-0.5 -0.5 ¢(0, 0, 0, 1) uv(0, 0) n(0, 0, -1)
:0.5-0.5-0.5 ¢(1, 0, 0, 1) uv(1, 0) n(0, 0, -1)
:0.50.5-0.5¢(1, 1, 0, 1) uv(1, 1) n(0, 0, -1)
:-0.50.5-0.5 ¢(0, 1, 0, 1) uv(0, 1) n(0, 0, -1)
:-0.5-0.5-0.5¢(0, 0, 0, 1) uv(0, 0) n(-1, 0, 0)
:-0.50.5-0.5 ¢(0, 1, 0, 1) uv(0, 1) n(-1, 0, 0)
©-0.50.50.5¢(0, 1, 1, 1) uv(0, 1) n(-1, 0, 0)
:-0.5-0.50.5 ¢(0, 0, 1, 1) uv(0, 0) n(-1, 0, 0)



Description of Supported Formats

21:050.505¢c(1,1,1, 1) uv(d, 1) n(1, 0,0)
22:050.5-0.5¢(1, 1,0, 1) uv(1, 1) n(1, 0, 0)
23:0.5-0.5-0.5¢(1, 0, 0, 1) uv(1, 0) n(1, 0, 0)
24:0.5-050.5¢c(1,0, 1, 1) uv(1, 0) n(1, 0, 0)
POLYS

1:1234<

2:.5678<

3:9101112<

4:13141516<

5:17 181920 <

6:21222324<

pfdLoadFile() uses the functions pfdLoadFile_poly() and pfdLoadFile_bpoly() to
import data from “.poly” and “.bpoly” format files into IRIS Performer run-time data
structures:

Brigham Young University BYU Format

The Brigham Young University “.byu” format is used as an interchange format by some
finite element analysis packages. The IRIS Performer loader for “.byu” files is located in
the /usr/share/Performer/src/lib/libpfdb/libpfbyu directory.

The format of a BYU file consists of four parts as defined below:

1. A text line containing four counts: the number of parts, the number of vertices, the
number of polygons, and the number of elements in the connectivity array.

2. The part definition list, containing the starting polygon number and ending
polygon number (one pair per line) for parts lines.

3. The vertex list, which has the X, Y, Z coordinates of each vertex in the database
packed two per line. This means that vertices 1 and 2 are on the first line, 3 and 4 are
on the second, and so on for (vertices + 1)/2 lines of text in the file.

4. The connectivity array, with an entry for each polygon. These entries may span
multiple lines in the input file and each consists of three or more vertex indices with
the last negated as an end of list flag. For example, if the first polygon were a quad,
the connectivity array might start with “1 2 3 -4” to define a polygon that connects
the first four vertices in order.
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The following BYU format file defines two adjoining quads:

2620

11

22
0001000
101000100
10101001010
123-4

435-6

pfdLoadFile() uses the function pfdLoadFile_byu() to import data from “.byu” format
files into IRIS Performer run-time data structures.

Optimizer CSB Format

IRIS Performer can load native OpenGL Optimizer format files using this loader.
OpenGL Optimizer can also load IRIS Performer’s PFB native format files, providing full
database interoperability. This allows you to use OpenGL Optimizer database
simplification and optimization tools on IRIS Performer databases.

Virtual Cliptexture CT Loader

The IRIS Performer CT loader allows you to create and configure cliptextures and virtual
cliptextures, complete with a scenegraph containing simple geometry and callbacks. See
the Cliptexture chapter for more details.

Designer’s Workbench DWB Format

The binary DWB format is used for input and output by the Designer’s Workbench,
EasyT, and EasyScene database modeling tools produced by Coryphaeus Software. DWB
is an advanced database format that directly represents many of IRIS Performer’s
attribute and hierarchical scene graph concepts.

An importer for this format, named pfdLoadFile_dwb(), has been provided by
Coryphaeus Software for your use. The loader code and its associated documentation are
in the /usr/share/Performer/src/lib/libpfdb/libpfdwb directory. The image in Figure 7-2 shows
a model of the Soma Cube puzzle invented by Piet Hein. The model was created using
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Designer’s Workbench. Each of the pieces is stored as an individual DWB-format file. Do
you see how to form the 3 x 3 cube at the lower left from the seven individual pieces?

Figure 7-2 Soma Cube Puzzle in DWB Form

pfdLoadFile() uses the function pfdLoadFile_dwb() to load Designer’s Workbench files
into IRIS Performer run-time data structures.

AutoCAD DXF Format

The DXF format originated with Autodesk’s AutoCAD database modeling system. The
version recognized by the pfdLoadFile_dxf() database importer is a subset of ASCII
Drawing Interchange Format (DXF) Release 12. The binary version of the DXF format,
also known as DXF, isn’t supported. Source code for the importer is in the file
Jusr/share/Performer/src/lib/libpfdb/libpfdxf/pfdxf.c. pfdLoadFile_dxf() was derived from
the DXF-to-DKB data file converter developed and placed in the public domain by
Aaron A. Collins.

The image in Figure 7-3 shows a DXF model of the famous Utah teapot. This model was
loaded from DXF format using the pfdLoadFile_dxf() database importer.
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Figure 7-3 The Famous Teapot in DXF Form
The DXF format has an unusual though well-documented structure. The general
organization of a DXF file is
1. HEADER section with general information about the file
2. TABLES section to provide definitions for named items, including:
= LTYPE, the line-type table
= LAYER, the layer table
= STYLE, the text-style table
= VIEW, the view table
= UCS, the user coordinate-system table
= VPORT, the viewport configuration table
= DIMSTYLE, the dimension style table
= APPID, the application identification table
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3. BLOCKS section containing block definition entities
4. ENTITIES section containing entities and block references
5. END-OF-FILE

Within each section are groups of values, where each value is defined by a two-line pair
of tokens. The first token is a numeric code indicating how to interpret the information
on the next line. For example, the sequence

10
1.000
20
5.000
30
3.000

defines a “start point” at the XYZ location (1, 5, 3). The codes 10, 20, and 30 indicate,
respectively, that the primary X, Y, and Z values follow. All data values are retained in a
set of numbered registers (10, 20, and 30 in this example), which allows values to be
reused. This simple state-machine type of run-length coding makes DXF files
space-efficient at the cost of making them harder to interpret.

pfdLoadFile() uses the function pfdLoadFile_dxf() to load DXF format files into IRIS
Performer run-time data structures.

Several widely available technical books provide full details of this format if you need
more information. Chief among these are AutoCAD Programming, 2nd Edition, by Dennis
N. Jump, Windcrest Books, 1991, and AutoCAD: The Complete Reference, Second Edition, by
Nelson Johnson, Osborne McGraw-Hill, 1991.

MultiGen OpenFlight Format

The OpenFlight format is a binary format used for input and output by the MultiGen and
ModelGen database modeling tools produced by MultiGen. It is a comprehensive format
that can represent nearly all of IRIS Performer’s advanced concepts, including object
hierarchy, instancing, level-of-detail selection, light-point specification, texture mapping,
and material property specification.
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MultiGen has provided an OpenFlight-format importer, pfdLoadFile_flt(), for your use.
The loaders and associated documentation are in the directories
Jusr/share/Performer/src/lib/libpfdb/libpfflt1l and libpfflt14. Refer to the Readme files in these
directories for important information about the loaders and for help in contacting
MultiGen for information about pfdLoadFile_flt() or the OpenFlight format.

The image in Figure 7-4 shows a model of a spacecraft created by Viewpoint Animation
Engineering using MultiGen. This OpenFlight format model was loaded into IRIS
Performer using pfdLoadFile_fit().

Figure 7-4 Spacecraft Model in FLIGHT Format

pfdLoadFile() uses the function pfdLoadFile_flt() to load OpenFlight format files into
IRIS Performer run-time data structures.

Files in the OpenFlight format are structured as a linear sequence of records. The first few
bytes of each record are a header containing an op-code, the length of the record, and
possibly an ASCII name for the record. The first record in the file is a special “database
header” record whose op-code, stored as a 2-byte short integer, has the value 1. This
opcode header can be used to identify OpenFlight-format files. By convention, these files
have a “ flt” filename extension.
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pfdLoadFile_flt() makes use of several environment variables when locating data and
texture files. These variables and several additional functions, including
pfdConverterMode_fit(), pfdGetConverterMode_flt(), and pfdConverterAttr_flt()
assist in OpenFlight file processing.

McDonnell-Douglas GDS Format

The “.gds” format (also known as the “Things” format) is used in at least one CAD
system, and a minimal loader for this format has been developed for IRIS Performer
users. The IRIS Performer loader for “.gds” files is located in the
/usr/share/Performer/src/lib/libpfdb/libpfgds directory.

The GDS format subset accepted by the pfdLoadFile_gds() function is easy to describe.
It consists of the following five sequential sections in an ASCII file.

1. The number of vertices, which is given following a “YIN” tag.

2. The vertices, with one X, Y, Z triple per line for vertices lines.

3. The number zero on a line by itself.

4. The number of polygons on a line by itself.

5

A series of polygon definitions, each of which is represented on two or more lines.
The first line contains the number one and the name of a material to use for the
polygon. The next line or lines contain the indices for the polygons vertices. The
first number on the first line is the number of vertices. This is followed by that
number of vertex indices on that, and possibly subsequent, lines.

pfdLoadFile() uses the function pfdLoadFile_gds() to load “.gds” format files into
IRIS Performer.

Silicon Graphics GFO Format

The GFO format is the simple ASCII format of the barcelona database that is provided in
the IRIS Performer sample database directory. This database represents the famous

German Pavilion at the Barcelona Exhibition of 1929, which was designed by Ludwig
Mies van der Rohe and is shown in Figure 7-5.
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Figure 7-5 GFO Database of Mies van der Rohe’s German Pavilion

The source code for the GFO-format loader is provided in the file
/usr/share/Performer/src/lib/libpfdb/libpfgfo/pfbin.c.

pfdLoadFile() uses the function pfdLoadFile_gfo() to load GFO format files into IRIS
Performer run-time data-structures.

When working with GFO files, remember that hardware lighting isn’t used since all
illumination effects have already been accounted for with the ambient color at each
vertex.

The GFO format defines polygons with a color at every vertex. It is the output format of
an early radiosity system. Files in this format have a simple ASCII structure, as indicated
by the following abbreviated GFO file:
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scope {
V3f{42.9632 8.7500 0.9374}

cpack {0x8785a9}
V3f{42.9632 8.0000 0.9374}
cpack {0x8785a9}

V3f{-1.0000 -6.5858 10.0000}

cpack {Oxffff}

polygon {cpack{0] v3f0] cpack(1] v3f{1] cpack(2] v3f2] cpack{3] v3f3] }
polygon {cpack{4] v3f4] cpack(5] vfi5] cpack(6] v3f[6] cpack{7] v3f{7] }

polygon {cpack{7330] v3f[7330] cpack[7331] v3f[7331] cpack[7332] v3f[7332]
cpack]7333] v3f7333] }

instance {

polygon[0]

polygon(1]

.p.).oiygon[2675]
}
}

This example is taken from the file barcelona-1.gfo, one of only two known databases in the
GFO format. The importer uses functions from the libpfdu library (such as those from the
pfdBuilder) to generate efficient shared triangle strips. This increases the speed with
which GFO databases can be drawn and reduces the size and complexity of the loader,
since the builder’s functions hide the details of the pfGeoSet construction process.

Silicon Graphics IM Format

The “.im” format is a simple format developed for test purposes by the IRIS Performer
engineering team. As new features are added to IRIS Performer, the “.im” loader is
extended to allow experimentation and testing. A recent example of this is support for
pfText, pfString, and pfFont objects which can be seen by running perfly on the sample
data file fontsample.im. The IRIS Performer “.im” loader is in the
Jusr/share/Performer/src/lib/libpfdb/libpfim directory.

Here is an example IM format file that creates an extruded 3D text string. Copy this to a
file ending in the extension “.im” and load it into Perfly. For a complete example of how
text is handled in IRIS Performer, use Perfly to examine the file
/usr/share/Performer/data/fontsample2.im.
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breakup00.000
new root top
end_root

new font mistr-extruded Mistr 3
end_font

new str_text textnode mistr-extruded 1
Hello World||
end_text

attach top textnode

pfdLoadFile() uses the function pfdLoadFile_im() to load “.im” format files into IRIS
Performer run-time data structures:

pfdLoadFile_im() searches the current IRIS Performer file path for the named file and
returns a pointer to the pfNode parenting the imported scene graph, or NULL if the file
isn’t readable or doesn’t contain a valid database.

AAl/Graphicon IRTP Format

The AAI/Graphicon “.irtp” format is used by the TopGen database modeling system
and by the Graphicon-2000 image generator. The name IRTP is an acronym for
Interactive Real-Time PHIGS. The IRIS Performer “.irtp” loader is in the
usr/share/Performer/src/lib/libpfdb/libpfirtp directory. Though loader does not support the
more arcane IRTP features, such as binary separating planes or a global matrix table, it
has served as a basis for porting applications to IRIS Performer and the RealityEngine.

pfdLoadFile() uses the function pfdLoadFile_irtp() to load IRTP format files into IRIS
Performer run-time data-structures.

Silicon Graphics Open Inventor Format
The Open Inventor object-oriented 3D-graphics toolkit defines a persistent data format

that is also a superset of the VRML networked graphics data format. The image in
Figure 7-6 shows a sample Open Inventor data file.
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Figure 7-6 Aircar Database in IRIS Inventor Format

The model in Figure 7-6 represents one design for the perennial “personal aircar of the
future” concept. It was created, using Imagine, by Mike Halvorson of Impulse, and was
modeled after the Moller 400 as described in Popular Mechanics.

The Open Inventor data-file loader provided with IRIS Performer reads both binary and
ASCII format Open Inventor data files. Open Inventor scene graph description files in
both formats have the suffix “.iv”’ appended to their file names.

Here is a simple Open Inventor file that defines a cone:

#Inventor V2.1 ascii

Separator {
Cone {

}
}

The source code for the Open Inventor format importer is provided in the libpfdb/libpfiv
source directory.

pfdLoadFile() uses the function pfdLoadFile_iv() to load Open Inventor format files into

IRIS Performer run-time data-structures. IRIS Performer also comes with an Inventor
loader that works with Open Inventor 2.0, if Open Inventor 2.1 is not installed.
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Lightscape Technologies LSA and LSB Formats

The Lightscape Visualization system is a product of Lightscape Technologies, Inc., and is
designed to compute accurate simulations of global illumination within complex 3D
environments. The output files created with Lightscape Visualization can be read into
IRIS Performer for real-time visual exploration.

Lightscape Technologies provides importers for two of their database formats, the simple
ASCII LSA format and the comprehensive binary LSB format. These loaders are in the
lusr/share/Performer/src/lib/libpfdb/libpflsa and libpflsh directories, in the files pflsa.c and
pflsb.c.Files in the LSA format are in ASCII and have the following components:

1. a4x4 view matrix representing a default transformation

2. counts of the number of independent triangles, independent quadrilaterals, triangle
meshes, and quadrilateral meshes in the file

3. geometric data definitions

There are four types of geometric definitions in LSA files. The formats of these definitions
are as shown in Table 7-7.

Table 7-7 Geometric Definitions in LSA Files
Geometric Type Format
Triangle tX1Y1Z1C1X2Y2Z2C2X3Y32Z3C3
Triangle mesh tmn
X1Y1zZ1C1
X2Y22722C2
Quadrilateral gX1Y1Z1C1lX2Y22Z2C2X3Y3Z3C3X4Y4Z4C4
Quadrilateral mesh gmn
X1Y1z1C1
X2Y2Z72C2
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The Cn values in Table 7-7 refer to colors in the format accepted by the IRIS GL function
cpack(); these colors should be provided in decimal form. The X, Y, and Z values are
vertex coordinates. Polygon vertex ordering in LSA files is consistently
counter-clockwise, and polygon normals are not specified. The first few lines of the LSA
sample file chamber.0.1sa provide an example of the format:

0.486911 0.03228900 0.979046 0.9596590
-1.665110 0.00944197 0.286293 0.2806240
0.000000 1.92730000-0.017805 -0.0174524
0.240398 -5.54670000 13.021200 13.4945000

1782475100

t4.35-7.3677 2.57 6188666 6.5 -9.3 2.57 5663353 4.35 -9.3 2.57 5728890
16.5-9.32.57 5663353 4.35-7.3677 2.57 6188666 6.5 -8.2463 2.57 6057596

The count line indicates that the file contains 1782 independent triangles and 4751
independent quadrilaterals, which together represent 11,284 triangles. The image in
Figure 7-7 shows this database, the New Jerusalem City Hall. This was produced by
A.J. Diamond of Donald Schmitt and Company, Toronto, Canada, using the Lightscape
Visualization system.

Figure 7-7 LSA-Format City Hall Database
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pfdLoadFile() uses the function pfdLoadFile_lsa() to load LSA format files into IRIS
Performer run-time data-structures.

Files in the LSB binary format have a very different structure from LSA files.
Representing not just polygon data, they contain much of the structural information
present in the “.Is” files used by the Lightscape Visualization system, including material,
layer, and texture definitions as well as a hierarchical mesh definition for geometry. This
information is structured as a series of data sections, which include:

= the signature, a text string that identifies the file

the header, which contains global file information
= the material table, defining material properties

= the layer table, defining grouping and association
= the texture table, referencing texture images

= geometry in the form of clusters

The format of the geometric clusters is somewhat complicated. A cluster is a group of
coplanar surfaces called patches that share a common material, layer, and normal. Each
patch shares at least one edge with another patch in the cluster. Each patch defines either
aconvex quadrilateral or a triangle, and patches represent quad-trees called nodes. Each
node points to its corner vertices and its children. The leaf nodes point to their corner
vertices and the child pointers can optionally point to the vertices that split an edge of
the node. Only the locations of vertices that are corners of the patches are stored in the
file; other vertices are created by subdividing nodes of the quad-tree as the LSB file is
loaded. The color information for each vertex is unique and is specified in the file.

The image in Figure 7-8 shows an LSB-format database developed during the design of
a hospital operating room. This database was produced by the DeWolff Partnership of
Rochester, New York, using the Lightscape Visualization system.
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Figure 7-8 LSB-Format Operating Room Database

pfdLoadFile() uses the function pfdLoadFile_Isb() to load LSB format files into IRIS
Performer run-time data-structures.

When working with Lightscape Technologies files, remember that hardware lighting
isn’t needed because all illumination effects have already been accounted for with the
ambient color at each vertex.

Medit Productions MEDIT Format

The “.medit” format is used by the Medit database modeling system produced by Medit
Productions. The IRIS Performer “.medit” loader is in the

/usr/share/Performer/src/lib/libpfdb/libpfmedit directory.

pfdLoadFile() uses the function pfdLoadFile_medit() to load MEDIT format files into
IRIS Performer run-time data-structures.
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NFF Neutral File Format

The “.nff” format was developed by Eric Haines as a way to provide standard procedural
databases for evaluating ray tracing software. IRIS Performer includes an extended NFF
loader with superquadric torus support, a named build keyword, and numerous small
bug fixes. The “.nff” loader is located in the /usr/share/Performer/src/lib/libpfdb/libpfnff
directory.

The file /usr/share/Performer/data/sampler.nff uses each of the NFF data types. It is an
excellent way to explore the “Show Tree”, “Draw Style”, and “Highlight Mode” features
of Perfly. It is included here:

#-- torus
f.75.00.25.6.8200
t55000121

build torus

#-- cylinder

f.00.75.25.6.8200

c

155-32

15532

#-- put a disc on the top and bottom of the cylinder
d155-300-102

d155300102

build cylinder

#-- cone

f.00.25.75.6.8200

c

255-33

25530

#-- put a disc on the bottom of the cone
d255-300-103

build cone

#-- sphere
f.75.00.75.6.8200
s51503

build sphere

#-- hexahedron
f.25.25.50.6.8200
h1313-217172
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build hexahedron

#-- superquadric sphere
f.80.10.30.6.8200
ss25150222.1 .4
build superquadric_sphere

#-- disc (washer shape)
f.20.20.90.6.8200
d5250001125
build disc

#-- grid (height field)
f.80.80.10.6.8200
0441218222804
0000

0100

00-10

0000

build grid

#-- superquadric torid

f.40.20 .60 .6 .8200
st252500.50.50.5.33.333
build superquadric_torid

#-- polygon with no normals
f.20.20.20.6.8200

p4

-5-5-10

35-5-10

3535-10

-535-10

build polygon

pfdLoadFile() uses the function pfdLoadFile_nff() to load NFF format files into IRIS
Performer run-time data-structures.
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Wavefront Technology OBJ Format

The OBJ format is an ASCII data representation read and written by the Wavefront
Technology Model program. A number of database models in this format have been
placed in the public domain, making this a useful format to have available. IRIS
Performer provides the function pfdLoadFile_obj() to import OBI files. The source code
for pfdLoadFile_obj() is in the file pfobj.c in the /usr/share/Performer/src/lib/libpfdb/libpfobj
loader source directory.

The OBJ-format database shown in Figure 7-9 models an office building that’s part of the
Silicon Graphics corporate campus in Mountain View, California.

Figure 7-9 Silicon Graphics Office Building as OBJ Database
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Files in the OBJ format have a flexible all-ASCII structure, with simple keywords to direct
the parsing of the data. This format is best illustrated with a short example that defines
a texture-mapped square:

#-- ‘v’ defines a vertex; here are four vertices
v -5.000000 5.000000 0.000000
v -5.000000 -5.000000 0.000000
v 5.000000 -5.000000 0.000000
v 5.000000 5.000000 0.000000

#-- ‘vt’' defines a vertex texture coordinate; four are given
vt 0.000000 1.000000 0.000000
vt 0.000000 0.000000 0.000000
vt 1.000000 0.000000 0.000000
vt 1.000000 1.000000 0.000000

#-- ‘usemtl’ means select the material definition defined
#-- by the name MaterialName
usemtl MaterialName

#-- ‘'usemap’ means select the texturing definition defined
#-- by the name TextureName
usemap TextureName

#-- 'f’ defines a face. This face has four vertices ordered

#-- counter-clockwise from the upper left in both geometric
#-- and texture coordinates. Each pair of numbers separated
#-- by a slash indicates vertex and texture indices,

#-- respectively, for a polygon vertex.

f1/1 2/2 3/3 4/4

pfdLoadFile() uses the function pfdLoadFile_obj() to load Wavefront OBJ files into IRIS
Performer run-time data-structures.

Silicon Graphics PFB Format

Although IRIS Performer has no true, native database format, the PFB format is designed
to exactly replicate the IRIS Performer scene graph, which increases loading speed. A file
in the PFB format has the following advantages:

= PFB files often load in one tenth (or less) of the time it takes an equivalent file in
another format to load.

= PFB files are often half the size of equivalent files in another format.
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You can think of the PFB format as being a cache. You can convert your files into PFB for
fast and efficient loading or paging, but you should always keep your original files in
case you wish to modify them.

Converting to the PFB Format

You can convert files into the PFB format in one of the following ways:
= Use the function, pfdStoreFile_pfb() in libpfpfb.

= Use pfconw.

Silicon Graphics PFI Format

The PFI image file format is designed for fast loading of images into pfTextures.
pfLoadTexFile() can load PFI files as the image of a pfTexture. Since the format of the
image in a PFI file matches that of a pfTexture, data is not reformatted at load time.
Eliminating the reformatting often cuts the load time of textures to half of the load time
of the same image in the IRIS libimage format.

PFI files can contain the mipmaps of the image. This feature saves significant time in the
IRIS Performer DRAW process since it does not have to generate the mipmaps.

Creating PFI Files

PFI files are created in the following ways:

= pfSaveTexFile() creates a PFI file from a pfTexture.
« The pfdlmage methods in libpfdu create PFI files.
= pficonv converts IRIS libimage files into PFI files.

« pfconv converts all referenced image files into PFI files when the setting
PFPFB_SAVE TEXTURE_PFI mode is PF_ON. The command line options to do this
with pfconv is -Mpfb,5.
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Silicon Graphics PHD Format

The PHD format was created to describe the geometric polyhedron definitions derived
mathematically by Andrew Hume and by the Kaleido program of Zvi Har ’El. This format
describes only the geometric shape of polyhedra; it provides no specification for color,
texture, or appearance attributes such as specularity.

The IRIS Performer sample data directories contain numerous polyhedra in the PHD
format. The image in Figure 7-10 shows many of the polyhedron definitions laboriously
computed by Andrew Hume.

N\
— ) j ¥ \

Figure 7-10 Plethora of Polyhedra in PHD Format

The source code for the PHD-format importer is in the file
lusr/share/Performer/src/lib/libpfdb/libpfpoly/pfphd.c.

PHD format files have a line-structured ASCII form; an initial keyword defines the

contents of each line of data. The file format consists of a filename definition (introduced
by the keyword file) followed by one or more object definitions.
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Object definitions are bracketed by the keywords object.begin and object.end and contain
one or more polygon definitions. Objects can have a name in quotes following the
object.begin keyword; such a name is used by the loader for the name of the
corresponding IRIS Performer node.

Polygon definitions are bracketed by the keywords polygon.begin and polygon.end and
contain three or more vertex definitions.

Vertex definitions are introduced by the vertex keyword and define the X, Y, and Z
coordinates of a single vertex.

The following is a PHD-format definition of a unit-radius tetrahedron centered at the
origin of the coordinate axes. It is derived from the database developed by Andrew
Hume but has since been translated, scaled, and reformatted.

file 000.phd

object.begin "tetrahedron”
polygon.begin

vertex -0.090722 -0.366647 0.925925
vertex 0.544331 -0.628540 -0.555555
vertex 0.453608 0.890430 0.037037
polygon.end

polygon.begin

vertex -0.907218 0.104757 -0.407407
vertex -0.090722 -0.366647 0.925925
vertex 0.453608 0.890430 0.037037
polygon.end

polygon.begin

vertex -0.090722 -0.366647 0.925925
vertex -0.907218 0.104757 -0.407407
vertex 0.544331 -0.628540 -0.555555
polygon.end

polygon.begin

vertex 0.453608 0.890430 0.037037
vertex 0.544331 -0.628540 -0.555555
vertex -0.907218 0.104757 -0.407407
polygon.end

object.end

pfdLoadFile() uses the function pfdLoadFile_phd() to load PHD format files into IRIS
Performer run-time data-structures.
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The pfdLoadFile_phd() function composes a color with red, green, and blue components
uniformly distributed within the range 0.2 to 0.7 that is consistent for each polygon with
the same number of vertices within a single polyhedron.

Silicon Graphics PTU Format

The PTU format is named for the IRIS Performer Terrain Utilities, of which the
pfdLoadFile_ptu() function is the sole example at the present time. This function accepts
as input the name of a control file (the file with the “.ptu” filename extension) that defines
the desired terrain parameters and references additional data files.

The database shown in Figure 7-11 represents a portion of the Yellowstone National Park.
This terrain database was generated completely by the IRIS Performer Terrain Utility
data generator from digital terrain elevation data and satellite photographic images.
Image manipulation is performed using the Silicon Graphics ImageVision Library™
functions.

Figure 7-11 Terrain Database Generated by PTU Tools
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The PTU control file has a fixed format that doesn’t use keywords. The contents of this
file are simply ASCII values representing the following data items:

1. The name to be assigned to the top-level pfNode built by pfdLoadFile_ptu().

2. The number of desired levels-of-detail (LOD) for the resulting terrain surface. The
pfdLoadFile_ptu() function will construct this many versions of the terrain, each
representing the whole surface but with exponentially fewer numbers of polygons
in each version.

3. The numbers of highest-LOD tiles that will tessellate the entire terrain surface in the
X and Y axis directions.

4. Two numeric values that define the mapping of texture image pixels to
world-coordinate terrain geometry. These values are the number of meters per texel
(texture pixel) of filtered grid post data in the X and Y axis dimensions.

5. The name of an image file that represents terrain height at regularly spaced sample
points in the form of a monochrome image whose brightness at each pixel indicates
the height at that sample point. Additional arguments are the number of samples in
the input image in the X and Y directions, as well as the desired number of samples
in these directions. The pfdLoadFile_ptu() function resamples the grid posts from
the original to the desired resolution by filtering the height image using SGI
ImageVision Library functions.

6. The name of an image file that represents the terrain texture image at regularly
spaced sample points. Subsequent arguments are the number of samples in the
image in the X and Y directions as well as the desired number of samples in these
directions. This image will be applied to the terrain geometry. The scale values
provided in the PTU file allow the terrain grid and texture image to be adjusted to
create an orthographic alignment.

7. An optional second texture-image filename that serves as a detail texture when the
terrain is viewed on RealityEngine systems. This texture is used in addition to the
base texture image.

8. An optional detail-texture spline-table definition. The blending of the primary
texture image and the secondary detail texture is controlled by a blend table defined
by this spline function. The spline table is optional even when a detail texture is
specified. Detail texture and its associated blend functions are applicable only on
RealityEngine systems.

The source code for the PTU-format importer is provided in the file
Jusr/share/Performer/src/lib/libpfdb/libpfptu/pfptu.c.
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pfdLoadFile() uses the function pfdLoadFile_ptu() to load PTU format files into IRIS
Performer run-time data-structures.

USNA Standard Graphics Format

The “.sgf” format is used at the United States Naval Academy as a standard graphics
format for geometric data. The loader was developed based on the description of the
standard graphics format as described by David F. Rogers and J. Alan Adams in the book
Mathematical Elements for Computer Graphics. The IRIS Performer “.sgf” format loader is
located in the directory /usr/share/Performer/src/lib/libpfdb/libpfsgf.

Here is the vector definition for four stacked squares in SGF form:
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pfdLoadFile() uses the function pfdLoadFile_sgf() to load SGF format files into IRIS
Performer run-time data-structures.
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Silicon Graphics SGO Format

The Silicon Graphics Object format is used by several cool utility programs and was one
of the first database formats supported by IRIS Performer. The image in Figure 7-12
shows a model generated by Paul Haeberli and loaded into perfly by the
pfdLoadFile_sgo() database importer.

Figure 7-12 Model in SGO Format

Objects in the SGO format have per-vertex color specification and multiple data formats.
Objects contained in SGO files are constructed from three data types:

= lists of quadrilaterals

= lists of triangles

= triangle meshes

Objects of different types can be included as data within one SGO file.
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The SGO format has the following structure:
1. A magic number, 0x5424, which identifies the file as an SGO file.

2. A et of data for each object. Each object definition begins with an identifying token,
followed by geometric data. There can be multiple object definitions in a single file.
An end-of-data token terminates the file.

The layout of an SGO file is

<SGO-file magic number>
<data-type token for object #1>
<data for object #1>
<data-type token for object #2>
<data for object #2>

<data-type token for object #n>
<data for object #n>
<end-of-data token>

Each of the identifying tokens is 4 bytes long. Table 7-8 lists the symbol, value, and
meaning for each token.

Table 7-8 Object Tokens in the SGO Format

Symbol Value Meaning

OBJ_QUADLIST 1 Independent quadrilaterals
OBJ_TRILIST 2 Independent triangles
OBJ_TRIMESH 3 Triangle mesh

OBJ_END 4 End-of-data token

The next word following any of the three object types is the number of 4-byte words of
data for that object. The format of this data varies depending on the object type.
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For quadrilateral list (OBJ_QUANDLIST) and triangle list (OBJ_TRILIST) objects, there are
nine words of floating-point data for each vertex, as follows:

1. Three words that specify the components of the normal vector at the vertex.

2. Three words that specify the red, green, and blue color components, scaled to the
range 0.0 to 1.0.

3. Three words that specify the X, Y, and Z coordinates of the vertex itself.
In quadrilateral lists, vertices are in groups of four, so there are 4 x 9 = 36 words of data

for each quadrilateral. In triangle lists, vertices are in groups of three, for 3 x 9 = 27 words
per triangle.]

The triangle mesh, OBJ_TRIMESH, is the most complicated of the three object data types.
Triangle mesh data consists of a set of vertices followed by a set of mesh-control
commands. Triangle mesh data has the following format:

1. Along word that contains the number of words in the complete triangle mesh data
packet.

2. A long word that contains the number of floating-point words required by the
vertex data, at nine words per vertex.

3. The data for each vertex, consisting of nine floating-point words representing
normal, color, and coordinate data.

4. A list of triangle mesh controls.

The triangle mesh controls, each of which is one word in length, are listed in Table 7-9.

Table 7-9 Mesh Control Tokens in the SGO Format

Symbol Value Meaning

OP_BGNTMESH 1 Begin a triangle strip.
OP_SWAPTMESH 2 Exchange old vertices.
OP_ENDBGNTMESH 3 End, then begin a strip.
OP_ENDTMESH 4 Terminate triangle mesh.

The triangle-mesh controls are interpreted sequentially. The first control must always be
OP_BGNTMESH, which initiates the mesh-decoding logic. After each mesh control is a
word (of type long integer) that indicates how many vertex indices follow. The vertex
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indices are in byte offsets, so to access vertex n, you must use the byte offset n x 9 x 4. See
the graphics library reference books listed under “Bibliography” on page xxxvi for more
information on triangle meshes (particularly see the IRIS GL books, if you're using IRIS
GL, for information on the swap-triangle-mesh concept).

pfdLoadFile() uses the function pfdLoadFile_sgo() to load SGO format files into IRIS
Performer run-time data-structures.

You can find the source code for the SGO-format importer in the file pfsgo.c. Thisimporter
doesn’t attempt to decode any triangle meshes present in input files; instead, it
terminates the file conversion process as soon as an OBJ_TRIMESH data-type token is
encountered. If you use SGO-format files containing triangle meshes you’ll need to
extend the conversion support to include the triangle mesh data type.

USNA Simple Polygon File Format

The “.spf” format is used at the United States Naval Academy as a simple polygon file
format for geometric data. The loader was developed based on the description in the
book Mathematical Elements for Computer Graphics. The IRIS Performer “.spf” loader is in
the /usr/share/Performer/src/lib/libpfdb/libpfspf directory.

The following “.spf” format file is defined in that book.

polygon with a hole
14,2

4,4

4,26

20,26

28,18

28,4

21,4

21,8

10,8

10,4

10,12

10,20

17,20

21,16

21,12
9,1,2,3,4,5,6,7,8,9
5,10,11,12,13,14
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If you look at this file in Perfly you will see that the hole is not cut out of the letter “A” as
might be desired. Such computational geometry computations are not considered the
province of simple database loaders.

pfdLoadFile() uses the function pfdLoadFile_spf() to load SPF format files into IRIS
Performer run-time data-structures.

Sierpinski Sponge Loader

The Sierpinski Sponge (a.k.a. Menger Sponge) loader is not based on a data format but
rather is a procedural data generator. The loader interprets the portion of the user
provided “file name” before the period and extension as an integer which specifies the
number of recursive subdivisions desired in data generation. For example, providing the
pseudo filename “3.sponge” to perfly will result in the Sponge loader being invoked and
generating a sponge object using three levels of recursion, resulting in a 35712 polygon
database object. The IRIS Performer “.sponge” loader can be found in the
/usr/share/Performer/src/lib/libpfdb/libpfsponge directory.

pfdLoadFile() uses the function pfdLoadFile_sponge() to load Sponge format files into
IRIS Performer run-time data-structures.

Star Chart Format

The *“.star” format is a distillation of astronomical data from the Yale Compact Star Chart.
The sample data file /usr/share/Performer/data/3010.star contains data from the YCSC that
has been reduced to a list of the 3010 brightest stars as seen from Earth and positioned as
3010 points of light on a unit-radius sphere. The IRIS Performer “.star” loader can read
this data and is provided as a convenience for making dusk, dawn, and night-time
scenes. The loader is in the /usr/share/Performer/src/lib/libpfdb/libpfstar directory.

Data in a “.star” file is simply a series of ASCII lines with the “s” (for star) keyword
followed by X, Y, and Z coordinates, brightness, and an optional name. Here are the 10
brightest stars (excluding Sol) in the “.star” format:

s -0.18746032 0.93921369 -0.28763914 1.00 Sirius

5 -0.06323564 0.60291260 -0.79529721 1.00 Canopus
s -0.78377002 -0.52700269 0.32859191 1.00 Arcturus

s 0.18718566 0.73014212 0.65715599 1.00 Capella
s 0.12507832 -0.76942003 0.62637711 0.99 Vega

s 0.13051330 0.68228769 0.71933979 0.99 Capella
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s 0.19507207 0.97036278 -0.14262892 0.98 Rigel

s -0.37387931 -0.31261155 -0.87320572 0.94 Rigil Kentaurus
5$-0.41809806 0.90381104 0.09121194 0.94 Procyon

s 0.49255905 0.22369388 -0.84103900 0.92 Achernar

pfdLoadFile() uses the function pfdLoadFile_star() to load Star format files into IRIS
Performer run-time data-structures.

3D Lithography STL Format

The STL format is used to define 3D solids to be imaged by 3D lithography systems. STL
defines objects as collections of triangular facets, each with an associated face normal.

The ASCII version of this format is known as STLA and has a very simple structure.

The image in Figure 7-13 shows a typical STLA mechanical CAD database. This model is
defined in the bendix.stla sample data file.

Figure 7-13 Sample STLA Database

The source code for the STLA-format loader is in the files
Jusr/share/Performer/src/lib/libpfdb/libpfstla/pfstla.c.
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STLA-format files have a line-structured ASCII form; an initial keyword defines the
contents of each line of data. An STLA file consists of one or more facet definitions, each
of which contains

1. the facet normal, indicated with the facet normal keyword
2. the facet vertices, bracketed by outer loop and endloop keywords
3. the endloop keyword

Here is an excerpt from nut.stla, one of the STLA files provided in the IRIS Performer
sample data directories. These are the first two polygons of a 524-triangle hex-nut object:

facet normal 0-1 0
outer loop
vertex 0.180666 -7.62 2.70757
vertex -4.78652 -7.62 1.76185
vertex -4.436 -7.62 0
endloop
endfacet
facet normal -0.381579 -0.921214 -0.075915
outer loop
vertex -4.48833 -7.59833 0
vertex -4.436 -7.62 0
vertex -4.78652 -7.62 1.76185
endloop
endfacet

Use this function to import data from STLA-format files into IRIS Performer run-time
data structures:

pfNode *pfdLoadFile_stla(char *fileName);

pfdLoadFile_stla() searches the current IRIS Performer file path for the file named by the
filktName argument and returns a pointer to the pfNode that parents the imported scene
graph, or NULL if the file isn’t readable or doesn’t contain recognizable STLA format
data.

SuperViewer SV Format

The SuperViewer (SV) format is one of the several database formats that the I3DM
database modeling tool can read and write. The I3DM modeler was developed by John
Kichury of Silicon Graphics and is provided with IRIS Performer. The source code for the
SV format importer is in the file pfsv.c.
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The passenger vehicle database shown in Figure 7-14 was modeled using I3DM and is
stored in the SV database format.

Figure 7-14 Early Automobile in SuperViewer SV Format

Within SV files, object geometry and attributes are described between text lines that
contain the keywords model and endmodel. For example:

model wing
geometry and attributes
endmodel
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Any number of models can appear within a SuperViewer file. The geometry and
attribute data mentioned above each consist of one of the following types:

= 3D Polygon with vertex normals and optional texture coordinates

poly3dn <num_vertices> [textured]
x1ylz1nx1nylnzl [s1tl]
X2 y2 72 nx2 ny2 nz2 [s2 t2]

Where

— XnYn Zn are the nth vertex coordinates
— Nxn Nyn Nzn are the nth vertex normals
— Sn Tn are the nth texture coordinates

- 3D Triangle mesh with vertex normals and optional texture coordinates

tmeshn <num_vertices> [textured]
x1ylz1nx1nylnzl [sltl]
X2 y2 z2 nx2 ny2 nz2 [s2t2]

Where

— XnYn Zn are the nth vertex coordinates
— Nxn Nyn Nzn are the nth vertex normals
— Sn Tn are the nth texture coordinates

< Material definition. If the material directive exists before a model definition, it is
taken as a new material specification. Its format is:

material n Ar Ag Ab Dr Dg Db Sr Sg Sb Shine Er Eg Eb
Where

— nisan integer specifying a material number
— Ar Ag Ab is the ambient color

— Dr Dg Db is the diffuse color

— Sr Sg Shis the specular color

— Shine is the material shininess

— Er Eg Eb is the emissive color

232



Description of Supported Formats

If the material directive exists within a model description, the format is:
material n

Where n is an integer specifying which material (as defined by the material
description above) is to be assigned to subsequent data.

= Texture definition. If the texture directive exists before a model definition it is taken
as a new texture specification. Its format is:

texture n TextureFileName

If the texture directive exists within a model description, the format is:
texture n

Where n is an integer specifying which texture (as defined by the texture
description above) is to be assigned to subsequent data.

= Backface polygon display mode. The backface directive is specified within model
definitions to control backface polygon culling:

backface mode

Where a mode of “on” allows the display of backfacing polygons and a mode of “off”
suppresses their display.

In actual use the SV format is somewhat self-documenting. Here is part of the SV file
apple.sv from the /usr/share/Performer/data directory:

material 20 0.0 0.0 0 0.400000 0.000000 0 0.333333 0.000000 0.0 10.0000 000
material 42 0.2 0.2 0 0.666667 0.666667 0 0.800000 0.800000 0.8 94.1606 000
material 44 0.0 0.2 0 0.000000 0.200000 0 0.000000 0.266667 0.0 5.0000000

texture 4 prchmnt.rgb
texture 6 wood.rgh

model LEAF
material 44
texture 4
backface on
poly3dn 4 textured

1.35265 1.35761 13.8338 0.0686595 -0.234553 -0.969676 0 1

0.88243 0.96366 14.0329 0.0502096 -0.376701 -0.924973 0 0.75
-4.44467 1.24026 13.5669 0.0363863 -0.337291 -0.940697 0.0909091 0.75
-2.37938 2.17479 13.3626 0.0363863 -0.337291 -0.940697 0.0909091 1
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poly3dn 4 textured

-2.37938 2.17479 13.3626 0.0363863 -0.337291 -0.940697 0.0909091 1
-4.44467 1.24026 13.5669 0.0363863 -0.337291 -0.940697 0.0909091 0.75
-0.23775 2.34664 13.1475 0.0344832 -0.284369 -0.958095 0.181818 0.75
-6.69592 3.94535 12.6716 0.0344832 -0.284369 -0.958095 0.181818 1

This excerpt specifies material properties and references texture images stored in the files
prchmnt.rgb and wood.rgh, and then defines two polygons.

pfdLoadFile() uses the function pfdLoadFile_sv() to load SuperViewer files into IRIS
Performer run-time data-structures.

Geometry Center Triangle Format

The “.tri” format is used at the University of Minnesota’s Geometry Center as a simple
geometric data representation. The loader was developed by inspection of a few sample
files. The IRIS Performer “.tri” loader is in the /usr/share/Performer/src/lib/libpfdb/libpftri
directory.

These files have a very simple format: a line per vertex with position and normal given
on each line as 6 ASCII numeric values. The file is simply a series of these triangle
definitions. Here are the first two triangles from the data file
Jusr/share/Performer/data/mobrect.tri:

1.788180 1.000870 0.135214 0.076169 -0.085488 0.993423
1.574000 0.925908 0.146652 0.089015 -0.086072 0.992304
1.793360 0.634711 0.099409 0.076402 -0.111845 0.990784
0.836848 -0.595230 0.197960 0.156677 0.044503 0.986647
0.709638 -0.345676 0.210010 0.157642 0.021968 0.987252
0.581200 -0.535321 0.234807 0.145068 0.030985 0.988936

pfdLoadFile() uses the function pfdLoadFile_tri() to load “.tri” format files into IRIS
Performer run-time data-structures.

UNC Walkthrough Format

The “.unc” format was once used at the University of North Carolina as a format for
geometric data in an architectural walkthrough application. The loader was developed
based on inspection of a few sample files. The IRIS Performer “.unc” loader is in the
/usr/share/Performer/src/lib/libpfdb/libpfunc directory.
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pfdLoadFile() uses the function pfdLoadFile_unc() to load UNC format files into IRIS
Performer run-time data-structures.

WRL Format

The VRML 2.0 format for IRIS Performer, wrl, is made by DRaW Computing Associates®.
It accepts geometry and texture only. Basic geometry nodes like Sphere, Cone, Cylinder,
Box and related nodes like Shape, Material, Appearance, TextureTransform,
ImageTexture, and ElevationGrid are supported. Also, complex geometries can be
obtained using the IndexedFaceSet node. You can do geometric manipulations to nodes
using Group nodes and Transform nodes. You can also make very complex structures
using PROTOs, where you group many geometry nodes.

Database Operators with Pseudo Loaders

The IRIS Performer dynamic database loading mechanism provides additional DSOs
that operate on the resulting scene graph from a file or set of files after the file(s) are
loaded. This mechanism, called “pseudo loaders,” enables the desired-operator DSO to
be specified as additional suffixes to the file name. The DSO matching the last suffix is
loaded first and provided the entire filename. That pseudo loader then can parse the
arbitrary filename and invoke the next operator or loader and then operate on the results.
This process allows additional arguments to be buried in the specified filename for the
pseudo loader to detect and parse.

One set of pseudo loaders included with IRIS Performer are the rot, trans, and scale
loaders. These loaders take hpr and xyz arguments in addition to their Filename and can
be invoked from any program using pfdLoadFile(), for example:

% perfly cow.obj.-90,90,0.rot
-90, 90, and 0 are the h, p, and r values, respectively.

If you are using a shell with argument expansion, such as csh, you can create interesting
cow art. Try out the following example:

% perfly cow.obj.{0,1},0,0.trans cow.0bj.{0,1,2,3,4},0,-5.trans
Specifying a base filename is only needed if the specified pseudo loader expects a file to

operate on. Loaders can generate their scene graphics procedurally based on simple
parameters specified in the command string.
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The pseudo loaders in the IRIS Performer distribution are described in Table 7-10.

Table 7-10 IRIS Performer Pseudo Loaders

Pseudo Loaders Description

libpfrot Add pfSCS at root to rotate scene graph by specified <h>,<p>,<r>
libpftrans Add pfSCS at root to translate scene graph by specified <x>,<y><z>
libpfscale Add pfSCS at root to sale scene graph by specified <x>,<y><z>
libpfclosest Adds run-time app callback to highlight closest point each frame
libpfcliptile Adds callback to compute for the specified

<tilename>,<minS>,<minT>,<maxS>,<maxT> the proper virtual cliptexture
viewing parameters.

libpfsphere Generates a sphere database with morphing LOD starting from an n-gon for
specified <n>, power of 2.

libpfvct Convert normal cliptexture .ct file to virtual cliptexture

Pseudo loaders should define pfdLoadNeededDSOs_EXT() for:
= Pre-initializing DSOs.
= Loading other, special files.

= Performing additional initialization, such as class initialization, that should happen
before pfConfig().
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“Geometry”

This chapter discusses the classes used to create the shapes in Performer
scenes.






Chapter 8

Geometry Sets

Geometry

All libpr geometry is defined by modular units that employ a flexible specification
method. These basic groups of geometric primitives are termed pfGeoSets.

A pfGeoSet is a collection of geometry that shares certain characteristics. All items in a
pfGeoSet must be of the same primitive type (whether they’re points, lines, or triangles)
and share the same set of attribute bindings (you can’t specify colors-per-vertex for some
items and colors-per-primitive for others in the same pfGeoSet). A pfGeoSet forms
primitives out of lists of attributes that may be either indexed or nonindexed. An indexed
pfGeoSet uses a list of unsigned short integers to index an attribute list. (See “Attributes”
on page 246 for information about attributes and bindings.)

Indexing provides a more general mechanism for specifying geometry than hard-wired
attribute lists and also has the potential for substantial memory savings as a result of
shared attributes. Nonindexed pfGeoSets are sometimes easier to construct, usually a bit
faster to render, and may save memory (since no extra space is needed for index lists) in
situations where vertex sharing isn’t possible. A pfGeoSet must be either completely
indexed or completely nonindexed; it’s not legal to have some attributes indexed and
others nonindexed.

Note: libpf applications can include pfGeoSets in the scene graph with the pfGeode
(Geometry Node).
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Table 8-1 lists a subset of the routines that manipulate pfGeoSets.

Table 8-1 pfGeoSet Routines

Function Description

pfNewGSet Create a new pfGeoSet.

pfDelete Delete a pfGeoSet.

pfCopy Copy a pfGeoSet.

pfGSetGState Specify the pfGeoState to be used.

pfGSetGStatelndex
pfGSetNumPrims
pfGSetPrimType
pfGSetPrimLengths
pfGetGSetPrimLength
pfGSetAttr
pfGSetDrawMode
pfGSetLineWidth
pfGSetPntSize
pfGSetHlight
pfDrawGSet
pfGSetBBox
pfGSetlsectMask
pfGSetlsectSegs
pfQueryGSet

pfPrint

Specify the pfGeoState index to be used.

Specify the number of primitive items.

Specify the type of primitive.

Set the lengths array for strip primitives.

Get the length for the specified strip primitive.

Set the attribute bindings.

Specify draw mode, e.g., flat shading or wireframe.
Set the line width for line primitives.

Set the point size for point primitives.

Specify highlighting type for drawing.

Draw a pfGeoSet.

Specify a bounding box for the geometry.

Specify an intersection mask for pfGSetlsectSegs.
Intersect line segments with pfGeoSet geometry.
Determine the number of triangles or vertices.

Print the pfGeoSet contents.
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Primitive Types

All primitives within a given pfGeoSet must be of the same type. To set the type of all
primitives in a pfGeoSet named gset, call pfGSetPrimType(gset, type). Table 8-2 lists the
primitive type tokens, the primitive types that they represent, and the number of vertices
in a coordinate list for that type of primitive.

Table 8-2 Geometry Primitives

Token Primitive Type Number of Vertices
PFGS_POINTS Points numPrims
PFGS_LINES Independent line segments 2 * numPrims
PFGS_LINESTRIPS Strips of connected lines Sum of lengths array
PFGS_FLAT_LINESTRIPS Strips of flat-shaded lines Sum of lengths array
PFGS_TRIS Independent triangles 3 * numPrims
PFGS_TRISTRIPS Strips of connected triangles  Sum of lengths array
PFGS_FLAT_TRISTRIPS Strips of flat-shaded triangles Sum of lengths array
PFGS_TRIFANS Fan of conected triangles Sum of lengths array
PFGS_FLAT_TRIFANS Fan of flat-shaded triangles Sum of lengths array
PFGS_QUADS Independent quadrilaterals 4 * numPrims
PFGS_POLYS Independent polygons Sum of lengths array

where the parameters in the last column represent:

numPrims is the number of primitive items in the pfGeoSet, as set by
pfGSetNumPrims().

lengths is the array of strip lengths in the pfGeoSet, as set by
pfGSetPrimLengths() (note that length is measured here in terms of
number of vertices).
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Connected primitive types (line strips, triangle strips, and polygons) require a separate
array that specifies the number of vertices in each primitive. Length is defined as the
number of vertices in a strip for STRIP primitives and is the number of vertices in a
polygon for the POLYS primitive type. The number of line segments in a line strip is
numVerts - 1, while the number of triangles in a triangle strip and polygon is numVerts -
2. Use pfGSetPrimLengths() to set the length array for strip primitives.

The number of primitives in a pfGeoSet is specified by pfGSetNumPrims(gset, num). For
strip and polygon primitives, num is the number of strips or polygons in gset.

pfGeoSet Draw Mode

In addition to the primitive type, pfGSetDrawMode() further defines how a primitive is
drawn. Triangles, triangle strips, quadrilaterals and polygons can be specified as either
filled or as wireframe, where only the outline of the primitive is drawn. Use the
PFGS_WIREFRAME argument to enable/disable wireframe mode. Another argument,
PFGS_FLATSHADE, specifies that primitives should be shaded. If flat shading is
enabled, each primitive or element in a strip is shaded with a single color.

PFGS_COMPILE_GL
At the next draw for each pfState, compile gset’s geometry into a GL
display list and subsequently render the display list.

PFGS_DRAW_GLOBJ
Select the rendering of an already created display list but do not force a
re-compile.

PFGS_PACKED_ATTRS
Use the gset’s packed attribute arrays, set with the
PFGS_PACKED_ATTRS to pfGSetAttr, to render geometry with GL
vertex arrays. This mode is only available under OpenGL operation.

pfGeoSets are normally processed in immediate mode which means that pfDrawGSet()
sends attributes from the user-supplied attribute arrays to the Graphics Pipeline for
rendering. However, this kind of processing is subject to some overhead, particularly if
the pfGeoSet contains few primitives. In some cases it may help to use GL display lists
(this is different from the libpr display list type pfDispList) or compiled mode. In compiled
mode, pfGeoSet attributes are copied from the attribute lists into a special data structure
called a display list during a compilation stage. This data structure is highly optimized
for efficient transfer to the graphics hardware. However, compiled mode has some major
disadvantages:
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= compilation is usually costly
< aGL display list must be recompiled whenever its pfGeoSet’s attributes change

= the GL display list uses a significant amount extra host memory

In general, immediate-mode will offer excellent performance with minimal memory
usage and no restrictions on attribute volatility which is a key aspect in may advanced
applications. Despite this, experimentation may show databases or machines where
compiled mode offers a performance benefit.

To enable or disable compiled mode, call pfGSetDrawMode() with the
PFGS_COMPILE_GL token. When enabled, compilation is delayed until the next time
the pfGeoSet is drawn with pfDrawGSet(). Subsequent calls to pfDrawGSet() will then
send the compiled pfGeoSet to the graphics hardware.

To select a display list to render, without recompiling it, use
pfGSetDrawMode(PFGS_DRAW_GLOBJ}.

Packed Attributes

Packed attributes is an optimized way of sending formatted data to the graphics pipeline
under OpenGL that does not incur the same memory overead or re-compilation burden
as GL display lists. To render geometry with packed attributes, use the
pfGSetDrawMode(PFGS_PACKED_ATTRS) method when using OpenGL. This
pfGSetAttr list includes the currently bound PER_VERTEX vertex attribute data packed
into a single non-indexed array. When specifying a packed attribute array, the optional
vertex attributes, colors, normals, and texture coordinates, can be NULL. This array, like
the other attribute arrays, is then shared between Perfomrer, the GL, and accessible by
the user. Optionally, you can put your vertex coordinates in this packed array but in this
case the vertices must be duplicated in the normal coordinate array becuase vertex
coordinate data is used internally for other non-drawing operations such as intersections
and computation of bounding geometry. Packed attribute arrays also allow IRIS
Performer to extend the vertex attribute types accepted by pfGeoSets. There are several
base formats that expect all currently bound attributes of specified data type (unsigned
byte, short, or float) to be in the attribute array. Attributes specieid by the format but not
bound to vertices are assumed to not be present and the present data packed with the
data for each vertex starting on a 32bit word-aligned boundary. Then, there are several
derived formats that let you put some attribute data in the packed array while leaving
the rest in the normal individual coordinate attribute arrays. Table 8-3 shows the
different base formats supported.
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Table 8-3 pfGeoSet PACKED_ATTR Formats
Format Description
PFGS_PA_C4UBN3ST2FV3F Accepts all currently bound coordinate attributes, colors are

unsigned bytes normals are shorts. Vertices are duplicated in
the packed attribute array.

PFGS_PA C4UBN3ST2F Vertices are in the normal coordinate array.
PFGS_PA_CA4UBT2F Normals and vertices are in the normal coordinate array.
PFGS_PA_C4UBN3ST2SV3F All bound coordinate attributes are in the packed attribute

array. Colors are unsigned bytes, normals are shorts, and
texture coordinates are unsigned shorts.

PFGS_PA_C4UBN3ST3FV3F Texture coordinates are 3D floats.

PFGS_PA_C4UBN3ST3SV3F Texture coordinates are 2D shorts.

To create packed attributes, you can use the utility pfuTravCreatePackedAttrs(), which
traverses a scene graph to create packed attributes for pfGeoSets and, optionally,
pfDelete redundant attribute arrays. This utility packs the pfGeoSet attributes using
pfuFillGSetPackedAttrs(). Examples of packed attribute usage can be seen in
/usr/share/Performer/src/pguide/libpr/C/packedattrs.c and in
/usr/share/Performer/src/sample/C/perfly.c and /usr/share/Performer/src/sample/C++/perfly.C.

Primitive Connectivity

A pfGeoSet requires a coordinate array that specifies the world coordinate positions of
primitive vertices. This array is either indexed or not, depending on whether a
coordinate index list is supplied. If the index list is supplied, it’s used to index the
coordinate array; if not, the coordinate array is interpreted in a sequential order.

A pfGeoSet’s primitive type dictates the connectivity from vertex to vertex to define
geometry. Figure 8-1 shows a coordinate array consisting of four coordinates, A, B, C,
and D, and the geometry resulting from different primitive types. This example uses
index lists that index the coordinate array.
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Note: Flat-shaded line strip and flat-shaded triangle strip primitives have the vertices

listed in the same order as for the smooth-shaded varieties.

Vertex list
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Figure 8-1 Primitives and Connectivity
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Attributes

The definition of a primitive isn’t complete without attributes. In addition to a primitive
type and count, a pfGeoSet references four attribute arrays (see Figure 8-2):

« colors (red, green, blue, alpha)
< normals (Nx, Ny, Nz)
e texture coordinates (S, T)

« vertex coordinates (X, Y, Z)

(A pfGeoState is also associated with each pfGeoSet; see Chapter 9, “Graphics State” for
details.) The four components listed above can be specified with pfGSetAttr() and in two
ways: by indexed specification—using a pointer to an array of components and a pointer
to an array of indices; or by direct specification—providing a NULL pointer for the
indices, which indicates that the indices are sequential from the initial value of zero. The
choice of indexed or direct components applies to an entire pfGeoSet; that is, all of the
supplied components within one pfGeoSet must use the same method. However, you
can emulate partially indexed pfGeoSets by using indexed specification and making each
nonindexed attribute’s index list be a single shared “identity mapping” index array
whose elements are 0, 1, 2, 3,..., N-1 where N is the largest number of attributes in any
referencing pfGeoSet. (You can share the same array for all such emulated pfGeoSets.).
The direct method avoids one level of indirection and may have a performance
advantage compared with indexed specification for some combinations of CPU and
graphics subsystem.

Note: it is highly recommended that pfMalloc() be used to allocate your arrays of
attribute data. This will allow IRIS Performer to reference-count the arrays and delete
them when appropriate. It will also allow you to easily put your attribute data into
shared memory for multiprocessing by specifying an arena such as pfGetSharedArena()
to pfMalloc(). While perhaps convenient, it is very dangerous to specify pointers to static
data for pfGeoSet attributes. Early versions of IRIS Performer permitted this but it is
strongly discouraged and may have undefined and unfortunate consequences.

Attribute arrays can be created through pfFlux to support the multiprocessed generation
of the vertex data for a dynamic object, such as ocean waves, or morphing geometry.
pfFlux will automatically keep separate copies of data for separate proceses so that one
process can generate data while another draws it. The pfFluxed buffer can be handed
directly to pfGSetAttr(). In fact, the entire pfGeoSet can be contained in a pfFlux. Index
lists cannot be pfFluxed. See Chapter 14, “Dynamic Data,” for more information on
pfFlux.
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Attribute Bindings

Attribute bindings specify where in the definition of a primitive an attribute has effect.
You can leave a given attribute unspecified; otherwise, its binding location is one of the
following:

< overall (one value for the entire pfGeoSet)
e per primitive

e  per vertex
Only certain binding types are supported for some attribute types.

Table 8-4 shows the attribute bindings that are legal for each type of attribute.

Table 8-4 Attribute Bindings

Binding Token Color Normal Texture Coordinate
Coordinate

PFGS_OVERALL Yes Yes No No

PFGS_PER_PRIM Yes Yes No No

PFGS_PER_VERTEX Yes Yes Yes Yes

PFGS_OFF Yes Yes Yes No

Attribute lists, index lists, and binding types are all set by pfGSetAttr().

For FLAT primitives (PFGS_FLAT_TRISTRIPS,PFGS_FLAT_TRIFANS,
PFGS_FLAT_LINESTRIPS), the PFGS_PER_VERTEX binding for normals and colors has
slightly different meaning. In these cases, per-vertex colors and normals should not be
specified for the first vertex in each line strip or for the first two vertices in each triangle
strip since FLAT primitives use the last vertex of each line segment or triangle to compute
shading.
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Indexed Arrays

A cube has six sides; together those sides have 24 vertices. In a vertex array, you could
specify the primitives in the cube using 24 vertices. However, most of those vertices
overlap. If more than one primitive can refer to the same vertex, the number of vertices
can be streamlined to 8. The way to get more than one primitive to refer to the same
vertex is to use an index; three vertices of three primitives use the same index which
points to the same vertex information. Adding the index array adds an extra step in the
determination of the attribute, as shown in Figure 8-3.

pfGeoSet ﬂ

StripLengths — ni
PrimCoords n2
ColorBind n3
MormalBind

TexCoordBind

CoordSet

ColorSet >
NormalSet
TexCoordSet

CoordindexSet —
ColorindexSet

NormallndexSet < nx, ny, nz > <X V,Zz>
TextCoordIndexSet
nl
n2
n3 — n3 n3

Figure 8-3 Indexing Arrays

Indexing can save system memory, but rendering performance is often lost.
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When to Index Attributes

The choice of using indexed or sequential attributes applies to all of the primitives in a
pfGeoSet; that is, all of the primitives within one pfGeoSet must be referenced
sequentially or by index; you cannot mix the two.

The governing principle for indexing attributes or not is how many vertexes in a

geometry are shared. Consider the following two examples in Figure 8-4 where each dot
marks a vertex.

SN ]

Figure 8-4 Deciding Whether to Index Attributes

In the triangle strip, each vertex is shared by two adjoining triangles. In the square, the
same vertex is shared by eight triangles. Consider the task that is required to move these
vertices when, for example, morphing the object. If the vertices were not indexed, in the
square, the application would have to look up and alter eight triangles to change one
vertex.

In the case of the square, it is much more efficient to index the attributes. On the other
hand, if the attributes in the triangle strip were indexed, since each vertex is shared by
only two triangles, the index look-up time would exceed the time it would take to simply
update the vertices sequentially. In the case of the triangle strip, rendering is improved
by handling the attributes sequentially.

The deciding factor governing whether or not to index attributes relates to the number
of primitives that share the same attribute: if attributes are shared by many primitives,
the attributes should be indexed; if attributes are not shared by many primitives, the
attributes should be handled sequentially.
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pfGeoSet Operations

There are many operations you can perform on pfGeoSets. pfDrawGSet() “draws “the
indicated pfGeoSet by sending commands and data to the Geometry Pipeline, unless
IRIS Performer’s display-list mode is in effect. In display-list mode, rather than sending
the data to the pipeline, the current pfDispList “captures” the pfDrawGSet() command.
The given pfGeoSet is then drawn along with the rest of the pfDispList with the
pfDrawDList() command.

When the PFGS_COMPILE_GL mode of a pfGeoSet is not active (pfGSetDrawMode()),
pfDrawGSet() uses rendering loops tuned for each primitive type and attribute binding
combination to reduce CPU overhead in transferring the geometry data to the hardware
pipeline. Otherwise, pfDrawGSet() sends a special, compiled data structure.

Table 8-1 lists other operations that you can perform on pfGeoSets. pfCopy/() does a
shallow copy, copying the source pfGeoSet’s attribute arrays by reference and
incrementing their reference counts. pfDelete() frees the memory of a pfGeoSet and its
attribute arrays (if those arrays were allocated with pfMalloc() and provided their
reference counts reach zero). pfPrint() is strictly a debugging utility and will print a
pfGeoSet’s contents to a specified destination. pfGSetlsectSegs() allows intersection
testing of line segments against the geometry in a pfGeoSet; see “Intersecting With
pfGeoSets” in Chapter 17 for more information on that function.

In addition to the pfGeoSet, libpr offers two other primitives which together are useful
for rendering a specific type of geometry—three-dimensional characters. See Chapter 3,
“Nodes and Node Types” and the description for pfText nodes for an example of how to
set up three-dimension text within the context of libpf.

pfFont

The basic primitive supporting text rendering is the libpr pfFont primitive. A pfFont is
essentially a collection of pfGeoSets in which each pfGeoSet represents one character of
a particular font. pfFont also contain metric data, such as a per-character spacing, the
three-dimensional escapement offset used to increment a text ‘cursor’ after the character
has been drawn. Thus, pfFont maintain all of the information that is necessary to draw
any and all valid characters of a font. However, note that pfFont are passive and have
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little functionality on their own, for example you cannot draw a pfFont—it simply
provides the character set for the next higher-level text data object, the pfString.

Table 8-5 lists some routines that are used with a pfFont.

Table 8-5 pfFont Routines

Function Description

pfNewFont Create a new pfFont.

pfDelete Delete a pfFont.

pfFontCharGSet Set the pfGeoSet to be used for a specific character of this pfFont.

pfFontCharSpacing

pfFontMode

pfFontAttr

Set the 3D spacing to be used to update a text cursor after this character has
been rendered.

Specify a particular mode for this pfFont.
Valid Modes to set:

PFFONT_CHAR_SPACING — specify whether to use fixed or variable
spacings for all characters of a pfFont. Possible values are
PFFONT_CHAR_SPACING_FIXED and
PFFONT_CHAR_SPACING_VARIABLE, the latter being the default.

PFFONT_NUM_CHARS — specify how many characters are in this font.

PFFONT_RETURN_CHAR — specify the index of the character that is
considered a ‘return’ character and thus relevant to line justification.

Specify a particular attribute of this pfFont.

Valid Attributes to set:

PFFONT_NAME - name of this font.

PFFONT_GSTATE - pfGeoState to be used when rendering this font.
PFFONT_BBOX - bounding box that bounds each individual character.

PFFONT_SPACING - Set the overall character spacing if this is a fixed
width font (also the spacing used if one hasn’t been set for a particular
character).
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Example 8-1 Loading Characters into a pfFont

/* Setting up a pfFont */

pfFont *ReadFont(void)

{
pfFont *fnt = pfNewFont(pfGetSharedArena());
for(i=0;i<numCharacters;i++)

{
pfGeoSet* gset = getCharGSet(i);
pfVec3* spacing = getCharSpacing(i);
pfFontCharGSet(fnt, i, gset);
pfFontCharSpacing(fnt, i, spacing);
}
}
pfString

Simple rendering of three-dimensional text can be done using a pfString. A pfString is an
array of font indices stored as 8-bit bytes, 16-bit shorts, or 32-bit integers. Each element
of the array contains an index to a particular character of a pfFont structure. A pfString
can not be drawn until it has been associated with a pfFont object via a call to
pfStringFont(). To render a pfString once it references a pfFont, call the function
pfDrawsString().

pfStrings support the notion of ‘flattening’ to trade off memory for faster processing
time. This will cause individual, non-instanced geometry to be used for each character,
eliminating the cost of translating the text cursor between each character when drawing
the pfString.

Example 8-2 Setting Up and Drawing a pfString

/* Create a string a rotate it for 2.5 seconds */
void
LoadAndDrawString(const char *text)
{
pfFont *myfont = ReadMyFont();
pfString *str = pfNewsString(NULL);
pfMatrix mat;
float start,t;

/* Use myfont as the 3-d font for this string */
pfStringFont(str, fnt);
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[* Center String */
pfStringMode(str, PFSTR_JUSTIFY, PFSTR_MIDDLE);

/* Color String is Red */
pfStringColor(str, 1.0f, 0.0f, 0.0f, 1.0f);

/* Set the text of the string */
pfStringString(str, text);

/* Obtain a transform matrix to place this string */
GetTheMatrixToPlaceTheString(mat);
pfStringMat(str, &mat);

/* optimize for draw time by flattening the transforms */
pfFlattenString(str);

/* Twirl text for 2.5 seconds */
start = pfGetTime();
do

{
pfVec4 clr;

pfSetVec4(clr, 0.0f, 0.0f, 0.0f, 1.0f);

/* Clear the screen to black */
pfClear(PFCL_COLOR|PFCL_DEPTH, clr);

t = (pfGetTime() - start)/2.5f;
t = PF_MIN2(t, 1.0f);

pfMakeRotMat(mat, t * 315.0f, 1.0f, 0.0f, 0.0f);
pfPostRotMat(mat, mat, t * 720.0f, 0.0f, 1.0f, 0.0f);

t*=1t;
pfPostTransMat(mat, mat, 0.0f,
150.0f * t + (1.0f - t) * 800.0f, 0.0f);

pfPushMatrix();
pfMultMatrix(mat);

/* DRAW THE INPUT STRING */
pfDrawString(str);

pfPopMatrix();
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pfSwapWinBuffers(pfGetCurWin());
} while(t < 2.5f);
}
Table 8-6 lists the key routines used to manage pfStrings.

Table 8-6 pfString Routines

Function Description

pfNewsString Create a new pfString

pfDelete Delete a pfString.

pfStringFont Set the pfFont to use when drawing this pfString.
pfStringString  Set the character array that this pfString will represent/render.
pfDrawsString Draw this pfString

pfFlattenString  Flatten all positional translations and the current specification matrix into
individual pfGeoSets so that more memory is used, but no matrix transforms
or translates have to be done between each character of the pfString.

pfStringColor Set the color of the pfString.

pfStringMode  Specify a particular mode for this pfString.
Valid Modes to set:

PFSTR_JUSTIFY — set the line justification and has the following possible
values: PFSTR_FIRST or PFSTR_LEFT, PFSTR_MIDDLE or
PFSTR_CENTER, and PFSTR_LAST or PFSTR_RIGHT.

PFSTR_CHAR_SIZE — set the number of bytes per character in the input
string and has the following possible values: PFSTR_CHAR,
PFSTR_SHORT, PFSTR_INT.

pfStringMat Specify a transform matrix that will affect the entire character string when the
pfString is drawn

pfStringSpacing Specify a scale factor for the escapement translations that happen after each
Scale character is drawn. This routine is useful for changing the spacing between
characters and even between lines.
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“Graphics State”

The chapter describes the graphics state, which contains all of the fields that
together define the shape and appearance of a geometry.






Chapter 9

Immediate Mode

Graphics State

The graphics state is a class of fields that define everything about the shape and texture
of an object in a IRIS Performer scene. Fields include such things as transparency;,
shading, reflectance, and texture. The graphics state is set globally for all objects in the
scene graph. Individual objects, however, can override graphics state settings. The cost,
however, is efficiency. For performance reasons, therefore, it is important to set the fields
in the graphics state to satisfy the greatest number of objects in the scene.

This chapter describes in detail all of the fields in the graphics state.

The graphics libraries are immediate-mode state machines; if you set a mode, all
subsequent geometry is drawn in that mode. For the best performance, mode changes
need to be minimized and managed carefully. libpr manages a subset of graphics library
state and identifies bits of state as graphics state elements. Each state element is identified
with a PFSTATE token, e.g., PFSTATE_TRANSPARENCY corresponds to the
transparency state element. State elements are loosely partitioned into three categories:
modes, values and attributes.

Modes are the graphics state variables, such as transparency and texture enable, that
have simple values like ON and OFF. An example of a mode command is
pfTransparency(mode).

Values are not modal, rather they are real numbers which signify a threshold or quantity.
An example of a value is the reference alpha value specified with the pfAlphaFunc()
command.

Attributes are references to encapsulations (structures) of graphics state. They logically
group the more complicated elements of state, such as textures and lighting models.
Attributes are structures that are modified through a procedural interface and must be
applied to have an effect. For example, pfApplyTex(tex) applies the texture map, tex, to
subsequently drawn geometry.
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In libpr, there are three methods of setting state:
= immediate mode
- display list mode
= pfGeoState mode

Like the graphics libraries, libpr supports the notion of both immediate and display-list
modes. In immediate mode, graphics mode changes are sent directly to the Geometry
Pipeline, i.e., they have immediate effect. In display-list mode, graphics mode changes
are captured by the currently active pfDispList, which can be drawn later. libpr display
lists differ from graphics library objects because they capture only libpr commands and
are reusable. libpr display lists are useful for multiprocessing applications in which one
process builds up the list of visible geometry and another process draws it. “Display
Lists” on page 285 describes libpr display lists.

A pfGeoState is a structure that encapsulates all the graphics modes and attributes that
libpr manages. You can individually set the state elements of a pfGeoState to define a
graphics context. The act of applying a pfGeoState with pfApplyGState() configures the
state of the Geometry Pipeline according to the modes, values, and attributes set in the
pfGeoState. For example, the following code fragment shows equivalent ways (except
for some inheritance properties of pfGeoStates described later) of setting up some
lighting parameters suitable for a glass surface:

/* Immediate mode state specification */
pfMaterial *shinyMtl;
pfTransparency(PFTR_ON);
pfApplyMtl(shinyMtl);
pfEnable(PFEN_LIGHTING);

/* is equivalent to: */

/* GeoState state specification */

pfGeoState *gstate;

pfGStateMode(gstate, PFSTATE_TRANSPARENCY, PFTR_ON);
pfGStateAttr(gstate, PFSTATE_FRONTMTL, shinyMtl);
pfGStateMode(gstate, PFSTATE_ENLIGHTING, PF_ON);
pfApplyGState(gstate);

In addition, pfGeoStates have unique state inheritance capabilities that make them very
convenient and efficient; they provide independence from ordered drawing. pfGeoStates
are described in the “pfGeoState” section of this chapter.
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Libpr routines have been designed to produce an efficient structure for managing
graphics state. You can also set graphics state directly through the GL. However, libpr will
have no record of these settings and will not be able to optimize them and may make
incorrect assumptions about current graphics state if the resulting state does not match
the libpr record when libpr routines are called. Therefore, it is best to use the libpr routines
whenever possible to change graphics state and to restore libpr state if you go directly
through the GL.

The following sections will describe the rendering geometry and state elements in detail.
There are three types of state elements: modes, values and attributes. Modes are simple
settings that take a set of integer values that include values for enabling and disabling the
mode. Modes may also have associated values that allow a setting from a defined range.
Attributes are complex state structures that encapsulate a related collection of modes and
values. Attribute structures will not include in their definition an enable or disable as the
enabling or disabling of a mode is orthogonal to the particular related attribute in use.

Rendering Modes

libpr manages a subset of the rendering modes found in the graphics libraries. In
addition, libpr abstracts certain concepts like transparency, providing a higher-level
interface that hides the underlying implementation mechanism.

libpr provides tokens that identify the modes that it manages. These tokens are used by
pfGeoStates and other state-related functions like pfOverride(). The following table
enumerates the PFSTATE _ tokens of supported modes, each with a brief description and
default value.
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Table 9-1 lists and describes the mode tokens.

Table 9-1 pfGeoState Mode Tokens
Token Name Description Default Value
PFSTATE_TRANSPARENCY Transparency modes PFTR_OFF
PFSTATE_ALPHAFUNC Alpha function PFAF_ALWAYS
PFSTATE_ANTIALIAS Antialiasing mode PFAA_OFF
PFSTATE_CULLFACE Face culling mode PFCF_OFF
PFSTATE_DECAL Decaling mode for coplanar PFDECAL_OFF
geometry
PFSTATE_SHADEMODEL Shading model PFSM_GOURAUD
PFSTATE_ENLIGHTING Lighting enable flag PF_OFF
PFSTATE_ENTEXTURE Texturing enable flag PF_OFF
PFSTATE_ENFOG Fogging enable flag PF_OFF
PFSTATE_ENWIREFRAME pfGeoSet wireframe mode enable PF_OFF
flag
PFSTATE_ENCOLORTABLE pfGeoSet colortable enable flag PF_OFF

PFSTATE_ENHIGHLIGHTING pfGeoSet highlighting enable flag PF_OFF

PFSTATE_ENLPOINTSTATE pfGeoSet light point state enable flag PF_OFF
PFSTATE_ENTEXGEN Texture coordinate generation PF_OFF
enable flag

The mode control functions described in the following sections should be used in place
of their graphics library counterparts so that IRIS Performer can correctly track the
graphics state. Use pfGStateMode() with the appropriate PFSTATE token to set the
mode of a pfGeoState.
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Transparency

You can control transparency using pfTransparency(). Possible transparency modes are:

Table 9-2 pfTransparency Tokens

Transparency mode Description

PFTR_OFF Transparency disabled.

PFTR_ON Use the fastest, but not necessarily the best, transparency provided
PFTR_FAST by the hardware.

PFTR_HIGH_QUALITY  Use the best, but not necessarily the fastest, transparency provided
by the hardware.

PFTR_MS_ALPHA Use screen-door transparency when multisampling. Fast but limited
number of transparency levels.

PFTR_BLEND_ALPHA Use alpha-based blend with background color. Slower but high
number of transparency levels.

In addition, the flag PFTR_NO_OCCLUDE may be logically OR-ed into the transparency
mode in which case geometry will not write depth values into the frame buffer. This will
prevent it from occluding subsequently rendered geometry. Enabling this flag improves
the appearance of unordered, blended transparent surfaces.

There are two basic transparency mechanisms: screen-door transparency which requires
hardware multisampling and blending. Blending offers very high quality transparency
but for proper results requires that transparent surfaces be rendered in back-to-front
order after all opaque geometry has been drawn. When using transparent texture maps
to “etch” geometry or if the surface has constant transparency, screen-door transparency
is usually good enough. Blended transparency is usually required to avoid “banding” on
surfaces with low transparency gradients like clouds and smoke.

Shading Model
Selects flat shading or Gouraud (smooth) shading. pfShadeModel() takes one of two

tokens: PFSM_FLAT or PFSM_GOURAUD. One some graphics hardware flat shading
can offer a significant performance advantage.
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Alpha Function

pfAlphaFunc() is an extension of the IRIS GL function afunction(3g) and the OpenGL
function glAlphaFunc(); it allows IRIS Performer to keep track of the hardware mode.
The alpha function is a pixel test that compares the incoming alpha to a reference value
and uses the result to determine whether or not the pixel is rendered. The reference value
must be specified in the range [0, 1]. For example, a pixel whose alpha value is 0 is not
rendered if the alpha function is PFAF_GREATER and the alpha reference value is also
0. Note that rejecting pixels based alpha can be faster than using transparency alone. A
common technique for improving the performance of filling polygons is to set an alpha
function that will reject pixels of low (possibly non-zero) contribution. Alpha function is
typically used for see-through textures like trees.

Decals

On Z-buffer based graphics hardware, coplanar geometry can cause unwanted artifacts
due to the finite numerical precision of the hardware which cannot accurately resolve
which surface has visual priority. This can result in flimmering, a visual “tearing” or
“twinkling” of the surfaces. pfDecal() is used to accurately draw coplanar geometry on
IRIS platforms and it supports two basic implementation methods, each with its
advantages:

The stencil decaling method uses a hardware resource known as a stencil buffer and
requires that a single stencil plane (see IRIS GL stencil() and OpenGL glStencilOp() man
pages) be available for IRIS Performer. This method offers the highest image quality but
requires that geometry be coplanar and rendered in a specific order which reduces
opportunities for the performance advantage of sorting by graphics mode.

A potentially faster method is the displace decaling method. In this case, each layer is
displaced towards the eye so it “hovers” slightly above the preceding layer. Displaced
decals need not be coplanar, can be drawn in any order but the displacement may cause
geometry to incorrectly “poke through” other geometry.

The specificaton of a decal plane can improve the dispace decaling method. The object
geometry will be projected onto the specified plane and if the same plane is specified for
base and layer geometry, the base and layer polygons will be generated with identical
depth values. If the objects are drawn in priority order, no further operation is necessary.
Otherwise, displace can be applied to the planed geometry for a supior result. Decal
planes can be specified on pfGeoSets with pfGSetDecalPlane(), on a pfGeoState with the
PFSTATE_DECALPLANE attribute to pfGStateAttr(), or globally with
pfApplyDecalPlane().
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Decals consist of base geometry and layer geometry. The base defines the depth values of the
decal while layer geometry is simply “inlaid” on top of the base. Multiple layers are
supported but limited to 8 when using displaced decals. Realize that these layers imply
superposition; there is no limit to the number of polygons in a layer, only to the number
of distinct layers.

The decal mode indicates whether the subsequent geometry is base or layer and the decal
method to use. For example, a mode of PFDECAL_BASE_STENCIL means that
subsequent geometry is to be considered as base geometry and drawn using the stencil
method. All combinations of base/layer and displace/stencil modes are supported but
you should make sure to use the same method for a given base-layer pair.

Example 9-1 illustrates the use of pfDecal().

Example 9-1 Using pfDecal() to Draw Road With Stripes
pfDecal(PFDECAL_BASE_STENCIL);

/* ... draw underlying geometry (roadway) here ...*/
pfDecal(PFDECAL_LAYER_STENCIL);

/* ... draw coplanar layer geometry (stripes) here ... */
pfDecal(PFDECAL_OFF);

Note: libpfapplications can use the pfLayer node to include decals within a scene graph.

Frontface / Backface

pfCullFace() controls which side of a polygon (if any) is discarded in the Geometry
Pipeline. Polygons are either front-facing or back-facing. A front-facing polygon is
described by a counterclockwise order of vertices in screen coordinates, and a
back-facing one has a clockwise order. pfCullFace() has four possible arguments:

PFCF_OFF Disable face-orientation culling
PFCF_BACK  Cull back-facing polygons

PFCF_FRONT Cull front-facing polygons

PFCF_BOTH  Cull both front- and back-facing polygons
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In particular, backface culling is highly recommended since it offers a significant
performance advantage for databases where polygons are never be seen from both sides
(databases of “solid” objects or with constrained eyepoints).

Antialiasing

pfAntialias() is used to turn the antialiasing mode of the hardware on or off. Currently,
antialiasing is implemented differently by each different graphics system. Antialiasing
can produce artifacts as a result of the way IRIS Performer and the active hardware
platform implement the feature. See the reference page pfAntialias() for implementation
details.

Rendering Values

Some modes may also have associated values. These values are set through
pfGStateVal(). Table 9-3 lists and describes the value tokens.

Table 9-3 pfGeoState Value Tokens
Token Name Description Range Default Value
PFSTATE_ALPHAREF Set the alpha function reference value. 0.0- 1.0 0.0

Enable / Disable

pfEnable() and pfDisable() control certain rendering modes. Certain modes do not have
effect when enabled but require that other attribute(s) be applied. Table 9-4 lists and
describes the tokens and also lists the attributes required for the mode to become truly
active.

Table 9-4 Enable and Disable Tokens

Token Action Attribute(s) Required

PFEN_LIGHTING Enable or disable lighting. pfMaterial
pfLight
pfLightModel

PFEN_TEXTURE Enable or disable texture. pfTexEnv
pfTexture
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Table 9-4 (continued) Enable and Disable Tokens

Token Action Attribute(s) Required

PFEN_FOG Enable or disable fog. pfFog

PFEN_WIREFRAME Enable or disable pfGeoSet wireframe  none

rendering.

PFEN_COLORTABLE Enable or disable pfGeoSet colortable

mode.

pfColortable

PFEN_HIGHLIGHTING Enable or disable pfGeoSet highlighting. pfHighlight

PFEN_TEXGEN Enable or disable automatic texture

coordinate generation.

pfTexGen

PFEN_LPOINTSTATE Enable or disable pfGeoSet light points  pfLPointState

By default all modes are disabled.

Rendering Attributes

Rendering attributes are state structures that are manipulated through a procedural
interface. Examples include pfTexture, pfMaterial, and pfFog. libpr provides tokens that
enumerate the graphics attributes it manages. These tokens are used by pfGeoStates and
other state-related functions like pfOverride(). Table 9-5 lists and describes the tokens.

Table 9-5 Rendering Attribute Tokens

Attribute Token Description Apply Routine
PFSTATE_LIGHTMODEL Lighting model pfApplyLModel
PFSTATE_LIGHTS Light source definitions pfLightOn
PFSTATE_FRONTMTL Front-face material pfApplyMtl
PFSTATE_BACKMTL Back-face material pfApplyMtl
PESTATE_TEXTURE Texture pfApplyTex
PFSTATE_TEXENV Texture environment pfApplyTEnv
PFSTATE_FOG Fog model pfApplyFog
PFSTATE_COLORTABLE Color table for pfGeoSets pfApplyCtab
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Table 9-5 (continued) Rendering Attribute Tokens

Attribute Token Description Apply Routine
PFSTATE_HIGHLIGHT Definition of pfGeoSet highlighting style pfApplyHlight
PFSTATE_LPOINTSTATE pfGeoSet light point definition pfApplyLPState
PFSTATE_TEXGEN Texture coordinate generation definition pfApplyTGen

Rendering attributes control which attributes are applied to geometric primitives when
they’re processed by the hardware. All IRIS Performer attributes consist of a control
structure, definition routines, and an apply function, pfApply* (except for lights which
are “turned on”).

Each attribute has an associated pfNew*() routine that allocates storage for the control
structure. When sharing attributes across processors in a multiprocessor application, you
should pass the pfNew*() routine a shared memory arena from which to allocate the
structure. If you pass NULL as the arena, the attribute is allocated from the heap and isn’t
sharable in a non-shared address space (fork()) multiprocessing application.

All attributes can be applied directly, referenced by a pfGeoState or captured by a display
list. When changing an attribute, that change isn’t visible until the attribute is reapplied.
Detailed coverage of attribute implementation is available in the reference pages.

Texture

IRIS Performer supports texturing through pfTextures and pfTexEnvs, which provide
encapsulated suppport for graphics library textures (see texdef2d() for IRIS GL, or
glTexImage2D() for OpenGL) and texture environments (see IRIS GL’s tevdef(3g) or
OpenGL’s glTexEnv()). A pfTexture defines a texture image, format, and filtering. A
pfTexEnv specifies how the texture should interact with the colors of the geometry it’s
applied to. You need both to display textured data, but you don’t need to specify them
both at the same time. For example, you could have pfGeoStates each of which had a
different texture specified as an attribute and still use an overall texture environment
specified with pfApplyTEnv().

A pfTexture is created by calling pfNewTex(). If the desired texture image exists as a disk
file in IRIS libimage format (the file often has a “.rgb” suffix ) or in the IRIS Performer fast
loading image format (a *“.pfi” suffix), you can call pfLoad TexFile() to load the image into
CPU memory and completely configure the pfTexture

pfTexture *tex = pfLoadTexFile(“brick.rgha”);
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Otherwise, pfTexImage() lets you directly provide a GL-ready image array in the same
external format as specified on the pfTexture and as expected by texdef2d() in IRIS GL
and glTexIlmage2D() in OpenGL.

void pfTexlmage(pfTexture* tex, uint* image,
int comp, int sx, int sy, int sz);

IRIS GL and OpenGL both expect packed texture data with each row beginning on a long
word boundary. However, IRIS GL and OpenGL expect the individual components of a
texel to be packed in opposite order. For example, IRIS GL expects four component texels
to be packed as ABGR OpenGL expects the texels to be packed as RGBA. If you provide
your own image array in a multiprocessing environment, it should be allocated from
shared memory (along with your pfTexture) to allow different processes to access it. A
basic example demonstrating loading a image file and placing the resulting pfTexture on
scene graph geometry is at /usr/share/Performer/src/pguide/libpf/C/texture..c.

Note: The size of your texture must be an integral power of two on each side. IRIS GL
scales up your textures to the next power of two, making them take up to four times more
space in hardware texture memory! OpenGL simply refuses to accept badly sized
textures. You can rescale your texture images with the izoom or imgworks programs
(shipped with IRIX 5.3 in the eoe2.sw.imagetools and imgtools.sw.tools subsystems; and
with IRIX 6.2 in the eoe.sw.imagetools and imgworks.sw.tools subsystems).

Your texture source does not have to be a static image. pfTexLoadMode() can be used to
set one of the sources listed in Table 9-6 with PFTEX_LOAD_SOURCE. Note that sources
other than CPU memory may not be supported on all graphics platforms, or may have
some special restrictions. There are several sample programs that demonstrate paging
sequences of texture from different texture sources. For paging from host memory there
are:

= Jusr/share/Performer/src/pguide/libpr/C/texlist.c
= Jusr/share/Performer/src/pguide/libpr/C/mipmap.c

= Jusr/share/Performer/src/pguide/libpfutil/movietex.c
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These examples demonstrates the use of different texture sources for paging textures,
and libpufitl utilties for managing texture resources. One thing these examples do is use
pfTexLoadlmage() to update the pointer to the image data to avoid the expensive
reformating the texture. This requires that the provided image data be the same size as
the original image data, as well as same number of components and same formats.

Table 9-6 Texture Image Sources

PFTEX_SOURCE_ Token Texture image is take from:

IMAGE CPU memory location specified by pfTexLoadlmage() or
pfTexImage().

FRAMEBUFFER framebuffer location offset from window origin as specified by
pfTexLoadOrigin().

VIDEO Default video source on the system.

Video Texturing

The source of texture image data can be live video input. IRIS Performer supports the
video input mechanisms of Sirius Video on RealityEngine and InfiniteReality, DIVO on
Onyx2/InfiniteReality, and O2 and OCTANE video input. IRIS Performer includes a
sample program that features video texturing:
/usr/share/Performer/src/pguide/libpf/movietex.c. This example demonstrates all video
initialization, including the creation of video library resources, is done in the draw
process, as required by the video library. Part of that initialization includes setting the
proper number of components on the pfTexture and choosing a texture filter and
potentially internal format. Those basic operations are discussed further in this section.

IRIS Performer will automatically download the frame of video when the texture object
is applied through the referencing pfGeoState. Alternatively, you may want to schedule
this download to happen at the beginning or end of the rendering frame and can force it
with token with pfLoadTex().

Textures must be created with sizes that are powers of two the input video frame is
usually not in powers of two. The [0,1] texture coordinate range can be scaled into the
valid part of the pfTexture with a texture matrix. This matrix can be applied directly to
the global state with pfApplyTMat() to affect all pfGeoSets, or can be set on a pfGeoState
with the PFSTATE_TEXMAT attribute to pfGStateAttr().
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Texture Management

Texture storage is limited only by virtual memory, but for real-time applications you
must consider the amount of texture storage the graphics hardware supports. Textures
that don’t fit in the graphics subsystem will be paged as needed when pfApplyTex() is
called. Libpr provides routines for managing hardware texture memory so that a
real-time application does not have to get a surprise texture load. pflsTexLoaded(),
called from the drawing process, will tell you if the pfTexture is currently properly
loaded in texture memory. The initially required textures of an application, or all of the
textures if they will fit, can be pre-loaded into texture memory as part of application
initialization. pfuMakeSceneTexList() will make a list of all textures referenced by a
scene graph and pfuDownloadTexList() will load a list of textures into hardware texture
memory (and must be called in the draw process). The perfly sample program does this
as part of its initialization and displays the textures as it pre-loads them.

There are additional routines to asist with the progressive loading and unloading of
pfTextures. pfldleTex() can be used to free up the hardware texture memory owned by a
pfTexture.f texture paging, GL host and hardware texture memory resources can be freed
with pfDeleteGLHandle() from the drawing process.IRIS Performer will automatically
re-allocate those resources if the pfTexture is used again. For an example of management
of texture resources, see the example program
/usr/share/Performer/src/pguide/libpfutil/texmem.c that uses the pfuTextureManager from
libpfutil for basic texture paging support.

pfLoadTex(), called from the drawing process, can be used to explicitly load a texture
into graphics hardware texture memory (which will include doing any necessary
formatting of the texture image). By default, pfLoadTex() will load the entire texture
image, including any required minification or magnification levels, into texture memory:.
pfSubloadTex() and pfSubloadTexLevel() can also be used in the drawing process to do
an immediate load of texture memory managed by the given pfTexture and these
routines allow you to specify all loading parameters (source, origin, size, etc.). This is
useful for loading different images for the same pfTexture in different graphics pipelines.
pfSubloadTex() allows you to load a subsection of the texture tile by tile.

A special pfTexFormat() formatting mode, PFTEX_SUBLOAD_FORMAT, allows part or
all of the image in texture memory owned by the pfTexture to be replaced via
pfApplyTex(), pfLoadTex(), or pfSubloadTex(), without having to go through the
expensive reformatting phase. This allows you to quickly update the image of a
pfTexture in texture memory. The PFTEX_SUBLOAD_FORMAT used with an
appropriate pfTexLoadSize() and pfTexLoadOrigin() allows you to control what part of
the texture will be loaded by subsequent calls to pfLoadTex() or pfApplyTex(). There are
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also different loading modes that cause pfApplyTex() to automatically reload or subload
a texture from a specified source. If you want the image of a pfTexture to be updated
upon every call to pfApplyTex(), you can set the loading mode of the pfTexture with
pfTexLoadMode() to be PFTEX_BASE_AUTO_REPLACE. pfTexLoadlmage() allows
you to continuously update the memory location of an IMAGE source texture without
triggering any reformatting of the texture.

Note: In IRIS GL, the SUBLOAD format (same as the FAST_DEFINE format on old
versions of IRIS Performer) can only be used on non-MIPmapped textures. The fast
texture loading uses the IRIS GL subtexload() and OpenGL glTexSublmage() calls. In
IRIS GL, subload sizes must be integral multiples of 32.

Hint: There are texture formatting modes that can improve texture performance and
these are the modes that are used by default by IRIS Performer. Of most importance is
the 16-bit texel internal formats. These formats cause the resulting texels to have 16 bits
of resolution instead of the standard 32. These formats can have dramatically faster
texture fill performance and cause the texture to take up half the hardware texture
memory. Therefore, they are strongly recommended and are used by default. There are
different formats for each possible number of components to give a choice of how the
compression is to be done. These formats are described in the pfTexFormat(3pf) reference

page.

There may also be formatting modes for internal or external image formats that IRIS
Performer does not have a token for. However, the GL value can be specified. Specifying
GL values will make your application GL specific and may also cause future porting
problems, so it should only be done if absolutely necessary.

pfTextures also allow you to define a set of textures that are mutually exclusive, should
always be applied to the same set of geometry, and thus that can share the same location
in hardware texture memory. With pfTexList(tex, list) you can specify a list of textures to
be in a texture set managed by the base texture, tex. The base texture is what gets applied
with pfApplyTex(), or assigned to geometry through pfGeoStates. With pfTexFrame(),
you can select a given texture from the list (-1 selects the base texture and is the default).
This allows you to define a texture movie where each image is the frame of the movie.
You can have an image on the base texture to display when the movie is not playing.
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There are additional loading modes for pfTexLoadMode() described in Table 9-7 to
control how the textures in the texture list share memory with the base texture.

Table 9-7 Texture Load Modes

PFTEX_LOAD_

modeToken Load Mode Values Description

SOURCE SOURCE_IMAGE, Source of image data is host memory image,
SOURCE_FRAMEBUFFER framebuffer, default video source, digital
PFTEX_SOURCE_VIDEO media buffer, or a video library digital
PFTEX_SOURCE_DMBUF media buffer.
PFTEX_SOURCE_DMVIDEO

BASE BASE_APPLY Loading of image for pfTexture is done as
BASE_AUTO_SUBLOAD required for pfApply, or automatically

subloaded upon every pfApply.

LIST LIST_APPLY Loading of list texture image is as separate
LIST_AUTO_IDLE apply, causes freeing of previous list texture
LIST_AUTO_SUBLOAD in hardware texture memory;, or is

subloaded into memory managed by the
base texture.

VIDEO_ OFF, INTERLACED_ODD, video input is interlaced or not and if so,

INTERLACED INTERLACED_EVEN, which field (even or odd) is spatially higher.

Texture list textures can share the exact graphics texture memory as the base texture but
this has the restriction that the textures must all be the exact same size and format as the
base texture. Texture list textures can also indicate that they are mutually exclusive which
will cause the texture memory of previous textures to be freed before applying the new
texture. This method has no restrictions on the texture list, but is less efficient than the
previous method. Finally, texture list textures can be treated as completely independent
textures that should all be kept resident in memory for rapid access upon their
application.

IpfTexFilter() sets a desired filter to a specified filtering method on a pfTexture. The
minification and magnification texture filters are described with bitmask tokens. If filters
are partially specified, IRIS Performer will fill in the rest with machine dependent fast
defaults. The PFTEX_FAST token can be included in the bitmask to allow IRIS Performer
to make machine dependent substitutions where there are large performance differences.
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There are a variety of texture filter functions that can improve the look of textures when
they are minified and magnified. By default, textures use MIPmapping when minified
(though this costs an extra 1/3 in storage space to store the minification levels). Each level
of minification or magnification of a texture is twice the size of the previous level.
Minification levels are indicated with positive numbers and magnification levels are
indicated with non-positive numbers. The default magnification filter for textures is
bilinear interpolation. The use of detail textures and sharpening filters can improve the
look of magnified textures. Detailing actually uses an extra detail texture that you
provide that is based on a specified level of magnification from the corresponding base
texture. The detail texture can be specified with the pfTexDetail() command. By default,
MIPmap levels are generated for the texture automatically. OpenGL operation allows for
the specification of custom MIPmap levels. Both MIPmap levels and detail levels can be
specified with pfTexLevel(). The level number should be a positive number for a
minification level and a non-positive number for a magnification (detail) level. If you are
providing your own minification levels, you must provide all log,(MAX(texSizeX,
texSizeY)) minification levels. There is only one detail texture for a pfTexture.

The magnification filters use spline functions to control their rate of application as a
function of magnification, and specified level of magnification for detail textures. These
splines can be specified with pfTexSpline(). The specification of the spline is a set of
control points that are pairs of non-decreasing magnification levels (specified with
non-positive numbers) and corresponding scaling factors. Magnification filters can be
applied to all components of a texture, only the RGB components of a texture, or to just
the alpha components. OpenGL does not allow different magnification filters (between
detail and sharpen) for RGB and alpha channels.

Note: The specification of detail textures may have GL dependencies and magnifications

filters may not be available on all hardware configurations. The pfTexture reference page
describes these details.

Texture Formats
The format in which an image is stored in texture memory is defined with pfTexFormat():

void pfTexFormat(pfTexture *tex, int format, int type)
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format specifies which format to set. Valid formats and their basic types include:

e PFTEX_INTERNAL_FORMAT— specifies how many bits per component are to be
used in internal hardware texture memory storage. The default is 16 bits per full
texel and is based on the number of components and external format.

e PFTEX_IMAGE_FORMAT—describes the type of image data and must mach the
number of components, such as PFTEX_LUMINANCE,
PFTEX_LUMINANCE_ALPHA, PFTEX_RGB, and PFTEX_RGBA. The default is
the token in this list that matches the number of components. Other OpenGL
selections can be specified with the GL token.

e PFTEX_EXTERNAL_FORMAT—specifies the format of the data in the pfTexImage
array. The default is packed 8 bits per component. There are special fast-loading
hardware ready formats, such as PFTEX_UNSIGNED_SHORT 5 5 5 1.

e PFTEX_SUBLOAD_FORMAT—a bhoolean to specify if the texture will be a
sub-loadable paging texture. Default is FALSE.

In general you will just need to specify the number of components inpfTeximage(). You
may want to specify a fast loading hardware-ready external format, such as
PFTEX_UNSIGNED_SHORT_5 5 5 1, in which case IRIS Performer will automatically
choose a matching internal format. as See the pfTexFormat(3pf) refrence page for more
informaton on texture configuration details.

Controlling Texture LOD with pfTexLOD

You can control the levels of detail (LODs) of a texture that are accessed and used with
pfTexLOD to force higher or lower MIPmap levels to be used when minifying. You
canuse this to give the graphics hardware a hint about what levels can be accessed
(IMPACT hardware takes great advantage of such a hint) and you can use this to have
multiple textures sharing a single MIPmap pyramid in texture memory. For example, a
distant object and an a close one may use different LODs of the same pfTexture texture.
The pfGeoStates of those pfGeoSets would have different pfTexLOD objects that
referenced the proper texture LODs. pfTexLevel() would be used to specify and update
the proper image for each LOD in the pfTexture. You can use LODs to specify to yourself
and the GL which LODs of texture should be loaded from disk into main memory. For
example, if the viewer is in one LOD, most of the texture in that LOD can often be viewed
and, consequently, should be paged into texture memory. You can set LOD parameters
on a pfTexture directly or use pfTexLOD.
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To use a pfTexLOD object, you

1.

4,

Set the ranges of the LOD, using pfTLODRange(), and their corresponding
minimum and maximum resolution MIPmap. Because the minimum and maximum
limits can be floating point values, new levels can be smoothly blended in when
they become available to avoid popping from one LOD to another.

Optionally, set the bias levels, using pfTLODBias(), to force blurring of a texture to
simulate motion blur and depth of field, or to force a texture to be sharper, or to
compensate for asymmetric minification of a MIPmapped texture.

Note: Any LOD settings on pfTexture take priority over current pfTexLOD settings.

Enable LOD control over texture by using the following methods:

pfEnable(PFEN_TEXLOD);
pfGeoState::pfGStateMode(myTXLOD, PFSTATE_ENTEXLOD, ON);

where myTxLOD is an instance of pfTexLOD, and ON is a non-zero integer.

Apply the LOD settings to the texture using pfApplyTLOD().

See the sample program /usr/share/Performer/src/pguide/libpr/C/texlod.c for an example of
using a pfTexLOD.

Note: You can only control the LOD of a texture when using OpenGL.

Setting the Texture Environment with pfTexEnv

The environment specifies how the colors of the geometry, potentially lit, and the texture
image interact. This is described with a pfTexEnv object. The mode of interaction is set
with pfTEnvMode() and valid modes include:

PFTE_MODULATE—the gray scale of the geometry is mixed with the color of the
texture (the default).

This option multiplies the shaded color of the geometry by the texture color. If the
texture has an alpha component, the alpha value modulates the geometry’s
transparency, for example, if a black and white texture, such as text, is applied to a
green polygon, the polygon remains green and the writing appears as dark green
lettering.

PFTE_DECAL—the texture alpha component acts as a selector between 1.0 for the
texture color and 0.0 for the base color to decal an image onto geometry.
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= PFTE_BLEND—the alpha acts as a selector between 0.0 for the base color and 1.0 for
the texture color modulated by a constant texture blend color specified with
pfTEnvBlendColor(). The alpha/Zintensity components are multiplied.

< PFTE_ADD—the RGB components of the base color are added to the product of the
texture color modulated by the current texture environment blend color. The
alpha/intensity components are multiplied.

Automatic Texture Coordinate Generation

Automatic texture coordinate generation is provided with the pfTexGen state attribute.
pfTexGen closely corresponds to IRIS GL’s texgen() and OpenGL’s gl TexGen() functions.
When texture coordinate generation is enabled, a pfTexGen applied with
pfApplyTGen() will automatically generate texture coordinates for all rendered
geometry. Texture coordinates are generated from geometry vertices according to the
texture generation mode set with pfTGenMode(). Available modes and their function
are listed in Table 9-8. Some modes refer to a plane which is set with pfTGenPlane() and
to a line that is specified as a point and direction with pfTGenPoint().

Table 9-8 Texture Generation Modes

PFTG_ Mode Token Texture coordinates are calculated as...

OBJECT_PLANE distance of vertex from plane in object coordinates

EYE_PLANE distance of vertex from plane in eye coordinates. The plane is transformed

by the inverse of the ModelView matrix when the pfTexGen is applied.

EYE_PLANE_IDENT distance of vertex from plane in eye coordinates. The plane is not
transformed by the inverse of the ModelView matrix when the pfTexGen
is applied

SPHERE_MAP an index into a 2D reflection map based on vertex position and normal.
Specifics of the calculation are found in the graphics libraries’ man pages.

OBJECT_DISTANCE distance in object space from vertex to specified line
_TO_LINE

EYE_DISTANCE_TO distance in eye space from eye to a specified vector through the vertex
_LINE
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Lighting

IRIS Performer lighting is an extension of graphics library lighting (see Imdef(3g) for
IRIS GL or glLight() and related functions in OpenGL), but IRIS Performer divides the
actions of Imdef() into lights and light models, just as OpenGL does. The light embodies
the color, position, and type (for example, infinite or spot) of the light. The light model
specifies the environment for infinite (the default) or local viewing, and two-sided
illumination..

The lighting model describes the type of lighting operations to be considered, including
local lighting, two-sided lighting, and light attenuation. The fastest light model is infinite
single-sided lighting. A pfLightModel state attribute object is created with
pfNewLModel(). A light model also allows you to specify ambient light for the scene,
such as might come from the Sun, with pfLModelAmbient().

pfLights and created by calling pfNewLight(). A light has color and position. The light
colors are specified with pfLightColor():
void pfLightColor(pfLightSource* Isource, int which, float r,
float g, float b);
which specifies one of three light colos:
e PFLT_AMBIENT
e PFLT_DIFFUSE
e PFLT_SPECULAR

You to position the light source using pfLightPos():

void pfLightPos(pfLight* light, float x, float y,
float z, float w);

w is the distance between the location in the scene defined by (X, y, z) and the light source,
Isource. If w equals zero, Isource is infinitely far away and (x, y, z) defines a vector pointing
from the origin in the direction of Isource; if w equals one, Isource is located at the position,
(X, Y, 2). The default position is (0, 0, 1, 0): directly overhead, infinitely far away.

pfLights are attached to a pfGeoState through the PFSTATE_LIGHTS attribute.
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The transformation matrix that is on the matrix stack at the time the light is applied
controls the interpretation of the light source direction:

1. Toattach a light to the viewer (like a miner’s head-mounted light), call pfLightOn()
only once with an identity matrix on the stack.

2. To attach a light to the world (like the sun or moon), call pfLightOn() every frame
with only the viewing transformation on the stack.

3. To attach a light to an object (like the headlights of a car), call pfLightOn() every
frame with the combined viewing and modeling transformation on the stack.

The number of lights you can have turned on at any one time is limited by
PF_MAX_LIGHTS, just as is true with the graphics libraries.

Note: In IRIS GL, attenuation is also part of the light model definition. In OpenGL,
attenuation is defined per-light. There is separate libpr API for setting each of these:
pfLModelAtten() for IRIS GL and pfLightAtten() for OpenGL. You can use
pfQueryFeature() with a feature specifier value of PFQFTR_LMODEL_ATTENUATION
or PFQFTR_LIGHT_ATTENUATION to find out which is supported in the current
run-time environment.

Note: libpfapplications can include light sources in a scene graph with the pfLightSource
node.

Materials

IRIS Performer materials are an extension of graphics library materials (see Imdef(3g) for
IRIS GL or glMaterial() for OpenGL). pfMaterials encapsulate the ambient, diffuse,
specular, and emissive colors of an object as well as its shininess and transparency. A
pfMaterial is created by calling pfNewMtl(). As with any of the other attributes, a
pfMaterial can be referenced in a pfGeoState, captured by a display list, or invoked as an
immediate mode command.

pfMaterials, by default, allow object colors to set the ambient and diffuse colors. This
allows the same pfMaterial to be used for objects of different colors, removing the need
for material changes and thus improving performance. This mode can be changed with
pfMtlColorMode(mtl, side, PFMTL_CMODE_*). IRIS GL only supports the front
material tracking the current color while OpenGL allows front or back materials to track
the current color. If the same material is used for both front and back materials, there is
no difference in functionality.
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With the method, pfMtISide(), you can specifiy whether to apply the the material on the
side facing the viwer (PFMTL_FRONT), the side not facing the viewer (PFMTL_BACK),
or both.(PFMTL_BOTH). Back-sided lighting will only take affect if there is a two-sided
lighting model active. Two sided lighting typically has some significant performance
cost.

Object materials only have effect when lighting is active.

Color Tables

A pfColortable substitutes its own color array for the normal color attribute array
(PFGS_COLOR4) of a pfGeoSet. This allows the same geometry to appear differently in
different views simply by applying a different pfColortable for each view. By leaving the
selection of color tables to the global state, you can use a single call to switch color tables
for an entire scene. In this way, color tables can simulate time-of-day changes, infrared
imaging, psychedelia, and other effects.

pfNewCtab() creates and returns a handle to a pfColortable. As with other attributes,
you can specify which color table to use in a pfGeoState or you can use pfApplyCtab()
to set the global color table, either in immediate mode or in a display list. For an applied
colortable to have effect, colortable mode must also be enabled.

Fog

A pfFog is created by calling pfNewFog(). As with any of the other attributes, a pfFog
can be referenced in a pfGeoState, captured by a display list, or invoked as an immediate
mode command. Fog is the atmospheric effect of aerosol water particles that occlude
vision over distance. The IRIS hardware can simulate this phenomenon in several
different fashions. A fog color is blended with the resultant pixel color based on the range
from the viewpoint and the fog function. pfFog supports several different fogging
methods. Table 9-9 lists the pfFog tokens and their corresponding actions.
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Table 9-9 pfFog Tokens

pfFog Token Action

PFFOG_VTX_LIN Compute fog linearly at vertices.
PFFOG_VTX_EXP Compute fog exponentially at vertices (¢¥).
PFFOG_VTX_EXP2 Compute fog exponentially at vertices (gxsauared),
PFFOG_PIX_LIN Compute fog linearly at pixels.
PFFOG_PIX_EXP Compute fog exponentially at pixels (eX).
PFFOG_PIX_EXP2 Compute fog exponentially at pixels (gxsavared),

PFFOG_PIX_SPLINE Compute fog using a spline function at pixels.

pfFogType() uses these tokens to set the type of fog. A detailed explanation of fog types
is given in the reference page pfFog(3pf) and in the IRIS GL fogvertex(3g) and OpenGL
glFog(3g) reference pages.

You can set the near and far edges of the fog with pfFogRange(). For exponential fog
functions, the near edge of fog is always zero in eye coordinates. The near edge is where
the onset of fog blending occurs, and the far edge is where all pixels are 100% fog color.

The token PFFOG_PIX_SPLINE selects a spline function to be applied when generating
the hardware fog tables. This is further described in the pfFog(3pf) reference page. Spline
fog allows the user to define an arbitrary fog ramp that can more closely simulate
real-world phenomena like horizon haze.

For best fogging effects the ratio of the far to the near clipping planes should be

minimized. In general, it’'s more effective to add a small amount to the near plane than
to reduce the far plane.

281



Chapter 9: Graphics State

Highlights

IRIS Performer provides a mechanism for highlighting geometry with alternative
rendering styles, useful for debugging and interactivity. A pfHighlight, created with
pfNewHlIlight(), encapsulates the state elements and modes for these rendering styles. A
pfHighlight can be applied to an individual pfGeoSet with pfGSetHlight(), or can be
applied to multiple pfGeoStates through a pfGeoState or pfApplyHlight(). The
highlighting effects are added to the normal rendering phase of the geometry.
pfHighlights make use of special outlining and fill modes and have a concept of a
foreground color and a background color that can both be set with pfHIlightColor(). The
available rendering styles can be combined by OR-ing together tokens for
pfHlightMode() and are described in Table 9-10.

Table 9-10 pfHIlightMode() Tokens

PFHL_ Mode

Bitmask Token Description

LINES Outlines the triangles in the highlight foreground color according to
pfHlightLineWidth().

LINESPAT Outlines triangles with patterned lines in the highlight foreground color, or in

LINESPAT2 two colors using the background color.

FILL Draws geometry with the highlight foreground color. Combined with
SKIP_BASE, this is a fast highlighting mode.

FILLPAT Draws the highlighted geometry as patterned with one or two colors.

FILLPAT2

FILLTEX Draw highlighting fill pass with a special highlight texture.

LINES_R Reverses the highlighting foreground and background colors for lines and fill,

FILL_R respectively.

POINTS Renders the vertices of the geometry as points according to pfHIlightPntSize().

NORMALS Displays the normals of the geometry with lines according to

pfHIlightNormalLength().

BBOX_LINES Displays the bounding box of the pfGeoSet as outlines and/or filled box.
BBOX_FILL Combined with PFHL_SKIP_BASE, this is a fast highlighting mode.

SKIP_BASE Causes the normal drawing phase of the pfGeoSet to be skipped. This is
recommended when using PFHL_FILL or PFHL_BBOX_FILL.
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For a demonstration of the highlighting styles, see the sample program,
/usr/share/Performer/pguide/src/libpr/C/hlcube.c.

Graphics Library Matrix Routines

IRIS Performer provides extensions to the standard graphics library
matrix-manipulation functions. These functions are similar to their graphics library
counterparts, with the exception that they can be placed in IRIS Performer display lists.
Table 9-11 lists and describes the matrix manipulation routines.

Table 9-11 Matrix Manipulation Routines

Routines Action

pfScale Concatenate a scaling matrix.
pfTranslate Concatenate a translation matrix.
pfRotate Concatenate a rotation matrix.
pfPushMatrix Push down the matrix stack.

pfPushldentMatrix  Push the matrix stack and load an identity matrix on top.

pfPopMatrix Pop the matrix stack.
pfLoadMatrix Add a matrix to the top of the stack.
pfMultMatrix Concatenate a matrix.

Sprite Transformations

A sprite is a special transformation used to efficiently render complex geometry with
axial or point symmetry. A classic sprite example is a tree which is rendered as a single,
texture-mapped quadrilateral. The texture image is of a tree and has an alpha component
whose values which “etches” the tree shape into the quad. In this case, the sprite
transformation rotates the quad around the tree trunk axis so that it always faces the
viewer. Another example is a puff of smoke which again is a texture-mapped quad but
is rotated about a point to face the viewer so it appears the same from any viewing angle.
The pfSprite transformation mechanism supports both these simple examples as well as
more complicated ones involving arbitrary 3D geometry.
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A pfSprite is a structure which is manipulated through a procedural interface. It is
different from “attributes” like pfTexture and pfMaterial since it affects transformation,
rather than state related to appearance. A pfSprite is activated with pfBeginSprite(). This
enables “sprite mode” and any pfGeoSet that is drawn before sprite mode is ended with
pfEndSprite() will be transformed by the pfSprite. First, the pfGeoSet is translated to the
location specified with pfPositionSprite(). Then, it is rotated, either about the sprite
position or axis depending on the pfSprite’s configuration. Note that pfBeginSprite(),
pfPositionSprite() and pfEndSprite() are display listable and this will be captured by
any active pfDispList.

A pfSprite’s rotation mode is set by specifying the PFSPRITE_ROT token to
pfSpriteMode(). In all modes, the Y axis of the geometry is rotated to point to the eye
position. Rotation modes are listed below.

Table 9-12 pfSprite Rotation Modes

PFSPRITE_ Rotation Token Rotation Characteristics

AXIAL_ROT Geometry’s Z axis is rotated about the axis specified with
pfSpriteAxis().

POINT_ROT_EYE Geometry is rotated about the sprite position with the object
coordinate Z axis constrained to the window coordinate Y axis, i.e.,
geometry’s Z axis stays “upright”.

POINT_ROT_WORLD Geometry is rotated about the sprite position with the object
coordinate Z axis constrained to the sprite axis.
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Rather than using the graphics hardware’s matrix stack, pfSprites transform small
pfGeoSets on the CPU for improved performance. However, when a pfGeoSet contains
a certain number of primitives it becomes more efficient to use the hardware matrix
stack. While this threshold is dependent on the CPU and graphics hardware used, you
may specify it with the PFSPRITE_MATRIX_THRESHOLD token to pfSpriteMode().
The corresponding value is the minimum vertex requirement for hardware matrix
transformation. Any pfGeoSet with fewer vertices will be transformed on the CPU. If you
want a pfSprite to affect non-pfGeoSet geometry you should set the matrix threshold to
zero so that the pfSprite will always use the matrix stack. When using the matrix stack,
pfBeginSprite() pushes the stack and pfEndSprite() pops the matrix stack so the sprite
transformation is limited in scope.

pfSprites are dependent on the viewing location and orientation and the current
modeling transformation. You can specify these with calls to pfViewMat() and
pfModelMat() respectively. Note that libpf-based applications need not call these
routines since libpf does it automatically.

Display Lists

libpr supports display lists, which can capture and later execute libpr graphics
commands. pfNewDList() creates and returns a handle to a new pfDispList. A
pfDispList can be selected as the current display list with pfOpenDList(), which puts the
system in display list mode. Any subsequent libpr graphics commands, such as
pfTransparency(), pfApplyTex(), or pfDrawGSet(), are added to the current display list.
Commands are added until pfCloseDList() returns the system to immediate mode. It is
not legal to have multiple pfDispLists open at a given time but a pfDispList may be
reopened in which case commands are appended to the end of the list.

Once a display list is constructed, it can be executed by calling pfDrawDList(), which
traverses the list and sends commands down the Geometry Pipeline.

pfDispLists are designed for multiprocessing, where one process builds a display list of
the visible scene and another process draws it. The function pfResetDL.ist() facilitates
this by making pfDispLists reusable. Commands added to a reset display list overwrite
any previously entered commands. A display list is typically reset at the beginning of a
frame and then filled with the visible scene.
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pfDispLists support concurrent multiprocessing, where the producer and consumer
processes simultaneously write and read the display list. The PFDL_RING argument to
pfNewDList() creates a ring buffer or FIFO-type display list. pfDispLists automatically
ensure ring buffer consistency by providing synchronization and mutual exclusion to
processes on ring buffer full or empty conditions.

For more information and the application of display lists, see Chapter 10, “ClipTextures.

Combining Display Lists

The contents of one pfDispList may be appended to a second pfDispList by using the
function, pfAppendDList(). All pfDispList elements in src are appended to the
pfDispList dlist.

Alternately, you can append the contents of one pfDispList to a second pfDispList by
using the function pfDispList::append(). All pfDispList elements in src are appended to
the pfDispList on which the append method is invoked.

State Management

pfState is a structure that represents the entire libpr graphics state. A pfState maintains a
stack of graphics states that can be pushed and popped to save and restore state. The top
of the stack describes the current graphics state of a window as it’s known to IRIS
Performer.

pfinitState() initializes internal libpr state structures and should be called at the
beginning of an application before any pfStates are created. Multiprocessing applications
should pass a usinit() semaphore arena pointer to pfinitState(), such as
pfGetSemaArena(), so IRIS Performer can safely manage state between processes.
pfNewsState() creates and returns a handle to a new pfState, which is typically used to
define the state of a single window. If using pfWindows, discussed in Chapter 11,
“Windows,”, a pfState is automatically created for the pfWwindow when the window is
opened and the current pfState is switched when the current pfWindow changes.
pfSelectState() can be used to efficiently switch a different complete pfState.
pfLoadState() will force the full application of a pfState.
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Pushing and Popping State

pfPushState() pushes the state stack of the currently active pfState, duplicating the top
state. Subsequent modifications of the state through libpr routines are recorded in the top
of stack. Consequently, a call to pfPopState() restores the state elements that were
modified after pfPushState().

The code fragment in Example 9-2 illustrates how to push and pop state.

Example 9-2 Pushing and Popping Graphics State

/* set state to transparency=off and texture=brickTex */
pfTransparency(PFTR_OFF);
pfApplyTex(brickTex);

/* ... draw geometry here using original state ... */

/* save old state. establish new state */
pfPushState();
pfTransparency(PFTR_ON);
pfApplyTex(woodTex);

/* ... draw geometry here using new state ...*/

/* restore state to transparency=off and texture=brickTex */
pfPopState();

State Override

pfOverride() implements a global override feature for libpr graphics state and attributes.
pfOverride() takes a mask that indicates which state elements to affect and a value
specifying whether the elements should be overridden. The mask is a bitwise OR of the
state tokens listed previously.

The values of the state elements at the time of overriding become fixed and cannot be

changed until pfOverride() is called again with a value of zero to release the state
elements.
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The code fragment in Example 9-3 illustrates the use of pfOverride().

Example 9-3 Using pfOverride()

pfTransparency(PFTR_OFF);
pfApplyTex(brickTex);

/*

* Transparency will be disabled and only the brick texture

* will be applied to subsequent geometry.

*/

pfOverride(PFSTATE_TRANSPARENCY | PFSTATE_TEXTURE, 1);
/* Draw geometry */

/* Transparency and texture can now be changed */
pfOverride(PFSTATE_TRANSPARENCY | PFSTATE_TEXTURE, 0);

pfGeoState

A pfGeoState encapsulates all the rendering modes, values, and attributes managed by
libpr. See “Rendering Modes” on page 261, “Rendering Values” on page 266, and
“Rendering Attributes” on page 267 for more information. pfGeoStates provide a
mechanism for combining state into logical units and define the appearance of geometry.
For example, you can set a brick-like texture and a reddish-orange material on a pfGeoSet
and use it when drawing brick buildings.

You can specify texture matricies on pfGeoSets.

Local and Global State

There are two levels of rendering state: local and global. A record of both is kept in the
current pfState. The local state is that defined by the settings of the current pfGeoState.
The rendering state and attributes of a pfGeoState can be either locally set or globally
inherited. If all state elements are set locally, a pfGeoState becomes a full graphics
context—that is, all state is then defined at the pfGeoState level. Global state elements are
set with libpr immediate mode routines like pfEnable(), pfApplyTex(), pfDecal(),
pfTransparency() or by drawing a pfDispList containing these commands with
pfDrawDList(). Local state elements for subsequent pfGeoSets are set by applying a
pfGeoState with pfApplyGState() (note that pfDrawGSet() automatically calls
pfApplyGState() if the pfGeoSet has an attached pfGeoState). The state elements applied
by a pfGeoState are those modes, enables, and attributes that are explicitly set on the
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pfGeoState. Those settings revert back to the pfState settings for the next call to
pfApplyGState(). A pfGeoState can be explicitly loaded into a pfState to affect future
pfGeoStates with pfLoadGState().

Note: By default, all state elements are inherited from the global state. Inherited state
elements are evaluated faster than values that have been explicitly set.

While it can be useful to have all state defined at the pfGeoState level, it usually makes
sense to inherit most state from global default values and then explicitly set only those
state elements that are expected to change often.

Examples of useful global defaults are lighting model, lights, texture environment, and
fog. Highly variable state is likely to be limited to a small set such as textures, materials,
and transparency. For example, if the majority of your database is lighted, simply
configure and enable lighting at the beginning of your application. All pfGeoStates will
be lighted except the ones for which you explicitly disable lighting. Then attach different
pfMaterials and pfTextures to pfGeoStates to define specific state combinations.

Note: Caution should be used when enabling modes in the global state. These modes
may have cost even when they have no visible effect. Therefore, geometry that cannot use
these modes should have a pfGeoState that explicitly disables the mode. Modes to be
especially careful of include the texturing enable and transparency.

You specify that a pfGeoState should inherit state elements from the global default with
pfGStatelnherit(gstate, mask). mask is a bitmask of tokens that indicates which state
elements to inherit. These tokens are listed in the “Rendering Modes”, “Rendering
Values”, and “Rendering Attributes” sections of this chapter. For example,
PFSTATE_ENLIGHTING | PFSTATE_ENTEXTURE makes gstate inherit the enable
modes for lighting and texturing.

A state element ceases to be inherited when it is set in a pfGeoState. Rendering modes,
values, and attributes are set with pfGStateMode(), pfGStateVal(), and pfGStateAttr(),
respectively. For example, to specify that gstate is transparent and textured with treeTex,
use

pfGStateMode(gstate, PFSTATE_TRANSPARENCY, PFTR_ON);
pfGStateAttr(gstate, PFSTATE_TEXTURE, treeTex);
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Applying pfGeoStates

Use pfApplyGState() to apply the state encapsulated by a pfGeoState to the Geometry
Pipeline. The effect of applying a pfGeoState is similar to applying each state element
individually. For example, if you set a pfTexture and enable a decal mode on a
pfGeoState, applying it essentially calls pfApplyTex() and pfDecal(). If in display-list
mode, pfApplyGState() is captured by the current display list.

State is (logically) pushed before, and popped after, pfGeoStates are applied, so that
pfGeoStates don’t inherit state from each other. This is a very powerful and convenient
characteristic since as a result, pfGeoStates are order-independent, and you don’t have to
worry about one pfGeoState corrupting another. The code fragment in Example 9-4
illustrates how pfGeoStates inherit state.

Example 9-4 Inheriting State

[* gstateA should be textured */
pfGStateMode(gstateA, PFSTATE_ENTEXTURE, PF_ON);

[* gstateB inherits the global texture enable mode */
pfGStatelnherit(gstateB, PFSTATE_ENTEXTURE);

/* Texturing is disabled as the global default */
pfDisable(PFEN_TEXTURE);

[* Texturing is enabled when gstateA is applied */
pfApplyGState(gstateA);
/* Draw geometry that will be textured */

/* The global texture enable mode of OFF is restored
so that gstateB is NOT textured. */
pfApplyGState(gstateB);

/* Draw geometry that will not be textured */

The actual pfGeoState pop is a lazy pop that doesn’t happen unless a subsequent
pfGeoState requires the global state to be restored. This means that the actual state
between pfGeoStates isn’t necessarily the global state. If a return to global state is
required, call pfFlushState() to restore the global state. Any modification to the global
state made using libpr functions—pfTransparency(), pfDecal(), and so on—becomes the
default global state.
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For best performance, set as little local pfGeoState state as possible. You can accomplish
this by setting global defaults that satisfy the majority of the requirements of the
pfGeoStates being drawn. By default, all pfGeoState state is inherited from the global
default.

pfGeoSets and pfGeoStates

There is a special relationship between pfGeoSets and pfGeoStates. Together they
completely define both geometry and graphics state. You can attach a pfGeoState to a
pfGeoSet with pfGSetGState() to specify the appearance of geometry. Whenever the
pfGeoSet is drawn with pfDrawGSet(), the attached pfGeoState is first applied using
pfApplyGState(). If a pfGeoSet does not have a pfGeoState, its state description is
considered undefined. To inherit all values from the global pfState, a pfGeoSet should
have a pfGeoState with all values set to inherit, the default.

This combination of routines allows the application to combine geometry and state in

high-performance units which are unaffected by rendering order. To further increase
performance, sharing pfGeoStates among pfGeoSets is encouraged.

pfGeoState Routines
Table 9-13 lists and describes the pfGeoState routines.

Table 9-13 pfGeoState Routines

Function Description

pfNewGState Create a new pfGeoState.

pfCopy Make a copy of the pfGeoState.

pfDelete Delete the pfGeoState.

pfGStateMode Set a specific state mode.

pfGStateVal Set a specific state value.

pfGStateAttr Set a specific state attribute.

pfGStatelnherit Specify which state elements are inherited from the global state.
pfApplyGState Apply pfGeoState’s non-inherited state elements to graphics.
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Table 9-13 (continued) pfGeoState Routines

Function Description

pfLoadGState Load pfGeoState’s settings into the pfState, inherited by future
pfGeoStates.

pfGetCurGState Return the current pfGeoState in effect.

pfGStateFuncs Assign pre/post callbacks to pfGeoState

pfApplyGStateTable Specify table of pfGeoStates used for indexing.

pfGeoState Structure

Figure 9-1 diagrams the conceptual structure of a pfGeoState.
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Chapter 10

“ClipTextures”

This chapter describes how to work with large, high-resolution textures.






Chapter 10

ClipTextures

As CPUs get faster and storage gets cheaper, applications are moving away from scenes
with small, synthetic textures to large textures, taken from real environments, giving the
viewer realistic renderings of actual locations.

There has customarily been a trade-off between the complexity of a texture and the area
it covers: if a texture covers a large area, its resolution must be limited so that it can fit
into texture memory; high-resolution textures are limited to small regions for the same
reason.

A cliptexture allows you to circumvent many of these system resource restrictions by
virtualizing MIPmapped textures. Only those parts of the texture needed to display the
textured geometry from a given location are stored in system and texture memory. IRIS
Performer provides support for this technique, called cliptexturing, though a subclass of
a pfTexture called a pfClipTexture. This functionality allows you to display textures too
large to fit in texture memory, or even in system memory; you can put the entire world
into a single texture.

IRIS Performer supports texture load management from disk to system memory and
from system to texture memory, synchronizing clipped regions with the viewpoint, and
many the other tasks needed to virtuaize a texture relative to the viewer location.
This chapter describes cliptextures in the following parts:

= “Overview” on page 298

= “Cliptexture API” on page 313

= “Preprocessing ClipTextures” on page 313

= “Cliptexture Configuration” on page 316

= “Configuration API” on page 317

= “Post-Scene Graph Load Configuration” on page 339

< “Manipulating Cliptextures” on page 347

= “Using Cliptextures” on page 361
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Overview

Cliptexturing avoids the size limitations of normal MIPmaps by clipping the size of each
level of a mipmap texture to a fixed area, called the clip region. A MIPmap contains a
range of levels, each four times the size of the previous one. If the clip region is larger
than a particular level, the entire level is kept in texture memory. Levels larger than the
clip region are clipped to the clip region’s size. The clip region is set by the application,
trading off texture memory consumption against image quality. The clip region size is set
through the clip size, which is the length of the sides (in texels) of the clip region’s sides.

. Clip size

» ~
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|

Clip region

7 Entire level in
texture memory

Figure 10-1 Cliptexture Components

The clip region positioned so as to be centered about the clip center, or as close as possible
to the clipcenter while remaining entirely within the cliptexture. The clipcenter is set by
the application, usually to the location on the texture corresponding to the location
closest to the viewer on the cliptextured geometry. The clipcenter is specified in texel
coordinates, which is the texture coordinates (s and t values, ranging from 0.0 to 1.0,
scaled by the dimensions of the finest level of the cliptexture, level 0).
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Cliptexture Levels

Texture memory contains the MIPmap levels, the larger ones clipped to the clip region
size; the rectangle of texture memory corresponding to each clipped level is called a tex
region. As the viewer moves relative to the cliptextured geometry, the clipcenter must be
updated. When this happens, the clipped mipmap levels must have their texture data
updated, in order to represent the area closest to the center. This updating usually must
happen every frame, and is done by IRIS Performer image caches.

To facilitate loading only portions of the texture at a time, the texture data must first be
subdivided into a contiguous set of rectangular areas, called tiles. These tiles can then
loaded individually from disk into texture memory.

Texture memory must be loaded from system memory; it can’t be loaded directly from
disk. In order to improve the performance of texel downloading, the region in system
memory is made larger than the destination texture memory and organized into a
lookahead cache, called the mem region.

Mem region

Entire level in
texture memory

Tex region

Figure 10-2 Image Cache Components

299



Chapter 10: ClipTextures

300

Image caches must know three things in order to update clipped texture levels:
< Where and how the data is stored on disk, so they can retrieve it,
= Location and size of system memory cache, called the mem region,

= The texture memory they are responsible to update when the cilpcenter moves (the
tex region).

Cliptexture Assumptions

For the cliptexture algorithm to work seamlessly, applications must abide by the
following assumptions:

= An application can only view a clip region’s worth of high resolution texel data on
its textured geometry from any viewpoint.

= The application views the texture from one location at a time. Multiple views
require multiple cliptextures.

= The viewer must move smoothly relative to the cliptextured geometry; no
“teleporting” (abrupt changes in position).

Given these assumptions, your application can maintain a high-resolution texture by
keeping only those parts of the texture closest to the viewer in texture memory; the
remainder of the texture is on disk and cached in system memory.

Why Do These Assumptions Work?

Only the textured geometry closest to the viewer needs a high-resolution texture. Far
away objects are smaller on the screen, so the texels used on that object also appear
smaller (cover a smaller screen area). In normal MIPmapping, coarser MIPmap levels are
chosen as the texel size gets smaller relative to the pixel size. These coarser levels contain
less texels, since each texel covers a larger area on the textured geometry.

Cliptextures take advantage of this facts by storing only part of each large MIPMap level
in texture memory, just enough so that when you look over the geometry, the MIPmap
algorithm starts choosing texels from a lower level (because the texels are getting small
on the screen) before you run out of texels on the clipped level. Because coarser levels
have texels that cover a larger area, at a great enough distance, MIPmapping is choosing
texels from the unclipped, smaller levels.
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When aclip size is chosen, cliptexture levels can be thought of as belonging to one of two
categories:

= Clipped levels, which are texture levels that are larger than the clip size.

= Non-clipped levels, which are small enough to fit entirely within the clip region.

The non-clipped levels are viewpoint independent; each non-clipped texture level is
complete. Clipped levels, however, must be updated as the viewer moves relative to the
textured geometry.

Image Cache

The image cache organizes its system memory as a grid of fixed size texture tiles. This
grid of texture data forms a lookahead cache, called the mem region. The cache
automatically anticipates texture download requirements, updating itself with texture
tiles it expects to use soon.

Image caches update texture memory by transferring image data from disk files. The
datais transferred in two steps. Data is moved from disk files a tile at a time into the mem
region in system memory. The mem region is updated so that it always contains the
image data corresponding to the tex region and its immediate surroundings. The border
of extra surrounding data allows the image cache to update the tex region as necessary
without having to wait for tiles to be loaded into the mem region from disk.

The image cache also contains a tex region, the rectangle of texel data in a given level’s
texture memory. This rectangle of data is in texture memory, and is being updated from
a corresponding rectangle of data in the memregion. As the center moves, the tex region
being loaded into texture memory can get close to the edge of the mem region. When this
happens, tiles in the mem region are updated with new data from disk so that the tex
region is moved closer to the center of the image data.
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Figure 10-3 Mem Region Update

As the center moves, the clipped region on each clipped level of the image cache shifts
position. The clipped regions on each level move at different rates; each coarser level
only moves at one half the speed of the level above it. The image cache reflects the change
on its level by tracking the position of the clipped region with its tex region. Data in
texture memory must be updated to match the texel data in the translated tex region.

This updating is done by copying rectangles of texel data from the shifted tex region area
in the mem region to the appropriate locations in texture memory. The amount of
updating is minimized by only updating the portions of the texture memory that actually
need new data. The majority of the tex region data only has to shift position in texture
memory; this is done by translating texture coordinates, and taking advantage of the
wrap mode when accessing texels from texture memory.
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Tex region \

Texture memory
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Disk files

Figure 10-4 Tex Region Update

By loading textures to system memory before they’re needed in texture memory, the
latency caused by waiting for tiles downloading from a disk is reduced.

1. Texture data on disk is cached into system memory in an image cache’s mem region.

2. Texture data in the tex region part of the mem region is used to update texture
memory.
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Figure 10-5 Cliptexture Cache Hierarchy

Toroidal Loading

In order to minimize the bandwidth required to download texels from system to texture
memory, the image cache’s tex regions are updated using toroidal loading. A toroidal load
assumes that changes in the contents of the clip region are incremental, such that the
update consists of:

= New texels that need to be loaded.
= Texels that are no longer valid.

= Texels that are still in the clip region, but have shifted position.

Toroidal loading minimizes texture downloading by only updating the part of the
texture region that needs new texels. Shifting texels that remain visible isn’t necessary,
since the coordinates of the clip region wrap around to the opposite side.

Invalid Borders

Being able to impose alignment requirements to the regions being downloaded to texture
memory improves performance. Cliptextures support the concept of an invalid border to
provide this feature. It is the area around the perimeter of a clip region that can’t be used.
The invalid border shrinks the usable area of the clip region, and can be used to
dynamically change the effective size of the clip region. Shrinking the effective clipsize
can be a useful load control technique.
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When texturing requires texels from a portion of an invalid border at a given MIPmap
level, the texturing system moves down a level, and tries again. It keeps going down to
coarser levels until it finds texels at the proper coordinates that are not in the invalid
region. This is always guaranteed to happen, since each level covers the same area with
less texels (coarser level texels cover more area on textured geometry). Even if the
required texel is clipped out of every clipped level, the unclipped pyramid levels will
contain it.

You can use an invalid border to force the use of lower levels of the MIPmap to:

= Reduce the abrupt discontinuity between MIPmap levels if the clip region is small:
using coarser LODs blends MIPmap levels over a larger textured region.

=< Improve performance when a texture must be roamed very quickly.

Since the invalid border can be adjusted dynamically, it can reduce the texture and
system memory loading requirements at the expense of a blurrier image.

Required texel

Clip center

Fine Clip region

Invalid border

Clip center

Coarser

Figure 10-6 Invalid Border
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Updating the Clipcenter

To figure out what part of the texture must be loaded in each of the clipped levels, you
must know where the viewer is relative to the geometry being textured. Often this
position is computed by finding the location of the cliptextured geometry that is closest
to the viewer, and converting that to a location on the texture. This position is called the
cliptexture center and it must be updated every frame as the viewer moves relative to the
cliptextured geometry.

>

Centered Center moves Texture coordinates wrap
Toroidal loads Same as centered

Figure 10-7 Clipcenter Moving

The clipcenter is set by the application for level 0, The cliptexture code then derives the
clipcenter location on all MIPmap levels. As the viewer roams over a cliptexture, the
centers of each MIPmap level move at a different rate. For example, moving the
clipcenter one unit corresponds to the center moving one half that distance in each
dimension in the next-coarser MIPmap level.

Most of the work of cliptexturing is updating the center properly and updating the
texture data in the clipped levels reliably and efficiently each frame.
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Virtual Cliptextures

Cliptextures save texture memory by limiting the extent of texture levels. Every level in
the mipmap is represented in texture memory, and can be accessed as the geometry is
textured. There are limits to the number of levels the cliptexturing hardware can access
while rendering, which restricts the cliptextures maximum size.

This limit can be exceeded by only accessing a subset of all the MIPmap’s levels in texture
memory on each piece of geometry, “virtualizing” the cliptexture. The virtual offset is
sets a virtual “level 0” in the MIPmap, while the number of effective levels indicates how
many levels starting from the new level 0 can be accessed. The minlod and maxlod
parameters are used to ensure that only valid levels are displayed. The application
typically divides the cliptextured terrain into pieces, using the relative position of the
viewer and the terrain to update the parameter values as each piece is traversed.

Effective
levels

Callback

levels

Figure 10-8 Virtual Cliptexture Concepts

For more information about virtual cliptextures, see “Virtual ClipTextures” on page 353.
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Cliptexture Support Requirements

Ideally, pfClipTextures would be interchangeable with pfTextures in IRIS Performer.
Unfortunately, this is only partially true. The following sections describe some of the
differences between IRIS Performer textures and cliptextures.

Centering

Every level is complete in a regular texture. Cliptextures have clipped levels, where only
the portion of the level near the cliptexture center is complete. In order to look correct, a
cliptextures center must be updated as the channel’s viewport moves relative to the
cliptextured geometry:.

Cliptextures require functionality that recalculates the center position whenever the
viewer moves (essentially each frame). This means that a relationship has to exist
between the cliptexture and a channel.

Applying

Textures only need to be applied once. Cliptextures must be applied every time the center
moves (essentially each frame). In order to apply at the right time, cliptextures need to
be connected to a pfPipe.

Texel Data

A texture does not know where its data comes from. The application just suppliesitasa
pointer to region of system memory when the texture is applied.

Cliptextures need to update their contents as the center moves and they are reapplied
each frame. As a result, they need to know where their image data resides on the disk. In
order to maximize performance, cliptextures also cache their texel data in system
memory. As a result, cliptextures are a lot more work to configure, since you have to tell
them how to find their data on disk, and how you want the data cached in system
memory.

Special Features

Since cliptexture levels are so large, IRIS Performer offers additional features not
available to regular textures.
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Insets

With certain restrictions, cliptexture levels can be partially populated, containing
“islands” of high resolution data. This can be useful if the application only needs
high-resolution texel data in relatively small, widely scattered areas of a large cliptexture.
A example of this might be an airline flight simulator, where high resolution data is only
needed in the vicinity of the airports used by the simulator.

For more information about insets, see “Cliptexture Insets” on page 361.

Virtualization

To further increase the size of cliptextures that IRIS Performer can use, the levels
themselves can be virtualized; It then selects a subset of all the available texture levels to
be loaded into memory. This requires additional support by the application. Virtual
cliptextures are described in detail in “Virtual ClipTextures” on page 353.

Multiple Pipe Support
Since cliptextures require both system and texture memory resources, IRIS Performer has
provided functionality to share the system memory resources when a cliptexture is used

in a multipipe application. “Slave” cliptextures and a “master” cliptexture share system
memory resources, but have their own classes and texture memory.

How Cliptextures Interact with the Rest of the System
As aresult of their special requirements, cliptextures are used differently than pfTextures

with many different IRIS Performer classes. The following sections describe these
differences.

Geostates

When everything is configured properly, a pfClipTexture is interchangeable with a
pfTexture when used in a geostate.
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Pipes

A pfClipTexture can be connected to a pfMPClipTexture, a multiprocessing component,
which is connected to a pfPipe. From the pipe’s point of view, a pfMPClipTexture is
something it can apply to.

Channels

Some functionality must be supplied to update a cliptexture’s center as the channel
moves with respect to the cliptextured geometry. This functionality can be supplied by
the application, or IRIS Performer can do it automatically if the application uses
clipcenter nodes.

A clipcenter node is added to the scenegraph and is traversed by the APP process just
like every other node in the scenegraph. pfMPClipTexture, which contains the
cliptextured geometry, should be a child node of the clipcenter node. When the clipcenter
node is traversed by a channel, the clipcenter node computes the relationship between
the cliptextured geometry and the channel’s eyepoint, and updates the cliptexture’s
center appropriately.

Cliptexture Support in IRIS Performer

Cliptexture is a large and diverse piece of functionality. As a result, cliptexture support
is found in nearly every major library in IRIS Performer.

libpr Support

The pflmageCache class defines image caches which manage the updating of clipped
levels, pflmageTile classes are used to define non-clipped cliptexture levels and define
pieces of clipped levels downloaded from disk to system memory. The pfQueue class
supports read queues, which manage the read requests from disk to system memory in
image caches, while the pfClipTexture class itself defines cliptextures themselves, virtual
mipmaps composed of image caches and image tile levels. The pfTexLoad class defines
download requests when image caches download texels from system to texture memory.

libpf Support

libpf adds multiprocessing support for using cliptextures in scene graphs. the
pfMPClipTexture class ties together pfClipTextures, pfPipes, cliptexture centering
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functionality (often pfuClipCenterNode nodes) and the application itself in a
multiprocessing environment. additional functionality in the pfPipe class ensures that
cliptextures are applied properly.

libpfutil Support

libpfutil provides easy to use clipcentering functionality through the
pfuClipCenterNode class, a subclass of the pfGroup class. This library also provides
traversals to simply the work of finding cliptextures in a scene graph using
pfuFindClipTextures(), code for post loader configuration, where pfMPClipTextures are
created, and attached to pipes and clipcenter nodes using pfuProcessClipCenters() and
pfuProcessClipCentersWithChannel(). The pfuAddMPClipTextureToPipes() and
pfuAddMPClipTexturesToPipes() routines connect pfMPClipTextures to the proper
pipes, handling multipipe issues in a clean way. Load time configuration is simplified
using the pfulnitClipTexConfig(), pfuMakeClipTexture(), and pfuFreeClipTexConfig()
along with the appropriate callbacks for image caches and image tiles. Image cache
configuration is supported with pfulnitimgCacheConfig(), pfuMakelmageCache(),
and pfuFreelmgCacheConfig() routines.

libpfdu Support

The cliptexture configuration file parsers are supported here; pfdLoadClipTexture() and
pfdLoadClipTextureState() work with cliptexture configuration files to simplify the
creation and configuration of cliptextures. The companion programs that create and
configure pfdLoadlmageCache() and pfdLoadlmageCacheState(). All of these parsers
use the pfuMakeClipTexture() and pfuMakelmageCache() configuration routines.

libpfdb Support

Example cliptexture loaders, including the libpfim example cliptexture loader, the libpfct
demo loader and libpfvct virtual pseudo loader are all included here.

Cliptexture Manipulation

While the scene graph is being viewed, the application may want to dynamically alter
the appearance or performance characteristics of the cliptexture. The mpcliptexure

provides functionality to support parameter changes in the APP process, providing
frame-accurate updating. Here are some of the parameters that might be changed.
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Load Control

The DTR functionality (described in detail elsewhere in this chapter) is largely automatic.
Some high performance applications may need to adjust DTR parameters to improve
appearance performance trade-offs.

Invalid Border

The invalid border can be adjusted at runtime to shrink the effective size of the clip
region.This might be done to provide additional load control beyond the per-level
control that DTR provides.

Share Masks

When operating master and slave cliptextures in a multipipe application, the application
may want to change the sharemask, which controls the synchronization of parameters
between master and slave cliptextures.

Read Function

The image cache creates requests to read image tiles from disk to the image cache’s
system memory cache. The read function processes these requests and actually does the
data transfer. IRIS Performer provides set of read functions that attempts to do direct-io
reads for speed, but falls back to normal reads if direct-10 is not possible.

The application can replace the IRIS Performer default function with its own custom read

function. This could be useful for implementing special functionality, such as dynamic
decompression pfcliptexture data.

Read Queue Sorting

The read queue provides dynamic sorting of the read requests to improve performance
and minimize latency. The application can provide custom sorting routines.
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Cliptexture API

Cliptexturing has a large API. Not only is there are lot of cliptexture functionality
scattered throughout the library, but there is often more than one way to use a particular
piece of functionality. In order to make things clearer, and make it easier to use the API
described here, the cliptexture API is grouped and ordered in the same way an
application writer would use it.

The API is grouped into four sections:

Preprocessing the cliptexture data.
Configuring cliptextures and image caches.
Post-load-time configuration.

Run-time manipulation.

Preprocessing ClipTextures

Before using cliptextures, large textures must be preprocessed, as follows:

1.

Start with the highest-resolution version of the image (texture) and build a MIPmap
of the image.

Choose a clip size.
Tile each MIPmap level.

Every image that is larger than the clip size must be cut into tiles. All of the tiles in
one MIPmap level must be equal in size. You generally choose a tile size that’s about
1/4 of the clip size or less.

Divide the levels into separate files to maximize download performance.
The files should be named properly so that the image caches can access them.

If the configuration parsers are used, cliptexture configuration files are also created
at this time.

The following sections describe the steps in this procedure in greater detail.
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Building a MIPmap

Building a MIPmap of an image requires an algorithm that performs the following tasks:

1. Start with the highest-resolution version of the image (texture). The image
dimensions in pixels must be in powers of 2, for example, 8192 X 8192.

2. Average every four adjacent texels of a high resolution image into a single texture
(essentially blurring it and shrinking it by a factor of two in both dimensions).

3. Save the result as a new, blurrier, smaller image.

4. Convert the MIPmaps into a compatible format.

5. Repeat the first two steps with each blurrier image until you have a single texel
whose color is the average of all the texel colors in the original image.

Each successive reduction is called a level of detail (LOD). The more the reduction, the
higher the level of detail, the coarser the image.

There are a variety of tools that tile textures. IRIS Performer provides some simple ones
available in the /usr/share/Performer/src/tools directory. They are listed in Table 10-1.

Table 10-1 Tiling Algorithms

Program Description

rsets Shrinks and tiles one or more .rgb image files recursively. rsets stops tiling when it
reaches the clip size you give it. rsets assumes that the original image is square.

rgh2raw  Converts .rgb images into a raw format that can be downloaded directly into texture
memory. Files should be in a raw format to avoid conversions at download time.

shrink Is a subset of rsets functionality; makes a tree-like structure of LOD images from an
.rgb image.

to5551 Converts from .rgb to the 5551 raw format.

to888 Converts from .rgb to the 888 raw format.

t08888 Converts from .rgb to the 8888 raw format.

viewtile Enables the user to view a raw format image tile.

For more information about MIPmaps, see the OpenGL Programming Guide.



Preprocessing ClipTextures

Formatting Image Data

The texel data must be in a format that can be used in IRIS Performer textures. This
means the texels must have contiguous color components, whose size and type match a
supported format. Keep in mind that these texels will be loaded dynamically, on an
as-needed basis, so the smaller the size of each texel, the better the performance of the
cliptexture. You should choose the smallest texel format that provides acceptable color
quality. A good choice might be RGBA 5551, which takes up 16 bits per texel. IRIS
Performer provides some tools for converting from rgb format to 5551 or 888 RGBA.
They are named t05551 and t0888 and are found in /usr/share/Performer/src/tools.

For more information about file formats, see “Building a MIPmap” on page 314.

Tiling an Image

Dividing a texture into tiles allows you to look at a subset of all texels in the texture. In
this way, you can selectively download from disk into the texture memory only those
texels that the user is viewing and those they might soon look at. Since downloading
texture tile files from disk to texture memory takes a long time, the image cashes decide
which tiles a viewer might need next and download them in advance.

Note: In the highest resolution LOD, one texel corresponds to one pixel.

Texel tiles in each level are loaded into memory separately, from coarsest to finest. The
high-resolution tiles take longer to download than the coarser tiles. If a viewer advances
through a scene so quickly that the high-resolution tiles cannot download from disk into
texture memory in time, lower-resolution tiles are displayed instead. The effect is that if
the viewer goes too fast, the tiles become blurry. When the viewer slows down, the tiles
displayed are less coarse.

Using lower instead of higher-resolution levels is controlled by cliptexture’s load control
mechanism, DTR. Without DTR, IRIS Performer waits for all of the levels to download
before displaying any one of them. DTR removes this restriction, displaying the levels
that have been downloaded.

If you want to break up a rgb image into tiles, IRIS Performer provides the subimg
program in /usr/share/Performer/src/tools.
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Tile Size

Small tiles, while less efficient, are better at load leveling, since the time it takes to load a
new tile into system memory is smaller. It also means that the total size of an image cache
in system memory can be smaller. We’ve found that tile sizes 0f 512 x 512 and 1024 x 1024
provide a good trade-off between download efficiency and low latency, but download
performance is very sensitive to system configuration. Experimenting is the best way to
find a good tile size.

Cliptexture Configuration
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After preprocessing the texture data, you need to configure cliptextures. Configuration
is actually a two step process; the configuration that can be done by the scenegraph
loader, and the configuration that requires pfPipes and pfChannels to be present. We’'ll
discuss the first stage of configuration here.

Configuration Considerations

An application must configure the cliptexture in two steps:
= Loader—when the scene graph is constructed.

= Post-loading—when the channel and pipes are known to the application.

This process is complex. IRIS Performer supplies a number of utilities to make the job
easier.

To manipulate cliptexture parameters, the application makes calls to the
pfMPClipTexture in the APP process. The pfMPClipTexture updates the cliptexture in a
frame-accurate manner.

Load-Time Configuration

This is the time the scene graph is being constructed. Geostates are pointed to
cliptextures; the cliptextures themselves are created and configured using the cliptexture
configuration files and the libpfdu parsers. If the application does its own configuration,
it should use the libpfutil routines to simplify the process and to ensure adequate error
checking. If the application opts to use IRIS Performer clipcentering support, clipcenter
nodes are inserted into the scenegraph at the root of the cliptextured geometry and
connected to the corresponding cliptexture.
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Post-Load-Time Configuration

At this stage the scene graph has been created and the channels and pipes have been
defined. The libpfutil traversers (pfuProcessClipCenters() or
pfuProcessClipCentersWithChannel()) are used to create pfMPClipTextures,
connecting them with the appropriate cliptextures and clipcenter nodes. These routines
return a list of pfMPClipTextures, which can be used to with
pfuAddMPClipTextureToPipes() and pfuAddMPClipTexturesToPipes() to attach the
pfMPClipTextures to the appropriate pfPipes. These routines can be used for single pipe
and multipipe applications with little or no change to the calling sequence.

Since cliptexture configuration is complex, we provide three different cliptexture
configuration API layers, allowing different trade-offs between flexibility and simplicity.

libpr Functionality

The lowest layer, using the libpr calls, is the most complex and difficult. A cliptexture has
the same configuration requirements as a MIPmapped pfTexture, where texel format,
type and texture dimensions must be configured. In addition, cliptextures have to know
about system memory caching, the file configuration of the texture data, load control,
read queue, and other cliptexture specific configurations.

Using the libpr layer directly is not recommended, since it is error prone and does not
buy much flexibility compared to the libpfutil configuration routines. Here is a list of the
libpr calls you must consider when configuring a cliptexture directly:

These are the functions needed to configure the cliptexture itself. The cliptexture contains
two types of levels: image cache levels and image tile levels. Image caches support
clipped levels in a cliptexture. They know where their texture data resides on disk, they
understand clip regions, and setup system memory caching and updating. Every
properly-configured image cache points to an image tile, called a proto tile, which
contains global information about the texel format, size, and file information about the
image tiles the image cache uses to update clipped texture levels.
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Configuring an Image Cache Level

Image tiles can be used by themselves to represent unclipped levels. Essentially the
unclipped level is represented by a single tile covering the entire level. Because image
tiles do not understand clip regions and can not do dynamic updating, image tiles cannot
be used to represent clipped levels.

To configure an image cache level, use the following calls:

= pfNewClipTexture

= pfTexName

= pfClipTextureVirtualSize

= pfClipTextureClipSize

= pfTexImage

= pfTexFormat

= pfClipTexturelnvalidBorder

= pfClipTextureEffectiveLevels

= pfClipTextureAllocatedLevels

= pfClipTextureLevel

Configuring an Image Cache Proto Tile

There are also image tile calls in this sequence. They are used to configure the image
cache’s proto tile, which is used as a template for the tiles the image cache will use to load
texel data from disk to system memory cache.

To configure an image cache proto tile, use the following calls:

= pfNewlmageTile

= pflmageTileReadFunc

= pfGetimageTileMemInfo (page size)

= pflmageTileMemInfo

= pflmageTileReadQueue

= pflmageTileHeaderOffset
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pflmageTileNumFileTiles
pflmageTileSize
pflmageTileFileName
pflmageTileFilelmageType
pflmageTileMemImageType

Configuring an Image Cache

To configure an image cache, use the following calls:

pflmageCacheName
pflmageCacheTexRegionOrigin
pflmageCacheMemRegionOrigin
pflmageCachelmageSize
pflmageCacheMemRegionSize
pflmageCacheTileFileNameFormat
pflmageCacheTexRegionSize
pflmageCacheMemRegionSize
pflmageCacheTex
pflmageCacheTexSize
pflmageCacheFileStreamServer
pflmageCacheProtoTile—copies the information into the image cache’s proto tile.

pfDelete (tmp proto tile)}—now that it’s copied into the image cache, you can delete
it.

Configuring a pfTexture

Image caches can be used independently of cliptextures, if they are, they need to be
associated with a pfTexture, and that texture needed to be configured.
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To configure a pfTexture, use the following calls:
= pfTexImage

= pfTexFormat

Configuring the Default Tile

Image caches can have a default tile defined, which is the tile to use if a tile on disk can’t
be found. Default tiles can be useful for “filling in”” border regions of a cliptexture level.
Default tiles are covered in more detail in section “default_tile” on page 332.

To configure the default tile, use the following calls:

= pfNewlmageTile

= pfCopy (proto to default)

= pflmageTileFileName

= pflmageTileReadQueue

= pflmageTileDefaultTile

Configuring Image Tiles

Image tiles need there own configuration, since they need to know about the file they
should load from, texel formats, etc.

To configure an image tile, use the following calls:
< pfNewlmageTile

< pflmageTileMemImageFormat

« pflmageTileFilelmageFormat

< pflmageTileMemImageType

= pflmageTileSize

« pflmageTileHeaderOffset

e pfClipTextureLevel

< pfLoadlmageTile
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Configuration Utilities

Using the libpr calls to configure a cliptexture is difficult and error prone. IRIS Performer
provides utilities to make cliptexture configuration easier and more robust. The
configuration utility API is broken into two groups. One group is used to configure
cliptextures, the other configures image caches. Each group contains three functions, an
init function, a config function, and a free function. These functions work with a structure
that the application fills in.

The init function initializes the optional fields in the structure with default values, and
the mandatory fields with illegal values. Configuring the structure allows the
configuration function to do more error checking, and to allow the application to avoid
the tedium of filling in optional field. The application then sets fields in the structure to
parameterize how the cliptexture or image cache should be configured. The application
then calls the configuration function on the filled in structure. The free function is then
called with the structure to ensure that all allocated values are freed.

Cliptexture Configuration

Methods to configure the cliptexture include:

pfulnitClipTexConfig(pfuClipTexConfig *config)
Initialize the values of the pfuClipTexConfig structure that has been
allocated by the application.

pfuMakeClipTexture(pfuClipTexConfig *config)
Return a cliptexture configured as directed by the values in the
pfuClipTexConfig structure.

pfuFreeClipTexConfig(pfuClipTexConfig *config)
Free any malloc’d structures that the application or the init function may
have created.
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Image Cache Configuration

Methods to configure the image cache include:

pfulnitimgCacheConfig(pfulmgCacheConfig *config)
Initialize the values of the pfuClipTexConfig structure that has been
allocated by the application.

pfuMakelmageCache(pfulmgCacheConfig *config)
Return a cliptexture configured as directed by the values in the
pfuClipTexConfig structure.

pfuFreelmgCacheConfig(pfulmgCacheConfig *config)
Free any malloc’d structures that the application or the init function may
have created.

All of these functions are defined in libpfutil/cliptexture.c. The structures themselves are
defined in pfutil.h.

Filling in the Structures

Filling the pfulmgCacheConfig structure to create and configure the image cache is
considerably simpler than setting fields in the pfuClipTexConfig structure. This is
because the cliptexture configuration must also create and configure image cache and
image tiles to populate its levels. The configuration code does this supplying a function
pointer to configure the image cache levels and a function pointer for configuring image
tile levels. Each function pointer also has a void data pointer so you can pass data to the
functions. The function pointers expect functions with the following forms:

pflmageCache *examplelCacheConfigFunction(pfClipTexture *ct,
int level, struct _pfuCilpTexConfig *icInfo)

pflmageTile *examplelTileConfigFunction(pfClipTexture *ct,
int level, struct _pfuClipTexConfig *icInfo)

The cliptexture and image cache configuration parsers, described in the next section, use
the configuration utilities. You can look at the parsers as example code. For example, you
may want to look at pfdLoadlmageTileFormat() and pfdLoadlmageCache() formats for
example functions for the function pointers. The parsers are in the
/usr/share/Performer/src/lib/libpfdu/pfdLoadImage.c file.
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Configuration Files

The easiest and most commonly used method to configure cliptextures is to create
cliptexture and image cache configuration files, then use the configuration parsers to
create and configure cliptextures. The configuration files can be created and stored along
with the texture data files. Configuration files allow an application or loader to simply
call a single function to create and configure cliptextures.

Configuration files are ascii text files containing a token parameter format. Values are
separated by white space and the token parameter sequences can be placed in the file in
arbitrary order. Comments can also added to the configuration files, making them
self-documenting.

Using Configuration Files

Four parser functions are available to create and configure cliptextures and image caches
using configuration files:

pfClipTexture *pfdLoadClipTexture(const char *fileName)

pflmageCache *pfdLoadlmageCache(const char *fileName)

These parser functions take a configuration file name, and use it to configure and create
a cliptexture or an image cache respectively. The cliptexture configuration file may refer
to image cache configuration files, which will be searched for and used automatically.

Two other versions of these parsers also take a pointer to a configuration utility structure.
This allows the user to pre-configure using the configuration structure, then finish with
the parser and configuration files.

pfClipTexture *pfdLoadClipTextureState(const char *fileName,
pfuClipTexConfig *state)

pflmageCache *pfdLoadlmageCacheState(const char *fileName,
pfulmgCacheConfig *state)

The parsers use IRIS Performer’s pfFindFile() functionality to search for the
configuration files. The parsers support environment variable expansion and relative
pathnames to make it simpler to create configuration files that refer to other
configuration or data files.

323



Chapter 10: ClipTextures

324

Creating Configuration Files

To successfully use cliptextures, you must first prepare the texture data and create the
configuration files:

1.

Create an image cache configuration file for each level using an image cache in the
cliptexture.

The configuration file should describe the:

< Format and tiling of the texture data.

= Location and names of the files containing the texture data.
= Size of the tex region in texture memory.

= Size and layout of the mem region in system memory.
Create a cliptexture configuration file.

It contains the:

= Name and location of each image cache configuration file.

= Names and locations of the texture data for each image tile level in the
cliptexture. Remember, image tile levels can’t be clipped levels, so they can only
be used in the pyramid levels. Image cache levels can be used anywhere.

= General properties of the cliptexture.

= Look at the example cliptexture configuration files in the
/usr/share/Performer/data/clipdata directory. The cliptexture configuration files use
the .ct suffix. The image cache configuration files use .ic for their suffixes.

Test the image cache configuration files individually, using the pguide/libpr/C/icache
program.

Test the cliptexture configuration file using the /pguide/libpr/C/cliptex or the
/pguide/libpf/C/cliptex programs

When the configuration and data files are complete and tested, your application an
create and configure a cliptexture by calling pfdLoadClipTexture(fname) using the
name of the cliptexture configuration file. If more control is needed, you can use
pfdLoadClipTextureState(fname, state) initializing and configuring the
configuration utility cliptexture structure, pfuClipTexConfig.
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Configuration File Tips

Unfortunately, cliptexture configuration is not trivial, even with documentation and
example programs. Success in creating working configuration files requires a two prong
approach:

= Keep them simple: set the minimum number of fields possible. Take advantage of
default value. Try to find a similar example configuration file to copy from.

= Work bottom-up: create and test image cache configuration files first, gradually
building up to the cliptexture configuration file.

We’ve found that parameterized naming of the image caches and tile files works the best.
If you’ve named your files consistently, this can be easy. If things don’t work, you can fall
back and name your file explicitly as a sanity check. Read the error messages carefully;
they try to point out where in the configuration file the parser found problems. If you
need more information, try re-running the program with PFNFYLEVEL set to 5 or 9.

A number of example configuration files and cliptextures are available on the IRIS
Performer release. Working from one of them can save a lot of time. Some places to look
are:

= data/clipdata/hunter
= data/clipdata/moffett
= data/asddata

Cliptexture Loaders

Finally, your application might be able to take advantage of some of the cliptexture
loaders. The libpfim loader supports loading a cliptexture, and updating its center as a
function of viewposition. The libpfct loader creates a cliptexture with simple terrain.
Virtual cliptextures, mentioned in “Virtual ClipTextures” on page 353, can also be created
using the libpfspherepatch or libpfvct loaders. These loaders can be used as examples if
you need to write your own loader that supports cliptextures.
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Image Cache Configuration File Details

Image cache configuration files supply the following information to IRIS Performer:

Format of the texel data.

Size of the entire texture at a particular MIPmap level.

How to find the files containing the texel data for this image cache.

Size and layout of image cache tiles in memory.

Size of the image cache that should be kept in texture memory.

A default image tile to use if one is missing.

The size each level should be clipped to

The amount of border that should be invalidated at each level

How to find the image cache configuration files

How to find the tiles consisting the levels that aren’t image caches

Configuration Fields

Configuration fields are either tokens or parameter values, as listed in Table 10-2. All
fields are character strings and all parameters must be separated by white space. The
token names marked with an asterisk (*) are optional, and default to reasonable values.

Table 10-2 Image Cache Configuration File Fields

Token Name Parameters Description

ic_version2.0 no data field Starts image cache config files: type and version
*tex_size 3 integers area of tex memory for level if not tex_region_size
*header_offset integer beginning of file to skip over in bytes
*tiles_in_file 3 integers dimensions of grid of tiles stored in each file
*s_streams filepath list list of streams used to access files in S dimension
*t_streams filepath list list of streams used to access files in T dimension
*r_streams filepath list list of streams used to access files in R dimensions
*default_tile filepath string tile to use if expected tile isn’t available
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Table 10-2 (continued)

Image Cache Configuration File Fields

Token Name Parameters Description

*page_size integer system page size; memory allocation alignment
*read_func 1 or 2 strings custom read function; library, func or func in app
*lookahead integer extra tiles in mem region for lookahead caching
ext_format string External format of stored texels

int_format string Internal format used by graphics hw
img_format string Image format of stored texels

icache_size 3 integers size of complete image level in texels
tex_region_size 3integers area to load in texture memory; matches clip size
mem_region_size 3 integers dimensions of system memory cache in tiles
tile_size 3 integers dimensions of each file in texels

tile_format scanf-style string parameterized path to tile files

tile_params list of symbols parameter types in order in tile_format string

Image Cache Configuration File Description

The ic_version2.0

token must be first in an image cache configuration file. This token

identifies the file as an image cache configuration file and what version the configuration

file is formatted in.

Next the parser looks for tokens and any associated data values. In general, the order of
the tokens in the file must follow the sequence specified in the table above. The tokens
marked with an asterisk are optional. Optional tokens have default values, which are
used if the token and value are omitted.Tokens can have:

= No arguments.

= A fixed number of arguments.

= Avariable number of arguments.
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If a token has a fixed number of arguments, the token must be followed by a white
space-separated list containing the specified number of arguments. If the token has a
variable number of arguments, one of its arguments specifies the number of arguments
used.

Any time a token is expected by the parser, a comment can be substituted. A comment
can’t be put anywhere in the file, however. For example, if a token expects arguments,
you can’t place a comment between any of them; you have to place it after all of the
previous tokens arguments. There are a variety of supported comment tokens; they are
interchangeable. The comment tokens are #, // , ; , comment, Or rem.

ext_format, int_format, and img_format

One of the first things that must be specified in an image cache is the format of the texel
data. This includes the external format (ext_format ), internal format (int_format ) and
image format (img_format ). The arguments expected by these format parameters are the
ascii string names of the format’s enumerates. For example, a valid external format
would be ext_format PFTEX_FLOAT . Consult the pfTexture man pages for a list of the
valid formats of each type.

icache_size, mem_region_size, and tex_region_size

The next set of parameters that must be specified in the image cache configuration file is
its size on disk, in system memory, and in texture memory. The icache_size  token
requires the size of the image cache. This means the dimensions, in texels, in the s, t, and
r dimensions of the complete texture at this level. Since three dimensional textures are
not currently supported, the r parameter will always be 1.

An image cache’s texels are organized into a set of fixed sized pieces, called tiles. Both in
system memory and on disk, the texels are broken up this way. At any given time, an
array of these texel tiles are cached in system memory. They are arranged as an array in
system memory. If the center of the image cache nears the edge of this array, the most
distant tiles are dropped out, and new tiles are read in from disk. The larger the array of
tiles in system memory, the more of the complete texture is cached there, and the less
likely new tiles may need to be swapped in. The benefit is offset by the cost of tying up
more system memory to hold the texel tiles.
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The arrangement and dimensions of tiles in system is defined for each image cache, and
is set with the mem_region_size  token. This token expects three arguments which
determine the number of tiles in the s, t, and r dimensions of the grid. Since three
dimensional textures aren’t currently supported, the r dimension is always 1.

A subset of the texels in system memory are cached in the texture memory itself. These
texels are arranged in a rectangular region. The dimensions of this region are defined by
the tex_region_size token. It expects three arguments, the number of texels in the s, t,
and r dimensions. Again, since three dimensional textures aren’t supported, the r value
is always 1.

The image cache configuration file allows some leeway in the arrangement of texel tiles
on disk. There can be one or more tiles on each disk file, and the file itself could contain
non-texel information at the beginning of the file. The tiles themselves can have
user-specified dimensions. While there is some flexibility in how tiles are stored in files
on disk, there are restrictions also. Any header must be the same size for every file in an
image cache. The same is true for the tile size, and the number and layout of tiles in each
file. If there is more than one tile in a file, the tiles must be arranged in row-major order.
In other words, as you pass from the first tile to the last, the s dimension must be
incrementing fastest.

tile_format and tile_params

The image cache texel data is stored in one or more files. The configuration file provides
away for IRIS Performer to find these files. The files usually have similar names, varying
in a predictable way, such as by tile position in the image cache array and size of the
image cache. The files themselves are grouped in on or more directories. The file name
and file path information is divided into a number of groups within the configuration
file. There is a scanf-style string specifying the path to find image cache files. There are a
number of parameters in the string that vary as a function of the tile required, and
characteristics of the image cache.

The next group of tokens describes the location of the configuration files defining the
location of the texture data tiles for the image cache. You can define the texture tile
configuration filenames with a scanf-style string containing parameter values, as is done
with image caches. To create parameterized image cache names, you must define the
tile_format and tile_params  tokens.
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The tile_format

token is followed by a scanf-style string describing the filepath and

filename of the image cache configuration files. The argument contains constant parts,
interspersed with %d or %s parameters. The number of parameters must match the

number of symbols supplied as parameters to the tile_params

token. If the tile_format

string starts with the pattern $SENVNAMES{ENVNAME}or $(ENVNAME) then the value of
ENVNAMRvill be assumed to be an environment variable, and expanded into the

basename.

The possible values of the image tile file name parameters is given in the table below.

Table 10-3 Image Tile Filename Tokens

Image Tile Filename Tokens

Description

PFIMAGECACHE_TILE_FILENAMEARG_VSIZE_S
PFIMAGECACHE_TILE_FILENAMEARG_VSIZE_T
PFIMAGECACHE_TILE_FILENAMEARG_VSIZE_R
PFIMAGECACHE_TILE_FILENAMEARG_TILENUM_S
PFIMAGECACHE_TILE_FILENAMEARG_TILENUM_T
PFIMAGECACHE_TILE_FILENAMEARG_TILENUM_R
PFIMAGECACHE_TILE_FILENAMEARG_TILEORG_S
PFIMAGECACHE_TILE_FILENAMEARG_TILEORG_T
PFIMAGECACHE_TILE_FILENAMEARG_TILEORG_R
PFIMAGECACHE_TILE_FILENAMEARG_STREAMSERVERNAME
PFIMAGECACHE_TILE_FILENAMEARG_CACHENAME
PFIMAGECACHE_TILE_FILENAMEARG_FILENUM_S
PFIMAGECACHE_TILE_FILENAMEARG_FILENUM_T

PFIMAGECACHE_TILE_FILENAMEARG_FILENUM_R

Virtual size S width
Virtual size T width
Virtual size R width
Tiles from originin S
Tiles from originin T
Tiles from origin in R
Texels from origin in S
Texels fromoriginin T
Texels from originin R
From streams

The tile_base value
Files from originin S
Files from originin T

Files from originin R
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header_offset, tiles_in_file, and tile_size

The header_offset ~ argument specifies the size of the file’s header in bytes. This many
bytes will be skipped over as a file is read. The tiles_in_file token requires three
arguments, specifying the number of tiles in the s, t, and r dimensions. The r dimension
must always be 1, since 3d textures aren’t supported. The tile_size parameter defines
the texel dimensions of each tile in s, t, and r. Again, r must be 1. Both the header_offset
and the tiles_in_file tokens are optional. They default to the valuesO0and 111
respectively, specifying no header and a single tile in each file.

One of the major bottlenecks to sustained cliptexture performance is the speed of
copying texels from disk to system memory. Cliptextures can be configured to maximize
the bandwidth of this transfer, by distributing image tiles over multiple disks, and
downloading them in parallel. The streams section of the configuration file is used for
this purpose.

num_streams, s_streams, t_streams, and r_streams

A stream, short for stream device, can be thought of as a separate disk that can be
accessed in parallel with other disks. Each disk is mounted in a file system, and therefore
has a unique filepath segment. The streams tokens allow the user to identify these stream
filepath segments, and how the image tiles are distributed among them. The stream
devices are arranged in a three dimensional grid, with s, t, and r dimensions, just like the
image tiles are in memory. The stream device is accessed by taking the position of the tile,
counting tiles from the origin in the s, t, and r directions, and generating a coordinate,
modulo the number of stream devices in the corresponding s, t, and r directions. The s, t,
and r values generated are used to look up the appropriate stream device. If the stream
server name is part of the tile file name format string, it effects which disk is used to find
the tile.

Stream servers improve bandwidth at the expense of duplicating image tiles over
multiple disks. You must insure that the proper image tiles are available for any disk
which is addressed by the tile’s s, t, and r coordinates modulo the available number of
stream servers for each of those dimensions. The stream server tokens are optional. The
s_streams token is followed by a list of filepaths. These are the names that will be
indexed from the list by taking the s coordinate of the tile’s position in the image cache
grid, modulo the number of s stream devices. The names in the s_stream list do not have
to be unique.

Thet streams andr_streams tokens work in exactly the same way, inthetand r
directions, respectively.
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Sometimes only a subregion of the entire cliptexture is of interest to the application. This
is especially true when you consider that the number of tiles in the s, t, and r directions
must all be a power of two. To save space, improve performance, and make creating
image caches more convenient, a default tile can be defined, and tiles of no interest can
simply be omitted. If a tile can’t be found, and a default tile is defined, then the default
one is used in place of the missing one.

default_tile

Unlike normal tiles, which are read from disk as they are needed, the default tile is loaded
as part of the configuration process. The tile is named in the configuration file as the
argument to the default_tile token. The argument is a filepath to the default tile. If the
tile_base  token has been defined, it is pre-pended to the file path, otherwise it is used
as-is.

Cliptexture Configuration File Details

Image cache configuration files supply the following information to IRIS Performer:
= Format of the texel data.

= Size of the entire texture at a particular MIPmap level.

< How to find the files containing the texel data for this image cache.

< Size and layout of image cache tiles in memory.

= Size of the image cache that should be kept in texture memory.

= A default image tile to use if one is missing.

« The size each level should be clipped to

= The amount of border that should be invalidated at each level

< How to find the image cache configuration files

< How to find the tiles consisting the levels that aren’t image caches
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Configuration Fields

Configuration fields are either tokens or parameter values, as listed in Table 10-4. All
fields are character strings and all parameters must be separated by white space.

Table 10-4 Cliptexture Configuration File Fields

Token Name Parameters Description

#or // or ; or comment comment comment symbols; comment to end of line
ct_version2.0 no data field Starts file: type and version

ext_format string External format of stored texels

int_format string Internal format used by graphics hw
img_format string Image format of stored texels

virt_size 3integers size of complete texture at level 0 (finest level)
clip_size integer size of clip region square for clipped levels
*invalid_border integer width of clip region perimeter to not use
*tile_size 3 integers size of tiles (used when if no icache config files)
*smallest_icache 3 integers smallest icache level dimensions

*lookahead integer extra tiles in mem region

*icache_format
*effective_levels
*icache_params
*icache_files
*tile_files
*effective_levels
*allocated_levels
*header_offset
*tiles_in_file

*read_func

scanf string
integer

string list

list of filenames
list of filenames
integer

integer

1 integer

3 integers

1 or 2 strings

icache fnames: no field? list files

levels used for texturing in virtual cliptexture
format tokens in order

only if icache_format is default

pyramid; only if tile_format default

levels used for texturing in virtual cliptexture
total virtual cliptexture levels in texture memory
Byte offset to skip user’s file header

Image tile arrangement in each file

custom read function; lib & func or func in app
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Table 10-4 (continued) Cliptexture Configuration File Fields

Token Name Parameters Description

*tile_format scanf string Tile filename format

*tile_params string list Format parameter tokens in order

*page_size integer system page size; memory allocation alignment

Cliptexture Configuration File Description

The ct_version2.0 token must be first in an cliptexture configuration file. This token
identifies the file as an cliptexture configuration file and what version the configuration
file is formatted in.

Next the parser looks for tokens and any associated data values. In general, the order of
the tokens in the file must follow the sequence specified in the table above. The tokens
marked with an asterisk are optional. Optional tokens have default values, which are
used if the token and value are omitted.

Tokens can have:
= No arguments.
= A fixed number of arguments.

= Avariable number of arguments.

If a token has a fixed number of arguments, the token must be followed by a white
space-separated list containing the specified number of arguments. If the token has a
variable number of arguments, one of its arguments specifies the number of arguments
used.

Any time a token is expected by the parser, a comment can be substituted. A comment
can’t be put anywhere in the file, however. For example, if a token expects arguments,
you can’t place a comment between any of them; you have to place it after all of the
previous tokens arguments. There are a variety of supported comment tokens; they are
interchangeable. The comment tokens are #, // , ; , comment, Or rem.
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ext_format, int_format, and img_format

One of the first things that must be specified in a cliptexture is the format of the texel data.
This includes the external format (ext_format ), internal format (int_format ) and image
format (img_format ). The arguments expected by these format parameters are the ascii
string names of the format’s enumerates. For example, a valid external format would be
ext_format PFTEX_FLOAT . Consult the pfTexture man pages for a list of the valid
formats of each type.

virt_size and clip_size

The next group of tokens characterizes the image cache itself. The virt_size token
expects three integer arguments. They define the s, t, and r dimensions of the level 0 layer
of the cliptexture in texels. The clip_size ~ token describes the size of each layer that
exists in texture memory:. It also takes three integers, describing the s, t, and r dimensions
of the clipped region. This value is the same for all levels of a cliptexture. If the image
cache configuration files’ clip_size  differs from this value, the cliptexture overrides it.

invalid_border

The invalid_border defines the region of each clipped level that shouldn’t be used. If a
texel is needed in that region, the next level down is used instead. If the invalid border is
large, the system may have to go down muiltiple levels, or even down to the pyramidal,
unclipped part of the MIPmap. The invalid border argument is a single integer,
describing the width of the border in texels.

smallest_icache

The smallest_icache token describes the s, t, and r dimensions of the lowest level that
is described as an image cache. This parameter is needed because the unclipped,
pyramidal part of the MIPmap can also be configured as image caches. This is an optional
token. If itisn’t included in the file, the last clipped level is considered the smallest image
cache in the cliptexture.

icache_files, icache_format and icache_params

The next group of tokens describes the location of the configuration files defining the
image cache levels of the cliptexture. There are two methods of describing where the
image cache configuration files. You can explicitly list the filenames in order with
icache_files
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The other method is to define the image cache configuration filenames with a scanf-style
string containing parameter values, as is done with image caches. This is usually the
preferred method. To create parameterized image cache names, you must define the
icache_format and icache_params tokens. If the format string starts with the pattern
SENVNAMEBS{ENVNAME}or $(ENVNAME), then the value of ENVNAMBRvill be assumed to be
an environment variable, and expanded into the basename.

Theicache_format  token is followed by a scanf-style string describing the filepath and
filename of the image cache configuration files. The argument contains constant parts,
interspersed with %d or %s parameters. The number of parameters must match the
integer given with the num_icache_params token. The tile parameters themselves follow
the icache_params token.

icache_files

The number of parameters must match the number of parameters inicache_format . All
of these parameters are optional. The list of available parameter tokens is given in
Table 10-5.

Table 10-5 Parameter Tokens

Parameter Token Name Description
PFCLIPTEX_FNAMEARG_LEVEL Cliptexture level (top is 0)
PFCLIPTEX_FNAMEARG_LEVEL SIZE Largest value of level’s virtual size

PFCLIPTEX_FNAMEARG_IMAGE_CACHE_BASE Value of icache_base

PFCLIPTEX_FNAMEARG_TILE_BASE Value of tile_base

The parameter values are used to construct the name of the image cache configuration
file; uniquely naming that file for each level of the cliptexture.

Near the bottom of the cliptexture, the size of lower levels are too small to warrant image
caches. These levels are specified directly, referring to a single filename containing a
single image tile for each level. The filenames for these tile files are specified in exactly
the same way as the image cache configuration files are. Instead of icache_base
icache_format , num_icache_parameters , and icache_parameters , tile_base ,
tile_format , hum_tile_parameters , and tile_parameters are used. The parameters
available for use in the tile_format string are identical to the ones used for
icache_format
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tile_files

If image cache configuration files and/or image tiles are to be explicitly named, they are
listed in order, from the top (largest) level to the bottom, using the icache_files and
tile_files tokens. These tokens can only be used if the corresponding format,
num_parameters, and parameter tokens aren’t. The number of filenames listed after
icache_files and tile_files must exactly match the number of cached and uncached
levels, respectively, in the cliptexture.

header_offset, tiles_in_file, and tile_size

The header_offset ~ argument specifies the size of the file’s header in bytes. This many
bytes will be skipped over as a file is read. The tiles_in_file token requires three
arguments, specifying the number of tiles in the s, t, and r dimensions. The r dimension
must always be 1, since 3d textures aren’t supported. The tile_size parameter defines
the texel dimensions of each tile in s, t, and r. Again, r must be 1. Both the header_offset
and the tiles_in_file tokens are optional. They default to the valuesOand 111
respectively, specifying no header and a single tile in each file.

The image cache texel data is stored in one or more files. The configuration file provides
away for IRIS Performer to find these files. The files usually have similar names, varying
in a predictable way, such as by tile position in the image cache array and size of the
image cache. The files themselves are grouped in on or more directories. The file name
and file path information is divided into a number of groups within the configuration
file. There is a scanf-style string specifying the path to find image cache files. There are a
number of parameters in the string that vary as a function of the tile required, and
characteristics of the image cache.

tile_base, tile_format and tile_params

The tile_format token expects a scanf-style argument. If the string starts with the
pattern SENVNAMES{ENVNAME}or $(ENVNAME), then the value of ENVNAMBRvill be
assumed to be an environment variable, and expanded into the basename.

The argument contains constant parts, interpersed with %d or %s parameters.The tile

parameters themselves follow the tile_params  token. The number of parameters must
match the number of parameters in tile_format.
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The possible values of the image tile file name parameters is given in the table below.

Table 10-6 Image Tile Filename Tokens

Image Tile Filename Tokens

Description

PFIMAGECACHE_TILE_FILENAMEARG_VSIZE_S
PFIMAGECACHE_TILE_FILENAMEARG_VSIZE_T
PFIMAGECACHE_TILE_FILENAMEARG_VSIZE_R
PFIMAGECACHE_TILE_FILENAMEARG_TILENUM_S
PFIMAGECACHE_TILE_FILENAMEARG_TILENUM_T
PFIMAGECACHE_TILE_FILENAMEARG_TILENUM_R
PFIMAGECACHE_TILE_FILENAMEARG_TILEORG_S
PFIMAGECACHE_TILE_FILENAMEARG_TILEORG_T
PFIMAGECACHE_TILE_FILENAMEARG_TILEORG_R
PFIMAGECACHE_TILE_FILENAMEARG_STREAMSERVERNAME
PFIMAGECACHE_TILE_FILENAMEARG_CACHENAME
PFIMAGECACHE_TILE_FILENAMEARG_FILENUM_S
PFIMAGECACHE_TILE_FILENAMEARG_FILENUM_T

PFIMAGECACHE_TILE_FILENAMEARG_FILENUM_R

Virtual size S width
Virtual size T width
Virtual size R width
Tiles from originin S
Tiles from originin T
Tiles from origin in R
Texels from originin S
Texels fromoriginin T
Texels from originin R
From streams

The tile_base value
Files from originin S
Files from originin T

Files from originin R

Optional Image Cache Configuration Files

If the cliptexture has a very regular structure from level to level, the cliptexture
configuration file can be augmented with some extra fields, and the image cache
configuration files dispensed with. We recommend you start with the image cache
configuration files, however, because it makes it easier to gradually create and test your

configuration files using the icache and cliptex utilities in the
Jusr/share/Performer/src/pguide/libpr/C directory.
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Image cache configuration files can be removed if the image caches of the cliptexture are
essentially the same, and configuration of each image cache is simple. The image caches
should only different in size between levels; the tile size, formats, tile filename format,
etc. should be the same. Also image cache configuration files aren’t optional when
features like streams are configured.

To stop using image cache configuration files, you should add a TILE_SIZE token to the
cliptexture configuration file, and be sure to have TILE_FORMAT and TILE_PARAMS
specified.The tile specification in the cliptexture configuration file will be used for all tile
files the ones used by the image caches and the ones in representing pyramid levels.

In order to make the parser stop using the image cache configuration files, remove the
entries referring to them such as icache_format, icache_params, or icache_tiles.

An example of a cliptexture configuration file that doesn’t use image cache configuration
files is /usr/share/Performer/data/clipdata/hunter/hl.noic.ct.

Post-Scene Graph Load Configuration

There are a number of cliptexture configuration steps that can’t be completed until the
IRIS Performer application’s pipes and channels have been created. This configuration
stage centers around configuring cliptextures to be properly applied and centered each
frame.

Two jobs must be accomplished. Each cliptexture must be attached to a pipe through its
own pfMPClipTexture so it can be applied each frame, and a centering callback must be
established to update the cliptexture as the channel’s viewpoint moves with respect to
the cliptextured geometry.

MPClipTextures

pfMPClipTexture is a multiprocess wrapper for a pfClipTexture. A pfMPClipTexture
allows you to:

= Change the center of the pfClipTexture in the APP process.

= Automatically perform the necessary texture downloading (applying) in the CULL
process.

= Control the cliptexture parameters in the APP process.
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Figure 10-9 pfMPClipTexture Connections

Connecting MPcliptextures to pfPipes

To automatically apply of the pfClipTexture at the correct times and in the correct
processes, you must:

1. Create a pfMPClipTexture object.

2. Attach the pfMPClipTexture to the cliptexture you want to control.

3. Attach the pfMPClipTexture object to a pfPipe using the pfPipe.

Note: If you use pfMPClipTexture, you should never call either pfUpdateMPClipTexture
or pfApplyMPClipTexture the pfPipe should do the applying.

When you attach a pfMPClipTexture to a pfPipe using pfAddMPClipTextureToPipes(),
or pfAddMPClipTexturesToPipes() pfPipe automatically updates and applies
pfClipTexture at the correct time. The functions take three arguments, an
pfMPClipTexture or list of pfMPClipTextures, a pipe to attach to, called the master pipe,
and a list of other pipes the application wants to use with the pfMPClipTextures.
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< pfAddMPClipTextureToPipes(pfMPClipTexture, masterpipe, pipe_list)

< pfAddMPClipTexturesToPipes(pfMPClipTexture_list, masterpipe, pipe_list)
The pipe_list is used for multipipe applications. It is the list of pipes that slave
pfMPClipTextures should attached to. Setting pipe_list is NULL is equivalent to adding
slave pfMPClipTextures to every other pipe in the application.

There are additional libpf routines that can be useful:

< pfRemoveMPClipTexture() detaches a pfMPClipTexture from a pfPipe. f a
pfMPClipTexture is removed that is the master of other pfMPClipTextures, the
slaves will be removed from their pipes as well.

e pfGetNumMPClipTextures() returns the number of pfMPClipTextures attached to
a pfPipe.

= pfGetMPClipTexture() returns a pointer to the pfMPClipTexture that is attached to
a pfPipe.

libpf Functionality

You can do this directly with the libpf API using the following calls:

= pfNewMPClipTexture—create a new pfMPClipTexture.

= pfMPClipTextureClipTexture—attach the pfMPClipTexture to the cliptexture.
= pfAddMPClipTexture - (a pfPipeCall)—attach the pfMPClipTexture to a pipe.
= pfMPClipTexturePipe—tell the pfMPClipTexture what pipe it’s attached to.

pfMPClipTexture Utilities

IRIS Performer provides utilities to make it easy to attach pfMPClipTextures to pipes,
and to automatically do pfMPClipTexture centering as well. As a bonus, the utility code
requires little or no changes to convert a single pipe application to a multipipe one.

To use the pfMPClipTexture utilities, you need to use IRIS Performer’s clipcenter nodes
to center the pfMPClipTexture. clipcenter nodes are a subclass of pfGroup nodes. They
have additional functionality that allows them to connect to a pfMPClipTexture, the
cliptextured geometry (through their child nodes), and properly update the
pfMPClipTexture’s center each frame. At load time, clipcenter nodes are placed at the
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root of the subtree containing the cliptextured geometry. All the cliptextures in the scene
are created configured and attached to the clipcenter node at this time as well.

Once you have a scenegraph with geometry, cliptextures, and clipcenter nodes, it’s easy
to make pfMPClipTextures, attach them to pipes and to centering callbacks. The function
pfuProcessClipCenters() traverses the scene graph, looking for clipcenter nodes. As
each node is encountered, the function creates an MP cliptexture, attaches it to the
associated cliptexture and the clipcenter node, and saves a pointer to the MP cliptexture
in a pfList. When the function returns, it provides the list of MP cliptextures that were
created. The pfuProcessClipCentersWithChannel() routine performs the same
operations, but also sets a channel pointer in the clipcenter node. When the channel
pointer is set, the clipcenter node only will update a pfMPClipTexture center when that
channel traverses it. This is useful for multichannel applications.

Clipcenter Node

In order for cliptextures to be rendered correctly, the clipcenter must move along with the
viewer. IRIS Performer has made this task simpler by providing a special node for the
scene graph that does this calculation and applies it to the cliptexture each frame. This
node, called the clipcenter node, is a subclass of a pfGroup node. In addition to pfGroup
functionality, pfuClipCenterNode’s can do the following:

= Points to the cliptexture. This allows cliptextures to be attached to clipcenter nodes
at load time.

= Points to the geometry textured by the clipcenter node’s cliptexture. The clipcenter
node is assumed rooted in the subtree containing the cliptextured geometry.

= Points to an optional simplified version of the cliptextured geometry to make
centering calculations go faster.

= Points to the pfMPClipTexture attached to the cliptexture. The node also has API to
automatically create an pfMPClipTexture and attach it to the cliptexture.

= Contains a replaceable post-APP callback function for updating a
pfMPClipTexture’s center.

= Can point to a pfChannel, and only update the pfMPClipTexture center only when
that pfChannel traverses the clipcenternode.
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Figure 10-10 pfuClipCenterNode Connections

The clipcenter node uses a simple algorithm, setting the cliptexture center to be the point
on the textured geometry closest to the viewer. Other algorithms can be substituted by
replacing the callback function.

Clipcenter nodes can be created by calling the utility routine pfuNewClipCenterNode().
There are set and get functions to attach cliptextures, channels, custom centering
callbacks, simplified cliptextured geometry, as well as a get to return the
pfMPClipTexture. See the pfuClipCenterNode man page for details on the API.

The clipcenter node source code is available in pfuClipCenterNode.C and
pfuClipCenterNode.h, in the /usr/share/Performer/src/lib/libputil directory. It is
implemented as a C++ class with C++ and C API. It also has example code illustrating to
subclass the clipcenternode further to customize it.

If the configuration has been done properly, and if pfuClipCenterNodes have been used
for centering, most of the per-frame operations for cliptextures is automatic. Centering is
computed and applied by the clipcenter nodes during the APP traversal, and cliptexture
application is automatically handled by the pfPipes attached to the pfMPClipTextures.
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Using Cliptextures with Multiple Pipes

Cliptextures use a lot of texture memory, system memory (for their caches) and disk i/o
bandwidth. Many multipipe applications produce multiple views from the same
location, looking in different directions. It would be very inefficient to create a
completely separate cliptexture for each pipe: although there is separate texture memory
and graphics hardware from each pipe, the system memory and disk resources are
shared by the entire system.

Cliptextures have been designed to support multipipe rendering without excessive drain
on system memory and disk i/o0 bandwidth. Cliptextures that are to be used in multiple
pipes can be split into master and slave cliptextures. The master cliptexture is complete; it
contains an image cache and a region of texture memory to control. A slave cliptexture

points to its master, and shares its image cache, using it to download into its own texture
memory. All the slave cliptextures share their master’s system memory cache and disk

i/0 resources, reducing the load on the system.

Tex region
Mem region
Tex region
Tex region
Mg,
S|a\/@ }

S
|Q\Ie
Figure 10-11  Master and Slave Cliptexture Resource Sharing

Making Masters and Slaves

Master and slave relationships can be established between image caches, cliptextures,
and pfMPClipTextures. The process starts with an object already configured you way
you want it. Then another object of the same type is created, and is set to be a slave of the
configured object. This is done with the setMaster() function. When an object is made the
slave of another object, it automatically configures itself to match it’s master. It also
makes all the connections necessary to share its master’s resources.
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If two cliptextures are made into a master and slave, all of their image caches must have
the same master/slave relationship. This is done automatically. This is also true for
pfMPClipTextures. The pfMPClipTextures that will be the master and slave must be
connected to cliptextures. Only the masters have to be configured, however. When the
other pfMPClipTexture becomes a slave, it configures its cliptexture, and makes it and its
image caches slaves as well.

Multipipe Cliptexture API

IRIS Performer tries to make multipipe cliptexturing as transparent as possible. Simply
call setmaster on a cliptexture, passing it a pointer to the cliptexture that should be its
master.

(master_mct is a pfMPClipTexture that’s already configured)
= pfMPClipTexture *slave_mct = pfNewMPClipTexture()
= pfClipTexture *slave_ct = pfNewClipTexture()

= pfMPClipTextureClipTexture(slave_mct, slave_ct)

= pfMPClipTextureMaster(slave_mct, master_mct)

At this point, slave_mct and master_mct are connected; slave_mct is configured to match
master_mct and shares it’s image cache resources. The cliptextures and image caches are
also configured and linked. To make pfClipTextures or pflmageCaches masters and
slaves, use the same procedure.

When you attach a pfMPClipTexture to a pfPipe with pfAddMPClipTexture() provides
automatic multipipe support. If a pfMPClipTexture is added to a pipe that is already
connected to another pipe, the function silently creates a new pfMPClipTexture, makes
it a slave of the pfMPClipTexture that is already connected to another pipe, and adds the
slave to the pipe in place of the one passed as an argument to the function.

Multipipe Utilities

Although it isn’t difficult to set up master and slave cliptextures directly, it’s usually not
necessary.The previously described utility routines, pfuAddMPClipTextureToPipes()

and pfuAddMPClipTexturesToPipes() can take multiple pipe arguments. A master
pipe and a list of slave pipes is specified. The routine makes the pfMPClipTexture a
master and attaches it to the master pipe. It then creates slave pfMPClipTextures, attaches
them to the master cliptexture, and attaches a slave cliptexture to each pipe in the
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slave_pipes list. This routine does extra checking of pipe and cliptexture state, and is
guaranteed not to generate errors, even if the function is applied more than once.

Master/Slave Share Masks

A group of cliptextures grouped by master/slave relationships can do more than share
mem region resources. By default, slave cliptextures also track a number of their master’s
attribute values. This means changing a master’s center, for example, automatically
causes the slaves to change their center locations to match their master’s. The attributes
that a slave can track are divided into groups called share groups. The application can
control which groups are shared by setting a slave’s share mask. Changing the sharing of
a slave only affects that slave’s sharing with its master. Changing the master share mask
has no effect. The share mask is set with the following call:

pfMPClipTextureShareMask(uint mask)

The mask can be set using one or more of the following values:
e PFMPCLIPTEXTURE_SHARE_CENTER—slave track the master’s center.

e PFMPCLIPTEXTURE_SHARE_DTR—slave tracks DTR; DTR mode, tex load time
(actual or calculated), fade count, and blur margin.

e PFMPCLIPTEXTURE_SHARE_EDGE—slaves track texture level parameters;
LODbias invalid border.

e PFMPCLIPTEXTURE_SHARE_LOD—slaves track minLOD and maxLOD.

e PFMPCLIPTEXTURE_SHARE_VIRTUAL—slaves track lodOffset and num
effective levels.

e PFMPCLIPTEXTURE_SHARE_DEFAULT—a bitwise ‘or’ of all the masks listed
above.

PFMPCLIPTEXTURE_SHARE_DEFAULT is the default sharemask value, which
provides maximum sharing between master and slave cliptextures. If an application
would like to control one or more slaves independently, it needs to change the slave’s
sharemask, then start setting the slaves parameters directly as needed.
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Texture Memory and Hardware Support Checking

At the first application or formatting of a cliptexture, IRIS Performer compares the
expected size of the cliptexture texel data in texture memory against the systems texture
memory size. If it looks like the cliptexture won’t fit into texture memory, it shrinks the
clip size by two and tries again. It will keep shrinking the clip size until either the
cliptexture will fit or the clip size is zero. The system taking into account texture memory
banking and paging, to come up with a more accurate estimate.

Note that the resizing mechanism doesn’t take into account other textures or cliptextures
in use by the application. You should adjust your application so that IRIS Performer
doesn’t have to auto-shrink the cliptexture. See “Estimating Cliptexture Memory Usage”
on page 365 for calculating cliptexture system memory and texture memory usage.

During the checking phase, IRIS Performer also checks to see if cliptextures are
supported in hardware on the system. To cliptexture properly, the clipped levels need
hardware support. If cliptexturing isn’t supported, then the cliptexture is reconfigured so
only the unclipped, pyramid levels are loaded, and indicates to the system that the
texture is a normal MIPmap. The rest of the cliptexture support is unchanged. This
means that image caches in the pyramid levels will still work. This feature allows the
application writer to run and do some testing of cliptexturing applications even if the
system it’s run on doesn’t support cliptexturing.

Manipulating Cliptextures

Once cliptextures have been configured and connected into the application, they can be
manipulated by the application in the APP process. Applying and centering cliptextures
happens each frame, and is usually an automatic process, set up during post-load
configuration. Other parameters that can be adjusted include load control parameters,
min and max LOD levels, and virtual cliptexture control. Some of these parameters may
only need to be set once in the application, others, like the parameter setting for virtual
cliptextures, need to happen multiple times per frame.
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Cliptexture Load Control

The virtualization of pfTextures into pfClipTextures, allowing very large texture maps,
comes at a price. As the clipcenter moves, cliptextures have to download data from disk
to system memory, and from system memory to texture memory. Because of these
download requirements, cliptextures are sensitive to available system bandwidth.
Without some sort of download load control, a fast moving center would cause a
cliptextures to “freeze”, waiting for the system to catch up with its updates.

While mem region updates happen asynchronously, tex region updates must happen in
the DRAW process, competing with geometry rendering and individual texture loading.
Real time applications require that cliptextures, like other IRIS Performer features, must
be controlled in a way such that an upper bound can be set on their use of resources. IRIS
Performer’s cliptexture load control, called Dynamic Texture Resolution (DTR), provides
this functionality.

Dynamic Texture Resolution

Dynamic Texture Resolution (DTR) is similar to Dynamic Visual Resolution (DVR): the
bandwidth requirements are adjusted to meet system limitations by lowering the
resolution of the texture data displayed by the cliptexture.

DTR controls bandwidth by analyzing the cliptexture in the CULL process. It checks each
cliptexture level, ensuring that the mem region contains updated tiles corresponding to
the tex region, and that there is enough time to update the tex region within the
download time limit.

This checking goes from level to level, from coarser levels to finer ones. When a level is
found that can’t be displayed, DTR adjusts the cliptexture parameters so that no levels
above the finest complete level are displayed. At that point, DTR stops checking levels
until the next frame. In order not to waste CULL processing time on levels that aren’t
visible, DTR will not try to sharpen more than one level beyond the current minLOD and
virtualLODoffset values. It will go one level beyond these values so that it can react
quickly if the values change.

This way the cliptexture updating will always keep up with the movement of the
clipcenter, and will never display invalid data. When the center moves too quickly, DTR
will “blur down” to coarser complete levels, then “sharpen up” to finer levels when the
center slows down and the system can catchup. In this way DTR can trade visual quality
against updating bandwidth. The visual result: the faster a viewer goes, the less time
there is to download texture, the blurrier the texture data gets.
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The nature of cliptexturing makes load control work. When the clipcenter moves, this
change is reflected at every clipped level of the cliptexture. But because each texel in a
level covers four times the geometry of the texel in the next finer level, the clipcenter only
moves half the distance each time you go down a level. This translates into less
demanding texture download requirement.

DTR has other features, such as read queue sorting, which prioritize the order in which
read requests are done to improve mem region update performance. The rate at which
levels are blurred and sharpened can also be controlled to minimize visual artifacts.

Load Control API

DTR controls three aspects of load control, which can be turned on and off
independently: tex region updating (from the mem region in system memory), mem
region updating (loading from disks), and read queue sorting (reducing the latency of
read requests for downloads from disk to the mem region).

pfMPClipTextureDTRMode(DTRMode)

DTRMode is a bitmask; if a bit is set, that DTR feature is enabled. It has the following bits
defined:

e PF_DTR_MEMLOAD - enable mem region load control from disk

e PF_DTR_TEXLOAD - enable tex region load control; DRAW download time

e PF_DTR_READSORT - enable priority sorting of the read queue

All three bits are enabled by default, which means that DTR has all modes enabled.
Besides the bitmask to control what parts of DTR are enabled, there are parameters to

available to adjust load control performance. The DTR parameters, and how they affect
DTR functionality are discussed below:

Download Time

The memload component of DTR is relatively simple; it computes whether all the tiles in
alevel’s mem region that cover the tex region are valid. If any are not, the tex region can’t
be updated and DTR invalidates that level. If the texload component of DTR is enabled,
DTR must also compute the time it takes to download from the mem region to the tex
region. The application provides the load control with a total download time in
milliseconds:

pfMPClipTextureTexLoadTime(float _msec)
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This is the total time DTR has available to update the cliptexture’s texture memory each
frame. As DTR analyzes each cliptexture level that needs updating, it computes all the
regions in the level’s texture memory that need updating.If a level can be updated, DTR
determines whether there is enough download time left to update the level. If there is,
DTR marks that level valid, subtracts the time needed to download that level from the
total, and starts analyzing the next finest level in the cliptexture.

Cost Tables

IRIS Performer contains texture download cost tables, which DTR uses to estimate the
time it will take to carry out those texture subloads. These tables are a 2D array of floating
point values, indexed by width and height of the texture rectangle being subloaded. The
cost tables themselves are indexed by machine type, and can be read by the application.
The application can also define its own cost tables and configure the system to use it. The
cost table API is shown below:

pfPerf(int type, void *table)

pfQueryPerf(int type, void **table)

The text field indicates whether the cost table should be the one chosen by the system:

* PFQPERF_DEFAULT_TEXLOAD_TABLE - the one supplied by the application

e PFQPERF_USER_TEXLOAD_TABLE - or the one currently in use

e PFQPERF_CUR_TEXLOAD_TABLE - The default table is the current one unless a
application supplies a cost table, then the application’s cost table takes precedence.

For more details on cost tables, see the man pages for pfPerf() and pfQueryPerf(). The
cost table structure is named pfTexSubloadCostTable, defined in
/usr/include/Performer/pr.h.
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Changing Levels

The DTR load control system is designed to minimize visual artifacts as it adjusts for
different download demands. Instead of abruptly sharpening the texture as new levels
with valid texture data become available, DTR blurs in new levels over a number of
frames, making the process of load control less noticeable. The application can control
the rate at which newly valid levels are displayed. The application sets a fade count, which
controls the number of frames it takes to fade in a new level . Each frame, the cliptexture
will sharpen 1/fadecount of the way from its current (possible fractional) level to the
next level. This process is repeated each frame, resulting in an exponential fade-in
function. If the fade count is 0, then fading is disabled, and DTR will show new levels
immediately.

pfMPClipTextureFadeCount(int _frames)

If the clipcenter roaming speed leaves barely enough bandwidth to bring in a new
cliptexture level, a distracting “LOD flicker” between to cliptexture LOD levels can
result. Since DTR must blur immediately if a level becomes invalid, the only way to
prevent flicker is to be conservative when sharpening, building in a hysteresis factor.
There is a parameter, called blur margin which helps determine when DTR should
sharpen.

The blurmargin parameter also helps cliptextures blur smoothly when DTR can’t keep up.
It is a floating point value, which can be interpreted as a fraction of the cliptexture’s tex
load time. When blurmargin isn’t zero, DTR will load all the levels it can within the
texload time, but not display all of them. Instead it will only sharpen to the level that
would have been reached if the texload time was scaled by the blurmargin. This leaves a
cushion of extra time that can be used up before DTR will be forced to blur to a coarser
level. The default blurmargin value of .5 usually causes the finest level displayed to be
one level coarser then the finest level loaded.The application can adjust the blurmargin
by calling:

pfMPClipTextureBlurMargin(float margin)

DTR needs this cushion in order to fade smoothly. A cliptexture can only fade between
two valid levels; if it waits until its current level is invalid, the cliptexture must
immediately jump to the next coarser level or it will show invalid data. This abrupt
blurring is very noticeable. The blur margin allows the DTR system to anticipate when it
will lose a level, and smoothly fade to the next coarser level over a number of frames.
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Total Texload Time and Texload Time Fraction

Using the texload time, blur margin, and fade count parameters is sufficient to control a
single cliptexture from a pipe, but the interface is awkward if multiple cliptextures are
applying from the same pipe. Since each pipe has the same amount of DRAW process
time available per frame, no matter how many cliptextures are applied from it, it would
be more convenient to provide a total amount of download time, then divide it among
the cliptextures using the pipe.

IRIS Performer provides this interface using the total texload time and texload time
fraction parameters. The application can set the total texture download time available on
a pipe, then assign fractional values for each cliptexture, indicating how the download
time should be divided. The total texload time is a pfPipe call, while the fractional values
are set on pfMPClipTextures:

pfPipeTotalTexLoadTime(float msecs)
pfMPClipTextureTexLoadTimeFrac(float frac)

The fractional values should indicate the relative priority of each pfMPClipTexture on
the pipe. The fractional values don’t have to add up to 1; the DTR code will normalize
them against the sum of all the fractional values set on the pipe’s pfMPClipTextures.

The total tex load time on the pipe is scaled by the normalized fractional value on each
cliptexture. The scaled tex load time is then used as the cliptexture’s texture download
time. Explicitly setting the tex load time on a pfMPClipTexture will override the
computed fractional time.

Read Queue Sorting

When the clipcenter moves quickly, the number of read requests for texture data tiles that
move into the clipped levels mem regions can grow much faster than the read function
can service them. If there isn’t enough bandwidth to display a particular level, itsread
requests may become “stale”, becoming obsolete as the location of the requested tile
moves into, then passes out of a level’s mem region.For DTR to be robust, the read queue
must be culled and sorted to remove stale read requests, and move the requests for tiles
closest to the clipcenter to the front of the queue. The cliptexture’s read queue is a sorting
gueue, which means that a function can process the elements of the queue
asynchronously. DTR uses the read queue to cull read requests for tiles that are no longer
in their mem region, and to prioritize the other requested tiles as a function of level and
distance from the clipcenter. Sophisticated applications can provide their own sorting
function.
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Invalidating Cliptextures

Sometimes an application may want to force a cliptexture to completely reload itself. For
example, The pfuGridifyClipTexture() function modifies the cliptexture’s texel data in
system memory with a system of grid marks to make debugging and analysis easier. It
modifies the read function to add a grid to every tile as it’s loaded into system memory,
then invalidates the cliptexture. For more information on gridify, look at the source code
in the /usr/share/Performer/src/lib/libpfutil/gridify.C file.

Invalidating a cliptexture forces it to completely reload its texture memory. Invalidating
is only supported for cliptextures, not MPcliptextures. This means that an application
cannot call invalidate from the APP process. Instead, it must call invalidate from the
CULL process, usually in a pre-cull callback. The invalidate call itself is simple:

pfinvalidateClipTexture(pfClipTexture *cliptex)

Invalidation is not needed for normal operation, but it is useful as a way to immediately
update a cliptexture’s texture memory.

Virtual ClipTextures

Regular cliptextures limit the size of each level but do not restrict the number of levels
you can access. Virtual cliptextures take the virtualization a step further by allowing you
to use only a subset of all the levels you have data for.

Although InfiniteReality supports cliptextures of virtual size up to 8Mx8M = 2°23x2°23
texels (i.e. 24 levels), the hardware is only capable of addressing a region of at most
32Kx32K = 2115x2115 texels (i.e. 16 levels). By limiting the set of texture MIPMap levels,
the cliptextures can be enlarged. A larger, virtual, cliptexture is defined just like a normal
cliptexture, except that the size of the cliptexture can exceed the 32K X 32K maximum
level size dictated by the hardware.

Virtual cliptextures do use more texture memory and require more callbacks in the CULL
process, but they allow enormous cliptextures that are limited only by the precision of
the texture coordinates. Cliptextures over one million texels on a side have been
demonstrated.
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Although virtual cliptextures require dividing the cliptextured geometry into sections
for a given MIPmap levelrange, the division is much coarser and less restrictive than
texture tiling. Cliptextured geometry usually doesn’t need to be clipped to sectional
boundaries, for example, since there is a lot of leeway when there are more MIPmap
levels available than are needed for a given section of geometry.

For a sample application implementing virtual cliptextures, see
Jusr/share/Performer/src/pguide/libpf/C/virtcliptex.c.

Selecting the Levels

The application is responsible for choosing which 16 (or less) levels can be accessed at
any given time by setting two parameters: virtualLODOffset and numEffectivelLevels. Most
applications make numEffectiveLevels the maximum number allowed by the hardware, 16
on InfiniteReality. Smaller values may be chosen in some cases to improve stability.
VirtualLODOffset sets the initial level in the cliptexture where 0 is the finest level.

For example, if numEffectiveLevels = 16 and virtualLODOffset = 0 then the texels the
hardware can access are limited to the 32Kx32K region surrounding the current
clipcenter, measured in finest-level texels (actually somewhat less than this; see the file
/usr/share/Performer/doc/clipmap/IRClipmapBugs.html or
usr/share/Performer/doc/clipmap/IRClipmapBugs.txt for details on cliptexture limitations
on InfiniteReality graphics); attempting to access outside this range results in the value
of the nearest texel in the good region; i.e. the texels forming the border of the 32Kx32K
area will appear to be “smeared” out to fill the virtual cliptexture.

Increasing virtualLODOffset from 0 to 1 doubles the size of the accessible region in both S
and T (so that it’s 32Kx32K level 1 texels, which are twice as big as level 0 texels), but
makes the finest level inaccessible.

The maximum virtualLODOffset allowable is numVirtualLevels-numEffectiveLevels; when
set to that value, the entire S, T range of the virtual cliptexture is accessible, and the finest
level from which texels are available is the 32Kx32K level.

In general, it is appropriate to choose a large value of virtualLODOffset when the
viewpoint is far away from the scene and more S, T area is visible; smaller values of
virtualLODOffset are appropriate as the eye moves closer to the scene, gaining needed
higher resolution at the expense of range in S,T.
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Changing virtualLODOffset and numEffectiveLevels has no effect on the contents of texture
memory nor any effect on the texture coordinates stored in the geosets and passed to the
graphics: the texture coordinates, as well as the clipcenter, are always expressed in the
space of the entire virtual cliptexture rather than the smaller “effective” cliptexture of up
to 16 levels within it. (In contrast, changing the clipcenter requires texture downloading;
thus it is a much more expensive operation and therefore it is not practical to change the
clipcenter more than once per frame, whereas virtualLODOffset and numEffectivelLevels
can be changed multiple times per frame, as we will see below.)

How to Set Virtual Cliptexture Parameters

IRIS Performer supports two different methods for managing virtualLODOffset and
numEffectiveLevels of a cliptexture. The simpler of the two methods allows the parameters
to be set and changed at most once per frame; the more sophisticated method allows
them to be changed multiple times per frame (different values for different parts of the
scene). In addition to virtualLODOffset and numEffectiveLevels described above, the
parameters minLOD, maxLOD, LODBiasS and LODBiasT often need to be set in the
same way, so we will show how to set those as well.

Per-Frame Setting of Virtual Cliptexture Parameters

The easy way to manage the virtual cliptexture parameters is to set the values of the
parameters on the pfMPClipTexture controlling the pfClipTexture:

int LODOffset, numEffectivelLevels;
float minLOD, maxLOD;
float LODBIasS, LODBiIasT, LODBiasR;

mpcliptex->setVirtualLODOffset(LODOffset);
mpcliptex->setNumEffectiveLevels(numEffectiveLevels);
mpcliptex->setLODRange(minLOD, maxLOD);
mpcliptex->setLODBias(LODBiasS, LODBiasT, LODBiasR);

You make these calls in the APP process, either in the main program loop, a channel APP
func, or a pre- or post-node APP func. The last value you give during the APP in a
particular frame will be used for rendering that frame and all subsequent frames, until
you change the value again.

This simple technique is the one that is used by the clipfly program when you manipulate
the LODOffset and EffectivelLevels sliders (when using a naive scene loader such as the
.im loader that doesn’t do its own management of virtualLODOffset and
numEffectiveLevels): clipfly makes these calls in its channel pre-APP function.
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This technique is also used by the .spherepatch loader; in this case the calls are made in
a post-APP function of a node in the scene graph, using parameters that are intelligently
chosen based on the current distance from the eye to the closest point on the textured
geometry, and are updated every frame.

Notice that even though the .spherepatch loader manages the virtualLODOffset and
numEffectiveLevels, you can still modify or override its behavior with the clipfly GUI
controls. This is accomplished using a special set of “limit” parameters that are provided
as a convenience and stored on the pfMPClipTexture. The intended use is for
applications such as clipfly to set the limits based on GUI input or other criteria:

mpcliptex->setLODOffsetLimit(lo, hi);
mpcliptex->setEffectiveLevelsLimit(lo, hi);
mpcliptex->setMinLODLimit(lo, hi);
mpcliptex->setMinLODLimit(lo, hi);
mpcliptex->setLODBiasLimit(Slo, Shi, Tlo, Thi, Rlo, Rhi);

Then the callback functions of intelligent loaders such as .spherepatch query the limits:

mpcliptex->getLODOffsetLimit(&lo, &hi);
mpcliptex->getEffectiveLevelsLimit(&lo, &hi);
mpcliptex->getMinLODLimit(&lo, &hi);
mpcliptex->getMinLODLimit(&lo, &hi);
mpcliptex->setLODBiasLimit(&Slo, &Shi, &Tlo, &Thi, &Rlo, &Rhi);

The loaders use the limits to modify the selection of the final parameters sent to
pfMPClipTexture.

The limits are not enforced by pfMPClipTexture; they are provided merely to facilitate
communication from the application to the function controlling the parameters. That
function is free to ignore or only partially honor the limits if it wishes.

The limits may also be queried frame-accurately from the pfMPClipTexture in the CULL
process, so they can also be used by scene loaders such as the .ct loader that use the
per-tile method described in the next section.
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Per-Tile Setting of Virtual Cliptexture Parameters

Many applications require accessing a wider range of the cliptexture’s data than can be
obtained by a single setting of virtualLODOffset and numEffectiveLevels. This can be
accomplished by partitioning the database into “tiles” roughly according to distance
from the eye or from the texture’s clipcenter, and setting the parameters for each tile
every frame in the pre-CULL func of the pfGroup or pfGeode representing that tile, by
calling pfClipTexture::applyVirtual(), pfTexture::applyMinLOD(),
pfTexture::applyMaxLOD(), and pfTexture::applyLODBias().

Tiling Strategies

Choosing a database tiling strategy requires careful thought and tuning. The most
conceptually straightforward method is to use a static 2d grid-like spatial partitioning.
This method requires tuning the granularity of the partitioning for the particular
database and capabilities of the machine: if a tile is too big and sufficiently close to the
eye, there may be no possible combination of virtualLODOffset and numEffectiveLevels
that allows access to both the necessary spatial range and texture LOD range without
garbage in the distance or excess bluriness in the foreground; but if there are too many
tiles, the overhead of changing the parameters for each tile can become excessive.

In general, assuming the maximum active area is 32Kx32K (as it is on InfiniteReality),
each tile should be small enough so that it covers at most approximately 16K texels at the
finest texture LOD that will be used when rendering it; this is so that when the clipcenter
is close enough to the tile to require accessing that finest texture LOD, the 32Kx32K good
area centered at approximately the clipcenter will be able to cover it with some slop left
over to account for the inexact placement of the good area (see the IR cliptexture bugs
doc). (Finer tiles such as 8Kx8K or even 4Kx4K can be used for improved stability under
extreme magnification; see the IR cliptexture bugs doc).

This rule has two important consequences:

= Ifyour cliptexture has insets (i.e. localized regions in which higher-res data is
available) you can make the tiling coarser in the regions where only low-res data is
available, and finer at the insets.

= If you use pfLODs to optimize your database, the coarse LODs of the pfLOD can
(and should) be tiled more coarsely than the fine ones.

This is because the coarser LODs are used at far distances, and at those far distances
the mipmapping hardware will only want to access correspondingly coarse texture
levels anyway, so the 16Kx16K c