IRIS ViewKit™
Programmer’s Guide

Document Number 007-2124-006

CONTRIBUTORS

Written by Ken Jones, Douglas B. O’'Morain, and Sandra Motroni

Illustrated by Martha Levine

Edited by Christina Cary

Production by Linda Rae Sande

Engineering contributions by Doug Young, Kim Rachmeler, Mike Yang, Robert
Blean, Richard Hess, and Richard Offer

St Peter’s Basilica image courtesy of ENEL SpA and InfoByte SpA. Disk Thrower
image courtesy of Xavier Berenguer, Animatica.

© 1997-1999, Silicon Graphics, Inc.— All Rights Reserved
The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics, the Silicon Graphics logo, and IRIS are registered trademarks and
IRIX Interactive Desktop, IRIS InSight, IRIS ViewKit, and IRIX are trademarks of
Silicon Graphics, Inc. PostScript is a registered trademark of Adobe Systems, Inc. X
Window System is a trademark of Massachusetts Institute of Technology. Motif and
OSF/Motif are trademarks of The Open Group. ToolTalk is a trademark of Sun
Microsystems, Inc.

IRIS ViewKit™ Programmer’s Guide
Document Number 007-2124-006

New Features

What's New

IRIS ViewKit 2.1 now supports multiple displays and screens. Because IRIS ViewKit 1.5.3
is still the default development environment, the information about ViewKit 2.1 is in
Appendix B, “Changes and Additions in ViewKit 2.1.”

Major Documentation Changes

The following items were corrected:

The descriptions of overlay apps, overlay menus, and overlay dialogs were changed
to clarify the methods of specifying the use of the overlay planes.

A note was added to the description of VkOutline stating that one of the
components utilized by this class is not documented and not supported for external
use.

The section on buildZoomMenu() in VkGraph was amended to remove the
reference to overriding the function.

References to the Indigo Magic Desktop and IRIS IM were updated to IRIX
Interactive Desktop and Motif, respectively.

Contents

What's New iii
New Features iii
Major Documentation Changes iii

Examples xvii
Figures xxi
Tables xxv

Introduction xxvii
What This Guide Contains xxvii
What You Should Know Before Reading This Guide xxix
Conventions Used in This Guide xxxi
Typographical Conventions xxxi

Class Inheritance Graph Conventions xxxii

Overview of ViewKit 1
Major ViewKit Elements 2
Framework Classes 2
Interface Components 2
Convenience Utilities 3
Mixing ViewKit and Standard X and Motif Functions 3
Compiling and Linking ViewKit Programs 5
Required Packages 5
Required Header Files 6
Required Libraries 6
Getting Started 7
The Simplest ViewKit Program 7

Demonstration Programs 10

Contents

2. Components 11
Definition of a Component 11
VkComponent Class 12
Component Constructors 13
Component Destructors 16
VkComponent Access Functions 17
Displaying and Hiding Components 19
VkComponent Utility Functions 20
Using Xt Callbacks With Components 21
Handling Component Widget Destruction 24
Component Resource Support 26
Setting Resource Values by Class or Individual Component 27
Initializing Data Members Based on Resource Values 28
Setting Default Resource Values for a Component 30
Convenience Function for Retrieving Resource Values 32
ViewKit Callback Support 34
Registering ViewKit Callbacks 35
Removing ViewKit Callbacks 38
Defining and Triggering ViewKit Callbacks 39
Predefined ViewKit Callbacks 40
Deriving Subclasses to Create New Components 41
Subclassing Summary 41
Creating a New Component 43
Using and Subclassing a Component Class 46
VkNamelList Class 53
VkNameList Constructor and Destructor 53
VkNameList Member Functions 53
Using VkNameList 56

3. The ViewKit Application Class 59
Overview of the VkApp Class 59
VkApp Constructor 60
Running ViewKit Applications 62
ViewKit Event Handling 62

Vi

Contents

Customizing Event Handling 64
Quitting ViewKit Applications 65
Managing Top-Level Windows 66
Setting Application Cursors 67
Setting and Retrieving the Normal Cursor 67
Setting and Retrieving the Busy Cursor 68
Setting and Retrieving a Temporary Cursor 74
Supporting Busy States 75
Entering and Exiting Busy States Using ViewKit 75
Animating the Busy Cursor 78
Installing Different Busy Dialogs 79
Maintaining Product and Version Information 80
Application Data Access Functions 82
Deriving Classes From VkApp 83
VkApp Protected Functions and Data Members 83
Subclassing VkApp 84
Putting Applications in the Overlay Planes 86

ViewKit Windows 89
Overview of ViewKit Window Support 89
ViewKit’s Multi-Window Model 89
ViewKit Window Classes 90
Window Class Constructors 92
Window Class Destructors 93
Creating the Window Interface 93
Creating the Window Interface in the Constructor 93
Creating the Window Interface in the setUpInterface() Function 100

Adding a Window Interface to a Direct Instantiation of a ViewKit Window Class
102

Replacing a Window’s View 103
Manipulating Windows 103
Window Data Access Functions 104

vii

Contents

Window Manager Interface 105
Window and Icon Titles 105
Window Properties and Shell Resources 107
Menu Bar Support 108
Deriving Window Subclasses 110
Additional Virtual Functions and Data Members 110
Window Creation Summary 113
Window Subclassing 115

5. Creating Menus With ViewKit 123
Overview of ViewKit Menu Support 124
ViewKit Menu Item Classes 126
Common Features of Menu Items 126
Menu Actions 130
Confirmable Menu Actions 131
Menu Toggles 131
Menu Labels 132
Menu Separators 132

ViewKit Menu Base Class 133
Constructing Menus 133
Manipulating Items in Menu 149
Menu Access Functions 155

Using ViewKit Menu Subclasses 156
Menu Bar 156
Submenus 157
Radio Submenus 159
Option Menus 162
Popup Menus 167

Putting Menus in the Overlay Planes 171

viii

Contents

ViewKit Undo Management and Command Classes
Undo Management 173

Overview of ViewKit Undo Management 173

Using ViewKit’s Undo Manager 174

Using ViewKit’s Undo Manager 180
Command Classes 184

Overview of Command Classes 184

Using Command Classes in ViewKit 185

Using Dialogs in ViewKit 189
Overview of ViewKit Dialog Management 190
ViewKit Dialog Class Overview 190
ViewKit Dialog Base Class 192

Posting Dialogs 193

Manipulating Dialogs Prior to Posting 200

Unposting Dialogs 201

Setting the Title of the Dialog 201

Setting the Button Labels 203

Dialog Access and Utility Functions 204
Using the ViewKit Dialog Subclasses 206

Information Dialogs 206

Warning Dialogs 208

Error Dialogs 209

Fatal Error Dialogs 209

Busy Dialog 210

Interruptible Busy Dialog 210

Progress Dialog 212

Question Dialog 215

Prompt Dialog 215

File Selection Dialog 217

Color Chooser Dialog 220

Deriving New Dialog Classes Using the Generic Dialog 223

Putting Dialogs in the Overlay Planes 225

173

Contents

8. Preference Dialogs 227

Overview of ViewKit Preference Dialogs 228
ViewKit Preference Dialog Class 228
ViewKit Preference Item Classes 229
Building a ViewKit Preference Dialog 231

ViewKit Preference Item Base Class 235
Preference Item Labels 235
Getting and Setting Preference Item Values 237
Preference Item Access Functions 238

ViewKit Preference Item Classes 239
Text Fields 239
Toggle Buttons 240
Option Menus 244
Labels 247
Separators 249
“Empty” Space Preference Items 249
Groups of Preference Items 249

ViewKit Preference Dialog Class 256
Creating a Preference Dialog 256
Setting the Preference Items for a Preference Dialog 257
Posting and Dismissing Preference Dialogs 257
Responding When the User Clicks a Preference Dialog Button 258
Using Values Set in a Preference Dialog 260
Creating Preference Dialog Subclasses 261

9. Handling Visuals With ViewKit 263
Overview of the VkVisual Class 263
Overview of X Visuals 264

X11 Visual Attributes 264

Xt Visual Handling 265

Visual Inheritance in ViewKit 266

Maintaining Consistency 267

Colormap Coordination 268
Useful Enums 269

Contents

10.

11.

VkVisual Constructors and Destructor 270
Member Functions 271
Setting the Class’s Visual Information 271
Data Access Functions 273
Debugging Functions 276
Static Functions 277
VkVisual Examples 278

ViewKit Cut and Paste 279

Overview of ViewKit Cut and Paste 279
Primary and Clipboard Transfer Models 280
VkCutPaste Constructor and Destructor 280
Copying Data 281

Pasting Data 283

Dragging Data 285

Accepting Drops 287

Accepting Drops From the IRIX Interactive Desktop 291
Registering New Data Types 292

Using Data Type Converters 295

File and Data Ownership 298

Miscellaneous Functions 304

Using a Help System With ViewKit 307
ViewKit Programmatic Interface to a Help Library 307
Using ViewKit Help 308
Using the SGIHelp Library 309
Using an External Help Library 310
ViewKit Support for Building Help 310
ViewKit Help Menu 310
Implementation of the Help Menu 310
Other Types of Help 313
Context-Sensitive Help Procedures 313
Dialog Help Procedures 313
Application Help Button Procedures 314

Xi

Contents

Xii

12.

13.

QuickHelp 314

The ViewKit Graph Component 317
Overview of ViewKit Graphs 317

Graph Widget 318
Building a Graph 319
Interactive Viewing Features Provided by VkGraph 322

ViewKit Node Class 327

Basic Node Functionality 328
Creating Node Subclasses 331

ViewKit Graph Class 332

VkGraph Constructor and Destructor 332
Adding Nodes and Specifying Node Connectivity 332
Removing Nodes 334

Indicating Which Nodes to Display 335

Laying Out the Graph 338

Butterfly Graphs 340

Displaying a Graph Overview 341

Graph Utility Functions 341

Graph Access Functions 342

Reusing a Graph Object 343

ViewKit Callbacks Associated With VkGraph 344
X Resources Associated With VkGraph 344
Subclassing VkGraph 345

Miscellaneous ViewKit Display Classes 347
ViewKit Support for Double-Buffered Graphics 347

Double Buffer Constructor and Destructor 348

Drawing in the Double Buffer Component 348

Switching Buffers in the Double Buffer Component 349
Handling Double Buffer Component Resize Requests 349

Contents

14.

Tick Marks for Scales 349
Tick Marks Component Constructor 350
Configuring the Tick Marks 350
X Resources Associated With the Tick Marks Component 352

Management Classes for Controlling Component and Widget Display Characteristics
353

ViewKit Support for Aligning Widgets 353
ViewKit Support for Resizing and Moving Widgets 356

Miscellaneous ViewKit Data Input Classes 361
Check Box Component 362
Creating a Check Box 362
Adding Toggles to the Check Box 362
Setting Check Box and Toggle Labels 363
Setting and Getting Check Box Toggle Values 365
Recognizing Changes in Check Box Toggle Values 366
Radio Check Box Component 369
Tab Panel Component 371
Tab Panel Constructor 373
Adding Tabs to a Tab Panel 374
Removing a Tab From a Tab Panel 375
Adding a Pixmap to a Tab 376
Responding to Tab Selection 377
Tab Panel Access Functions 378
X Resources Associated With the Tab Panel Component 381
Text Completion Field Component 384
Text Completion Field Constructor and Destructor 384
Setting and Clearing the Text Completion Field Expansion List 384
Retrieving the Text Completion Field Contents 385
Responding to Text Completion Field Activation 385
Deriving Text Completion Field Subclasses 385

Xiii

Contents

15.

Xiv

Repeating Button Component 386

Repeating Button Constructor 386

Responding to Repeat Button Activation 387

Repeating Button Utility and Access Functions 387

X Resources Associated With the Repeating Button Component 388
Management Classes for Controlling Component and Widget Operation 388

Supporting “Ganged” Scrollbar Operation 388

Enforcing Radio-Style Behavior on Toggle Buttons 390

Modified Text Attachment 392

ViewKit Process Control Classes 399
VkRunOnce and VkRunOnce2 399
VkRunOnce Constructor and Destructor 400
Access Functions 401
Using VkRunOnce 401
VkRunOnce2 Constructor and Destructor 403
Access Functions 404
Using VkRunOnce2 405
VkBackground 407
VkBackground Constructor and Destructor 408
Member Functions 408
VkPeriodic 409
VkPeriodic Constructor and Destructor 409
Member Functions 410
Callbacks 410

Contents

A. Contributed ViewKit Classes 411
ViewKit Meter Component 411
Meter Constructor and Destructor 411
Resetting the Meter 411
Adding Items to a Meter 412
Updating the Meter Display 413
Setting the Meter’s Resize Policy 413
Determining the Desired Dimensions of the Meter 414
X Resources Associated With the Meter Component 414
ViewKit Pie Chart Component 415
ViewKit Outline Component 415
Constructing an Outline Component 418
Adding Items to an Outline 418
Setting Display Attributes for Outline Items 421
Closing and Opening Outline Topics 422
Outline Utility and Access Functions 423
VkOutlineASB 424

B. Changes and Additions in ViewKit 2.1 425
Overview Of ViewKit 2.1 425
New Features 426
Multiple Displays and Screens within ViewKit 2.1 426
New APIs for VkCallbackObject 430
Porting to ViewKit 2.1 430
Source Code Incompatibilities 430
New Multi-display and Multi-screen support 432
Writing code which supports both ViewKit 1.5.3 and 2.1 434
Required Packages (ViewKit 2.1 Addendum) 435
ViewKit 2.1 Inheritance Graph 436

C. ViewKit Class Graph 437

Glossary 441
Index 443

XV

Examples

Example 1-1
Example 2-1
Example 2-2
Example 2-3
Example 2-4
Example 2-5
Example 2-6
Example 2-7
Example 2-8
Example 2-9
Example 2-10
Example 3-1
Example 3-2
Example 3-3
Example 3-4
Example 3-5
Example 3-6
Example 4-1
Example 4-2
Example 4-3
Example 4-4

Example 4-5
Example 4-6
Example 5-1

The Simplest ViewKit Program: hello.c++ 7

Component Constructor 14

Freeing Space in a Component Destructor 17

Component Constructor With Xt Callbacks 23

Initializing a Data Member From the Resource Database 28
Setting a Component’s Default Resource Values 31

Using the Predefined deleteCallback ViewKit Callback 40
Simple User-Defined Component 43

Using a Component Directly 47

Subclassing a Component 50

Manipulating a List of Strings Using the VkNameList Class 56
Typical Use of the VkApp Class in a ViewKit Program 62
Creating an Animated Busy Cursor 69

Using Busy States in a ViewKit Application 76

Animating the Busy Cursor 78

Temporarily Installing an Interruptible Busy Dialog 79
Deriving a Subclass From VkApp 85

Creating a Window Interface in the Class Constructor 95
Using a Component as a Window’s View 98

Creating a Window’s Interface in the setUpInterface() Function 101

Adding a View to a Direct Instantiation of a ViewKit
Window Class 103

Setting Window and Icon Titles Using Resource Values 106
Creating a Window Subclass 116

Providing Default Client Data When Using Static
Menu Descriptions 138

XVii

Examples

Xviii

Example 5-2
Example 5-3
Example 5-4
Example 5-5
Example 5-6
Example 5-7
Example 6-1
Example 6-2
Example 7-1
Example 7-2
Example 7-3
Example 7-4
Example 7-5
Example 7-6
Example 8-1
Example 8-2
Example 8-3
Example 9-1
Example 9-2
Example 10-1
Example 10-2
Example 10-3
Example 10-4
Example 10-5
Example 10-6
Example 10-7
Example 10-8
Example 10-9

Example 10-10

Example 12-1
Example 14-1

Creating a Menu Bar Using a Static Description 139

Creating a Menu Bar Dynamically 147

Manipulating Menu Items 151

Using a VkRadioSubMenu Object 160

Using a VkOptionMenu Object 165

Using a VKPopupMenu Object 169

Adding a Non-Menu Item Directly to the Undo Stack 177

Using the Undo Manager 180

Posting a Dialog 198

Posting an Information Dialog 207

Using the Interruptible Busy Dialog 212

Using the Progress Dialog 214

Extracting the Text String From a Prompt Dialog 216

Extracting the Text String From a File Selection Dialog 219

Creating a ViewKit Preference Dialog 231

Setting Default Resource Values for Preference Items 236

Declaring Preference Items Publicly Accessible 260

Putting a Single Widget in a Non-default Visual Using VkVisual 278
Creating a GC of the Right Depth 278

Registering an XPM to GIF89 Converter 297

Data and File Ownership Changes While Copying Filenames 299
Data and File Ownership Changes While Pasting Filenames 300

Data and File Ownership Changes While Copying Normal Data 300
Data and File Ownership Changes While Pasting Normal Data 301
Data and File Ownership Changes While Dragging Filename Data 301
Data and File Ownership Changes While Accepting Filename Data 302
Data and File Ownership Changes While Dragging Normal Data 302
Data and File Ownership Changes While Accepting Normal Data 303

Data and File Ownership Changes While Accepting _SGI_ICON
Data 303

Creating a Graph Using VkGraph 319
Code to Create Sample Check Box 364

Examples

Example 14-2 Code to Create Sample Radio Box 370
Example 15-1 Using VkRunOnce 401
Example 15-2 Using VkRunOnce2 406

XiX

Figures

Figure i Class Inheritance Graph xxxii

Figure 1-1 Result of Running hello 8

Figure 2-1 Inheritance Graph for VkCallbackObject and VkComponent 11

Figure 2-2 Default Appearance of a StartStopPanel Component 43

Figure 2-3 Resulting PanelWindow Window 50

Figure 3-1 Inheritance Graph for VkApp 59

Figure 3-2 Busy Dialog 77

Figure 3-3 Nested Busy Dialog 77

Figure 3-4 Product Information Dialog 81

Figure 4-1 Inheritance Graph for VkSimpleWindow and VkWindow 89

Figure 4-2 Widget Hierarchy of Top-Level Windows in ViewKit Applications 90

Figure 4-3 Simple Example of a VkSimpleWindow Subclass 97

Figure 4-4 Using a Component as a Window’s View 99

Figure 4-5 Widget Hierarchy of ColorWindow Subclass 115

Figure 4-6 ColorWindow Window Subclass 121

Figure 5-1 Inheritance Graph for the ViewKit Menu Classes 123

Figure 5-2 Main Window With Menu Bar Created by Static Description 141

Figure 5-3 Menu Pane Created by a Static Description 142

Figure 5-4 Menu Pane Containing a Label and a Submenu 142

Figure 6-1 Inheritance Graph for the ViewKit Classes Supporting Undo
Management and Command Classes 173

Figure 7-1 Inheritance Graph for the ViewKit Dialog Classes 189

Figure 7-2 Information Dialog 197

Figure 7-3 Question Dialog 198

Figure 7-4 Setting the Dialog Title 202

Figure 7-5 Another Example of Setting the Dialog Title 203

Figure 7-6 Information Dialog 208

XXi

Figures

XXii

Figure 7-7
Figure 7-8
Figure 7-9
Figure 8-1
Figure 8-2
Figure 8-3
Figure 8-4
Figure 8-5
Figure 8-6
Figure 8-7
Figure 8-8
Figure 8-9
Figure 8-10
Figure 8-11
Figure 8-12
Figure 10-1
Figure 11-1
Figure 12-1
Figure 12-2
Figure 12-3
Figure 12-4
Figure 13-1
Figure 13-2
Figure 13-3
Figure 13-4
Figure 13-5
Figure 13-6
Figure 14-1
Figure 14-2
Figure 14-3
Figure 14-4
Figure 14-5
Figure 14-6

Progress Dialog 213

File Selection Dialog 218

Color Chooser Dialog 221

Inheritance Graph for the ViewKit Preference Dialog Classes 227
ViewKit Preference Dialog 231

Preference Dialog With a Text Field Preference Item 239
Preference Dialog With Toggle Button Preference Item 241
Toggle Preference Items in a Homogenous Vertical Group 242
Toggle Preference Items in a Non-Homogenous Vertical Group 243
Preference Dialog With Option Menu Preference Item 244
Preference Dialog With Label Preference Item 248

Vertical VkPrefGroup Item With Label 250

Horizontal VkPrefGroup Item With Label 251

VKkPrefList Item 252

VkPrefRadio Item With Label 253

Inheritance Graph for VkCutPaste 279

ViewKit Help Menu 311

Inheritance Graph for the ViewKit Graph Classes 317

Graph Created With VkGraph 318

Graph Command Panel 322

Interactively Changing the Graph Zoom Value 324

Inheritance Graph for the Miscellaneous ViewKit Display Classes 347
VkTickMarks Component 350

Setting Tick Mark Scale and Spacing 351

Widget With a VkResizer Attachment 356

Effect of Resizing a Widget With a VkResizer Attachment 357
Effect of Moving a Widget With a VkResizer Attachment 357
Inheritance Graph for the Miscellaneous ViewKit Input Classes 361
Sample Check Box 363

Sample Radio Box 369

Horizontal VkTabPanel Component 371

Vertical VkTabPanel Component 372

Collapsed Tabs in a VkTabPanel Component 372

Figures

Figure 14-7

Figure 14-8
Figure 14-9

Figure 15-1
Figure A-1
Figure A-2
Figure A-3
Figure B-1
Figure C-1
Figure C-2

Using the Popup Menu to Select a Collapsed Tab in a VkTabPanel
Component 373

VkModified Attachment Dogear 392

“Flipping” to a Previous Text Widget Value Using a
VkModified Attachment Dogear 392

Inheritance Graph for the ViewKit Process Control Classes 399
VkOutline Component 416

VkOutline Component With the Scrollbar Visible 417

Closing a Heading in a VkOutline Component 418

Inheritance Graph for ViewKit 2.1 Additions and Changes 436
ViewKit Class Graph, Part 1 438

ViewKit Class Graph, Part 2 439

XxXiii

Tables

Table 5-1 Required and Optional Parameters in a Static Menu Description 135

XXV

Introduction

This guide describes how to create programs using IRIS ViewKit™, a C++ toolkit that
provides commonly needed facilities for applications based on Motif or the IRIX
Interactive Desktop™ user interface toolkit (the Silicon Graphics® port of the
industry-standard OSF/Motif™).

What This Guide Contains

The first two chapters of this guide provide an overview of ViewKit concepts:

Chapter 1, “Overview of ViewKit”
Describes the ViewKit toolkit and the advantages of using it compared
to programming directly in Motif and X, discusses the major elements of
ViewKit, and provides instructions for compiling ViewKit programs.

Chapter 2, “Components”
Describes the ViewKit component class, gives instructions for using
ViewKit components, and lists guidelines for creating new components.

The next nine chapters describe the common ViewKit components that you use in
practically every ViewKit program:

Chapter 3, “The ViewKit Application Class”
Explains the services provided by the ViewKit application class and
gives instructions for controlling application-level services in your
program.

Chapter 4, “ViewKit Windows”
Explains the ViewKit model for supporting multiple windows in an
application, and describes how to create and manipulate application
windows.

Chapter 5, “Creating Menus With ViewKit”
Describes how to create and manipulate different types of menus in a
ViewKit application.

XXVii

Introduction

XXViii

Chapter 6, “ViewKit Undo Management and Command Classes”
Explains how to implement support for “undoing” operations and
describes how to implement actions as command classes.

Chapter 7, “Using Dialogs in ViewKit”
Discusses the ViewKit dialog management support, describes how to

post and manipulate dialogs, and provides an overview of the different
types of dialogs supported by ViewKit.

Chapter 8, “Preference Dialogs”
Describes how to use preference dialogs to maintain user preferences.

Chapter 9, “Handling Visuals With ViewKit”
Describes how to work with X and Xt visuals.

Chapter 10, “ViewKit Cut and Paste”
Explains how to implement cut, paste, drag, and drop capabilities.

Chapter 11, “Using a Help System With ViewKit”
Explains how to use a help system with ViewKit applications. It also
describes the basic help system provided with ViewKit.

The rest of the book describes pre-built ViewKit components:

Chapter 12, “The ViewKit Graph Component”
Discusses the ViewKit component for creating and displaying
arc-and-node graphs.

Chapter 13, “Miscellaneous ViewKit Display Classes”
Describes a variety of components that you use primarily to display
information or to manage display items.

Chapter 14, “Miscellaneous ViewKit Data Input Classes”
Describes a variety of data input classes.

Appendix A, “Contributed ViewKit Classes”
Gives you an idea of how you can expand ViewKit by describing some
unsupported ViewKit classes that users have contributed.

Appendix B, “Changes and Additions in ViewKit 2.1”
Describes the changes and additions in ViewKit 2.1 and provides
information for the developer wishing to port to the new version.

Appendix C, “ViewKit Class Graph”
Allows you to see the ViewKit classes and how they relate to one
another.

Introduction

What You Should Know Before Reading This Guide

This guide assumes that you are already an experienced C++ programmer. It also
assumes that you are generally familiar with Motif.

For a thorough discussion of the concepts on which the ViewKit toolkit is based, see this

book:

* Young, Douglas A. Object-Oriented Programming with C++ and OSF/Motif.
Englewood Cliffs, New Jersey: Prentice Hall, Inc., 1992.

For information on OSF/Motif, version 1.2, see these guides:

* Open Software Foundation. OSF/Motif Programmer’s Guide, Revision 1.2. Englewood
Cliffs, New Jersey: Prentice Hall, Inc., 1992.

* Open Software Foundation. OSF/Motif Programmer’s Reference, Revision 1.2.
Englewood Cliffs, New Jersey: Prentice Hall, Inc., 1992.

* Open Software Foundation. OSF/Motif Style Guide, Revision 1.2. Englewood Cliffs,
New Jersey: Prentice Hall, Inc., 1992.

e Heller, Dan. Motif Programming Manual (X Window System Series: Volume Six).
Sebastopol, California: O'Reilly & Associates, Inc., 1992.

For information on Motif 2.1, see these guides:

® The Open Group. Motif 2.1—Programmer’s Guide, The Open Group, 1997.

® The Open Group. Motif 2.1—Programmer’s Reference Vol 1-3, The Open Group, 1997.

e The Open Group. Motif 2.1—Widget Writer’s Guide, The Open Group, 1997.

For information on IRIX Interactive Desktop (IID) enhancements to OSF/Motif and

general tips for programming in IID on Silicon Graphics workstations, refer to the IRIS
IM Programming Guide.

XXiX

Introduction

For comprehensive information on the X Window System™, Xlib, and Xt, see these
manuals:

* Nye, Adrian. Xlib Programming Manual (X Window System Series: Volume One).
Sebastopol, California: O’Reilly & Associates, Inc., 1992.

* O'Reilly & Associates, Inc. XIib Reference Manual (X Window System Series: Volume
Two). Sebastopol, California: O’Reilly & Associates, Inc., 1992.

* Nye, Adrian, and Tim O’Reilly. X Toolkit Intrinsics Programming Manual (X Window
System Series: Volume Four). Sebastopol, California: O’Reilly & Associates, Inc.,
1992.

e O'Reilly & Associates, Inc. X Toolkit Intrinsics Reference Manual (X Window System
Series: Volume Five). Sebastopol, California: O’Reilly & Associates, Inc.,
1992.

XXX

Introduction

Conventions Used in This Guide

This section describes the conventions used for presenting information in this book.

Typographical Conventions

These type conventions and symbols are used in this guide:

Bold C++ class names, C++ member functions, C++ data members, function
names, literal command-line arguments (options and flags)

Italics Filenames; onscreen button names; IRIX™ commands; executable files;
manual and book titles; glossary entries; new terms; variable
command-line arguments; program variables; and variables to be
supplied by the user in examples, code, and syntax statements

Screen type Onscreen text, prompts, error messages, examples, and code listings

Bol d screen type
User input, including keyboard keys (printing and nonprinting); literals
supplied by the user in examples, code listings, and syntax statements

i

(Double quotation marks) Onscreen menu items and references in text
to document section titles

0 (Parentheses) Follow function names; also used to surround reference
page (man page) section in which a command, function, or class is
described

<> (Angle brackets) Surround header filenames

IRIX shell prompt for the superuser (root)

% IRIX shell prompt for users other than superuser

Reference pages (also known as man pages) are referred to by name and section number,
in this format: name(section), where “name” is the name of a command, system call,
library routine, or class; and “section” is the section number where the entry resides. For
example, XtSetValues(3Xt) refers to the XtSetValues() reference page in section 3Xt.

XXXi

Introduction

XXXii

Class Inheritance Graph Conventions

Most of the chapters in this book begin with a graph depicting the inheritance hierarchy
of the classes described in that chapter. Figure i shows an example of a class inheritance
graph that might appear at the beginning of a chapter.

VkTickMarks
1 | 1
! VkComponent | . VkDoubleBuffer |
. 1 e e = 4
VkResizer
VkWidgetList VKkAlignmentGroup
Figurei Class Inheritance Graph

In these inheritance graphs, classes are presented with the base classes to the left and the
derived classes to the right. Abstract classes have dashed borders and non-abstract
classes have solid borders. Classes described within the chapter appear in white boxes,
whereas classes described elsewhere appear in shaded boxes.

In the inheritance graph shown in Figure i, VkComponent is an abstract base class. As
indicated by its shaded box, it is not described within the chapter. The chapter describes
three subclasses of VkComponent: VkDoubleBuffer, an abstract class; and
VkTickMarks and VkResizer, non-abstract classes. The chapter also discusses the
non-abstract class VkAlignmentGroup, which is derived from the non-abstract base
class VkWidgetList.

Chapter 1

Overview of ViewKit

ViewKit is a C++ toolkit that makes it easier for you to develop applications. It provides
a collection of high-level user interface components and other support facilities that you
typically must implement in every application. For example, it provides high-level user
interface components, such as windows, menus, and dialogs.

ViewKit does not replace Motif or any other user interface toolkit. In fact, it uses Motif
widgets to implement all of its user interface components; also, you can directly call
Motif functions to create and manipulate widgets in a ViewKit application. The ViewKit
architecture helps mask much of the complexity of programming with Motif.

ViewKit offers you several benefits:

It provides support for common user interface components such as windows,
menus, and dialogs. It also provides specialty interface components for tasks such
as displaying and managing arc-and-node graphs, displaying and managing toggle
check boxes, and managing the layout of other widgets. Creating these elements
using ViewKit is much simpler and faster than using low-level widgets to build
them from scratch. Furthermore, by using the same basic components, applications
that use ViewKit components have greater visual and behavioral consistency.

It simplifies interaction with the X resource manager, allowing you to customize
your application using resources more easily. By designing your application to use
resource values rather than hard-coding the values in your program, you can easily
modify the appearance of your application. This approach is particularly useful for
preparing your application for internationalization.

All user interface components in ViewKit are C++ classes, which provides a
framework for using Motif in a highly structured, object-oriented way. The ViewKit
architecture encourages you to develop self-contained objects that you can re-use in
multiple applications.

It provides support for other common application services such as interprocess
communication.

Chapter 1: Overview of ViewKit

Major ViewKit Elements

You can think of ViewKit as consisting of several sets of classes: framework classes,
interface components, interapplication communication, and convenience utilities. The
following sections discuss these groups.

Framework Classes

ViewKit provides a small set of classes that are either essential for all applications or
provide fundamental support for all other classes. The most basic of these classes is the
VkComponent class, which defines the basic structure of all user interface components.
All user interface classes are derived from VkComponent.

The framework classes also include support for features needed by nearly all
applications, including application management and X server setup, top-level windows,
menus, and dialog management. All classes are designed to implement as many typical
features as possible. For example: all top-level windows and dialogs handle the window
manager quit/close protocol; dialogs are cached to balance memory use and display
speed; the menu system goes beyond simply constructing menus to support dynamically
adding, removing, and replacing items, and more.

The classes that make up the framework of ViewKit are closely integrated and work
together to support essential features required by most applications as automatically as
possible. Among the basic services supported by the core ViewKit framework are single
and multi-level undo; interruptible tasks; and an application-level callback mechanism
that allows C++ classes to dynamically register member functions to be invoked by other
C++ classes.

Interface Components

In addition to the basic user interface support provided by the core framework classes,
ViewKit provides an assortment of ready-to-use interface components. Examples of
these components are a graph viewer/editor, an input field that supports name
expansion, and an outliner component for displaying and manipulating hierarchical
information.

Mixing ViewKit and Standard X and Motif Functions

You are encouraged to use the architecture of ViewKit to create new components and
extend existing components. Creating reusable, high-level components promotes
consistency throughout a set of applications by providing elements that users can learn
once and then easily recognize in multiple applications.

Convenience Utilities

ViewKit provides various utility functions and classes for your convenience. These
utilities include simple functions that make it easier to load resources (including
automatic type conversion), classes that support the use of icons, and other
miscellaneous utilities.

Mixing ViewKit and Standard X and Motif Functions

As stated earlier, ViewKit does not replace Motif. It uses Motif widgets to implement all
of its user interface components, and you are free to make X and Motif calls directly in a
ViewKit application. ViewKit doesn’t do anything that you can’t do yourself using Motif
directly, but the advantage of using ViewKit is that many commonly needed services are
already implemented for you.

Naturally, not all ViewKit services are appropriate for all applications at all times. If a
situation arises in which a ViewKit facility doesn’t meet your needs, you can use the
lower-level Motif, Xt, or Xlib facilities to perform the desired operation yourself.

Most ViewKit classes are optional; however, you should be aware that certain ViewKit
classes depend on other classes. In particular, most classes depend on the existence of an
instance of the VkApp class for application management. If you plan to use any ViewKit
facilities, you should not attempt to bypass VkApp and open your own connection to the
Xserver, or directly call XtApplInitialize() or an equivalent function. For best results, you
should always allow VkApp to handle the Xt initialization and event dispatching.
VKkApp is described in detail in Chapter 3, “The ViewKit Application Class.”

Also, you should use VkSimpleWindow or VkWindow for all top-level windows. These
classes are described in detail in Chapter 4, “ViewKit Windows.”

Chapter 1: Overview of ViewKit

As an example of some optional classes, consider the ViewKit dialog management
facilities. These are intended to let you use dialogs easily and effectively. ViewKit
automatically recycles dialogs (reusing the same dialog over and over for multiple
purposes), which uses less memory and can lead to faster response times. It is also easy
to add additional buttons to any dialog, to provide context-sensitive help on individual
dialogs, and much more. The ViewKit dialog management facility is designed to be as
flexible as possible, while minimizing the amount of work required of you. You can even
write your own custom dialogs that take advantage of the dialog manager.

However, because the design of the ViewKit dialog management classes makes
assumptions about the way typical applications use dialogs, the ViewKit dialog manager
can’t offer the same control that you could obtain by directly constructing and
manipulating an Motif dialog. Should you encounter a situation where the behavior of
the dialog manager doesn’t match your application’s needs, you can always take the
same approach you would have to take if the dialog manager didn’t exist: create and
manipulate your own Motif dialog directly using Motif and Xt functions. This doesn’t
interfere with ViewKit in any way.

Before implementing your own mechanisms, you should be sure you understand the
support offered by ViewKit. Situations in which it’s necessary to duplicate functionality
supported by ViewKit should be rare. On the other hand, extending the class library by
deriving new classes, or writing completely new classes to meet application-specific
needs, is a natural part of developing any application based on ViewKit or any C++ class
library.

Compiling and Linking ViewKit Programs

Compiling and Linking ViewKit Programs

This section describes the software needed to compile and link ViewKit programs.

Required Packages

To compile and link with the ViewKit libraries, you must install a C++ compiler and a
Motif development environment (either 1.2 or 2.1), along with the ViewKit development
option subsystems. Consult the ViewKit Release Notes for a complete list of subsystems
that you must install on your system to compile and link ViewKit programs.

Note: See “Required Packages (ViewKit 2.1 Addendum)” in Appendix B for ViewKit 2.1
subsystems.

The ViewKit development option contains the following subsystems:

ViewKit_dev.sw.base
You are required to install this subsystem, which contains the optimized,
unshared C++ ViewKit libraries and include files. (The shared ViewKit
libraries are included in the IRIX system software as the
ViewKit_eoe.sw.base subsystem.)

ViewKit_dev.sw.debug
This subsystem contains the debug version of the optimized ViewKit
libraries. You can optionally install this subsystem in addition to the
ViewKit_dev.sw.base subsystem. Use this library for program debugging
only.

ViewKit_dev.man.pages
The complete set of C++ reference pages (man pages) for ViewKit. This
subsystem is optional, but recommended.

ViewKit_dev.man.relnotes
The online version of the ViewKit Release Notes. This subsystem is
optional, but recommended.

ViewKit_dev.books.ViewKit_PG
The IRIS InSight" version of this guide. This subsystem is optional, but
recommended.

ViewKit_dev.sw.demo
Sample source code to various ViewKit programs. This subsystem is
optional, but recommended.

Chapter 1: Overview of ViewKit

The ViewKit_dev.sw.base subsystem installs the following libraries:

libvk.a The basic ViewKit class library.

libvkmsg.a Classes that support inter-process communication based on the
ToolTalk™ library.

libXpm.a A library that supports X pixmap creation. Some ViewKit classes use
Xpm.

The ViewKit_dev.sw.debug subsystem installs the following libraries:
libvk_d.a The debug version of the basic ViewKit class library.

libvkmsg_d.a ~ The debug version of the classes that support inter-process
communication based on the ToolTalk library.

Required Header Files

All ViewKit header files appear in /usr/include/Vk. In most cases, the header file for a
given class is the class name followed by.h. For example, the header file for the
VkWindow class is <Vk/VkWindow.h>. Some minor classes are grouped together into
single header files. For example, the header file for the VkMenu class automatically
includes the header information for every type of menu supported by ViewKit. These
cases are noted in the text where appropriate.

You need to include Motif header files for only those Motif widgets that you explicitly
use in a ViewKit program. ViewKit automatically includes any X or Motif header files
required by ViewKit components that you use in your program.

Required Libraries

You must link all ViewKit programs with the ViewKit library, libvk, and the Motif and X
libraries. If you use an external help system with your application, you should link with
the appropriate help library. (See Chapter 11, “Using a Help System With ViewKit” for
more information.)

Getting Started

Getting Started

For example, to compile a file hello.c++ to produce the executable hello, enter
CC -0 hello hello.c++ -lvk -1 Xm-IXt -1X11

If you are debugging a program, you might find it useful to compile your program with
the debug libraries, which contain additional symbol table information.

This section gives you information on example programs that you might find helpful

when getting started with ViewKit programming. It first describes the simplest ViewKit
program, which displays a window containing a single label, and discusses the structure
of the program. Then, it discusses the demonstration programs provided with ViewKit.

The Simplest ViewKit Program

Applications based on ViewKit must obey certain organizational conventions. To see
how this organization works, consider Example 1-1, a simple ViewKit application that
displays the label “hello” in a window.

Example 1-1 The Simplest ViewKit Program: hello.c++

#i ncl ude <Vk/ VKApp. h>
#i ncl ude <VKk/ VKSi nmpl eW ndow. h>
#i ncl ude <Xni Label . h>

/1 Define a top-level w ndow class
cl ass Hel |l oW ndow. public VKSi npl eW ndow {

public:
Hel | oW ndow (const char *nane);
~Hel | oW ndow() ;
virtual const char* classNane();

}s

/1 Construct a single rooted wi dget tree, and designate the

/1 root of the tree as the window s view This example is very
/1 sinmple, just creating a single XnlLabel wi dget to display the
/1 string "hello".

Chapter 1: Overview of ViewKit

Hel | oW ndow: : Hel | oW ndow (const char *name) : VKkSi npl eW ndow (nane)

{
W dget | abel = XmCreatelabel (rmai nWndowW dget(), "hello",
NULL, 0);
addVi ew(| abel) ;
}
const char* Hel | oW ndow: : cl assNare()
{
return "Hel l oWndow'; // ldentify this class
}
Hel | oW ndow: : ~Hel | oW ndow()
{
/1 Enpty
}

/1 Main driver. Just instantiate a VKkApp and a top-I|evel w ndow,
/1 "show' the wi ndow and then "run" the application.

void main (int argc, char **argv)

{
VKApp *app = new VKApp("Hello", &argc, argv);
Hel | oW ndow *wi n = new Hel | oW ndow("hell 0");
wi n->show() ;
app->run();
}

To build this example, simply compile the file hello.c++ and link with the ViewKit library,
and the Motif and X libraries:

CC -0 hello hello.c++ -lvk -1 Xm-I Xt -|X11

Running the hello program displays a window that says “hello,” as shown in Figure 1-1.

Figure 1-1 Result of Running hello

Getting Started

This example uses two classes: the VkApp class and an application-defined class,
HelloWindow. The HelloWindow class is derived from the ViewKit VkSimpleWindow
class.

Firstlook at main(). All ViewKit applications start by creating an instance of VkApp. The
arguments to this constructor specify the Xt-style class of the application, a pointer to
argc, and the argu array. Instantiating a VkApp object opens a connection to the X server
and initializes many other services needed by typical applications. VkApp is described
in detail in Chapter 3, “The ViewKit Application Class.” Next, the hello.c++ program
instantiates a HelloWindow object that serves as the application’s top-level window. The
constructor for this class requires only a name for the window. Finally, the application
concludes by calling the HelloWindow object’s show() function and the VkApp object’s
run() function. The run() method never returns. The bodies of most ViewKit programs
are similar to this short example.

Now look at the HelloWindow class. ViewKit encourages you to create classes to
represent all major elements of the user interface. In this simple example, the only major
user interface component is a top-level window that contains a label widget. ViewKit
provides a class, VkSimpleWindow, that supports many features common to all
top-level windows and that works closely with the VkApp class to implement various
ViewKit features. To use the VkSimpleWindow class, you derive a new subclass and
create a single-rooted widget tree that the window displays as its view. ViewKit
applications do not have to create shell widgets directly.

The hello.c++ example is so simple that the HelloWindow class creates only a single
XmlLabel widget. The XmLabel widget is created in the constructor and then designated
as the window’s view. More complex classes might create a manager widget and create
other widgets as children, or might instantiate other objects, as well. Chapter 4, “ViewKit
Windows,” describes how to create windows using ViewKit.

The className() member function is supported, by convention, by all ViewKit classes.
This function is used by several ViewKit facilities and is discussed in “VkComponent
Access Functions” on page 17.

Chapter 1: Overview of ViewKit

10

Demonstration Programs

The ViewKit_dev.sw.demo subsystem installs in the /usr/share/src/ViewKit directory several
demonstration programs that illustrate different features of ViewKit. A few of the
highlights include:

fusr/share/src/ViewKit/ProgrammersGuide contains several of the example programs
from this guide.

Jusr/share/src/ViewKit/Components/CBrowser contains the source for a component
browser, which shows examples of many ViewKit components. You might find this
particularly useful to run when you read the later chapters in this guide that
describe the prebuilt components shipped with ViewKit.

Jusr/share/src/ViewKit/Applications/PhoneBook creates PhoneBook, a full-fledged
application that keeps track of names, phone numbers, and addresses. PhoneBook
uses a variety of ViewKit classes.

Jusr/share/src/ViewKit/Applications/GLX builds Rotate, a sample application that uses
GLX to do GL rendering in an X window.

Jusr/share/src/ViewKit/Applications/Inventor builds IvClock, a ViewKit
implementation of the Inventor clock sample program from Inventor 2.0.

Chapter 2

Components

This chapter introduces the concept of ViewKit components: C++ classes that encapsulate
sets of widgets along with convenient methods for their manipulation.

This chapter describes two ViewKit classes: VkCallbackObject and VkComponent.
Figure 2-1 shows the inheritance graph for these classes.

Figure 2-1 Inheritance Graph for VkCallbackObject and VkComponent

Definition of a Component

Widget sets such as Motif provide simple, low-level building blocks, like buttons,
scrollbars, and text fields. However, to create interesting and useful applications, you
must build collections of widgets that work together to perform given tasks. For
example, many applications support a system of menus, which are constructed from
several individual widgets. Just as the user thinks of the menu bar as a single logical
component of the user interface, ViewKit builds abstractions that let applications deal
with a “menu” rather than the individual pieces of the menu.

C++ allows you to do exactly this: to encapsulate collections of widgets and other objects
as logical entities. By creating C++ classes and providing simple, convenient
manipulation functions, you can avoid the complexity of creating widgets, specifying
widget locations, setting resources, assigning callbacks, and other common tasks.
Furthermore, for commonly used objects like menus, you can design general-purpose
classes that you can easily use in many different applications.

11

Chapter 2: Components

VkComponent Class

12

In ViewKit, the general user interface classes are referred to as components. A component
not only encapsulates a collection of widgets, but also defines the behavior of the overall
component. ViewKit components are designed to implement as many commonly used
features as possible. Typically, all you need to do to use a ViewKit component is create a
subclass of the appropriate ViewKit class and define any application-specific behavior.
Furthermore, using the ViewKit classes as a base, you can create your own library of
reusable components.

All ViewKit components are derived from the abstract base class VkComponent, which
defines a basic structure and protocol for all components. When creating your own
components, you should also derive them from VkComponent or one of its subclasses.

The VkComponent class enforces certain characteristics on components and expects
certain behaviors of its subclasses. These characteristics and the features provided by
VkComponent are discussed in detail in throughout this chapter; the more important
characteristics are summarized below:

e Widgets encapsulated by a component must form a single-rooted subtree.
Components typically use a container widget as the root of the subtree; all other
widgets are descendents of this widget. The root of the widget subtree is referred to
as the base widget of the component.

* You can create instances of components and use them in other components’s widget
subtrees. As a convenience, VkComponent defines an operator that allows you to
pass a VkComponent object directly to functions that expect a widget. This
operator is described further in “VkComponent Access Functions” on page 17.

e Components take a string as an argument (typically, the first argument) in the class
constructor. This string is used as the name component’s base widget. You should
give each instance of a component a unique name so that you can identify each
widget in an application by a unique path through the application’s widget tree. If
each widget can be uniquely identified, X resource values can be used to customize
the behavior of each widget. ViewKit resource support is described in “Component
Resource Support” on page 26.

e Components take a widget as an argument (typically, the second argument) in the
class constructor. This widget is the parent of the component’s base widget.
Component constructors are discussed in “Component Constructors” on page 13.

VkComponent Class

* Most components should create the base widget and all other widgets in the class
constructor. The constructor should manage all widgets except the base widget,
which should be left unmanaged. You can then manage or unmanage a
component’s entire widget subtree using the member functions described in
“Displaying and Hiding Components” on page 19.

* VkComponent provides an access function that retrieves the component’s base
widget. You might need to access the base widget, for example, to set constraint
resources so that an XmForm widget can position the component. Normally, other
widgets inside a component aren’t exposed. Access functions are discussed in
“VkComponent Access Functions” on page 17.

e Components must handle the destruction of widgets within the component’s
widget tree. The widgets encapsulated by the component must be destroyed when
the component is destroyed. Component classes must also prevent dangling
references by handling destruction of the widget tree without destruction of the
component. VkComponent provides mechanisms for handling widget destruction,
which are described in “Handling Component Widget Destruction” on page 24.

e Components should define any Xt callbacks required by a class as private static
member functions. Using Xt callbacks in ViewKit is discussed in “Using Xt
Callbacks With Components” on page 21.

¢ All component classes must override the virtual className() member function so
that it returns a string identifying the component’s class. ViewKit uses this string for
resource handling and other support functions. The className() member function
is described in more detail in “VkComponent Access Functions” on page 17.
“Component Resource Support” on page 26 describes ViewKit resource support.

Component Constructors

The VkComponent constructor has the following form:

VkConponent (const char *name)
The VkComponent constructor is declared protected and so can be called only from

derived classes. Its primary purpose is to initialize component data members, in
particular _name and _baseWidget.

13

Chapter 2: Components

14

Each component should have a unique name, which is used as the name of the
component’s base widget. The VkComponent constructor accepts a name as an
argument, creates a copy of this string, and assigns the address of the copy to the _name
data member.

The _baseWidget data member is the base widget of the component’s widget subtree. The
VkComponent constructor initializes _baseWidget to NULL.

Each derived class’s constructor should take at least two arguments—the component’s
name and a widget that serves as the parent of the component’s widget tree—and
perform at least these initialization steps:

1. Pass the name to the VkComponent constructor to initialize the basic component
data members.

2. Create the component’s widget subtree and assign the base widget to the
_baseWidget data member. The base widget should be a direct child of the parent
widget passed in the constructor, and should have the same name as the component
(as stored in _name) for the ViewKit resource support to work correctly. All other
widgets in the component must be children or descendents of the base widget.

3. Immediately after creating the base widget, call installDestroyHandler() to set up a
callback to handle widget destruction. This function is described further in
“Handling Component Widget Destruction” on page 24.

4. Manage all widgets except the base widget, which should be left unmanaged.
5. Perform any other needed class initialization.
As an example, consider a user-defined component called StartStopPanel that

implements a simple control panel containing Start and Stop buttons. The code fragment
in Example 2-1 shows a possible constructor for this class.

Example 2-1 Component Constructor

LEEEEEETTEE e

/1 StartStopPanel . h

PIETEEEITE i

/] Declare Start StopPanel as a subclass of VkConponent
class StartStopPanel : public VWkGonponent {

public:
Start SopPanel (const char *, Wdget);

VkComponent Class

~Sart St opPanel ();
...

pr ot ect ed:
Wdget _startButton;
Wdget _stopButton;
...
}

LEECETETTEEE i
/1 StartStopPanel . c++
LHECETETEEEEE iy

/1 Pass the name to the WkConponent constructor to initialize the
/1 basi c conponent data nenbers.

Start StopPanel : : Start StopPanel (const char *nane, Wdget parent): VkCQonponent (nane)

{
/1 Oreate an XmRowCol unn wi dget as the conponent’s base w dget

/1 to contain the buttons. Assign the w dget to the _baseWdget
/1 data nmenber.

_baseWdget = XmQr eat eRowCol umm (parent, _nane, NULL, 0);

/1 Set up callback to handl e wi dget destruction

i nstal | DestroyHandl er () ;
Xt VaSet Val ues(_baseWdget, Xmi\orientation, XmHCR ZONTAL, NULL);

/1 Oreate all other widgets as children of the base w dget.
/1 Manage all child wi dgets.

XnOr eat ePushButton (_baseWdget, "start", NJALL, 0);
Xt O eat ePushButton (_baseWdget, "stop", NJULL, 0);

_startButton
_stopButton

Xt ManageChi | d(_startButton);
Xt ManageChi | d(_st opButton);

/1 Performany other initialization needed (omtted in this exanpl €)

15

Chapter 2: Components

16

In this example, the StartStopPanel constructor passes the name argument to the
VkComponent constructor to initialize the _name data member. The VkComponent
constructor also initializes the _baseWidget data member to NULL. It then creates a
RowColumn widget as the base widget to manage the other widgets in the component.
The constructor uses the _name data member as the name of the base widget, uses the
parent argument as the parent widget, and assigns the RowColumn widget to the
_baseWidget data member. Immediately after creating the base widget, the constructor
calls installDestroyHandler(). Then, it creates the two buttons as children of the base
widget and manages the two child widgets.

A real constructor would then perform all other initialization needed by the class, such
as setting up callbacks for the buttons and initializing any other data members that
belong to the class. “Using Xt Callbacks With Components” on page 21 describes how
you should set up Xt callbacks when working with ViewKit components.

Component Destructors

The virtual VkComponent destructor performs the following functions:

1. Triggers the VkComponent::deleteCallback ViewKit callback for that component.
ViewKit callbacks are described in “ViewKit Callback Support” on page 34, and the
VkComponent::deleteCallback is described in “Predefined ViewKit Callbacks” on
page 40.

2. Removes the widget destruction handler described in “Handling Component
Widget Destruction” on page 24.

3. Destroys the component’s base widget, which in turn destroys the component’s
entire widget subtree.

4. Frees all memory allocated by the VkComponent constructor.
5. Sets to NULL all the data members defined by the VkComponent constructor.

The destructor for a derived class need free only the space that was explicitly allocated
by the derived class, but of course it can perform any other cleanup your class requires.

For example, if your class allocates space for a string, you should free that space in your
destructor, as shown in Example 2-2.

VkComponent Class

Example 2-2 Freeing Space in a Component Destructor

M/Conponent : publ i ¢ WkConponent {

public:
M/Conponent (const char *, Wdget);
~M/Conponent () ;
...
private:
char *_|abel ;
...

}
M/Conponent : : M/Gonponent (const char *nane, Wdget parent) : WkConponent (nare)

{
_label = strdup(|abel);

/...
}
M/Conponent : : ~M/Conponent ()
{
free (_label);
}

Even if you don’t need to perform any actions in a class destructor, you should still
declare an empty one. If you don’t explicitly declare a destructor, the C++ compiler
creates an empty inline destructor for the class; however, because the destructor in the
base class, VkCallbackObject, declares the destructor as virtual, the C++ compiler
generates a warning because a virtual member function can’t be inlined. The compiler
then “un-inlines” the destructor and, to ensure that it’s available wherever needed, puts
a copy of it in every file that uses the class. Explicitly creating an empty destructor for
your classes avoids this unnecessary overhead.

VkComponent Access Functions
VkComponent provides access functions for accessing some of the class’s data members.
The name() function returns the name of a component as pointed to by the _name data

member. This is the same as the name that you provided in the component’s constructor.
The syntax of the name() function is

const char * name() const

17

Chapter 2: Components

18

The className() function returns a string identifying the name of the ViewKit class to
which the component belongs. The syntax of className() is

virtual const char *cl assNane()

All component classes should override this virtual function to return a string that
identifies the name of the component’s class. ViewKit uses this string for resource
handling and other support functions. The class name for the VkComponent class is
“VkComponent.”

For example, if you create a StartStopPanel class, you should override the
StartStopPanel::className() function as follows:

class Start StopPanel : public VkConmponent {

public:

/1

virtual const char *cl assNane();

/1
}
const char* StartStopPanel::cl assNane()
{

return "Start StopPanel ";
}

The baseWidget() function returns the base widget of a component as stored in the
_baseWidget data member:

W dget baseW dget () const

Normally, components are as encapsulated as possible, so you should avoid operating
directly on a component’s base widget outside the class. However, certain operations
might require access to a component’s base widget. For example, after instantiating a
component as a child of an XmForm widget, you might need to set various constraint
resources, as shown below:

Wdget form= XnOeateForn{parent, "fornf, NJLL, 0);
Start StopPanel *panel = new Start StopPanel ("panel ", forn);
Xt VaSet Val ues(panel - >baseWdget (), XN opAttachnment, XnATTACH FCRM NULL);

VkComponent Class

As a convenience, VkComponent defines a Widget operator that allows you to pass a
VkComponent object directly to functions that expect a widget. By default, the operator
converts the component into its base widget. However, the operator is defined as a
virtual function so that derived classes can override it to return a different widget. Note
that you must use an object, not a pointer to an object, because of the way operators work
in C++. For example, the Widget operator makes the following code fragment equivalent
to the fragment presented above:

Wdget form = XnCreateForn{parent, "forn', NULL, 0);
St art St opPanel *panel = new Start StopPanel ("panel", form;
Xt VaSet Val ues(*panel, Xnmi\t opAttachnment, XmATTACH FORM NULL);

Displaying and Hiding Components

The virtual member function show() manages the base widget of the component,
displaying the entire component. The virtual member function hide() performs the
inverse operation. You can call show() after calling hide() to redisplay a component. The
syntax of these commands is as follows:

virtual void show)
virtual void hide()

For example, the following lines display the component panel, an instance of the
StartStopPanel:

Start St opPanel *panel = new Start StopPanel ("panel", form;
panel - >show() ;

You could hide this component with this line:

panel - >hi de() ;

19

Chapter 2: Components

20

If you're familiar with Xt, you can think of these functions as performing operations
analogous to managing and unmanaging the widget tree; however, you shouldn’t regard
these functions simply as “wrappers” for the XtManageChild() and
XtUnmanageChild() functions. First, these member functions show and hide an entire
component, which typically consists of more than one widget. Second, other actions
might be involved in showing a component. In general, the show() member function
does whatever is necessary to make a component visible on the screen. You shouldn’t
circumvent these member functions and manage and unmanage components’ base
widgets directly. For example, some components might use XtMap() and XtUnmap() as
well. Other components might not even create their widget subtrees until show() is
called for the first time.

The VkComponent class also provides the protected virtual function
afterRealizeHook(). This function is called after a component’s base widget is realized,
just before it’s mapped for the first time. The default action is empty. You can override
this function in a subclass if you want to perform actions after a component’s base widget
exists.

VkComponent Utility Functions

All ViewKit components provide the virtual member function okToQuit() to support
“safe quit” mechanisms:

virtual Bool ean okToQuit ()

A component’s okToQuit() function returns TRUE if it is “safe” for the application to
quit. For example, you might want okToQuit() to return FALSE if a component is in the
process of updating a file. By default, okToQuit() always returns TRUE; you must
override okToQuit() for all components that you want to perform a check before
quitting.

Usually only VkSimpleWindow and its subclasses use okToQuit(). When you call
VkApp::quitYourself(), VkApp calls the okToQuit() function for all registered windows
before quitting. If the okToQuit() function for any window returns FALSE, the
application doesn’t exit. “Quitting ViewKit Applications” on page 65 provides more
information on how to quit a ViewKit application, and “Providing a “Safe Quit”
Mechanism” on page 110 describes how to override VkSimpleWindow::0kToQuit() to
provide a “safe quit” mechanism for a window.

VkComponent Class

In some cases you might want to check one or more components contained within a
window before quitting. To do so, override the okToQuit() function for that window to
call the okToQuit() functions for all the desired components. Override the okToQuit()
functions for the other components to perform whatever checks are necessary.

Another utility function provided by VkComponent is the static member function
isComponent():

static Bool ean i sConponent (VkConponent * component)

The isComponent() function applies heuristics to determine whether the pointer passed
as an argument represents a valid VkComponent object. If component points to a
VkComponent that has not been deleted, this function always returns TRUE; otherwise
the function returns FALSE. It is possible, though highly unlikely, that this function could
mistakenly identify a dangling pointer to a deleted object as a valid object. This could
happen if another component were to be allocated at exactly the same address as the
deleted object a pointer previously pointed to. The isComponent() function is used
primarily for ViewKit internal checking, often within assert() macros.

Using Xt Callbacks With Components

Callbacks pose a minor problem for C++ classes. C++ member functions have a hidden
argument, which is used to pass the this pointer to the member function. This hidden
argument makes ordinary member functions unusable as callbacks for Xt-based widgets.
If a member function were to be called from C (as a callback), the this pointer would not
be supplied and the order of the remaining arguments might be incorrect.

Fortunately, there is a simple way to handle the problem, although it requires the
overhead of one additional function call. The approach is to use a regular member
function to perform the desired task, and then use a static member function for the Xt
callback. A static member function does not expect a this pointer when it is called.
However, it is a member of a class, and as such has the same access privileges as any
other member function. It can also be encapsulated so it is not visible outside the class.

The only catch is that the static member function used as a callback needs a way to access

the appropriate instance of the class. This can be provided by specifying a pointer to the
component as the client data when registering the callback.

21

Chapter 2: Components

22

Generally, you should follow these guidelines for using Xt callbacks with ViewKit
components:

Define any Xt callbacks required by a component as static member functions of that
class. You normally declare these functions in the private section of the class,
because they are seldom useful to derived classes.

Pass the this pointer as client data to all Xt callback functions installed for widgets.
Callback functions should retrieve this pointer, cast it to the expected component
type, and call a corresponding member function.

Adopt a convention of giving static member functions used as callbacks the same
name as the member function they call, with the word “Callback” appended. For
example, the static member function activateCallback() should call the member
function activate(). This convention is simply meant to make the code easier to read
and understand. If you prefer, you can use your own convention for components
you create, but this convention is used by all predefined ViewKit components.

Member functions called by static member functions are often private, but they can
instead be part of the public or protected section of the class. Occasionally it’s useful
to declare one of these functions as virtual, thereby allowing derived classes to
change the function ultimately called as a result of a callback.

For example, the constructor presented in Example 2-1 for the simple control panel
component described in “Component Constructors” on page 13 omitted the setup of
callback routines to handle the activation of the buttons. To implement these callbacks,
you must follow these steps:

1.

Create regular member functions to perform the tasks desired in response to the
user clicking the buttons.

Create static member functions that retrieve the client data passed by the callback,
cast it to the expected component type, and call the corresponding member
function.

Register the static member functions as callback functions in the class constructor.

VkComponent Class

Suppose that for the control panel, you want to call the member function
StartStopPanel::start() when the user clicks the Start button, and to call
StartStopPanel::stop() when the user clicks the Stop button:

void StartStopPanel::start(Wdget w, XtPointer call Data)
{

[/ Perform"start" function

}
void Start St opPanel :: stop(W dget w, XtPointer call Data)

{

/1 Perform"stop" function

}

You should then define the StartStopPanel::startCallback() and
StartStopPanel::stopCallback() static member functions as follows:

void StartStopPanel ::startCal | back(Wdget w, XtPointer clientData,
Xt Poi nter call Dat a)

{
Start StopPanel *obj = (StartStopPanel *) clientData;

obj->start(w, callData);

}

voi d Start StopPanel :: stopCal | back(W dget w, XtPointer clientData,
Xt Poi nter call Dat a)

{
Start St opPanel *obj = (StartStopPanel *) clientData;

obj - >stop(w, call Data);
}

Finally, you need to register the static member functions as callbacks in the constructor.
Remember that you must pass the this pointer as client data when registering the
callbacks. Example 2-3 shows the updated StartStopPanel constructor, which installs the
Xt callbacks for the buttons.

Example 2-3 Component Constructor With Xt Callbacks

Start StopPanel :: Start StopPanel (const char *nane, Wdget parent): VkGonponent (nane)

{
/1l Greate an XmRowCol unn wi dget as the conponent’s base w dget

/l to contain the buttons. Assign the w dget to the _baseWdget
/1 data nenber.

_baseWdget = Xnr eat eRowCol umm (parent, _nanme, NULL, 0);

23

Chapter 2: Components

24

/1 Set up callback to handl e wi dget destruction
i nstal | DestroyHandl er();
Xt VaSet Val ues(_baseWdget, XnmiNorientation, XrHCR ZONTAL, NULL);

/1 Oreate all other widgets as children of the base w dget.
/1 Manage all child w dgets.

_startButton
_stopButton

XnOr eat ePushButton (_baseWdget, "start”, NJLL, 0);
Xt O eat ePushButton (_baseWdget, "stop", NJLL, 0);

Xt ManageChi | d(_startButton);
Xt ManageChi | d(_st opButt on);

/1 Install static menber functions as call backs for the pushbuttons

Xt AddCal | back(_startButton, XmNacti vateCal | back,
&t art StopPanel ::startCal |l back, (XtPointer) this);

Xt AddCal | back(_stopButton, XniNacti vat eCal | back,
&t art StopPanel : : stopCal | back, (Xt Pointer) this);

Handling Component Widget Destruction

When widgets are destroyed, it’s easy to leave dangling references—pointers to memory
that once represented widgets, but are no longer valid. For example, when a widget is
destroyed, its children are also destroyed. It’s often difficult to keep track of the
references to these children, so it’s fairly easy to write a program that accidentally
references the widgets in a class after the widgets have already been destroyed. In some
cases, applications might try to delete a widget twice, which usually causes the program
to crash. Calling XtSetValues() or other Xt functions with a widget that’s been deleted is
also an error that can occur easily in this situation.

To help protect the encapsulation of ViewKit classes, VkComponent provides a private
static member function, widgetDestroyedCallback(), to register as an
XmNdestroyCallback for the base widget so that the component can properly handle the
deletion of its base widget. This callback can’t be registered automatically within the
VkComponent constructor because derived classes have not yet created the base widget
when the VkComponent constructor is called.

VkComponent Class

As a convenience, rather than force every derived class to install the
widgetDestroyedCallback() function directly, VkComponent provides a protected
installDestroyHandler() function that performs this task:

voi d install DestroyHandl er ()

Immediately after creating a component’s base widget in a derived class, you should call
installDestroyHandler(). For example:

Start St opPanel : : Start St opPanel (const char *nane, W dget parent)
VkConponent (nane)

{
_baseW dget = XnCreat eRowCol um (parent, _nane, NULL, 0);
instal | DestroyHandl er ();
I

}

When you link your program with the debugging version of the ViewKit library, a
warning is issued for any class that does not install the widgetDestroyedCallback()
function.

The widgetDestroyedCallback() function calls the virtual member function
widgetDestroyed():

virtual void w dget Destroyed()

By default, widgetDestroyed() sets the component’s _baseWidget data member to NULL.
You can override this function in derived classes if you want to perform additional tasks
in the event of widget destruction; however, you should always call the base class’s
widgetDestroyed() function as well.

Occasionally, you might need to remove the destroy callback installed by
installDestroyHandler(). For example, the VkComponent class destructor removes the
callback before destroying the widget. To do so, you can call the
removeDestroyHandler() function:

voi d renoveDestroyHandl er ()

25

Chapter 2: Components

Component Resource Support

26

The X resource manager is a very powerful facility for customizing both applications and
individual widgets. The resource manager allows the user or programmer to modify
both the appearance and behavior of applications and widgets.

ViewKit provides a variety of utilities to simplify resource management. Using ViewKit,
you can easily

* set resource values for a single component or an entire class of components
* initialize data members using values retrieved from the resource database
* programmatically set default resource values for a component

e obtain resource values

For ViewKit resource support to work properly, you must follow these two guidelines:

* You must override each components’s virtual className() member functions,
returning a string that identifies the name of each component’s C++ class. For
example, if you create a StartStopPanel component class, you must override
StartStopPanel::className() as follows:

const char* StartStopPanel :: cl assNane()

{
}

* You must provide a unique component name when instantiating each component.
This string must be used as the name of the component’s base widget. Giving each
instance of a component a unique name ensures a unique path through the
application’s widget tree for each widget. Widgets within a component can have
hard-coded names because they can be qualified by the name of the root of the
component subtree.

return "Start StopPanel ";

Component Resource Support

Setting Resource Values by Class or Individual Component

The structure of ViewKit allows you to specify resource values for either an individual
component or for all components of a given class.

To set a resource for an individual instance of a component, refer to the resource using
this syntax:

* name* resource

In this case, name refers to the ViewKit component’s name that you pass as an argument
to the component’s constructor, and resource is the name of the resource. A specification
of this form works for setting both widget resources and “synthetic” resources that you
use to initialize data member values. (“Initializing Data Members Based on Resource
Values” on page 28 describes a convenience function for initializing data members from
resource values.)

For example, you could set a “verbose” resource to TRUE for the instance named
“status” of a hypothetical ProcessMonitor class with a resource entry such as this:

*status*verbose: TRUE

To set a resource for an entire component class, refer to the resource using this syntax:

* className* resource

In this case, className is the name of the ViewKit class returned by that class’s
className() function, and resource is the name of the resource. A specification of this
form works for setting “synthetic” resources only, not widget resources.!

For example, you can set a “verbose” resource for all instances of the hypothetical
ProcessMonitor class to TRUE with a resource entry such as:

*ProcessMoni t or *ver bose: TRUE

1You can set resources for widgets within a component when you specify a component’s name because
the name of component’s base widget is the same as the name of the component; the X resource
manager can successfully determine a widget hierarchy based on widget names. On the other hand, a
component’s class name has no relation to its base widget’s class name. If you use a component class
name in a resource specification, the X resource manager cannot determine the widget hierarchy for
widgets in the component.

27

Chapter 2: Components

28

Initializing Data Members Based on Resource Values

If you want to initialize data members in a class using values in the resource database,
you can call the VkComponent member function getResources():

voi d get Resources (const Xt ResourcelLi st resources,
const int numResources)

The resources argument is a standard resource specification in the form of an XtResource
list, and the numResources argument is the number of resources. You should define the
XtResource list as a static data member of the class to encapsulate the resource
specification with the class. You should call getResources() in the component constructor
after creating your component’s base widget.

getResources() retrieves the specified resources relative to the root of the component’s
widget subtree. For example, to set the value of a resource for a particular instance of a
component, you would need to set the resource with an entry in the resource database of
this form:

* name. resource. value

In this example, name is the component’s name, resource is the name of the resource, and
value is the resource value. To set the value of a resource for an entire component class,
you would need to set the resource with an entry in the resource database of this form:

* className. resource. value

In this example, className is the component class name, resource is the name of the
resource, and value is the resource value.

Example 2-4 demonstrates the initialization of a data member, _verbose, from the resource
database. A default value is specified in the XtResource structure, but the ultimate value
is determined by the value of the resource named “verbose” in the resource database.

Example 2-4 Initializing a Data Member From the Resource Database

/] Header file: ProcesshMonitor.h

#i ncl ude <\W/ VWkConponent . h>
#i ncl ude <Xni Fr ane. h>

cl ass ProcessMnitor : public VkConponent
{

Component Resource Support

private:
static Xt Resource _resources[];

pr ot ect ed:
Bool ean _ver bose;
publ i c:
Processhni tor (const char *, Wdget);
~Processhnitor();
virtual const char *cl assName();

}
I/l Source file: ProcessMnitor.c++
#i ncl ude "ProcesshMnitor. h"

Xt Resource ProcessMnitor:: _resources [] = {
{
"ver bose",
"\er bose",
XmRBool ean,
si zeof (Bool ean),
Xt Cffset (ProcessMnitor *, _verbose),

XnRStri ng,
(Xt Pointer) "FALSE',
b

b

ProcesshMnitor:: ProcessMni tor (Wdget parent, const char *nane): \kConponent (nane)

{
_baseWdget = Xt VaQ eateWdget (_nane, xnfraneWdget d ass,

parent, NULL) ;
i nstal | DestroyHandl er () ;
/] Initialize nmenbers fromresource dat abase

get Resources (_resources, Xt Nunber(_resources));

...
}

So, to initialize the _verbose data member to TRUE in all instances of the ProcessMonitor
class, you need only set the following resource in the resource database:

*ProcessMboni tor. verbose: TRUE

29

Chapter 2: Components

30

To initialize _verbose to TRUE for an instance of ProcessMonitor named
conversionMonitor, you could set the following resource in the resource database:

*conver si onMoni tor. verbose: TRUE

Setting Default Resource Values for a Component

Often, you might want to specify default resource values for a component. A common
way to accomplish this is to put the resource values in an application resource file.
However, this makes the component dependent on that resource file; to use that
component in another application, you must remember to copy those resources into the
new application’s resource file. This is especially inconvenient for classes that you reuse
in multiple applications.

A better method of encapsulating default resources into a component is to use a ViewKit
facility that allows you to specify them programmatically and then merge them into the
resource database during execution. Although the resources are specified
programmatically, they can be overridden by applications that use the class, or by end
users in resource files. However, the default values are specified by the component class
and cannot be separated from the class accidentally. If you later want to change the
implementation of a component class, you can also change the resource defaults when
necessary, knowing that applications that use the class will receive both changes
simultaneously.

The VkComponent class provides the setDefaultResources() function for storing a
collection of default resources in the application’s resource database. The resources are
loaded with the lowest precedence, so that these resources are true defaults. They can be
overridden easily in any resource file. You should call this function in the component
constructor before creating the base widget in case any resources apply to the
component’s base widget.

The setDefaultResources() function has the following syntax:

voi d set Def aul t Resources (const Wdget w,
const String *resourceSpec)

The first argument is a widget; you should always use the parent widget passed in the
component’s constructor.

Component Resource Support

The second argument is a NULL-terminated array of strings, written in the style of an
X resource database specification. Specify all resources in the list relative to the root of the
component’s base widget, but do not include the name of the base widget. If you want
to apply a resource to the base widget, simply use the name of the resource preceded by
an asterisk (*). When resources are loaded, the value of _name is prefixed to all entries,
unless that entry begins with a hyphen (-). As long as you use unique names for each
component that you create of a given class, this results in resource specifications unique
to each component. If you precede a resource value in this list with a hyphen (-),
setDefaultResources() does not qualify the resource with the value of _name. This is
useful in rare situations where you want to add global resources to the database.

You should declare the resource list as a static data member of the class. This
encapsulates the set of resources with the class.

Note: Generally, setting resources using setDefaultResources() is most appropriate for
components that you plan to reuse in multiple applications. In particular, it is a good
method for setting resources for widget labels and other strings that your component
displays. You should not use setDefaultResources() to set widget resources, such as
orientation, that you would normally set programmatically. Typically you don’t need to
change these resources when you use the component in different applications, and so
you save memory and execution time by not using setDefaultResources() to set these
resources.

Example 2-5 builds on the StartStopPanel constructor from Example 2-3 to specify the
default label strings “Start” and “Stop” for the button widgets.

Example 2-5 Setting a Component’s Default Resource Values

/1 StartStopPanel . h
class Sart StopPanel : public WGConponent {

public:
Sart StopPanel (const char *, Wdget);
~Start StopPanel ();
...

private:
static String _defaul t Resources[];
...

31

Chapter 2: Components

32

/1 StatStopPanel . c++

String StartStopPanel :: _defaul t Resources[] = {
"*start.label Sring: Sart”,

"*stop. | abel String: S op”,

NULL
b

Start StopPanel :: Start St opPanel (const char *nane, Wdget parent): VkGonponent (nane)
{ /1 Load cl ass-default resources for this object before creating base w dget

set Def aul t Resour ces(parent, _def aul t Resources);

_baseWdget = XnQr eat eRowCol umm (parent, _nane, NULL, 0);

instal | DestroyHandl er();

Xt VaSet Val ues(_baseWdget, Xmi\orientation, XmHCR ZONTAL, NULL);

_startButton = XnOreatePushButton (_baseWdget, "start", NULL, 0);
_stopButton = Xt OreatePushButton (_baseWdget, "stop", NJLL, 0);

...

Convenience Function for Retrieving Resource Values

ViewKit also provides VkGetResource(), a convenience function for retrieving resource
values from the resource database. VkGetResource() is 70t a member function of any
class. You must include the header file <Vk/VkResource.h> to use VkGetResource().

VkGetResource() has two forms. The first is as follows:

char * VkGet Resource(const char * name,
const char * className)

This form returns a character string containing the value of the application resource you
specify by name and class name. This function is similar to XGetDefault(3X) except that
this form of VkGetResource() allows you to retrieve the resource by class name whereas
XGetDefault() does not.

Component Resource Support

Note: Do not attempt to change or delete the value returned by VkGetResource().

The second form of VkGetResource() is as follows:

Xt Poi nter VkGet Resource(Wdget w,
const char *name,
const char *className,
const char *desiredType,
const char *defaultValue)

This second form is similar to XtGetSubresource(3Xt) in that it allows you to retrieve a
resource relative to a specific widget. You can specify the resource as a dot-separated list
of names and classes, allowing you to retrieve “virtual” sub-resources. You can also
specify a target type. VkGetResource() converts the retrieved value, or the default value
if no value is retrieved, to the specified type.

Note: Do not attempt to change or delete the value returned by VkGetResource().

For example, suppose that you want to design an application for drawing an image and
you want to allow the user to select various aspects of the style in which the image is
drawn, such as color and fill pattern (a pixmap). You could specify each aspect of each
style as a resource and retrieve the values as follows:

Wdget canvas = XnOr eat eDr awi ngArea(parent, "canvas", NULL, 0);

Pi xel fgnhe = (Pixel) WGet Resour ce(canvas,
"styl ethe. foreground”, "Style. Foreground",
XnRtring, "Bl ack");

Pixel fgTwo = (Pixel) WGet Resour ce(canvas,
"styl eTwo. f oreground”, "Styl e. Foreground”,
XnRstring, "Bl ack");

Pi xel bgne = (Pixel) WKGet Resour ce(canvas,
"styl etne. background”, "Style. Background”,
XnRString, "Wite");

Pi xel bgTwo = (Pixel) WGet Resour ce(canvas,
"styl eTwo. background”, "<yl e. Background”,
XRString, "Wite");

P xmap pi xhe = (Pi xnmap) WKGet Resour ce(canvas,
"styl eQne. pi xmap", "Syle. P xmap",
XnRString, "background");

P xmap pi xTwo = (Pi xnap) WkGet Resour ce(canvas,
"styl eTwo. pi xmap", "Style. P xmap",
XmRString, "background");

33

Chapter 2: Components

Another common technique used in ViewKit programming is to use a string to search for

resource value and, if no resource exists, use the string as the value. You can do this easily

if you pass the string to VkGetResource() as the default value. For example, consider the

following code:

char *tineMsg = "Tine",

...

char *timeTitle = (char *) VkGet Resource(_baseW dget, tineMsg, "Tinme",
XnRString, timeMsg);

In this case, VkGetResource() searches for a resource (relative to the _baseWidget widget)
whose name is specified by the character string timeMsg. If no such resource exists,
VkGetResource() returns the value of timeMsg as the default value.

If you use this technique, you should not pass a string that contains embedded spaces or
newlines.

ViewKit Callback Support

34

All ViewKit components support ViewKit member function callbacks (also referred to
simply as ViewKit callbacks). ViewKit callbacks are analogous to Xt-style callbacks
supported by widget sets, but ViewKit callbacks are in no way related to Xt.

The ViewKit callback mechanism allows a component to define conditions or events, the
names of which are exported as public static string constants encapsulated by that
component. Any other component can register any of its member functions to be called
when the condition or event associated with that callback occurs.

Unlike the case when registering ViewKit functions for Xt-style callbacks, the functions
you register for ViewKit callbacks must be regular member functions, not static member
functions.

ViewKit callbacks are implemented by the VkCallbackObject class. VkComponent is
derived from VkCallbackObject, so all ViewKit components can use ViewKit callbacks.
If you create a class for use with a ViewKit application, that class must be derived from
VkCallbackObject or one of its subclasses (such as VkComponent) for you to be able to
use ViewKit callbacks with that class.

ViewKit Callback Support

Registering ViewKit Callbacks

The addCallback() function defined in VkCallbackObject registers a member function
to be called when the condition or event associated with a callback occurs.

Note: When registering a ViewKit callback, remember to call the addCallback() member
function of the object that triggers the callback, not the object that is registering the
callback.

The format of addCallback() for registering a member function is as follows:

voi d addCal | back(const char *mname,
VkCal | backQbj ect * component,
VKkCal | backMet hod callbackFunction,
voi d *clientData = NULL)

The following are the arguments for this function:

name The name of the ViewKit callback. You should always use the name of
the public static string constant for the appropriate callback, not a literal
string constant. (For example, use VkComponent::deleteCallback, not
“deleteCallback”.) This allows the compiler to catch any misspellings of
callback names.

component A pointer to the object registering the callback function.

callbackFunction
The member function to invoke when the condition or event associated
with that callback occurs.

clientData A pointer to data to pass to the callback function when it is invoked.

For example, consider a member of a hypothetical Display class that instantiates another
hypothetical component class, Control. The code fragment below registers a function to
be invoked when the value set by the Control object changes and the Control object
triggers its valueChanged callback:

Di spl ay: : createControl ()

{
_control = new Control (_baseWdget, "control");
_control ->addCal | back(Control ::val ueChanged, this,
(VkCal | backMet hod) &Di spl ay: : newval ue) ;
}

35

Chapter 2: Components

36

In this example, the Display object requests that when the Control object triggers its
valueChanged callback, it should call the Display::newValue() function of the Display object
that created the Control object. The “(VkCallbackMethod)” cast for the callback function

is required.

All ViewKit callback functions must have this form:

voi d nmerber Functi onCal | back(VkCal | backCbj ect *obj,
voi d *clientData,
voi d *callData)

The obj argument is the component that triggered the callback, which you must cast to
the correct type to allow access to members provided by that class. The clientData
argument is the optional client data specified when you registered the callback, and the
callData argument is optional data supplied by the component that triggered the
callback.

For example, you would define the Display::new Value() callback method used above as
follows:

class Display : VkConponent {
private:
voi d newval ue(VkCal | backCbj ect *, void *, void *);
I

}s

voi d Displ ay: : newval ue(VkCal | backObj ect * obj,
void *clientData,
void *cal |l Data);

Control *control Cbj = (Control *) obj;

/1 Perform whatever operation is needed to update

/1 the Display object. You can al so access nenber

/1 functions fromthe Control object (control Qhj).

/1 The clientData argunent contains any information

/1 you provided as clientData when you registered

/1 this callback; cast it to the proper type to use it.
/1 If the Control object passed the new val ue as the
/1 callData argunent, you can cast that to the proper
/1 type and use it.

ViewKit Callback Support

There is also a version of addCallback() for registering non-member functions. Its syntax
is as follows:

voi d addCal | back(const char *name,
VkCal | backFuncti on callbackFunction,
voi d *clientData = NULL)

The arguments for this version are as follows:

name The name of the ViewKit callback. You should always use the name of
the public static string constant for the appropriate callback, not a literal
string constant.

callbackFunction
The non-member function to invoke when the condition or event
associated with that callback occurs.

clientData A pointer to data to pass to the callback function when it is invoked.

The form of your non-member ViewKit callback functions must be as follows:

voi d functionCall back(VkCal | backObj ect *obj,
voi d *clientData,
voi d *callData)

For example, suppose you have a non-member function errorCondition():

voi d errorCondition(VkCal | backChj ect *obj,
voi d *clientData,
voi d *callData)

{
}

// Handle error condition

You could register it for a ViewKit callback with the line such as this:

sanpl e- >addCal | back(Sanpl eConponent : : error Cal | back,
(VkCal | backFunction) &errorCondition);

The (VkCal | backFunct i on) cast for the callback function is required.

37

Chapter 2: Components

38

Removing ViewKit Callbacks

The removeCallback() function provided by the VkCallbackObject class removes
previously registered callbacks. The following version of removeCallback() removes a
member function registered as a callback:

voi d renoveCal | back(char *name,
VkCal | backQbj ect *otherObject,
VkCal | backMet hod memberFunction,
voi d *clientData = NULL)

The following version of removeCallback() removes a non-member function registered
as a callback:

voi d renoveCal | back(const char *name,
VkCal | backFunct i on callbackFunction,
voi d *clientData = NULL)

To remove a callback, you must provide the same arguments specified when you
registered the callback. For example, the following line removes the Control callback
registered in the previous section:

_control ->renoveCal | back(Control ::val ueChanged, this,
(VkCal | backMet hod) &Di spl ay: : newval ue) ;

The removeAllCallbacks() function removes multiple ViewKit callbacks:

voi d renoveAl | Cal | backs()
voi d renoveAl | Cal | backs(VkCal | backOnj ect *obj)

If you don’t provide an argument, this function removes all callbacks from an object,
regardless of which components registered the callbacks. If you provide a pointer to a
component, removeAllCallbacks() removes from an object all ViewKit callbacks that
were set by the specified component. For example, the following would remove from the
Control object _control all callbacks that the Display object had set:

_control ->renmoveAl | Cal | backs(this);

ViewKit Callback Support

Defining and Triggering ViewKit Callbacks

To create a ViewKit callback for a component class, define a public static string constant
as the name of the callback. For clarity, you should use the string’s name as its value. For
example, the following defines a callback, StartStopPanel::actionCallback, for the
hypothetical StartStopPanel class discussed earlier in this chapter:

class Start StopPanel : public VkConponent {

public:
static const char *const actionCall back;
/1
}
const char *const StartStopPanel::actionCallback = "actionCall back";

The callCallbacks() member function triggers a specified callback, invoking all member
functions registered for that callback:

cal | Cal | backs(const char *callback, voi d *callData)

The first argument specifies the name of the callback. You should always use the name of
the public static string constant for the appropriate callback, not a literal string constant.
(For example, use St ar t St opPanel : : st art Cal | back, not “st art Cal | back”.) This
allows the compiler to catch any misspellings of callback names.

The second argument is used to supply any additional data that might be required.

For example, you could define the StartStopPanel::start() and StartStopPanel:stop()
functions to trigger the actionCallback and pass an enumerated value as call data to
indicate which button the user clicked:

enum Panel Action { START, STOP };
class StartStopPanel : public VkConponent {
public:

static const char *const actionCall back;
/1

39

Chapter 2: Components

40

const char *const StartStopPanel::actionCallback = "actionCall back";

void Start StopPanel ::start(Wdget w, XtPointer call Data)
{

}

voi d Start StopPanel ::stop(Wdget w, XtPointer call Data)

{
cal | Cal | backs(actionCal | back, (void *) STOP);
b

cal | Cal | backs(actionCal | back, (void *) START);

Predefined ViewKit Callbacks

The VkComponent class, and therefore all derived classes, includes the ViewKit callback
deleteCallback, which is invoked when the component’s destructor is called. You can use
this callback to prevent dangling pointers when maintaining pointers to other
components. The code fragment in Example 2-6 shows an example of this.

Example 2-6 Using the Predefined deleteCallback ViewKit Callback

cl ass Mai nConponent : VkConponent {
/1
AuxConponent *_aux;
voi d creat eAux();
voi d auxDel et ed(VkCal | backObj ect *, void *, void *);

/1
S
/1
voi d Mai nConponent : : cr eat eAux()
{_aux = new AuxConponent (_baseW dget, "auxilliary");

_aux->addCal | back(VkConponent : : del et eCal | back, this,
(VKkCal | backMet hod) &Mai nConmponent : : auxDel et ed) ;

}
voi d Mai nConponent : : auxDel et ed(VkCal | backObj ect *,
void *, void *)

{
}

_aux = NULL;

Deriving Subclasses to Create New Components

In the function MainComponent::createAux(), the MainComponent class creates an
instance of the AuxComponent and then immediately registers
MainComponent::auxDeleted() as a callback to be invoked when the AuxComponent
object is deleted.

The auxDeleted() callback definition simply assigns NULL to the AuxComponent object
pointer. All other MainComponent functions should test the value of _aux to ensure that
it is not NULL before attempting to use the AuxComponent object. This eliminates the
possibility that the MainComponent class would try to access the AuxComponent object
after deleting it, or attempting to delete it a second time.

In most cases you should not need to use this technique of registering deleteCallback
callbacks. It is necessary only if you need to create multiple pointers to a single object. In
general, you should avoid multiple pointers to the same object, but
VkComponent::deleteCallback provides a way to control situations in which you must
violate this guideline.

Deriving Subclasses to Create New Components

This section demonstrates how to use the VkComponent class to create new
components. It includes guidelines to follow when creating new components, an
example of creating a new component, and an example of subclassing that component to
create yet another component class.

Subclassing Summary

The following is a summary of guidelines for writing components based on the
VkComponent class:

¢ Encapsulate all of your component’s widgets in a single-rooted subtree. While some
extremely simple components might contain only a single widget, the majority of
components must create some type of container widget as the root of the
component’s widget subtree; all other widgets are descendents of this one.

* When you create your class’s base widget, assign it to the _baseWidget data member
inherited from the VkComponent class.

41

Chapter 2: Components

42

In most cases, create a component’s base widget and all other widgets in the class
constructor. The constructor should manage all widgets except the base widget,
which should be left unmanaged. You can then manage or unmanage a
component’s entire widget subtree using the show() and hide() member functions.

Accept at least two arguments in your component’s constructor: a string to be used
as the name of the base widget, and a widget to be used as the parent of the
component’s base widget. Pass the name argument to the VkComponent
constructor, which makes a copy of the string. Refer to a component’s name using
the _name member inherited from VkComponent or the name() access function.
Refer to a component’s base widget using the _baseWidget member inherited from
VkComponent or the baseWidget() access function.

Override the virtual className() member function for your component classes to
return a string consisting of the name of the component’s C++ class.

Define all Xt callbacks required by a component class as private static member
functions. In exceptional cases, you might want to declare them as protected so that
derived classes can access them.

Pass the this pointer as client data to all Xt callback functions. Callback functions
should retrieve this pointer, cast it to the expected component type and call a
corresponding member function. For clarity, use the convention of giving static
member functions used as callbacks the same name as the member function they
call, with the word “Callback” appended. For example, name a static member
function startCallback() if it calls the member function start().

Call installDestroyHandler() immediately after creating a component’s base
widget.

If you need to specify default resources for a component class, call the function
setDefaultResources() with an appropriate resource list before creating the
component’s base widget.

If you need to initialize data members from values in the resource database, define
an appropriate resource specification and call the function getResources()
immediately after creating the component’s base widget.

Deriving Subclasses to Create New Components

Creating a New Component

To illustrate many of the features of the VkComponent base class, this chapter has shown
how to build a simple class called StartStopPanel, which implements a control panel
containing two buttons. Figure 2-2 shows the default appearance of a StartStopPanel
object.

Figure 2-2 Default Appearance of a StartStopPanel Component
Example 2-7 lists the full implementation of this class.

Example 2-7 Simple User-Defined Component

LEEEEEEEEEEEE i n i b n i r b n b n bbby
/1 Start StopPanel . h
PHECEEETEEEEE T i i r b n bbbty

#i fndef _STARTSTCPPANEL_H
#def i ne _STARTSTCPPANEL_H
#i ncl ude <W/ \WConponent . h>

enum Panel Action { START, STCP };

class StartStopPanel : public VkGConponent {
public:
Sart StopPanel (const char *, Wdget);
~Start StopPanel ();
virtual const char *classNane();

static const char *const actionCal | back;
pr ot ect ed:

virtual void start(Wdget, Xt Pointer);

virtual void stop(Wdget, Xt Pointer);

Wdget _startButton;
Wdget _stopButton;

43

Chapter 2: Components

private:
static void startCal | back(Wdget, Xt Pointer, XtPointer);
static void stopCal | back(Wdget, Xt Pointer, Xt Pointer);
static String _defaul t Resources[];

b

#endi f

LHEEEEEEEEEEE i n i i n i r i b n bbb i irn g
/1l StartStopPanel . c++

THECETETTEEEE T i n i i i b bbb i riirn g

#i ncl ude "Start St opPanel . h"
#i ncl ude <X RowCol urm. h>
#i ncl ude <X PushB. h>

/1 These are default resources for wdgets in objects of this class.

/Il Al resources will be prefixed by *<nane> at instantiation,

/1 where <nanme> is the name of the specific instance, as well as the
/1 name of the baseWdget. These are only defaults, and nmay be

/1 overriden in a resource file by providing a nore specific resource
/1 narre.

String StartStopPanel :: _defaul t Resources[] = {
"*start.label Sring: Sart”,

"*stop. | abel String: St op”,

NULL
b
const char *const StartStopPanel ::actionCall back = "actionCal | back";
Start StopPanel :: Start StopPanel (const char *nane, Wdget parent): VkGonponent (nane)
{

/1 Load cl ass-default resources for this object before creating base w dget

set Def aul t Resour ces(parent, _def aul t Resources);

/1 Oreate an XmRowCol unn wi dget as the conponent’s base w dget

/1 to contain the buttons. Assign the w dget to the _baseWdget

/1 data nenber.

_baseWdget = Xnr eat eRowCol umn (parent, _nanme, NULL, 0);

44

Deriving Subclasses to Create New Components

}

/1 Set up callback to handl e wi dget destruction
i nstal | DestroyHandl er();
Xt VaSet Val ues(_baseWdget, XnmiNorientation, XrHCR ZONTAL, NULL);

/1 Oreate all other widgets as children of the base w dget.
/1 Manage all child w dgets.

_startButton
_stopButton

XnOr eat ePushButton (_baseWdget, "start", NJLL, 0);
XnOr eat ePushButton (_baseWdget, "stop", NJLL, 0);

Xt ManageChi | d(_startButton);
Xt ManageChi | d(_st opButt on);

/] Install static nenber functions as call backs for the buttons

Xt AddCal | back(_startButton, Xm\acti vateCal | back,
&t art StopPanel ::startCal |l back, (XtPointer) this);

Xt AddCal | back(_stopButton, XniNacti vat eCal | back,
&t art StopPanel : : stopCal | back, (Xt Pointer) this);

Start StopPanel : : ~Start St opPanel ()

{
}

[l Enpty

const char* Start StopPanel : : cl assNane()

{
}

return "Start StopPanel *;

void Start StopPanel ::startCal | back(Wdget w, Xt Pointer clientData,

{

}

Xt Poi nter call Data)

StartStopPanel *obj = (StartStopPanel *) clientData;
obj ->start(w, callData);

45

Chapter 2: Components

46

voi d Start StopPanel : : stopCal | back(Wdget w Xt Pointer clientData,
Xt Poi nter call Data)

{
StartStopPanel *obj = (StartStopPanel *) clientData;

obj ->stop(w, cal |l Data);

void Start StopPanel ::start(Wdget, X Pointer)

{
cal | Cal | backs(actionCal | back, (void *) START);

}
voi d Start StopPanel : : st op(Wdget, Xt Pointer)

{
cal | Gal I backs(actionCal | back, (void *) STCP);

}

Using and Subclassing a Component Class

Example 2-7 slightly changes the StartStopPanel class from previous examples by
declaring the member functions StartStopPanel::start() and StartStopPanel::stop() as
virtual functions. This allows you to use the StartStopPanel in two different ways: using
the component directly and subclassing the component.

Using a Component Class Directly

The simplest way to use the StartStopPanel class is to register callbacks with
StartStopPanel::actionCallback. To do so, instantiate a StartStopPanel object in your
application and register as a callback a member function that tests the value of the call
data and performs some operation based on the value. This option avoids the additional
work required to create a subclass of StartStopPanel. This technique of using a
component class is most appropriate if the class already has all the functionality you
require.

Deriving Subclasses to Create New Components

Example 2-8 shows a simple example of using the StartStopPanel directly. The
PanelWindow class is a simple subclass of the VkSimpleWindow class, which is
discussed in Chapter 4, “ViewKit Windows.” It performs the following activities in its
constructor:

1. Itinstantiates a StartStopPanel object named “controlPanel” and assigns it to the
_controlPanel variable.

2. It specifies a vertical orientation for the StartStopPanel object.

3. Itinstalls PanelWindow::statusChanged() as a ViewKit callback function to be
called whenever StartStopPanel::actionCallback triggers. In this example,
PanelWindow::statusChanged() simply prints a status message to standard output
whenever it is called.

4. Itinstalls the _controlPanel object as the window’s “view.” Showing the
PanelWindow object will now display the _controlPanel object. (“Creating the
Window Interface” on page 93 describes how to create window interfaces.)

Example 2-8 Using a Component Directly

THEETELEEEEEE il inre
/] Panel Wndow. h
TIELTETLEEE i i iriiiiririiirieg

#i fndef _PANELW NDON H
#define _PANELW NDON H

ncl ude "Start St opPanel . h"
#i ncl ude <\WK/\KS npl eW ndow h>

/1 Define a top-1evel w ndow cl ass
cl ass Panel Wndow public WS npl eWndow {
public:
Panel Wndow(const char *nane);

~Panel Wndow() ;
virtual const char* classNane();

47

Chapter 2: Components

48

pr ot ect ed:
voi d st at usChanged(\kCal | back(hj ect *, void *, void *);

Sart StopPanel * _control Panel ;
b
#endi f
LHEEEEEEEEE i n i n o r i b n bbbty

[/ Panel Wndow c++
THECTEEELEEEE i i iriiinrer

#i ncl ude " Panel Wndow. h"
#i ncl ude <i ostream h>

Panel W ndow:. : Panel Wndow(const char *nane) : kS npl eWndow (nane)
{

_control Panel = new Start St opPanel ("control Panel ",
nai nWndowdget ());

Xt VaSet Val ues(_cont r ol Panel - >baseWdget (),
XmNori entation, XnVERTI CAL, NULL);

_control Panel - >addCal | back(Start St opPanel :: actionCal | back, this,
(WKCal | backMet hod) &Panel Wndow: : st at usChanged) ;

addvi ew(_cont rol Panel) ;

}

const char * Panel Wndow : cl assNang()
{ return "Panel Wndow';

}

Panel W ndow:. : ~Panel W ndow()

{ [l Enpty

}

Deriving Subclasses to Create New Components

voi d Panel Wndow: : st at usChanged(WkCal | backChj ect *obj ,
void *, void *call Data)

{
Sart SopPanel * panel = (StartStopPanel *) obj;
Panel Action action = (Panel Action) call Data;
switch (action) {
case START:
cout << "Process started\n" << flush;
br eak;
case STCP.
cout << "Process stopped\n" << flush;
br eak;
defaul t:
cout << "Undefined state\n" << flush;
}
}

The following simple program displays the resulting PanelWindow object (Chapter 3,
“The ViewKit Application Class,” discusses the VkApp class):

[HELTEEEEEEEL i it irrer
/1 Panel Test . c++
THEETELEEEEEE it inre

#i ncl ude <\WKk/ \WKApp. h>
#i ncl ude " Panel Wndow h"

// Main driver. Just instantiate a WkApp and the Panel W ndow
/1 "show' the wi ndow and then "run" the application.

void main (int argc, char **argv)

{
VKApp *panel App = new \KkApp(" panel App", &argc, argv);
Panel Wndow *panel Wn = new Panel Wndow(" panel Wn") ;
panel Wn->show() ;
panel App->run();
}

49

Chapter 2: Components

50

Figure 2-3 shows the resulting PanelWindow window displayed by this program.

Figure 2-3 Resulting PanelWindow Window

Using a Component Class by Subclassing

Another way to use the StartStopPanel class is to derive a subclass and override the
StartStopPanel::start() and StartStopPanel::stop() functions. This technique of using a
component class is most appropriate if you need to expand or modify a component’s
action in some way.

Example 2-9 creates ControlPanel, a subclass of StartStopPanel that incorporates the
features implemented in the PanelWindow class shown in Example 2-8.

Example 2-9 Subclassing a Component

THEETEEEEEEEL i n it irre
/] Control Panel . h
TIETELEEEEI i il niinrer

#ifndef _OONTRCLPANEL H
#define CONTRCLPANEL H
#i ncl ude "Start St opPanel . h"

class Gontrol Panel : public Start StopPanel {

public:
Qontrol Panel (const char *, Wdget);
~Cont r ol Panel () ;
virtual const char *classNane();
pr ot ect ed:
virtual void start(Wdget, Xt Pointer);
virtual void stop(Wdget, Xt Pointer);
1
#endi f

Deriving Subclasses to Create New Components

THELLEEEEEEEI i i inrg
/] Control Panel . c++
THEETELELTEEE i niinrer

#i ncl ude "Cont rol Panel . h"
#i ncl ude <i ostream h>
Gont rol Panel : : Control Panel (const char *nane , Wdget parent) :
S art StopPanel (nane, parent)

{
Xt VaSet Val ues(_baseWdget, Xni\orientation, XmVERTI CAL, NULL);
}
Gont rol Panel : : ~Cont r ol Panel ()
{
Il Enpty
}

const char* Control Panel : : cl assNane()

{
return "CGontrol Panel ";
}
voi d Control Panel ::start(Wdget w, X Pointer callData)
{
cout << "Process started\n" << flush;
Start StopPanel ::start(w, callData);
}
voi d Control Panel : : stop(Wdget w, Xt Pointer call Data)
{
cout << "Process stopped\n" << flush;
Start StopPanel ::stop(w cal |l Data);
}

The ControlPanel constructor uses the StartStopPanel constructor to initialize the
component, creating the widgets and initializing the component’s data members. Then,
the ControlPanel constructor sets the orientation resource of the RowColumn widget,
which is the component’s base widget, to VERTICAL.

51

Chapter 2: Components

52

The ControlPanel class also overrides the virtual functions start() and stop() to perform
the actions handled previously by the PanelWindow class. After performing these
actions, the ControlPanel::start() and ControlPanel::stop() functions call
StartStopPanel::start() and StartStopPanel::stop(), respectively. While this may seem
unnecessary for an example this simple, it helps preserve the encapsulation of the
classes. You could now change the implementation of the StartStopPanel class, perhaps
adding a status indicator to the component that the StartStopPanel::start() and
StartStopPanel::stop() functions would update, and you would not have to change the
start() and stop() function definitions in derived classes such as ControlPanel.

The following simple example creates a VkSimpleWindow object, adds a ControlPanel
as the window’s view, and then displays the window:

THELTEEEEEEEI it inrg
/| Panel Test 2. c++
THEETELEEEEEE i niirrer

#i ncl ude <Wk/ \WKApp. h>
ncl ude <W/\KS npl eW ndow. h>
#i ncl ude "Control Panel . h"

/1 Main driver. Instantiate a VkApp, a VKS npl eWndow, and a
/1 Control Panel, add the Control Panel as the S npl eWndow s vi ew
/1 "show' the w ndow and then "run" the application.

void main (int argc, char **argv)

{
VKkApp *panel App = new VKApp(" panel 2App", &argc, argv);
kS npl eWndow *panel Wn = new kS npl eWndow(" panel Wn");
Cont rol Panel *control = new Control Panel ("control ",
panel W n- >mai nWndowwWdget ());
panel Wn->addVi ew(control);
panel Wn->show() ;
panel App->run();
}

VkNamelList Class

VkNamelList Class

The VkNamelList class provides a convenient way to maintain a list of character strings.
Member functions allow you to add and delete items, and sort, reverse, and otherwise
manipulate the list. See the VkNameList(3x) reference page for more details.

VkNamelList Constructor and Destructor

The VkNamelList constructor has three overloaded versions:

VkNaneLi st (voi d)

Initializes an empty list.

VkNaneLi st (char * name)

Creates a list with name as the initial member.
VkNareLi st (const VKNameLi st & givenList)

Creates a clone of an existing VkNameList object.

The following is the VkNameList destructor, which frees all memory allocated by a
VkNamelList object:

voi d ~VkNaneLi st (voi d)

VkNameList Member Functions

These functions add and delete items from the list:

VkNamelList::add() adds an item or a VkNamelList to the list:

voi d add (char *item)
void add (const VKNaneLi st & list)

VkNamelList::getIndex() returns the index of the first occurrence of the given item:
int getlndex (const char *item) const

If the item is not on the list, getIndex() returns -1.

53

Chapter 2: Components

54

VkNamelList::remove() deletes from the list the first occurrence, if any, of the given
item:

voi d renove (char *item)

A second version of remove() deletes items index through index + count -1:

void renove (int index, int count = 1)

To remove a number of items, beginning with a specified item, use
renove(getlndex(item, count).

VkNamelList::operator=() assigns the members of one list to another:

VkNaneLi st & oper at or =(const VkNameLi st & givenList)

Note: This function frees any strings that were in the object on the left side of the
equation. For instance in the following code fragment, any strings that were

previously in A are freed, and any references to the strings in A now point to freed
memory:

VKkNaneLi st *A = new VkNaneLi st ();
VKkNaneLi st *B = new VkNaneLi st ();

A = B;

These functions manipulate the list:

VkNamelList::sort() sorts the list alphanumerically:

void sort (void)

VkNamelList::reverse() reverses the order of the items on the list:

void reverse (void)

VkNamelList:removeDuplicates() deletes from the list all exact duplicates:

voi d renoveDuplicates (void)

These functions access the list:

VkNamelist::size() returns the number of items in the list:

int size (void)

VkNamelList Class

VkNamelList:exists() checks to see if a specified string is in the list:

int exists (char *item)

If the string is not in the list, exists() returns 0.

VkNamelList::operator==() tests two VkNameList objects for equivalence:
i nt operator==(const VkNaneLi st & givenList)

operator==() returns success only if the lists have identical contents, in the same
order.

VkNamelList::mostCommonString() returns a copy of the most common string in
the list:

char* nost CommonString ((void)
The returned string must be freed by the caller.

VkNamelList::completeName() returns a VkNameList object containing all strings
in the original object that could be completions of the specified string:

VkNaneLi st* conpl et eNanme (char *mname, char &*completed name,
i nt & numMatching)

When the function returns, the completedName argument contains the longest
matched substring common to all members of the returned list. numMatching
contains the number of matching elements found.

VkNamelList::getString() retrieves a copy of the item at position index in the list:
char* getString (int index)
The returned string must be freed by the caller.

VkNamelList::getSubStrings() returns a pointer to a list of items from the original
list that match the given substring:

VkNaneLi st* get SubStrings (char *substring)
The VkNamelList returned by getSubStrings() must be deleted by the caller.

VkNamelList::getStringTable() returns a pointer to the members of the VkNameList
object in the form of an array of strings:

char** getStringTable (void)

Note: You must free the returned array itself, not the individual strings in the array.

55

Chapter 2: Components

56

VkNamelList::getXmStringTable() returns a pointer to the members of the
VkNamelList object in the form of an array of compound strings:

XnStringTabl e get XnSt ri ngTabl e (voi d)
The returned XmStringTable must be freed by the caller using freeXmStringTable().

VkNamelList::freeXmStringTable() frees the memory returned by
getXmStringTable():

static void freeXnStringTabl e (XSt ringTabl e)

Using VkNameList

Example 2-10 demonstrates the use of the VkNameList class to construct a list
incrementally and display the results in reverse-sorted order in a Motif XmList widget.

Example 2-10 Manipulating a List of Strings Using the VkNameList Class

#i ncl ude <VK/ VKApp. h>

#i ncl ude <VKk/ VKSi npl eW ndow. h>
#i ncl ude <XniList. h>

#i ncl ude <Vk/ VkNaneLi st. h>

/1 Define a top-level w ndow class

cl ass MyW ndow:. public VKSi npl eW ndow {

protect ed:

Wdget _list; /1 Hang on to wi dget as a data menber

public:

MyW ndow (const char *nane);

~M/W ndow() ;

virtual const char* className(); // ldentify this class

VkNamelList Class

/1 The MyW ndow constructor provides a place in which
/!l to create a widget tree to be installed as a
/1 “view in the w ndow.

MyW ndow: : YW ndow (const char *nane) : VKSi npl eW ndow (nane)

NULL, 0);

{
_list = XnCreateList (mai nWndoww dget (), “list”,
/1 Create a name |ist object
VkNaneLi st *itenms = new VKkNaneLi st ();
/1 Add some itemns
itens->add(“One");
itenms->add(“Two");
itens->add(“Three”);
i tenms->add("“Four”);
itens->add(“One”);
items->renpveDuplicates(); // Get rid of duplications
items->sort(); /1 Sort the list
itens->reverse(); /1 Now reverse it
/1 Display the itens in the |list w dget
Xt VaSet Val ues(_list, XmNitens, (XnStringTable) (*itens),
XmNi t emCount, itens->size(), NULL);
addView(_list);
}

const char * MyW ndow: : cl assNane()

{

return “MyW ndow’;
}
MyW ndow: : ~MyW ndow()
{

/'l Enmpty
}

57

Chapter 2: Components

58

/1 Main driver. Just instantiate a VKApp and a
/1 top-level w ndow, “show’ the wi ndow and then
/1 “run” the application.

void main (int argc, char **argv)

{
VKApp *app = new VKApp(“Hell o”, &argc, argv);
MW ndow *w n = new MyYW ndow(“hello");
Wi n->show() ;
app->run();
}

Chapter 3

The ViewKit Application Class

This chapter describes the VkApp class, which handles application-level tasks such as
Xt initialization, event handling, window management, cursor control, and application
busy states. Figure 3-1 shows the inheritance graph for VkApp and an auxiliary class,
VkCursorList.

i VkComponent i— VKApp

Figure 3-1 Inheritance Graph for VKkApp

Overview of the VKApp Class

The VkApp class, derived from the VkComponent class, provides facilities required by
all ViewKit applications. In all of your ViewKit applications you must create a single
instance of VkApp or a class derived from VkApp.

The primary responsibility of VkApp is to handle the initialization and event-handling
operations common to all Xt-based applications. When you write a ViewKit application,
instead of calling Xt functions such as XtApplInitialize(3Xt) and XtAppMainLoop(3Xt),
you simply instantiate and use a VkApp object.

The VkApp class also provides support for other application-level tasks. For example,
VkApp provides functions for quitting your application; showing, hiding, iconifying,
and opening all of the application’s windows; handling application busy states;
maintaining product version information; and setting the application’s cursor shape.

The VkApp class also stores some essential information that can be accessed throughout
an application. This information includes a pointer to the X Display structure associated
with the application’s connection to the server; the XtAppContext structure required by
many Xt functions; the application’s name; and the application’s class name. This
information is maintained in the private portion of the class and is available through
public access functions.

59

Chapter 3: The ViewKit Application Class

VkApp Constructor

60

In all ViewKit applications you must create a single instance of the VkApp class (or a
derived class) before instantiating any other ViewKit objects.The VkApp constructor
initializes the Xt Intrinsics and creates a shell, which is never visible, to serve as the
parent for all of the application’s main windows. ViewKit supports a commonly used
multi-shell architecture as described in the book X Window System Toolkit (Asente and
Swick, 1990). ViewKit creates all windows (using the VkSimpleWindow and
VkWindow classes described in Chapter 4, “ViewKit Windows”) as popup children of
the shell created by VkApp.

When you create an instance of the VkApp class, the constructor assigns a pointer to the
VKApp object to the global variable theApplication. The <Vk/VkApp.h> header file
declares this global variable as follows:

extern VKApp *theApplicati on;

As a result, the theApplication pointer is available in any file that includes the
<Vk/VkApp.h> header file. This provides easy use of VkApp’s facilities and data
throughout your program.

The following is the syntax of the most frequently used VkApp constructor:

VKkApp(char *appClassName, int *argc, char **argo,
XrnmOpt i onDescRec *options = NULL,
i nt numOptions = 0)

The appClassName argument designates the application class name, which is used when
loading application resources. Note that VkApp differs from other ViewKit components
in that you provide the application class name as an argument to the constructor rather
than overriding the className() function. This allows you to set the application class
name without creating a subclass of VkApp.VkApp also differs from other ViewKit
components in that you do not provide a component name in the constructor; instead,
ViewKit uses the command that you used to invoke your application (argv[0]) as the
component name.

The second and third arguments to the VkApp constructor must be pointers to argc and
the application’s argv array. The VkApp constructor passes these arguments to
XtOpenDisplay(3Xt), which parses the command line according to the standard Xt
command-line options, loads recognized options into the application’s resource
database, and modifies argc and argov to remove all recognized options.

VkApp Constructor

You can specify additional command-line options to parse by passing an
XrmOptionDescRec(3Xt) table as the options argument and specifying the number of
entries in the table with the numOptions argument. This is sufficient for setting simple
resource values from the command line; however, if you want to set application-level
variables using either the command line or resource values, you should follow these
steps:

1. Derive a subclass of VkApp.

2. Use the protected member function VkApp::parseCommandLine() to parse
command-line options.

3. Use getResources() to set the variables based on resource values.
This process is illustrated in Example 3-6 in “Deriving Classes From VkApp” on page 83.

If your application has more elaborate needs than the normal constructor addresses, you
may wish to use the following constructor:

VKkApp (char *appClassName,
int *arg c,
char **arg v,
ArgLi st arglist,
Car di nal argCount,
voi d (*preReal i zeFunction) (W dget w),
XrmOpt i onDescRec * optionList,
i Nt sizeOfOptionList)

You should use this constructor when your application must set creation-time resources
on the invisible top-level shell widget that VKApp creates. For instance, the only way to
ensure that your application has all of its shells in a single, non-default visual is to use
this constructor to set the visual attributes. See the VkApp(3x) reference page for more
details.

61

Chapter 3: The ViewKit Application Class

Running ViewKit Applications

Once you have instantiated a VkApp object and set up your program’s interface, call
VKkApp::run():

virtual void run()

The run() function enters a custom main loop that supports dispatching raw events in
addition to the normal Xt event handling. See “ViewKit Event Handling” on page 62 for
more information on event handling.

Note: Do not call XtMainLoop(3Xt) or XtAppMainLoop(3Xt) in a ViewKit application.
Example 3-1 illustrates the typical use of VkApp in the main body of a ViewKit program.

Example 3-1 Typical Use of the VkApp Class in a ViewKit Program
#i ncl ude <Vk/ VKApp. h>

/1 Application-specific setup

void main (int argc, char **argv)

{
VKkApp *myApp = new VKApp(" MyApp", &argc, argv);
/1 Application-specific code
myApp->run(); // Run the application

}

ViewKit Event Handling

62

The VkApp::run() function is ViewKit’s main event loop. run() implements the event
handling normally supported by XtAppMainLoop() or XtMainLoop(). run() calls
run_first() to do some internal initialization, and then enters a main loop that dispatches
application events, raw X events, and normal Xt events. run() also allows for customized
event handling. See “Customizing Event Handling” for more information.

Additionally, run() supports events not normally handled by the Xt dispatch mechanism.
For example, run() can handle events registered for non-widgets (such as a
PropertyNotify event on the root window).

ViewKit Event Handling

When run() receives an event not handled by the Xt dispatch mechanism, it calls the
virtual function VkApp::handleRawEvent():

virtual void handl eRawEvent (XEvent *event)

The default action of VkApp::handleRawEvent() is to pass the event to the
handleRawEvent() function of each instance of VkSimpleWindow (or subclass) in the
application. By default, these member function are empty.

If you want to handle events through this mechanism, call XSelectInput(3X) to select the
events that you want to receive, and override handleRawEvent() in a VkApp or
VkSimpleWindow subclass to implement your event processing. Generally, in keeping
with object-oriented practice, you should override handleRawEvent() in a
VkSimpleWindow subclass rather than a VkApp subclass, unless your event processing
has an application-wide effect. If you override VkApp::handleRawEvent() in a derived
class, call the base class’s handleRawEvent() function after performing your event
processing.

Note: If you explicitly call XtNextEvent(3Xt) and XtDispatchEvent(3Xt) in your
application, you should pass any undispatched events to handleRawEvent().

In addition to the automatic event dispatching provided by run(), you can force ViewKit
to handle all pending events immediately by calling VkApp::handlePendingEvents():

virtual void handl ePendi ngEvent s()

This function retrieves and dispatches all X events as long as there are events pending.
Unlike XmUpdateDisplay(3Xm), which handles only Expose events,
handlePendingEvents() handles all events. In other words, handlePendingEvents()
does not just refresh windows, it also handles all pending events including user input.
You might want to call this function periodically to process events during a
time-consuming task.

handlePendingEvents(), like run() can also be customized. See “Customizing Event
Handling” for more information.

63

Chapter 3: The ViewKit Application Class

Customizing Event Handling

64

If you want to customize your application’s event handling, you do not need to override
run(). In fact, overriding run() is strongly discouraged. If you really must override, see
the VkApp(3x) reference page for more information.

You can customize event handling in any of the following ways:
® Use standard X mechanisms to add event handlers.
* Use one or more workprocs.

* Maintain your own queue of all that you need to do, and then dispatch that work in
a single workproc.

e Use run(Boolean(*appEventHandler) (XEvent &)) to provide custom event handling.

run(Boolean(*appEventHandler) (XEvent &)) is the only safe way to customize ViewKit’s
event loop. It allows you to customize the event loop without taking responsibility for
the entire process.

Each time through the event loop, before doing any event processing of its own, run()
calls appEventHandler() with the event. appEventHandler() can then handle the event
completely, handle it partially, or not handle it at all. If appEventHandler() has
completely handled the event, it returns TRUE and no further handling of that event
occurs. If the application decides not to handle the event, or if more handling is needed,
then appEventHandler() returns FALSE and run() finishes the job.

Much like run(), handlePendingEvents() can be customized by calling
handlePendingEvents(Boolean(*appEventHandler)(XEvent &)).

For a better understanding of how to customize event handling, see the demo program
Jusr/share/src/ViewKit/Basic/run.c++.

Quitting ViewKit Applications

Quitting ViewKit Applications

If you want to exit a ViewKit application, but also want to give other parts of the
application the option to abort the shutdown if necessary, call VkApp::quitYourself():

virtual void quitYourself()

VKkApp::quitYourself() calls the okToQuit() function for each top-level
VkSimpleWindow (or subclass). All windows that return TRUE are deleted; however, if
the okToQuit() function of any window returns FALSE, the shutdown is terminated and
the windows returning FALSE are not deleted. quitYourself() queries the windows in the
reverse order in which they were created, except that it checks the window designated as
the main window last. (See “Managing Top-Level Windows” on page 66 for information
on designating the main window.)

The default, as provided by VkComponent, is for the okToQuit() function to return
TRUE in all cases. You must override okToQuit() for all components that you want to
perform a check before quitting. For example, you could override the okToQuit()
function for a window to post a dialog asking the user whether he or she really wants to
exit the application and then abort the shutdown if the user says to do so. Another
possibility would be to return FALSE if a component is in the process of updating a file.

Usually, only VkSimpleWindow and its subclasses use okToQuit(). In some cases, you
might want to check one or more components contained within a window before
quitting. To do so, override the okToQuit() function for that window to call the
okToQuit() functions for all the desired components. Override the okToQuit() functions
for the other components to perform whatever checks are necessary.

A ViewKit application automatically exits once all of its windows are deleted. This can
occur as a result of any of the following circumstances:

e The application calls quitYourself().

e The application deletes all of its windows individually.

e The user deletes all application windows through window manager interaction (for
example, choosing the Close option in the window menu provided by the window
manager).

Once all windows are deleted, the application exits by calling VkApp::terminate():

virtual void term nate(int status = 0)

65

Chapter 3: The ViewKit Application Class

terminate() is a virtual function that calls exit(2). terminate() is also called from within
ViewKit when any fatal error is detected.

You can call terminate() explicitly to exit a ViewKit application immediately. Usually you
would use this if you encounter a fatal error. If you provide a status argument, your
application uses it as the exit value that the application returns.

You can override terminate() in a VkApp subclass to perform any cleanup operations
that your application requires before aborting (for example, closing a database). If you
override terminate() in a derived class, call the base class’s terminate() function after
performing your cleanup operations.

Note: Even though you can override quitYourself() in a VkApp subclass, in most cases
you should override terminate() instead. This ensures that any cleanup operations you
add are performed no matter how the application exits (for example, by error condition
or by user interaction with the window manager). If you decide to override
quitYourself(), you must perform your cleanup operations before calling the base class’s
quitYourself(): if quitYourself() succeeds in deleting all windows, your application calls
terminate() and exits before ever returning from quitYourself().

Managing Top-Level Windows

66

The VkApp object maintains a list of all windows created in an application. The VkApp
object uses this list to manage the application’s top-level windows. So that VkApp can
properly manage windows, you should always use the VkSimpleWindow and
VkWindow classes to create top-level windows in your application. The classes are
discussed in Chapter 4, “ViewKit Windows.”

Every application has a main window. By default, the first window you create is treated as
the main window. You can use the VkApp::setMainWindow() function to specify a
different window to treat as the main window:

voi d set Mai nW ndow(VkSi npl eW ndow * window)

The access function VkApp::mainWindow() returns a pointer to the VkSimpleWindow
(or subclass) object installed as the application’s main window:

VKSi npl eW ndow *nai nW ndow() const

Setting Application Cursors

Additionally, the VkApp class supports several operations that can be performed on all
top-level windows in a multi-window application. All of the following functions take no
arguments, have a void return value, and are declared virtual:

show() Displays all of the application’s hidden, non-iconified windows.
hide() Removes all of the application’s windows from the screen.

iconify() Iconifies all visible windows in the application.

open() Opens all iconified windows in the application.

raise() Raises all visible windows in the application to the top of the window

manager’s window stack.

lower() Lowers all visible windows in the application to the bottom of the
window manager’s window stack.

You can also specify whether or not your application’s windows start in an iconified state
using VkApp::startupIconified():

voi d startuplconified(const Bool ean flag)
If flag is TRUE, then the application starts all windows in the iconified state.

Note: You must call startuplconified() before calling run(), otherwise it will not have any
effect.

Setting Application Cursors

By default, VkApp installs two cursors for ViewKit applications: an arrow for normal
use, and a watch for display during busy states. (See “Supporting Busy States” on
page 75 for information on busy states in ViewKit applications.) The VkApp class also
provides several functions for installing your own cursors and retrieving the currently
installed cursors.

Setting and Retrieving the Normal Cursor

VkApp::setNormalCursor() sets the normal cursor for use in all of your application’s
windows while the application is not busy:

voi d set Nor nal Cur sor (Cursor c)

67

Chapter 3: The ViewKit Application Class

68

You must provide setNormalCursor() with a Cursor argument. See the
XCreateFontCursor(3X) reference page for more information on creating an X cursor.

You can retrieve the current normal cursor with VkApp::normalCursor():

virtual Cursor nornal Cursor()

Setting and Retrieving the Busy Cursor

The VkApp class supports both fixed and animated busy cursors. A fixed busy cursor
retains the same appearance throughout a busy state. An animated busy cursor is actually
a sequence of pixmaps that you can cycle through while in a busy state, giving the
appearance of animation. “Animating the Busy Cursor” on page 78 describes the
procedure to follow to cycle through an animated busy cursor’s pixmaps. If you install
an animated busy cursor but do not cycle it, VkApp simply uses the animated cursor’s
current pixmap as a fixed busy cursor.

The default busy cursor that VkApp installs, a watch, is actually an animated cursor.

Setting and Retrieving a Fixed Busy Cursor

VkApp::setBusyCursor() sets a fixed busy cursor for use in all of your application’s
windows while the application is busy:

voi d set BusyCursor (Cursor c)
You must provide setBusyCursor() with a Cursor argument.

You can retrieve the current busy cursor with VkApp::busyCursor():

virtual Cursor busyCursor()

Creating, Setting, and Retrieving an Animated Busy Cursor

To create an animated busy cursor, you must create a subclass of the abstract base class
VkCursorList. The following is the syntax of the VkCursorList constructor:

VkCur sor Li st (int numCursors)

Setting Application Cursors

numCursors is the number of cursor pixmaps in your animated cursor.The VkCursorList
constructor uses this value to allocate space for an array of Cursor pointers. In your
subclass constructor, you should perform any other initialization required by your
cursor.

In your subclass, you must also override the pure virtual function
VkCursorList:createCursor():

virtual void createCursor(int index)

createCursor() creates the cursor for the given index in the animated cursor array.
Cursors are numbered sequentially beginning with zero. When your application
animates the cursor, it step through the cursor array sequentially. createCursor() must
assign the cursor it creates to the index entry in the protected _cursorList array:

Pi xmap * _cursorList

For example, Example 3-2 shows the code needed to create an animated hourglass busy
cursor.

Example 3-2 Creating an Animated Busy Cursor

ncl ude <W/ WKApp. h>
#i ncl ude <W/ WKResour ce. h>
#i ncl ude <K/ WQur sorLi st. h>

/1l Define an array of bit patterns that represent each frame of the cursor
/1 ani mation.

#def i ne NUMOURSCRS 8

static char tinme_bits][NUMOURSCRY [32*32] = {

{
0x00, 0x00, 0x00, 0Ox00, Oxfe, Oxff, Oxff, Ox7f, Oxfe, Oxff, Oxff, Ox7f,
0x8c, 0x00, 0x00, 0x31, Ox4c, 0x00, 0x00, 0x32, Ox4c, Oxff, Oxff, 0x32,
Ox4c, Oxff, Oxff, Ox32, Ox4c, Oxff, Oxff, Ox32, Oxdc, Oxff, Oxff, 0x32,
0x8c, Oxfe, Ox7f, 0x31, OxOc, Oxfd, Oxbf, 0x30, OxOc, Oxfa, Ox5f, 0x30,
0x0c, Oxe4, 0x27, 0x30, O0xOc, 0x98, 0x19, 0x30, OxOc, 0x60, 0x06, 0x30,
0x0c, 0x80, 0x01, 0x30, OxOc, 0x80, 0x01, 0x30, 0xOc, 0x60, 0x06, 0x30,
0x0c, 0x18, 0x18, 0x30, 0xOc, 0x04, 0x20, 0x30, 0xOc, 0x02, 0x40, 0x30,
0x0c, 0x01, 0x80, 0x30, 0Ox8c, 0x00, 0x00, 0x31, Ox4c, O0x00, 0x00, 0x32,
Ox4c, 0x00, 0x00, 0x32, Ox4c, 0x00, 0x00, 0x32, Ox4c, 0x00, Ox00, 0x32,
Ox4c, 0x00, 0x00, 0x32, 0x8c, 0x00, 0x00, 0Ox31, Oxfe, Oxff, Oxff, Ox7f,
oxfe, Oxff, Oxff, Ox7f, Ox00, Ox00, Ox00, 0xO00},

69

Chapter 3: The ViewKit Application Class

70

0x00,
0x8c,
Ox4c,
0x8c,
0x0c,
0x0c,
0x0c,
0xO0c,
Ox4c,
Ox4c,
Oxf e,

0x00,
0x8c,
Ox4c,
0x8c,
0x0c,
0x0c,
0xO0c,
0xO0c,
Ox4c,
Ox4c,
Oxf e,

0x00,
0x8c,
Ox4c,
0x8c,
0x0c,
0x0c,
0x0c,
0xO0c,
Ox4c,
Ox4c,
Oxf e,

0x00,
0x8c,
Ox4c,
0x8c,
0x0c,
0x0c,
0x0c,
0xO0c,
Ox4c,

0x00,
0x00,
0x3f,
Oxf e,
Oxe4,
0x80,
0x18,
0x81,
0x00,
0x00,
Oxff,

0x00,
0x00,
0x03,
Oxf e,
Oxe4,
0x80,
0x18,
0x81,
0xf c,
0x00,
Oxff,

0x00,
0x00,
0x00,
0x3e,
Oxe4,
0x80,
0x18,
0x81,
Oxf e,
0x00,
Oxff,

0x00,
0x00,
0x00,
0x06,
Oxe4,
0x80,
0x18,
Oxf 1,
Oxff,

0x00,
0x00,
Oxf c,
Ox7f,
0x27,
0x01,
0x19,
0x80,
0x01,
0x00,
Oxff,

0x00,
0x00,
0xcO,
Ox7f,
0x27,
0x01,
0x19,
0x80,
0x3f,
0x00,
Oxff,

0x00,
0x00,
0x00,
Ox7c,
0x27,
0x01,
0x19,
0x80,
Ox7f,
0x00,
Oxff,

0x00,
0x00,
0x00,
0x60,
0x27,
0x01,
0x19,
0ox8f,
Oxff,

0x00,
0x31,
0x32,
0x31,
0x30,
0x30,
0x30,
0x30,
0x32,
0x32,
Ox7f,

0x00,
0x31,
0x32,
0x31,
0x30,
0x30,
0x30,
0x30,
0x32,
0x32,
Ox7f,

0x00,
0x31,
0x32,
0x31,
0x30,
0x30,
0x30,
0x30,
0x32,
0x32,
Ox7f,

0x00,
0x31,
0x32,
0x31,
0x30,
0x30,
0x30,
0x30,
0x32,

Oxf e,
Ox4c,
Ox4c,
0x0c,
0x0c,
0x0c,
0xO0c,
0x8c,
Ox4c,
0x8c,
0x00,

Oxf e,
Ox4c,
Ox4c,
0x0c,
0x0c,
0x0c,
0x0c,
0x8c,
Ox4c,
0x8c,
0x00,

Oxf e,
Ox4c,
Ox4c,
0x0c,
0x0c,
0x0c,
0xO0c,
0x8c,
Ox4c,
0x8c,
0x00,

Oxf e,
Ox4c,
Ox4c,
0x0c,
0x0c,
0x0c,
0xO0c,
0x8c,
Ox4c,

Oxff,
0x00,
Oxff,
Oxf d,
0x98,
0x80,
0x84,
0x00,
0xfc,
0x00,
0x00,

Oxff,
0x00,
Ox1f,
Oxf d,
0x98,
0x80,
0x84,
0x00,
Oxfe,
0x00,
0x00,

Oxff,
0x00,
0x03,
Oxf d,
0x98,
0x80,
0x84,
0Oxe0,
Oxff,
0x00,
0x00,

Oxff,
0x00,
0x00,
Ox1d,
0x98,
0x80,
0x84,
Oxfc,
Oxff,

Ooxff,
0x00,
Oxff,
Oxbf ,
0x19,
0x01,
0x20,
0x01,
0x3f,
0x00,
0x00,

Ooxff,
0x00,
0xf 8,
Oxbf ,
0x19,
0x01,
0x20,
0x01,
Ox7f,
0x00,
0x00,

Ooxff,
0x00,
0xcO,
Oxbf ,
0x19,
0x01,
0x20,
0x07,
Oxff,
0x00,
0x00,

Ooxff,
0x00,
0x00,
0xb8,
0x19,
0x01,
0x20,
0x3f,
oxff,

ox7f,
0x32,
0x32,
0x30,
0x30,
0x30,
0x30,
0x31,
0x32,
0x31,
0x00},

ox7f,
0x32,
0x32,
0x30,
0x30,
0x30,
0x30,
0x31,
0x32,
0x31,
0x00},

ox7f,
0x32,
0x32,
0x30,
0x30,
0x30,
0x30,
0x31,
0x32,
0x31,
0x00},

ox7f,
0x32,
0x32,
0x30,
0x30,
0x30,
0x30,
0x31,
0x32,

Oxf e,
Ox4c,
Ox4c,
0x0c,
0x0c,
0x0c,
0xO0c,
Ox4c,
Ox4c,
Oxf e,

Oxf e,
0Ox4c,
Ox4c,
0x0c,
0x0c,
0x0c,
0x0c,
Ox4c,
Ox4c,
Oxf e,

Oxf e,
Ox4c,
Ox4c,
0x0c,
0x0c,
0x0c,
0x0c,
Ox4c,
Ox4c,
Oxf e,

Oxf e,
Ox4c,
Ox4c,
0x0c,
0x0c,
0x0c,
0xO0c,
Ox4c,
Ox4c,

Oxff,
0x03,
Oxff,
Oxf a,
0x60,
0x60,
0x02,
0x80,
Oxff,
Oxff,

Oxff,
0x00,
Ox7f,
Oxf a,
0x60,
0x60,
0x02,
0xcO,
Oxff,
Oxff,

Oxff,
0x00,
0xOf ,
Oxf a,
0x60,
0x60,
0x02,
Oxfc,
Oxff,
Oxff,

Oxff,
0x00,
0x03,
0x7a,
0x60,
0x60,
0x82,
Oxfe,
Oxff,

Ooxff,
0xcO,
Oxff,
Ox5f ,
0x086,
0x06,
0x41,
0x00,
Oxff,
Oxff,

Ooxff,
0x00,
Oxf e,
Ox5f ,
0x086,
0x06,
0x41,
0x07,
oxff,
Oxff,

Ooxff,
0x00,
0xf 0,
Ox5f,
0x086,
0x06,
0x41,
0x3f,
Ooxff,
Oxff,

Ooxff,
0x00,
0xcO,
0x5e,
0x06,
0x06,
0x41,
Ox7f,
Oxff,

Oox7f,
0x32,
0x32,
0x30,
0x30,
0x30,
0x30,
0x32,
0x32,
Ox7f,

ox7f,
0x32,
0x32,
0x30,
0x30,
0x30,
0x30,
0x32,
0x32,
Ox7f,

ox7f,
0x32,
0x32,
0x30,
0x30,
0x30,
0x30,
0x32,
0x32,
Ox7f,

ox7f,
0x32,
0x32,
0x30,
0x30,
0x30,
0x30,
0x32,
0x32,

Setting Application Cursors

Ox4c,
Oxf e,

0x00,
0x8c,
Ox4c,
0x8c,
0xO0c,
0xO0c,
0x0c,
0x0c,
Ox4c,
Ox4c,
Oxf e,

0x00,
0x8c,
Ox4c,
0x8c,
0xO0c,
0xO0c,
0x0c,
0x0c,
Ox4c,
Ox4c,
Oxf e,

0x00,
Oxf e,
Oxf 6,
0xe6,
0Oxe6,
Oxe6,
0xe6,
0xe6,
0x0e,
0x06,
0x06,

/] Masks
/1l nask,

0x00, 0x00, 0x32, 0x8c,
oxff, Oxff, Ox7f, 0x00,

0x00, 0x00, 0x00, Oxfe,
0x00, 0x00, 0x31, O0Ox4c,
0x00, 0x00, 0x32, Ox4c,
0x02, 0x40, 0x31, 0xOc,
0x64, 0x26, 0x30, 0xOc,
0x80, 0x01, 0x30, 0xOc,
0x18, 0x19, 0x30, O0xOc,
Oxf9, 0x9f, 0x30, 0x8c,
Oxff, Oxff, 0x32, Ox4c,
0x00, 0x00, 0x32, 0x8c,
Oxff, Oxff, Ox7f, 0xO00,

0x00, 0x00, 0x00, Oxfe,
oxff, Oxff, 0x31, Oxcc,
0x00, 0x00, 0x32, Ox4c,
0x00, 0x00, 0x31, 0xOc,
0x04, 0x20, 0x30, 0xOc,
0x80, 0x01, 0x30, 0xOc,
0x98, 0x19, 0x30, 0xOc,
Oxfd, Oxbf, 0x30, 0x8c,
Oxff, Oxff, 0x32, Ox4c,
0x00, 0x00, 0x32, 0x8c,
Oxff, Oxff, Ox7f, 0xO00,

0x00, 0x00, 0x00, 0xO06,
Oxff, Oxff, Ox7f, 0xO06,
0x01, 0x80, Ox6f, 0xOe,
0x0b, 0x10, 0x78, 0xe6,
0x2f, 0x04, 0x78, 0xe6,
Oxbf, 0x01, O0x78, 0Oxe6,
Ox5f, 0x02, 0x78, 0Oxe6,
0x17, 0x08, 0x78, 0xe6,
0x02, 0x40, 0x78, Oxf6,
0x00, 0x00, 0x60, Oxfe,
0x00, 0x00, 0x60, 0x00,

0x00,
0x00,

Oxff,
0x00,
0x00,
0x05,
0x98,
0x80,
0x84,
Oxf e,
Oxff,
0x00,
0x00,

Oxff,
Oxff,
0x00,
0x01,
0x18,
0x80,
Oxe4,
Oxf e,
Oxff,
0x00,
0x00,

0x00,
0x00,
0x02,
0x17,
Ox5f ,
Oxbf ,
ox2f ,
0x0b,
0x01,
Oxff,
0x00,

0x00,
0x00,

Oxff,
0x00,
0x00,
0xa0,
0x19,
0x01,
0x20,
Ox7f,
Oxff,
0x00,
0x00,

Oxff,
Oxff,
0x00,
0x80,
0x18,
0x01,
0x27,
Ox7f,
Oxff,
0x00,
0x00,

0x00,
0x00,
0x40,
0x08,
0x02,
0x01,
0x04,
0x10,
0x80,
Ooxff,
0x00,

0x31, Oxfe,
0x00},

Ox7f, Oxfe,
0x32, 0Ox4c,
0x32, O0x4c,
0x30, 0xOc,
0x30, 0xOc,
0x30, 0xOc,
0x30, 0xOc,
0x31, Ox4c,
0x32, O0x4c,
0x31, Oxfe,
0x00},

Ox7f, Oxfe,
0x33, 0x4c,
0x32, O0x4c,
0x30, 0xOc,
0x30, 0xOc,
0x30, 0xOc,
0x30, 0xOc,
0x31, Ox4c,
0x32, O0x4c,
0x31, Oxfe,
0x00},

0x60, Oxfe,
0x60, 0x06,
0x78, 0xe6,
0x78, 0xe6,
0x78, 0xe6,
0x78, 0xe6,
0x78, 0xe6,
0x78, 0xe6,
0x6f, 0x06,
Ox7f, Oxfe,
0x00}

Oxff,

Oxff,
0x00,
0x00,
Ox1a,
0x60,
0x60,
oxe2,
Oxff,
Oxff,
Oxff,

Oxff,
0x00,
0x00,
0x02,
0x60,
0x60,
Oxf a,
Oxff,
Oxff,
Oxff,

Oxff,
0x00,
0x05,
Oox2f ,
Ox5f,
Ox5f
ox2f ,
0x05,
0x00,
Oxff,

Ooxff,

Oxff,
0x00,
0x00,
0x58,
0x06,
0x086,
0x47,
Oxff,
Oxff,
Ooxff,

Oxff,
0x00,
0x00,
0x40,
0x06,
0x086,
Ox5f,
Oxff,
Oxff,
Ooxff,

Oxff,
0x00,
0x20,
0x04,
0x02,
0x02,
0x04,
0x20,
0x00,
Ooxff,

used for this cursor. The last frane requires a different
other franes can use the sanme nask.

but all

Oox7f,

Ox7f,
0x32,
0x32,
0x30,
0x30,
0x30,
0x30,
0x32,
0x32,
ox7f,

Ox7f,
0x32,
0x32,
0x30,
0x30,
0x30,
0x30,
0x32,
0x32,
ox7f,

Ox7f,
0x60,
0x78,
0x78,
0x78,
0x78,
0x78,
0x78,
0x60,
ox7f,

71

Chapter 3: The ViewKit Application Class

static char tinme_nmask bits[] = {

Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff,
Ox8e, Oxff, Oxff, Ox71, Oxce, Oxff, Oxff, Ox73, Oxce, Oxff, Oxff, Ox73,
Oxce, Oxff, Oxff, Ox73, Oxce, Oxff, Oxff, Ox73, Oxce, Oxff, Oxff, Ox73,
Ox8e, Oxff, Oxff, Ox71, OxOe, Oxff, Oxff, O0x70, OxOe, Oxfe, Ox7f, 0x70,
0x0e, Oxfc, Ox3f, 0x70, O0xOe, Oxf8, Ox1f, 0Ox70, OxOe, Oxe0, 0x07, 0x70,
0x0e, 0x80, 0x01, 0x70, OxOe, 0x80, 0x01, 0x70, Ox0Oe, Oxe0, O0x07, Ox70,
0x0e, Oxf8, Ox1f, 0x70, OxOe, Oxfc, Ox3f, 0x70, OxOe, Oxfe, Ox7f, 0x70,
Ox0e, Oxff, Oxff, Ox70, Ox8e, Oxff, Oxff, Ox71, Oxce, Oxff, Oxff, Ox73,
Oxce, Oxff, Oxff, Ox73, Oxce, Oxff, Oxff, Ox73, Oxce, Oxff, Oxff, Ox73,
Oxce, Oxff, Oxff, Ox73, Ox8e, Oxff, Oxff, Oxfl, Oxff, Oxff, Oxff, Oxff,
Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff};

#define tine7_mask_w dth 32

#def i ne tine7_mask_hei ght 32

#define ti me7_mask_x_hot 15

#define ti me7_mask y_hot 15

static char tine7_nask bits[] ={
0x0f, 0x00, 0x00, OxfO, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff,
oxff, Oxff, Oxff, Oxff, Ox07, 0x00, Ox00, Oxe0, 0x07, Ox00, 0x00, OxeO,
Oxf7, 0x01, 0x80, Oxef, Oxff, O0x03, OxcO, Oxff, Oxff, Ox07, Oxe0, Oxff,
Oxff, OxOf, OxfO, Oxff, Oxff, Ox1f, Oxf8, Oxff, Oxff, Ox3f, Oxfc, Oxff,
Oxff, Ox3f, Oxfc, Oxff, Oxff, Ox7f, Oxfe, Oxff, Oxff, Ox7f, Oxfe, Oxff,
Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Ox7f, Oxfe, Oxff,
oxff, Ox7f, Oxfe, Oxff, Oxff, Ox3f, Oxfc, Oxff, Oxff, Ox3f, Oxfc, Oxff,
Oxff, Ox1f, Oxf8, Oxff, Oxff, OxOf, OxfO, Oxff, Oxff, Ox07, OxeO, Oxff,
Oxff, O0x03, OxcO, Oxff, Oxf7, Ox0l1l, Ox80, Oxef, 0x07, Ox00, 0x00, O0xeO,
0x07, 0x00, 0x00, OxeO, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff,
oxff, Oxff, Oxff, Oxff, OxOf, Ox00, Ox00, OxfO};

LHECEEETEEEEE T i b r bbb rry
/1 Qass declaration. Subclass VkQursor Li st
LHEEEETEEEEEE it b r b ni iy
class Hourd assQursors : public WkQursorlList {

public:
Hour @ assQursors();

pr ot ect ed:
voi d createQursor(int index); /1 Overrides base class' pure virtual

private:

XCol or xcol ors[2];
b

72

Setting Application Cursors

/1 The constructor gets two colors to use for the cursor.

Hour @ assQursors: : Hour@ assQursors () : VWkQursorlist (NUMIURSCRS)
{
xcol ors[0] . pi xel = (P xel) WGet Resour ce(t heAppl i cati on->baseWdget (),
"busyQur sor For egr ound",
XnCFor egr ound,
XRPi xel ,
(char *) "Bl ack");

xcol ors[1] . pi xel = (P xel) WGet Resour ce(t heAppl i cati on- >baseWdget (),
"busyQur sor Backgr ound",
XnCBackgr ound,
XRPi xel ,
char *) "Wite");
XQueryQol ors (theApplication->di splay(),
Def aul t Col or mapd Scr een(Def aul t Scr eend Di spl ay(dpy)),
xcolors, 2);

}

/1 This function is called as needed, to create a new cursor frane.
/1 Just create the cursor corresponding to the requested index and
// install it in _cursorlList.

voi d Hour d assQursors: : creat eQursor (i nt i ndex)
{
P xmap pi xmap = 0, maskPi xnap = 0;
D splay *dpy = theApplication->di splay();
pi xmap = XO eat eBi t mapFr onbDat a (dpy,
Def aul t Root W ndow(dpy) ,
tine_bits[index],
32, 32);

i f(index ==7)
maskPi xmap = XO eat eBi t napFr onbat a (dpy,
Def aul t Root W ndow(dpy) ,
tine7_nask_bits,
32, 32);
el se
naskPi xmap = XO eat eBi t mapFr onbat a (dpy,
Def aul t Root W ndow(dpy) ,
tinme_nmask bits,
32, 32);

73

Chapter 3: The ViewKit Application Class

74

_cursorlList[index] = XO eatePi xnapQursor (dpy, pixnap, maskPi xnap,
&(xcol ors[0]), &xcolors[1]),
0, 0);
i f(pi xmap)
XFreePi xnap (dpy, pixnap);
i f (maskPi xnmap)
XFreePi xmap (dpy, naskPi xnap);
}

Once you have created an animated busy cursor, you can install it as your application’s
busy cursor using an overloaded version of the VkApp::setBusyCursor() function:

voi d set BusyCursor (VKCur sor Li st *animatedCursor)

You should provide as the argument to setBusyCursor() a pointer to your animated busy
cursor object.

When you use an animated busy cursor, the busyCursor() function returns the currently
displayed pixmap of your busy cursor.

Setting and Retrieving a Temporary Cursor

You can set a temporary cursor for use in all of your application’s windows using
VkApp::showCursor():

voi d showCur sor (Cursor c)
Calling showCursor() immediately displays the temporary cursor. The cursor stays in

effect until the application enters or exits a busy state, or you reset the cursor back to the
normal cursor by calling showCursor() with a NULL cursor argument.

Use this function to display a cursor only briefly. If you want to change the cursor for an
extended period, use setNormalCursor() or setBusyCursor().

Supporting Busy States

Supporting Busy States

This section describes ViewKit’s support for busy states, when you lock out user input
during an operation.

Entering and Exiting Busy States Using ViewKit

Whenever you expect a procedure to take considerable time to complete, you can call the
VkApp::busy() function before entering the relevant region of code to lock out user input
in all application windows:

virtual void busy(char *msg = NULL,
VkSi npl eW ndow window = NULL)

If you call busy() with no arguments, the application simply displays a busy cursor. If
you provide a string as the first argument, the application posts a dialog to display the
string. The string is treated first as a resource name that busy() looks up relative to the
dialog widget. If the resource exists, its value is used as the message. If the resource does
not exist, or if the string contains spaces or newline characters, busy() uses the string
itself as the message.

If you provide a VkSimpleWindow (or subclass) as the second argument, the
application posts the dialog over this specified window. If you do not specify a window,
the application posts the dialog over the main window. (See “Managing Top-Level
Windows” on page 66 for instructions on setting the main window. See Chapter 7,
“Using Dialogs in ViewKit,” for more details on dialog behavior.)

The VkApp::notBusy() function undoes the previous call to busy():

virtual void notBusy()

You can nest calls to busy(), but you must always have matching busy() and notBusy()
pairs. An application exits the busy state only when the number of notBusy() calls
matches the number of busy() calls.

Note: ViewKit does not “stack” nested busy dialogs, it simply displays the most recently

posted busy dialog. Once you post a busy dialog, it remains displayed until the busy
state is over or you replace it with another busy dialog.

75

Chapter 3: The ViewKit Application Class

76

Example 3-3 shows an example of setting busy dialog messages using resource values
and using nested busy() and notBusy() calls. Note that this is not a complete example: it
lists only the code relating to the busy states.

Example 3-3 Using Busy States in a ViewKit Application
cl ass Report W ndow. public VKkSi npl eW ndow {

public:
Report Wndow (const char *nane);
~Report W ndow() ;
virtual const char* cl assNane();
void report();
void sort();

private:
static String _defaul tResources[];
i
String _defaultResources[] = {
"*sortDi al ogMsg: Sorting records...",
"*reportDi al ogMsg: Generating report...",
NULL
s
Report W ndow: : Report W ndow(const char *nane) : VKSi npl eW ndow (nane)
{

set Def aul t Resour ces(t heAppl i cati on->baseW dget (), _defaul t Resources);
/] Create w ndow.. .

}

voi d Report W ndow: : sort ()

{
t heAppl i cati on->busy("sortDi al ogMsg") ;
/!l Sort records...
t heAppl i cati on->not Busy() ;

}

voi d Report W ndow: : report ()
{
t heAppl i cati on->busy("reportD al ogMsg");
/1 Report generation...
sort();
/1 Report generation continued...
t heAppl i cati on->not Busy();

Supporting Busy States

The ReportWindow class defines the busy dialog messages as resource values and loads
these values using setDefaultResources() in the ReportWindow constructor.' The calls
to busy() pass these resource names instead of passing the actual dialog text. This allows
you to override these resource values in an app-defaults file should you need to.

When the application calls ReportWindow::report(), it posts the busy dialog shown in
Figure 3-2.

|Generating report...|

Figure 3-2 Busy Dialog

When the application calls ReportWindow::sort(), it posts the busy dialog shown in
Figure 3-3.

|Sorting records...|

Figure 3-3 Nested Busy Dialog

Note that the application continues to display the second busy dialog until reaching the
theApplication->notBusy() statement in ReportWindow::report().

1 Unlike most ViewKit components, the VkSimpleWindow class constructor is not passed a parent
widget. All ViewKit windows are children of the application’s VkApp base widget. So, to access a
window’s parent widget, you must use the VkApp::baseWidget() access function as shown in this
example.

77

Chapter 3: The ViewKit Application Class

78

Animating the Busy Cursor

To animate the busy cursor during a busy state, periodically call VkApp::progressing():

virtual void progressing(const char *msg = NULL)

If you have an animated busy cursor installed, progressing() cycles to the next pixmap
in the cursor list. If you have a fixed cursor installed, progressing() has no effect on the
busy cursor.

If you provide a character string argument, your application posts a dialog to display the
message. The string is treated first as a resource name that progressing() looks up relative
to the dialog widget. If the resource exists, its value is used as the message. If the resource
does not exist, or if the string contains spaces or newline characters, progressing() uses
the string itself as the message.

The code fragment in Example 3-4 performs a simulated lengthy task and periodically
cycles the busy cursor.

Example 3-4 Animating the Busy Cursor

int i;

/1 Start being "busy"

t heAppl i cati on->busy("Busy", (BusyWndow *) clientData);

for(i=0; i<100; i++)

{
/1l Every so often, update the busy cursor
t heAppl i cati on->progressing();
sl eep(l);

}

/1l Task done, so we’'re not busy anynore
t heAppl i cati on->not Busy();

Supporting Busy States

Installing Different Busy Dialogs

By default, busy() displays the dialog using theBusyDialog, a global pointer to an
instantiation of the VkBusyDialog class' (described in “Busy Dialog” on page 210). If
you prefer to use a different dialog object, you can pass a pointer to the object to the
setBusyDialog() function:

voi d set BusyDi al og(VkBusyDi al og *dialog)

This alternate busy dialog must be implemented as a subclass of VkBusyDialog. Calling
setBusyDialog() with a NULL argument restores the default VkBusyDialog object.

Most frequently, you will use setBusyDialog() to install thelnterruptDialog, a global
pointer to an instantiation of the VkInterruptDialog class, which implements an
interruptible busy dialog?. (“Interruptible Busy Dialog” on page 210 describes the
VkInterruptDialog class.) Example 3-5 shows a typical example of temporarily
installing an interruptible busy dialog for a task.

Alternatively, you might wish use theProgressDialog, a global pointer to an instantiation
of the VkProgressDialog class. VkProgressDialog implements an interruptible busy
dialog displaying a bar graph that indicates the percentage of the task that has been
completed (see “Progress Dialog” on page 212 for more details).

Example 3-5 Temporarily Installing an Interruptible Busy Dialog

nl cude <\W/WKApp. h>
#i ncl ude <\Wk/ WKl nterruptD al og. h>

...
/1 Install thelnterruptD al og as the busy di al og

t heAppl i cat i on- >set BusyD al og(t hel nterrupt D al og);

! theBusyDialog is actually implemented as a compiler macro that invokes a VkBusyDialog access
function to return a pointer to the unique instantiation of the VkBusyDialog class. Although you
should never need to use this access function directly, you might encounter it while debugging a
ViewKit application that uses the busy dialog.

2 thelnterruptDialog is actually implemented as a compiler macro that invokes a VkInterruptDialog
access function to return a pointer to the unique instantiation of the VkInterruptDialog class.
Although you should never need to use this access function directly, you might encounter it while
debugging a ViewKit application that uses the interruptible busy dialog.

79

Chapter 3: The ViewKit Application Class

t heAppl i cati on->busy(" Generating report"); // Enter busy state
/1l Performtask...

t heAppl i cat i on- >not Busy() ; [/l Exit busy state
t heAppl i cati on- >set BusyD al og(NULL) ; /1 Install default busy dial og

Maintaining Product and Version Information

80

The VkApp class provides several access functions and constant data members that you
can use to identify your application and the current ViewKit release.

VkApp::ViewKitMajorRelease is a static integer constant that identifies the major release of
ViewKit; VkApp::ViewKitMinorRelease is a static integer constant that identifies the minor
release of ViewKit, and VkApp::ViewKitReleaseString is a static character array constant
that contains the complete major and minor release information. For example, in a 1.2
release, the value of VkApp::ViewKitMajorRelease would be 1, the value of
VkApp::ViewKitMinorRelease would be 2, and the value of VkApp::ViewKitReleaseString
would be “ViewKit Release: 1.2”. These values can be useful if you need to provide
conditional statements in your code to handle different versions of the ViewKit library.

You can use VkApp::setVersionString() to set version information for an application
based on ViewKit:

voi d setVersionString(const char *uversionlnfo)

You can retrieve the version string using VkApp::versionString():

const char *versionString()

Maintaining Product and Version Information

ViewKit displays this version string in the Product Information dialog that is posted
when a user chooses Product Information from the default Help menu. (See “ViewKit
Help Menu” on page 310 for more information on the default Help menu.) For example,
consider an application that you invoke with the command MapMaker that includes the
following line of code:

t heAppl i cati on->set Versi onStri ng("MapMaker 2.1");

If you choose Product Information from the default Help menu, your application posts
the dialog shown in Figure 3-4.

Application Mame: Maphlaker

Mapbdaker 2.1

e

Figure 3-4 Product Information Dialog

You can use VkApp::setAboutDialog() to replace the standard Product Information
dialog with your own custom dialog;:

voi d set About Di al og(VkDi al ogManager *dialog)

You must provide setAboutDialog() with a pointer to an object that is a subclass of
VkDialogManager. Most frequently, you will actually create a subclass of
VkGenericDialog, an abstract subclass of VkDialogManager that simplifies the process
of creating custom dialogs. “Deriving New Dialog Classes Using the Generic Dialog” on
page 223 describes creating a custom dialog.

The VkApp::aboutDialog() function returns a pointer to the custom Product
Information dialog you have installed:

VkDi al ogManager * about Di al og()

81

Chapter 3: The ViewKit Application Class

Application Data Access Functions

82

VkApp provides several access functions for retrieving data useful for your application:

char *name() const
Returns the command name you used to invoke the application

(argol[0]).

char *applicationClassName() const
Returns the application class name set in the VkApp constructor. This
application class name is used when loading application resources.

virtual const char *className() const
Returns the class name of the VkApp (or subclass) instance being used.
By default, this is “VkApp.” Note that unlike all other ViewKit
components, the VkApp class does not use the value returned by
className() when loading resources; instead, it uses the application
class name that you provide as an argument to the VkApp constructor.
This allows you to set the application class name without creating a
subclass of VKApp.

static void setFallbacks(char **fallbacks)
Sets fallbacks as the specification list needed to call
XtAppSetFallBackResources(3X). setFallbacks() must be called before
the application constructs its VkApp object, since the VkApp
constructor calls XtAppSetFallbackResources() and passes it the
specification list.

XtAppContext appContext() const
Returns the application’s XtAppContext structure, which is required by
many Motif and Xt functions.

Display *display() const
Returns a pointer to the X Display structure associated with the
application’s connection to the X server.

char *shellGeometry() const
Returns a string containing the geometry of the application’s base shell.
You may want to use this information to size other windows in your
application.

int argc() const
Returns the number of items remaining in the argv array after all
arguments recognized by Xt have been removed.

Deriving Classes From VkApp

char **argv() const
Called without arguments, this function returns a pointer to the argv
array after all arguments recognized by Xt have been removed.

char *argv(int index) const
Called with an integer argument, this function returns a single argv
array item (after all arguments recognized by Xt have been removed)
specified by the index argument.

Boolean startupIconified() const
Called with no arguments, this function returns the value TRUE if the
application starts with all windows iconified and FALSE if it starts with
all windows displayed normally.

Widget baseWidget()
For the VkApp class, baseWidget() returns the hidden shell widget.

Deriving Classes From VKApp

This section describes VkApp protected functions and data members that you can use in
a VkApp subclass. Following that is an example of subclassing VkApp to parse
command-line options.

VKApp Protected Functions and Data Members

You can use VkApp::parseCommandLine() to parse command line options:

i nt parseCommandLi ne(Xr nOpt i onDescRec * options,
Car di nal numOptions)

You should call parseCommandLine() from within the constructor of your VkApp
subclass. Provide an XrmOptionDescRec(3Xt) table as the options argument and specify
the number of entries in the table with the numOptions argument. parseCommandLine()
passes these arguments to XtOpenDisplay(3Xt), which parses the command line and
loads recognized options into the application’s resource database. parseCommandLine()
modifies argv to remove all recognized options and returns an updated value of argc.
Example 3-6 shows an example of using parseCommandLine().

83

Chapter 3: The ViewKit Application Class

84

You can override VkApp::afterRealizeHook() to perform certain actions after all
application windows have been realized:

virtual void afterRealizeHook()

For example, you could override afterRealizeHook() to install a colormap or set
properties on the application’s windows. By default, this function is empty.

When subclassing VkApp, you also have access to the protected data member
VkApp::_winList:

VkConponent Li st _wi nLi st

This data member maintains the list of the application’s top-level windows. Consult the
VkComponentList(3x) reference page for more information on the VkComponentList
class.

Subclassing VKApp

The most common reason for creating a subclass of VkApp is to parse the command line
and set global resources based on command-line options. Also, rather than use global
variables, you can store data that is needed throughout your application in data
members of your VkApp subclass.

The program in Example 3-6 creates MyApp, a VkApp subclass that recognizes a
-ver bose command-line argument and initializes a protected data member depending
on whether or not the flag is present.

Note that this example uses the protected VkApp function parseCommandLine() to
extract the flag if it exists. This function returns an updated value that the calling
application must use to update its value of argc.

Deriving Classes From VkApp

Example 3-6 Deriving a Subclass From VkApp

ncl ude </ WKApp. h>
#i ncl ude </ \KResour ce. h>

class M/App : public WkApp {

public:
M/App(char *appd assNarre,
int *arg_c,
char **arg_v,
XrmQpt i onDescRec *opt i onLi st = NULL,
int si ze pti onLi st = 0);
Bool ean verbose() { return _verbose; } /1 Access function
pr ot ect ed:
Bool ean _verbose; /! Data nenber to initialize
private:
static XrnptionDescRec _cndLi ne(ptions[]; // Conmand-1ine options
static Xt Resource _resources[]; /1 Resource descriptions
H
/1 Describe the command |ine options
XrmQpt i onDescRec MyApp: : _cndLi ne(pti ons[] =
{
{
"-verbose", "*verbose", XrnmoptionNoArg, "TRUE',
H
b

/1 Describe the resources to retrieve and use to initialize the class

Xt Resource M/App::_resources [] = {
{

"ver bose",

"\er bose",

XmRBool ean,

si zeof (Bool ean),

Xt Cffset (MApp *, _verbose),

XnRString,

(Xt Pointer) "FALSE',

85

Chapter 3: The ViewKit Application Class

M/App: : M/App(char *appd assNane,

i nt *arg_c,

char **arg_ v,

XrmQpt i onDescRec *opti onLi st

i nt sized ptionList) : VkApp(appd assNane, arg_c,

arg v, optionList,
si zeCr ot i onlLi st)

/1 Parse the conmand line, |oading options into the resource database

*arg_c = parseCommandLi ne(_cndLi neQpt i ons,
Xt Nunber (_cndLi neQpti ons));

I/l Initialize this class fromthe resource data base

get Resour ces (_resources, Xt Nunber (_resources));

Putting Applications in the Overlay Planes

86

By default, the unrealized VkApp shell appears in the normal planes. That sets the
normal planes as the default for all of its descendents as well. ViewKit, however, allows
you to explicitly place your application shell, and therefore all of its descendents, in the
overlay planes. Doing so prevents your application from causing expose events that
disturb such things as complex GL rendering in other applications that are using the
normal planes.

There are three ways to enable applications in the overlay planes:

Call VkApp::useOverlayApps(TRUE). This forces applications into the overlay
planes, with no way to put them back in the normal planes without recompiling.

Put the resource string “*useOverlayApps:True” in your application’s default file.
This will put applications in the overlay planes by default, but allow users to use
the normal planes by changing their . Xdefaults file.

Note: This is an application-specific resource. There is no class resource, so
“*UseOverlayApps” is not supported.

Have users add the -useOverlayApps command-line switch when they run your
application if they wish to use the overlay planes for applications.

Putting Applications in the Overlay Planes

If you do decide to place applications in the overlay planes, here are some factors to
consider:

Applications are placed in the deepest available overlay planes: generally 4- or 8-bit
planes, occasionally 2-bit planes.

If the deepest available overlay is 2 bits, any applications placed in that visual may
not look right. Because the colormap in the 2-bit overlay planes only has three color
entries (the fourth being a transparent pixel), any items in the application other than
labels (for example cascade or toggle buttons) may look odd.

Other applications using the overlay planes may display in the wrong colors when
your application gets colormap focus. The colors in the other applications may flash
because your application’s colormap is installed and replaces any previous overlay
colormap.

87

Chapter 4

ViewKit Windows

This chapter introduces the basic ViewKit classes needed to create and manipulate the
top-level windows in a ViewKit application: VkSimpleWindow and VkWindow.
Figure 4-1 shows the inheritance graph for these classes.

e

i VkComponent i— VKSimpleWindow VkWindow

Figure 4-1 Inheritance Graph for VkSimpleWindow and VkWindow

Overview of ViewKit Window Support

This section describes how ViewKit supports multiple top-level windows in an
application, and then describes the ViewKit classes that implement these windows.

ViewKit’'s Multi-Window Model

There are several possible models for multi-window applications in Xt. One approach is
to create a single top-level window used as the main window of the application. All other
windows are then popup shells whose parent is the main window. Another approach is
to create a single shell that never appears on the screen. All other windows are then
popup children of the main shell. In this model, all top-level windows are treated equally,
as siblings. One window may logically be the top-level window of the application, but as
far as Xt is concerned, all windows are equal.

ViewKit follows the second model. The VkApp class, described in Chapter 3, “The
ViewKit Application Class,” creates a single widget that serves as the parent of all
top-level windows created by the program. The VkApp base widget does not appear on
the screen.

89

Chapter 4: ViewKit Windows

90

ViewKit Window Classes

All top-level windows in a ViewKit application must be instances of VkSimpleWindow,
VkWindow, or a subclass of one of these classes. The VkSimpleWindow class supports
a top-level window that does not include a menu bar. The VkWindow class, derived
from VkSimpleWindow, adds support for a menu bar along the top of the window. You
must create a separate instance of VkSimpleWindow, VkWindow, or a subclass of one
of these classes for each top-level window in your application.

Instantiating a VkSimpleWindow or VkWindow object creates a popup shell as a child
of the invisible shell created by your application’s instance of VkApp.
VkSimpleWindow and VkWindow also create a XmMainWindow widget as a child of
the popup shell. You define the contents of a window by creating a widget or ViewKit
component to use as the work area (or view) for the XmMainWindow widget. In most
cases, you will create several widgets and/or ViewKit components as children of a
container widget and then assign that container widget as the view of the
XmMainWindow widget. “Creating the Window Interface” on page 93 describes how to
assign a view to a window. Figure 4-2 shows an example of a widget hierarchy for the
top-level windows of a simple ViewKit application with two top-level windows.

Application shell Created by VKApPDP (never visible)

1
[1 -
Popup shell Popup shell
| | Created by VkSimpleWindow
XmMainWindow widget | [XmMainWindow widget

Work area (view) widget

Work area (view) widget

Optional widget subtree
Window 1

-
// \\\
- ~o
- ~
- ~

Optional widget subtree —
Window 2

Created by application code

Figure 4-2 Widget Hierarchy of Top-Level Windows in ViewKit Applications

Overview of ViewKit Window Support

In most cases, directly instantiating a VkSimpleWindow or VkWindow object is not
appropriate.! In addition to the widgets and components composing the window’s
interface, most windows require other data and support functions. In accordance with
good object-oriented programming style, the functions and data associated with a
window should be contained within that window’s class. Therefore, the best practice to
follow when creating a ViewKit application is to create a separate subclass for each
window in your application. You can derive these subclasses from VkWindow for those
windows that require menu bars, and from VkSimpleWindow for those windows that
do not. “Deriving Window Subclasses” on page 110 describes in detail the process of
deriving window subclasses.

In addition to creating shell and XmMainWindow widgets, the VkSimpleWindow and
VkWindow classes set up various properties on the shell window and provide simple
hooks for window manager interactions. “Window Manager Interface” on page 105
discusses the built-in window manager support.

The VkSimpleWindow and VkWindow classes provide simple functions to raise, lower,
iconify, and open windows, as described in “Manipulating Windows” on page 103. The
classes also provide several convenience functions for determining a window’s state (for
example, whether it is visible, iconified, and so on) and for retrieving other window
information. These access functions are described in “Window Data Access Functions”
on page 104.

The VkSimpleWindow and VkWindow classes also register their windows with the
application’s VkApp instance to support application-wide services such as setting the
cursor for all of an application’s windows, entering busy states, and manipulating all
windows in an application. Chapter 3, “The ViewKit Application Class,” describes how
to use these application-wide services.

! There are exceptional cases for which you might choose to directly instantiate a VkSimpleWindow or
VkWindow object and then associate a view with the window. For example, if you have a complex,
self-contained component and need a window simply to display the component, you might find this
method acceptable. “Adding a Window Interface to a Direct Instantiation of a ViewKit Window
Class” on page 102 describes how to do this.

91

Chapter 4: ViewKit Windows

Window Class Constructors

92

The VkSimpleWindow and VkWindow constructors both have the same form:

VKkSi npl eW ndow const char *name,
ArgLi st args = NULL,
Car di nal argCount = 0)

VKW ndow(const char *name,
ArgLi st args = NULL,
Car di nal argCount = 0)

Unlike most other ViewKit components, the VkSimpleWindow and VkWindow
constructors do not require a parent widget as an argument: all ViewKit windows are
automatically created as children of the invisible shell created by your application’s
instance of VkApp. You must specify a name for your window. Optionally, you can also
provide a standard Xt argument list that the constructor will use when creating the
window’s popup shell.

Every application has a main window. By default, the first window you create is treated as
the main window. To specify a different window to use as the main window, use the
VkApp::setMainWindow() function described in “Managing Top-Level Windows” on
page 66.

Because the first window you create is by default the main window, the window class
constructors also set some shell resources on the popup shell widget of that window. The
constructors obtain the geometry of the invisible application shell created by VkApp and
assign that geometry to the window’s popup shell widget. The constructors also set the
XmNargc and XmNargyv resources on the popup shell to the values of VkApp::arge() and
VkApp::argv() respectively. (“Application Data Access Functions” on page 82 describes
VkApp::arge() and VkApp::argv().)

Finally, for all windows, the window class constructors register a callback function to
handle messages from the window manager. The default action upon receiving a
WM_DELETE_WINDOW message is to delete the window object. To change this
behavior, override the handleWmDeleteMessage() member function as described in
“Window Properties and Shell Resources” on page 107. The default action upon
receiving a WM_QUIT_APP message is to quit the application. To change this behavior,
override the handleWmQuitMessage() member function as described in “Window
Properties and Shell Resources” on page 107.

Window Class Destructors

Window Class Destructors

The VkSimpleWindow and VkWindow destructors delete all privately allocated data
and destroy the views associated with the windows. The VkWindow destructor also
destroys any menu bar associated with the window, no matter how you added it (see
“Menu Bar Support” on page 108). If you created a subclass, you should provide a
destructor to free any space that you explicitly allocated in the derived class.

The VkSimpleWindow and VkWindow destructors also remove the window from the
application’s list of windows. If this window is the only window still associated with the
application (for example, if it is the only window created or all other windows have also
been deleted), then your application automatically calls VkApp::terminate() to quit
itself. “Quitting ViewKit Applications” on page 65 describes VkApp::terminate().

Creating the Window Interface

There are three methods that you can use to create the contents of a window:

* Create a subclass of VkSimpleWindow or VkWindow and define the interface in
the class constructor.

* Create a subclass of VkSimpleWindow or VkWindow and define the interface by
overriding the virtual function setUpInterface().

® (Create an instance of VkSimpleWindow or VkWindow, define the interface
separately, and then add the interface as the window’s view.

These methods, and the advantages and disadvantages of each approach, are discussed
in the following sections.

Creating the Window Interface in the Constructor

The preferred method of defining the contents of a window is to create the interface in
the constructor of a VkSimpleWindow or VkWindow subclass. In this case, you simply
create the widgets and components that you want to appear in your window in your
subclass constructor. Remember that each window can have only one direct child widget
as a view, so in most cases you must create a container widget and then create all other
widgets and components as descendents of this direct child. Manage all widgets except
the container widget, which you should leave unmanaged.

93

Chapter 4: ViewKit Windows

94

The parent widget of your view’s top-level widget or component must be the window’s
XmMainWindow widget. You can retrieve this widget by calling the
mainWindowWidget() function inherited from VkSimpleWindow. “Window Data
Access Functions” on page 104 discusses the mainWindowWidget() function.

Note: The _baseWidget data member for VkSimpleWindow and derived classes is the
window’s popup shell widget. Do not assign any other widget to this data member in a
derived class.

After creating your interface, call add View():

voi d addVi ew(W dget w)
voi d addVi ew(VkCorrponent * component)

addView() accepts as an argument either a widget or a pointer to a component, which
addView() installs as the view for the window.

Note: Some Motif functions such as XmCreateScrolledText(3Xm) create a
ScrolledWindow widget and a child widget, and then return the ID of the child widget.
As a convenience for using these functions, addView() can automatically determine the
correct parent widget if you provide the child widget ID instead of the Scrolled Window
ID.

Example 4-1 shows a simple example that defines ScaleWindow, which creates a
window with a RowColumn widget containing three Scale widgets. Because
ScaleWindow is derived from VkSimpleWindow, it does not support a menu bar. If you
required a menu bar, you would instead derive this class from VkWindow.

Note that ScaleWindow includes default resources for the Scale widget labels. This
encapsulation technique is a good object-oriented practice to follow when creating
reusable components in ViewKit. For example, if you were to extend this class by adding
callback functions to the Scale widgets, you should make the callback functions members
of the ScaleWindow class.

Creating the Window Interface

Example 4-1 Creating a Window Interface in the Class Constructor

THHLELEEL il
/] Scal eWndow h
[T rrrirg

#i ncl ude <W/\KS npl eW ndow h>
cl ass Scal eWndow public WS npl eWndow {

public:
Scal eWndow (const char *);
~Scal eWndow() ;
virtual const char* classNane();

private:
static String _defaul t Resources[];

b

THELLEEELEEL il
/1 Scal eWndow c++
TIETTELEL il

#i ncl ude " Scal eWndow h"
#i ncl ude <X RowCol um. h>
#i ncl ude <Xni Scal e. h>

String Scal eWndow : _defaul t Resources[] = {
"*dayScal e.titl eString: Days",
"*weekScal e.titleString: Veeks",
"*monthScal e. titleString: Mnths",
NULL };

Scal eWndow: : Scal eWndow (const char *nane) : \KS npl eWndow (nane)

{
set Def aul t Resour ces(mai nWndowwWdget (), _defaul t Resour ces);

Wdget scal es = Xt O eat eWdget ("scal es", xnRowCol umW dget d ass,
mai nWndow/ dget (), NULL, 0);

Wdget dayScal e = Xt O eat eManagedW dget (" dayScal ", xntcal eWdget d ass,
scal es, NULL, 0);
Xt VaSet Val ues(dayScal e,
Xm\ori entation, XmHCR ZONTAL,
XmiNm ni num 1,

95

Chapter 4: ViewKit Windows

XmiNmaxi num 7,
Xm\val ue, 1,
Xm\showval ue, TRUE,
NULL) ;

Wdget weekScal e = Xt O eat eManaged\W dget ("weekScal e", xnBcal eWdget d ass,
scales, NULL, 0);
Xt VaSet Val ues(weekScal e,
XmN\or i ent ation, XmHOR ZONTAL,
XoNm ni mum 1,
XmiNmaxi mum 52,
Xm\val ue, 1,
Xmi\showval ue, TRUE,
NULL) ;
Wdget nont hScal e = Xt O eat eManagedW dget (" nont hScal e", xnScal eWdget d ass,
scal es, NULL, 0);
Xt VaSet Val ues(nont hScal e,
Xm\ori ent ation, XmHOR ZONTAL,

XN ni mum 1,
Xm\haxi num 12,
Xm\val ue, 1,
Xm\showval ue, TRUE,
NULL) ;
addMi ew(scal es) ;
}
Scal eWndow: : ~Scal eW ndow()
{
/1 Enpty
}
const char* Scal eWndow : cl assNane()
{
return "Scal eWndow';
}

96

Creating the Window Interface

THELETEETL i
/1 scal eApp. c++
RNy

#i ncl ude " Scal eWndow h"
ncl ude <W/ WKApp. h>

void main (int argc, char **argv)

{
VKApp *scal eApp = new VkApp(" Scal eApp”, &argc, argv);
Scal eWndow *scal eWn = new Scal eWndow("scal ewn");
scal eWn->show();
scal eApp->run();

}

Running the scaleApp program shown above displays a ScaleWindow, as shown in
Figure 4-3.

hMonths

Figure 4-3 Simple Example of a VkSimpleWindow Subclass
You can also create components and add them just as you would widgets. The

constructor shown in Example 4-2 creates a VkRadioBox(3x) component and installs
several items.

97

Chapter 4: ViewKit Windows

98

Example 4-2 Using a Component as a Window’s View

THELELEELL il
/] Radi oW ndow. h
[T rrrinl

ncl ude <W/\KS npl eW ndow h>
cl ass Radi oWwndow public WS npl eWndow {

public:

Radi oWndow (const char *);

~Radi oW ndow() ;

virtual const char* classNane();
private:

static String _defaul t Resources[];

[rrrrt
// Radi oWndow c++
[HELEEEEE il

#i ncl ude " Radi oW ndow h"
#i ncl ude <K/ \KRadi oBox. h>

String Radi oWndow : _def aul t Resources[] = {
"*col or*| abel *| abel String: ol or",
"*red. | abel Sring: Red",

"*green. |l abel String: Geen",
"*pl ue. | abel String: Bl ue",
NULL };

Radi

oWndow. : Radi oWwndow (const char *nane) :

\KSi npl eWndow (nane)

set Def aul t Resour ces(mai nVWWndow/ dget (), _def aul t Resour ces);

VKkRadi oBox *rb = new WKRadi oBox("col or",

rb->addl ten{"red");
rb->addl ten{"green");
rb->addl t en{" bl ue");

addvi ew(rb) ;

nmai nWndowVdget ());

Creating the Window Interface

Radi oW ndow:. : ~Radi oW ndow()
{

}

[l Enpty

const char* Radi oWndow : cl assNane()

{
}

return "Radi oWndow';

THELEEEETEEE iy
/1 radi oApp. c++
THEEETEETLEE i

#i ncl ude <WKk/ \WKApp. h>
#i ncl ude " Radi oW ndow h"

void main (int argc, char **argv)

{

VKApp *radi oApp = new VKApp(" Radi oApp", &argc, argv);
Radi oW ndow *radi oWn = new Radi oW ndow("radi oWn");

r adi oW n->show() ;
r adi oApp->run();
}

Running the radioApp program shown above displays a RadioWindow, as shown in

Figure 4-4.

Figure 4-4 Using a Component as a Window’s View

99

Chapter 4: ViewKit Windows

100

Creating the Window Interface in the setUplnterface() Function

When you create your window interface in your window constructor using addView(),
all setup overhead occurs when the window is instantiated. Additionally, your program
allocates memory for all of the widgets created. Occasionally, you might need to
instantiate a window so that your application can access some of its public functions, but
not display it. If the window interface is large or complex, the time and memory
consumed to create the interface is unnecessary if the user might not display it.

The ViewKit window classes provide a mechanism for delaying the creation of a
window’s interface until the window needs to be displayed. Rather than including the
interface code in the window constructor, you can include the code in the definition of
the protected virtual member function setUpInterface().

When you call show() to display a window, show() checks to see whether you have
already added a view to the window (for example, in the window’s constructor). If not,
show() calls setUpInterface() to create the window’s interface.

Using this approach, you do not allocate memory for the window interface until your
application actually displays the window for the first time—and you never allocate the
memory if your application never displays the window. Additionally, this approach
reduces your application’s startup time. The trade-off is that the first time you display
this window, the response time might be slow because your application must create the
interface before displaying the window.

The syntax of setUpInterface() is as follows:

virtual Wdget setUplnterface(Wdget parent)

show() passes the main window widget to setUpInterface() for you to use as the parent
of the window’s widget hierarchy. You must return a widget to be added as a view. Do
not call addView() from within setUpInterface().

Note: Some Motif functions such as XmCreateScrolledText(3Xm) create a
ScrolledWindow widget and a child widget, and then return the ID of the child widget.
As a convenience for using these functions, setUpInterface() can automatically
determine the correct parent widget if you provide the child widget ID instead of the
ScrolledWindow ID.

Example 4-3 shows the RadioWindow example from Example 4-2 rewritten to use
setUpInterface() instead of addView() in the constructor.

Creating the Window Interface

Example 4-3 Creating a Window’s Interface in the setUplInterface() Function

THELELELEL il
/] Radi oWwndow2. h
[T rrrirt

ncl ude <W/\KS npl eW ndow. h>
cl ass Radi oWwndow public WS npl eWndow {

public:
Radi oWndow (const char *);
~Radi oW ndow() ;
virtual const char* classNane();

pr ot ect ed:
Wdget set Wl nterface(Wdget);

private:
static String _defaul t Resources[];

S

[rrrr
/! Radi oWndow2. c++
[HEELEEEEEEL il

#i ncl ude " Radi oW ndow2. h"
#i ncl ude <K/ \KRadi oBox. h>

String Radi oWndow : _def aul t Resources[] = {
"*col or*| abel *I abel String: ol or",
"*red. | abel Sring: Red",

"*green. |l abel String: Geen",
"*pl ue. | abel String: Bl ue",

NULL };
Radi oW ndow. : Radi oW ndow (const char *nane) :
{

Il Enpty
}

\KSi npl eWndow (nane)

101

Chapter 4: ViewKit Windows

102

Radi oW ndow:. : ~Radi oW ndow()

{
Il Enpty
}
const char* Radi oWndow : cl assNane()
{
return "Radi oWndow';
}
Wdget Radi oWndow : set Wpl nterface (Wdget parent)
{
set Def aul t Resour ces(mai nWndowWdget (), _defaul t Resources);
VKkRadi oBox *rb = new \KRadi oBox("color", parent);
rb->addl ten{"red");
rb->addl ten{"green");
rb->addl ten{" bl ue");
return(*rb);
}

Note that this example uses the Widget operator defined by VkComponent to return the
VkRadioBox’s base widget in setUpInterface(). (See “VkComponent Access Functions”
on page 17 for information on the Widget operator.) If you prefer, you could explicitly
call baseWidget():

return(rb->baseWdget());

Adding a Window Interface to a Direct Instantiation of a ViewKit
Window Class

There are exceptional cases for which you may choose to directly instantiate a
VkSimpleWindow or VkWindow object and use add View() to associate a view with the
window. For example, if you have a complex, self-contained component and need a
window simply to display the component, you might find this method acceptable.
Example 4-4 shows a simple example of adding a component to a direct instantation of
the VkSimpleWindow class.

Manipulating Windows

Example 4-4 Adding a View to a Direct Instantiation of a ViewKit Window Class

\KS npl eWndow *r ol oWndow = kS npl eWndow("r ol oWndow'") ;
Rol odex *rol odex = Rol odex("rol odex", rol oW ndow >nai nWndow/i dget ());
r ol oW ndow >addVi ew(r ol odex) ;

In most cases, you should not use this technique because most windows require data and
support functions that should be encapsulated by the window class to follow proper
object-oriented programming style.

Replacing a Window'’s View

Occasionally, you might want to replace the view of an existing window. To do so, you
must first remove the current view using the removeView() function:

voi d renoveVi ew()
You should not call this function unless you have previously added a view to this
window. removeView() does not destroy the view; if you no longer need the view, you

should destroy it.

After removing a view, you can add another view using add View().

Manipulating Windows

The VkSimpleWindow and VkWindow classes provide simple functions to show, hide,
raise, lower, iconify, and open windows. All of the following functions take no arguments
and have a void return value:

show() Displays the window. show() has no effect if the window is currently
iconified.

hide() Removes the window from the screen.

iconify() Iconifies the window.

open() Opens the window if it is iconified.

103

Chapter 4: ViewKit Windows

raise() Raises the window to the top of the application’s window stack.

lower() Lowers the window to the bottom of the application’s window stack.

All of these functions are declared virtual. If you override them in a subclass, you should
call the corresponding base class function after performing whatever operations your
subclass requires.

Window Data Access Functions

104

The VkSimpleWindow and VkWindow classes support several data access functions:

mainWindowWidget() returns the XmMainWindow widget created by the window
constructor. Most frequently, you use mainWindowWidget() to obtain a parent
widget for creating a view widget or component. You can also use this function to
access and configure the window’s XmMainWindow widget. For example, by
default, the ViewKit window classes configure the window’s XmMainWindow
widget not to display scrollbars. You can use mainWindowWidget() to obtain the
XmMainWindow widget and then use XtSetValues(3Xt) to enable the scrollbars:

virtual Wdget nmai nW ndowW dget () const
viewWidget() returns the widget currently installed as the window’s view:
virtual Wdget viewW dget() const

visible() returns TRUE if the window is currently displayed and FALSE if it is
hidden:

Bool ean visi bl e() const

iconic() returns TRUE if the window is currently iconified and FALSE if it is not:
Bool ean iconic() const

getMenu() returns the VkMenuBar object or subclass used by the window that
contains the given VkComponent. This allows components to add items to the
menu bars of the window in which they are placed, without a hard-coded
connection between the window and the component:

static VkMenuBar *get Menu(VkConmponent *object)

Window Manager Interface

¢ getWindow() returns the VkWindow object or subclass that contains the given
VkComponent. This allows components to operate on the window that contains
them, without a hard-coded connection between the window and the component:

static VKSi npl eW ndow *get W ndow VkConponent *conponent)
static VKW ndow *get W ndow(VkCorrponent *conponent)

¢ getVisualState() returns the X11 window state (as specified by the Inter-Client
Communication Conventions Manual, sections 4.1.2.4 and 4.1.4, with one extension):

int getVisual State()

The ICCCM specifies WithdrawnState, NormalState, and IconicState. In actuality,
when an unmapped window is mapped, it may come back as either Normal or
Iconic. Therefore, Viewkit adds the following states:

— WithdrawnNormalState—Means that the window will be in NormalState when
it is mapped (same as WithdrawnState).

— WithdrawnlconicState—Means that the window will be in IconicState when it is
mapped.

Window Manager Interface

The VkSimpleWindow and VkWindow classes set up various properties on the shell
window and provide simple hooks for window manager interactions.

Window and Icon Titles

The VkSimpleWindow and VkWindow classes provide easy-to-use functions to set
your application’s window and icon titles.

The setTitle() function sets the title of a window:

void setTitle(const char *mnewTitle)

The string is treated first as a resource name that setTitle() looks up relative to the
window. If the resource exists, its value is used as the window title. If the resource does
not exist, or if the string contains spaces or newline characters, setTitle() uses the string
itself as the window title. This allows applications to change a window title dynamically
without hard-coding the exact title names in the application code. Example 4-5 shows an
example of setting a window title using a resource value.

105

Chapter 4: ViewKit Windows

106

You can retrieve the current window title using getTitle():

const char *getTitle()

The setlconName() function sets the title of a window’s icon:

voi d setlconNane(const char *newTitle)

The string is treated first as a resource name that seticonName() looks up relative to the
window. If the resource exists, its value is used as the window’s icon title. If the resource
does not exist, or if the string contains spaces or newline characters, setlconName() uses
the string itself as the icon title. This allows applications to dynamically change a
window’s icon title without hard-coding the exact title names in the application code.
Example 4-5 shows an example of setting a window’s icon title using a resource value.

Example 4-5 Setting Window and Icon Titles Using Resource Values

cl ass Mai nWndow : public WS npl eWndow {

public:
Mai nWndow (const char *);
...
private:
static String _defaul t Resources[];
...

|

String _defaul t Resources[] = {
"winTitle: Foobar M n Wndow',
"*iconTitle: Foobar ",

NULL

|

Mai nWndow : Mai nWndow(const char *nane) : kS npl eW ndow(hane)

{
set Def aul t Resour ces(mai nWndowWdget (), _defaul t Resources);

setTitle("winTitle");
set | conNane("iconTitle");

...

Window Manager Interface

Window Properties and Shell Resources

The window class constructors automatically set up various window properties and
shell resources when you create a window. The window classes also provide some hooks
to allow you to set your own properties or change the window manager message
handling in a derived class.

Because the first window you create is by default the main window, the window class
constructors also set some shell resources on the popup shell widget of that window. The
constructors obtain the geometry of the invisible application shell created by VkApp and
assign that geometry to the window’s popup shell widget. The constructors also set the
XmNargc and XmNargyv resources on the popup shell to the values of VkApp::arge() and
VkApp::argv(), respectively. (“Application Data Access Functions” on page 82 describes
VkApp::arge() and VkApp::argv().)

For all windows, the window class constructors register a callback function to handle
WM_DELETE_WINDOW messages from the window manager. This callback function
calls handleWmDeleteMessage():

virtual void handl eWrDel et eMessage()

By default, handleWmDeleteMessage() calls the window’s okToQuit() function. If
0kToQuit() returns TRUE, then handleWmDeleteMessage() deletes the window. You
can override handleWmDeleteMessage() to change how your window handles a
WM_DELETE_WINDOW message. In most cases, you should simply perform any
additional actions that you desire and then call the base class’s
handleWmDeleteMessage() function.

The window class constructors also register a callback function to handle
WM_QUIT_APP messages from the window manager. This callback function calls
handleWmQuitMessage():

virtual void handl eWruit Message()

By default, handleWmQuitMessage() calls the application’s quitYourself() function to
quit the application. You can override handleWmQuitMessage() to change how your
windows handles a WM_QUIT_APP message. In most cases, you should simply
perform any additional actions that you desire and then call the base class’s
handleWmQuitMessage() function to exit your application.

107

Chapter 4: ViewKit Windows

Menu Bar Support

108

If you want to set any additional properties on a window, you can override
setUpWindowProperties():

virtual void set UoW ndowProperties()

setUpWindowProperties() is called after realizing a window’s popup shell widget but
before mapping it. Subclasses that wish to store other properties on windows can
override this function and perform additional actions. If you override this function, you
should set all desired properties and then call the base class’s setUpWindowProperties()
function.

Note that you should use setUpWindowProperties() to set window properties instead of
VkComponent::afterRealizeHook() as described in “Displaying and Hiding
Components” on page 19. The difference between the two is that
setUpWindowProperties() is guaranteed to be called before the window manager is
notified of the window’s existence. Because of race conditions, this might not be true of
afterRealizeHook().

You can also change the value of the window manager class hint stored on a window
using setClassHint():

voi d set Cl assHi nt (const char *className)

setClassHint() sets the class resource element of the XA_WM_CLASS property stored on
this window to the string you pass as an argument.

The VkSimpleWindow class is useful for windows that require only a work area;
however, windows frequently require menus. The VkWindow class extends the
VkSimpleWindow class by providing support for a menu bar along the top of the
window.

In ViewKit, the VkMenuBar(3x) class provides support for menu bars. Chapter 5,
“Creating Menus With ViewKit,” describes in depth the process of creating and
manipulating menus; “Menu Bar” on page 156 describes additional functions specific to
the VkMenuBar class and provides an example of constructing a menu bar for an
application. This section describes only those functions provided by VkWindow for
installing and manipulating a menu bar.

Menu Bar Support

You install a menu bar using setMenuBar():

voi d set MenuBar (VkMenuBar * menuObj)
voi d set MenuBar (VkMenuDesc * menudesc)
voi d set MenuBar (VkMenuDesc *menudesc, Xt Poi nter clientData)

If you provide a pointer to an existing VkMenuBar object, setMenuBar() installs that
menu bar. If you provide a VkMenuDesc static menu description, setMenuBar() creates
a menu bar from that description and then installs the menu bar.

The third version listed above allows you to control the default client data. Using this
version, you can pass in zero as the client data. However, there is no way to distinguish
between an explicit zero that you pass in and the zero value resulting from not
initializing the client data in the VkMenuDesc structure.

Once you have installed a menu bar, menu() will return a pointer to the menu bar object:

virtual VkMenuBar *nenu() const

You can add a menu pane to the menu bar using addMenuPane():

VkSubMenu *addMenuPane(const char *name)
VkSubMenu *addMenuPane(const char *name, VkMenuDesc *menudesc)

addMenuPane() creates a VkSubMenu(3x) object and adds it to the window’s menu bar.
If you provide a VkMenuDesc static menu description, addMenuPane() uses it to create
the menu pane. Additionally, addMenuPane() automatically creates and installs a menu
bar if the window does not currently have one.

You can add a menu pane that enforces radio behavior on the toggle items it contains by
using addRadioMenuPane():

VkRadi oSubMenu *addRadi oMenuPane(const char *name)
VkRadi oSubMenu *addRadi oMenuPane(const char *name,
VkMenuDesc * menudesc)

addRadioMenuPane() creates a VkRadioSubMenu(3x) object and adds it to the
window’s menu bar. If you provide a VkMenuDesc static menu description,
addRadioMenuPane() uses it to create the menu pane. Additionally,
addRadioMenuPane() automatically creates and installs a menu bar if the window does
not currently have one.

109

Chapter 4: ViewKit Windows

Deriving Window Subclasses

110

This section summarizes how to create subclasses from the ViewKit window classes. It
describes additional virtual functions and data members not covered in previous
sections, provides a window creation checklist, and shows an example of deriving a
window subclass.

Additional Virtual Functions and Data Members

In addition to those functions described in previous sections, the ViewKit window
classes provide a number of virtual functions and data members that you can access from
window subclasses. These functions and data allow you to

¢ provide a “safe quit” mechanism for your window
* determine your window’s state and perform actions on state changes
¢ perform actions after realizing a window

¢ handle raw events not normally handled by the Xt dispatch mechanism

Providing a “ Safe Quit” Mechanism

The VkComponent class provides the virtual function okToQuit() to support “safe quit”
mechanisms:

virtual Bool ean okToQuit ()

A component’s okToQuit() function returns TRUE if it is “safe” for the application to
quit. For example, you might want okToQuit() to return FALSE if a component is in the
process of updating a file. By default, okToQuit() always returns TRUE; you must
override okToQuit() for all components that you want to perform a check before
quitting. Usually, only VkSimpleWindow and its subclasses use okToQuit().

When you call VkApp::quitYourself(), VkApp calls the okToQuit() function for all
registered windows before quitting. If the okToQuit() function for any window returns
FALSE, the application does not exit. (“Quitting ViewKit Applications” on page 65
describes VkApp::quitYourself().)

Deriving Window Subclasses

Also, the window’s handleWmDeleteMessage() function calls okToQuit() when the
window receives a WM_DELETE_WINDOW message from the window manager. This
determines whether it is safe to delete the window. (“Window Properties and Shell
Resources” on page 107 describes handleWmDeleteMessage().)

If you want to perform a test to see whether it is safe to delete a window, override the
window’s okToQuit() function. If you want to check one or more components contained
within a window, you can override the window’s okToQuit() function so that it calls the
okToQuit() functions for all the desired components. You can then override the
okToQuit() functions for the other components so you can perform whatever checks or
shutdown actions are necessary. For example, you could post a blocking dialog asking
whether the user wants to save data before quitting. (Chapter 7, “Using Dialogs in
ViewKit,” describes how to use ViewKit dialogs.)

Determining Window States

The ViewKit window classes provide the following protected data members for
determining the current states of a window:

IconState _iconState
Contains an enumerated constant of type IconState that describes the
current iconification state of the window. This variable contains OPEN
if the window is not iconified, CLOSED if it is iconified, and
ICON_UNKNOWN if it is in an unknown state. (Typically, the
unknown state is used only internally to the VkSimpleWindow class.)

VisibleState _visibleState
Contains an enumerated constant of type VisibleState that describes the
current visibility state of the window. This variable contains VISIBLE if
the window is visible, HIDDEN if it is not visible, and
VISIBLE_UNKNOWN if it is in an unknown state. (Typically, the
unknown state occurs only before you add a view to your window:.)

StackingState _stackingState
Contains an enumerated constant of type StackingState that describes
the current stacking state of the window relative to the application. This
variable contains RAISED if the window is at the top of the application’s
window stack, LOWERED if it is at the bottom of the window stack, and
STACKING_UNKNOWN if it is in an unknown state (the state before
you make any calls to raise() or lower() on this window).

111

Chapter 4: ViewKit Windows

112

If you need to perform any operations when your window changes its iconification state,
you can override stateChanged():

virtual void stateChanged(lconState newState)

stateChanged() is called whenever the window’s iconification state changes, whether
programmatically (by calls to iconify() and open()) or through window manager
interaction. Because this function is responsible for maintaining the window’s state
information, if you override this function in a subclass you should call the base class’s
stateChanged() function before performing any additional operations.

Performing Actions After Realizing a Window

If you want to perform certain actions only after a window exists, you can override the
afterRealizeHook() function inherited from VkComponent:

virtual void afterRealizeHook()

Note that you should use setUpWindowProperties() to set window properties instead of
afterRealizeHook(). The difference between afterRealizeHook() and
setUpWindowProperties() is that setUpWindowProperties() is guaranteed to be called
before the window manager is notified of the window’s existence. Because of race
conditions, this might not be true of afterRealizeHook(). afterRealizeHook() is
appropriate for performing actions that do not affect the window’s interaction with the
window manager.

Handling Raw Events

You can handle events not normally handled by the Xt dispatch mechanism by
overriding the window’s handleRawEvent() function:

virtual void handl eRawEvent (XEvent *event)

As described in “ViewKit Event Handling” on page 62, VkApp::run() supports events
not normally handled by the Xt dispatch mechanism. For example, VkApp::run() can
handle client messages and events registered for non-widgets (such as a PropertyNotify
event on the root window).

When run() receives an event not handled by the Xt dispatch mechanism, it calls the
virtual function VkApp::handleRawEvent(), which passes the event to the
handleRawEvent() function of each instance of VkSimpleWindow (or subclass) in the
application. By default, these member functions are empty.

Deriving Window Subclasses

If you want a window to handle events through this mechanism, call XSelectInput(3X)
to select the events that you want to receive, and override handleRawEvent() in the
VkSimpleWindow subclass to implement your event processing.

Additional Data Members

The ViewKit window classes also provide the protected data member
_mainWindowWidget:

W dget _mai nW ndowWw dget

_mainWindowWidget contains the XmMainWindow widget created by the window
constructor. In a subclass, you can use this data member instead of calling
mainWindowWidget(), although this is not recommended.

Window Creation Summary

The following is a summary of guidelines for creating subclasses of the ViewKit window
classes:

* Decide whether this window requires a menu bar. If it does, derive your subclass
from VkWindow; otherwise, derive it from VkSimpleWindow.

* In most cases where you provide a menu bar for your window, you should create it
in the window class when you create the rest of your window’s interface.

¢ Determine whether users will often use your application without displaying this
window even after the object is instantiated. If so, and the window interface is large
or complex, you might consider creating the window interface using
setUpInterface() to reduce the time it takes to start your application; otherwise,
create the interface in the window’s constructor.

¢ Implement the window interface as a single-rooted widget subtree whose parent is
the window’s XmMainWindow widget (obtained by the mainWindowWidget()
function). While some windows might contain only a single complex component,
the majority of windows must create some type of container widget as the root of
the window’s interface; all other widgets and components are descendents of this
widget.

* Do not assign any widget to the _baseWidget data member. The ViewKit window
classes assign the window’s popup shell widget to _baseWidget.

113

Chapter 4: ViewKit Windows

114

Wherever appropriate, use resource values to set labels, other interface
characteristics, and user-configurable component behavior. Define a default
resource list as a static member variable of your window class, and call
setDefaultResources() to set your window’s default resources before creating the
window interface.

Override the className() function to return the name of your window’s class.

In addition to the widgets and components composing the window’s interface,
encapsulate any other required data and support functions as members of your
window class.

If you explicitly allocate any memory in your derived window class, remember to
free it in the window’s destructor.

To explicitly set your window’s title or its icon’s title, call setTitle() or
setlconName() respectively. You can also set these characteristics using the normal
resource mechanisms.

To provide a “safe quit” mechanism for your window, override okToQuit() to
perform any checking you want to perform before deleting the window.

To change how your window handles a WM_DELETE_MESSAGE from the
window manager, override handleWmDeleteMessage().

To change how your window handles a WM_QUIT_APP from the window
manager, override handleWmQuitMessage().

To set any additional properties on your window, override
setUpWindowProperties().

To change the value of the window manager class hint stored on a window;, call
setClassHint().

To perform certain actions only after the window exists, override
afterRealizeHook().

To handle events not normally handled by the Xt dispatch mechanism, call
XSelectInput(3X) to select the events that you want to receive, and override
handleRawEvent() in your window subclass to implement your event processing.

Deriving Window Subclasses

Window Subclassing

The program in Example 4-6 creates ColorWindow, a VkSimpleWindow subclass that
implements a simple utility for determining the results of mixing primary ink colors
when printing. The user can use toggles to select any of the three primary colors—cyan,
magenta, and yellow—and the window reports the resulting color.

Figure 4-5 shows the widget hierarchy of the ColorWindow subclass. The
VkSimpleWindow constructor creates the window’s popup shell and XmMainWindow
widget. The ColorWindow constructor creates a Form widget to serve as the window’s
view. The constructor adds a VkCheckBox component as a child of the Form to provide
the toggle buttons. The constructor then adds a Frame widget as a child of the Form
widget, and creates two Label gadgets as children of the Frame: one to serve as a title,
and one to report the resulting color. The constructor manages all of these widgets except
for the top-level Form widget. (The constructor manages the VkCheckBox component
by calling its show() member function.)

Popup shell
| Created by VkSimpleWindow
XmMainWindow widget
Form widget (windows view)
[1
VkCheckBox component Frame widget Created by ColorWindow
I
I |
Label gadget (Form title) Label gadget

Figure 4-5 Widget Hierarchy of ColorWindow Subclass

This example illustrates a number of object-oriented techniques that you should follow
when programming in ViewKit. Note that all data and utility functions used by the
window are declared as members of the ColorWindow class. Also note that
ColorWindow uses resources to set all the text that it displays. It includes a set of default
values, but you can override these values in a resource file (for example, to provide
German-language equivalents for all the strings).

115

Chapter 4: ViewKit Windows

116

Example 4-6 Creating a Window Subclass

THEELELLLLL il
/1 Col or Wndow. h
[T rrrirr

ncl ude <W/\KS npl eW ndow h>
ncl ude <W/ WKCheckBox. h>

cl ass Gol or Wndow public WS npl eWndow {

public:
Col or Wndow (const char *);
~Col or Wndow() ;
virtual const char* classNane();

private:
voi d di spl ayCol or (char *);

voi d col or Changed(WkCal | back(hj ect *,
static String _defaul t Resources[]; //

static String _colors[];
Wdget _resultColor;
VkCheckBox *_primari es;
int _col orSatus;

b

[HEELELELEE il
// ol or Wndow. c++
TIETTELLL i rnl

#i ncl ude " CGol or Wndow. h"

#i ncl ude <Xnf RowCol um. h>
#i ncl ude <X Form h>

#i ncl ude <Xni Fr ane. h>

#i ncl ude <Xni Label G h>

#i ncl ude <K/ WK CheckBox. h>
#i ncl ude </ \WKResour ce. h>

/1
/1
11l
11
/1
/1
/1
/1

void *, void *);
Def aul t resource val ues
Array of possible resulting colors
Label to display resulting col or
Checkbox for setting col ors
Bit-w se color status variable
Bt 0. Gyan
Bit 1. Magenta
Bt 2. Yellow
Aso used as index into _colors[]

Deriving Window Subclasses

[/ Default Col or Wndow cl ass resource val ues.

String Col or Wndow: : _def aul t Resour ces[] = {

"*w ndowTi t | e:
"*jiconTitle:

"*prinmari es*| abel *| abel String:
"*cyan. | abel String:
"*magent a. | abel Stri ng:
"*yel | ow | abel String:
"*resul t Label . | abel String:
"*cyan:

"*nagent a:

"*yel | ow

"*pl ue:

"*red:

"*green:

"*white:

"*pl ack:

NULL };

Col or M xer",
Col or M xer",
Primary Col ors",
Qran”,

Magent a",

Yel | ow',

Resul ting Color",
Gran”,

Magent a",

Yel | ow',

Bl ue",

Red",

Geen",

Wi te",

Bl ack",

/l Set _colors array to correspond to col or val ues indicated by the
// bits inthe colorSatus variable.

String Gol orWndow. : _colors[] = {
"white",
"cyan",
"magent a",
"bl ue",
"yel | ow',
"green”,
"red",
"bl ack" };

Gol or Wndow: : Col or Wndow (const char *nane) : kS npl eWndow (nane)

{
Arg args[5];
int n;

/] Set default resources for the w ndow

set Def aul t Resour ces(mai nWndowwWdget (), _defaul t Resources);

117

Chapter 4: ViewKit Windows

118

/1 Oreate a Formw dget to use as the w ndow s vi ew
Wdget _form= XnQr eat eFor n{ nai nWWndowN dget (), "fornf, NLL, 0);

/] Oreate a WCheckBox object to allow users to select prinmary col ors.

/1 Add toggle buttons and set their intial values to FALSE (unsel ected).

/1 The labels for the checkbox frane and the toggl e buttons are set
/1 by the resouce database.

_primaries = new WCheckBox("prinaries", form);
_primaries->addl ten{"cyan", FALSE);
_primaries->addl ten{"magenta", FALSE);
_prinaries->addlten{"yel | ow', FALSE);
_primari es->addCal | back(VkCheckBox: : i t emChangedCal | back, this,
(WKGal | backMet hod) &GCol or Wndow:. : col or Changed) ;
_primnaries->show();

/1 Set constraint resources on checkbox's base wi dget.

n=0;

Xt Set Arg(args[n], Xm\ opAttachnent, XnATTACH FCRV); n++;

Xt Set Arg(args[n], Xni\bottomittachrment, XMATTACH FCRV); n++
Xt Set Arg(args[n], XnN eft Attachrment, XmATTACH FCRV); n++,
Xt Set Val ues(_pri nari es->baseWdget (), args, n);

I/l Oeate a frane to display the nane of the resulting bl ended col or.

n=0;

Xt Set Arg(args[n], XnN opAttachnent, XwATTACH FCRV); n++;

Xt Set Arg(args[n], Xmi\bottomittachnent, XMATTACH FCRV); n++

Xt Set Arg(args[n], Xni\right Attachnent, XnATTACH FCRV); n++;

Xt Set Arg(args[n], XnN eft Attachnment, XmATTACH WDCGET); n++

Xt Set Arg(args[n], XN eftWdget, _prinaries->baseWdget()); n++
Wdget _result = XmQreateFrane(_form "result", args, n);

Xt ManageChi | d(_resul t);

/I Oreate a frane title label. The label text is set by the resource
/1 dat abase.

n=0;
Xt Set Arg(args[n], Xni\chil dType, XnFRAME TI TLE CH LD); n++;

Wdget _resultLabel = Xn(reat eLabel Gadget (_result, "resul tLabel ", args,

n;

Deriving Window Subclasses

}

/1 Oreate the label to display the blended col or nare.
_resultCol or = XnOr eat eLabel Gadget (_result, "resultGolor", NULL, 0);
/1l Set intial value of _colorStatus and |abel string to white (all off).

_colorStatus = 0
di spl ayQol or (_col ors[_col or Status]);

Xt ManageChi | d(_resul t Label) ;
Xt ManageChi | d(_resul t Col or);

/1 Add the top-level Formw dget as the w ndow s view
addvi ew(_fornm);
/1 Set the windowtitle and the icon title.

setTitle("w ndowTitle");
set | conNane("iconTitle");

Gol or Wndow: : ~Col or Wndow()

{
}

/1 Enpty

const char* Qol or Wndow : cl assNane()

{
}

return "GCol or Wndow';

// Gven a color nane, update the label to display the col or

voi d Gol or Wndow: : di spl ayCol or (char *newCol or)

{

Arg args[2];

int n;

/1 Common resource trick in Viewkit applications.

/1l Gven a string, check the resource database for a correspondi ng
/1 value. If none exists, use the string as the val ue.

char *_col orNane = (char *) WkGet Resour ce(_baseWdget, newQol or, "Color",
XnRstring, newCol or);

119

Chapter 4: ViewKit Windows

120

/1 Update the | abel

Xngtring _|abel = Xn®ringQ eateS npl e(_col or Nane) ;
n=0;

Xt Set Arg(args[n], XnN abel String, _|abel); n++;

Xt Set Val ues(_resultCol or, args, n);

Xng&t ri ngFree(_I abel) ;

}

/1 \Wen the user changes the val ue of one of the toggl es, update the
/1 display to show the new bl ended col or.

/* ARGSUSED */
voi d Gol or Wndow: : col or Changed(VkCal | backChj ect *obj, void *, void *cal | Data)

{
int index = (int) (prtdiff_t)callData;

/1 Update col or status based on toggle value. Set or rest the
/] status bit corresponding to the respective toggl e.

if (_prinaries->getVal ue(i ndex))
_colorSatus | = 1<<i ndex;

el se
_colorStatus & ~(1<<index);

/1 WUdate the display to show the new bl ended col or, using
[l _colorStatus as an index.

di spl ayCol or (_col ors[_col or Status]);

}

THEETELEL il
/l colors.c++
[T rrre

#i ncl ude <Wk/ \WKApp. h>
#i ncl ude " ol or Wndow. h"

void main (int argc, char **argv)

{
VKkApp *col or App = new VKApp(" Col or App"”, &argc, argv);
Col or Wndow *col orWn = new Col or Wndow("col orwn");
col or Wn->show() ;
col or App->run();

}

Deriving Window Subclasses

Figure 4-6 shows the ColorWindow window displayed by the colors program.

Primary Colors Resulting Color—

Cyan
hMagenta White
Yellow

Figure 4-6 ColorWindow Window Subclass

121

Chapter 5

[
|
L

VkComponent i—: VkMenultem
L

Creating Menus With ViewKit

This chapter introduces the basic ViewKit classes needed to create and manipulate the
menus in a ViewKit application. Figure 5-1 shows the inheritance graph for these classes.

— VkMenuAction

VkMenuBar

VkPopupMenu

VkOptionMenu

VkSubMenu

VkRadioSubMenu

VkHelpPane

VkMenuConfirmFirstAction

VkMenuToggle

— VkMenuLabel

VkMenuSeparator

Figure 5-1 Inheritance Graph for the ViewKit Menu Classes

123

Chapter 5: Creating Menus With ViewKit

Overview of ViewKit Menu Support

124

Motif provides the components for building menus (buttons, menu shells, and so on) but
does little to make menu construction easy. ViewKit provides a set of classes that
facilitate common operations on menus, including creating menu bars, menu panes,
popup menus, option menus, and cascading menu panes. The ViewKit menu package
also provides an object-oriented interface for activating and deactivating menu items;
dynamically adding, removing, or replacing menus items or menu panes; and
performing other operations.

The basis for all ViewKit menu classes is the abstract class VkMenultem, which is
derived from VkComponent. There are two types of classes derived from VkMenultem.
The first serve as containers and correspond to the menu types supported by Motif:
popup menus, pulldown menu panes, menu bars, and option menus. The second type of
derived classes are individual menu items: actions, toggles, labels, and separators.

The classes derived from VkMenultem correspond closely with Motif widgets and
gadgets. For example, an action implemented as a VkMenuAction object represents a
XmPushButton gadget along with an associated callback. However, the ViewKit menus
offer several advantages over directly using Motif widgets and gadgets. You can
manipulate the menu objects more easily than widgets. You can display, activate, and
deactivate items with a single function call. You can also easily move or replace items.

Caution: ViewKit implements menu items as gadgets rather than widgets. This causes
a problem in callbacks and other situations if you try to use certain Xt functions (such as
XtDisplay(3Xt), XtScreen(3Xt), and XtWindow(3Xt)), which expect widgets as
arguments. Therefore, use the more general functions (such as XtDisplayofObject(3Xt),
XtScreenofObject(3Xt), and XtWindowofObject(3Xt)) when you need this information
for ViewKit menu items.

VkMenu, derived from VkMenultem, is the abstract base class that implements the
functionality needed to create and manipulate menus. It provides support for creating
menus and adding, removing, replacing, finding, activating, and deactivating menu
items.

Overview of ViewKit Menu Support

Separate subclasses of VkMenu implement the various types of menus supported by
ViewKit:

VkMenuBar Menu bars designed to work with the VkWindow class.

VkPopupMenu
Popup menus that automatically pop up when the user clicks the right
mouse button over a widget.

VkOptionMenu
Option menus.

VkSubMenu Pulldown menu panes that can be used either as pulldown panes in a
menu bar or pull-right panes in a popup or other pulldown menu.

VkRadioSubMenu
A subclass of VkSubMenu used to enforce radio behavior on toggle
items that it contains.

VkHelpPane A ready-made menu pane that provides an interface to the standard
help protocol supported by all ViewKit applications.

Individual menu items are implemented as subclasses derived from VkMenultem:

VkMenuAction
A selectable menu item that performs an action, implemented as a
PushButtonGadget.

VkMenuConfirmFirstAction
A selectable menu item that performs an action that the user must
confirm before it is executed. When the user chooses this type of menu
item, the application posts a question dialog asking the user for
confirmation. The application performs the action only if the user
confirms it.

VkMenuToggle
A two-state toggle button gadget. To enforce radio behavior on a group
of toggles, you must add them to a VkRadioSubMenu object.

VkMenuLabel A non-selectable label.

VkMenuSeparator
A non-selectable separator.

125

Chapter 5: Creating Menus With ViewKit

ViewKit Menu Item Classes

126

This section describes the features of the ViewKit menu item classes. First it describes the
features implemented by VkMenultem, which are common to all the menu item classes.
Then it describes the unique features of each individual menu item class.

Submenus are described in “Submenus” on page 157 and “Radio Submenus” on
page 159.

Note: The header file <Vk/VkMenultem.h> contains the declarations for all menu item
classes.

Common Features of Menu Iltems

Individual menu items are implemented as subclasses derived from VkMenultem,
which provides a standard set of functions for accessing and manipulating menu items.

Unlike with many other ViewKit classes, you should never need to directly instantiate a
menu item class. ViewKit automatically instantiates menu item objects as needed when
you create menus, as described in “Constructing Menus” on page 133. Therefore, this
guide does not describe the menu item constructors and destructors.

Keep in mind that ViewKit implements menu items as gadgets rather than widgets. If
you need to directly access menu item gadgets, remember to use Xt functions that accept
gadgets as well as widgets as arguments.

Displaying and Hiding Menu Items

The VkMenultem::show() function makes a menu item visible when you display the
menu to which it belongs:

voi d show()

By default, all menu items are visible when they are created (that is, they appear when
you display the menu to which they belong). You do not have to explicitly call a menu
item’s show() function to display it. You can call show() to display a menu item after you
have hidden it with hide().

ViewKit Menu Item Classes

The VkMenultem::hide() function makes a menu item invisible when you display the
menu to which it belongs:

voi d hide()

hide() does not remove the menu item from the menu, it simply unmanages the widget
or gadget associated with a menu item. You can display a hidden menu item by calling
its show() function.

If you want to remove a menu item from a menu, you can call VkMenultem::remove():

voi d renove()

remove() does not destroy a menu item, it simply removes the item from the menu
hierarchy.

Note that instead of retaining pointers to all of your menu items and using
VkMenultem::remove() to remove menu items, you can instead use
VkMenu::removeltem(). The effect is the same no matter which function you use,
though typically you will find it easier to use the VkMenu function. “Removing Items
From a Menu” on page 150 describes VkMenu::removeltem().

Activating and Deactivating Menu Items

The VkMenultem::activate() function makes a menu item sensitive so that it accepts user
input (that is, a user can choose the item):

voi d activate()
By default, all menu items are activated (sensitive) when they are created.

The VkMenultem::deactivate() function makes a menu item insensitive so that it does
not accept user input (that is, a user cannot choose the item):

voi d deactivate()

When it is insensitive, the menu item appears “grayed out” when you display the menu
to which it belongs. You can reactivate a menu item by calling its activate() function.

127

Chapter 5: Creating Menus With ViewKit

128

Note that instead of retaining pointers to all of your menu items and using
VkMenultem:activate() and VkMenultem::deactivate() to activate and deactivate
menu items, you can use VkMenu::activateItem() and VkMenu::deactivateItem(),
respectively. The effect is the same no matter which functions you use, though typically
it is easier to use the VkMenu functions. “Activating and Deactivating Items in a Menu”
on page 150 describes VkMenultem::activate() and VkMenultem::deactivate().

Setting Menu Item Labels

Generally, you set the label for a menu item by setting a value in the resource database
for that item’s XmNIlabelString resource. For example, if you have a menu item named
“addPage,” you can set the label for that item by including a resource specification such
as this:

*addPage. | abel Stri ng: Add Page

If you do not set the menu item’s XmNIlabelString resource, ViewKit uses the item’s
name.

In some cases, you might need to set the label of an item programmatically. For example,
in a page layout system, you might want to change the labels for the items in an Edit
menu to reflect the type of object the user has currently chosen. You can change a menu
item’s label programmatically with the setLabel() function:

virtual void setlLabel (const char * str)

The string is treated first as a resource name that setLabel() looks up relative to the menu
item’s widget. If the resource exists, its value is used as the item’s label. If the resource
does not exist, or if the string contains spaces or newline characters, setLabel() uses the
string itself as the item’s label. This allows applications to set and change menu item
labels dynamically without hard-coding the exact label strings in the application code.

You can also obtain the current label string by using getLabel():

char *get Label ()

Setting the Position of Menu Items

By default, ViewKit inserts items into a menu in the order you specify them. Therefore,
the easiest way to set the positions of menu items is to add them to the menu in the order
that you want them to appear.

ViewKit Menu Item Classes

Occasionally you might need to explicitly set the position of a menu item. To do so, use

VkMenultem::setPosition():

voi d set Position(int position)

setPosition() sets the item’s position in the menu. You can specify any integer value from
zero to the number of items in the menu; a value of zero specifies the first position in the

menu. setPosition() ignores invalid values.

Note: setPosition() is effective only before ViewKit realizes the menu to which the menu
item belongs. If you call setPosition() after realizing a menu, it has no effect. For example,
if you create a menu bar in a window’s constructor, you can safely use setPosition() to

position menu items; however, after calling the window’s show() function, setPosition()

has no effect.

Menu Items Utility Functions

You can use Menultem::menuType() to determine the specific menu item type when

given a pointer to a VkMenultem object:

virtual VkMenultenmType nmenuType()

menuType() returns one of the following enumerated values of type
VkMenultem::VkMenultemType:

ACTION A VkMenuAction object.
CONFIRMFIRSTACTION

A VkMenuConfirmFirstAction object.
TOGGLE A VkMenuToggle object.
LABEL A VkMenulLabel object.

SEPARATOR A VkMenuSeparator object.
SUBMENU A VkSubMenu object.

RADIOSUBMENU
A VkRadioSubMenu object.
BAR A VkMenuBar object.

129

Chapter 5: Creating Menus With ViewKit

130

OPTION A VkOptionMenu object.
POPUP A VkPopupMenu object.
OBJECT A user-defined subclass of VkMenuActionObject (described in

“Command Classes” on page 184).

You can also determine when an object pointed to by a VkMenultem pointer is a menu
by calling Menultem::isContainer():

vi rtual Bool ean isContainer()

isContainer() returns TRUE if the VkMenultem object is an item that can “contain”
other menu items (in other words, a menu).

Menu Actions

The VkMenuAction class provides a selectable menu item that performs an action. A
VkMenuAction object is implemented as a PushButtonGadget.

A VkMenuAction object has associated with it a callback function that performs an
operation and, optionally, a callback function that “undoes” the operation. You specify
these callback functions when you add the item to a menu using one of the methods
described in “Constructing Menus” on page 133. Consult that section for information on
using VkMenuAction objects in a menu.

VkMenuAction provides a couple of public functions in addition to those implemented
by VkMenultem:

* You can determine whether an action has an undo callback associated with it by
calling VkMenuAction::hasUndo():

Bool ean hasUndo()
hasUndo() returns TRUE if the object has an associated undo callback function.

¢ If an object has an undo callback function, you can call it programmatically using
VkMenuAction::undo():

virtual void undo()

ViewKit Menu Item Classes

Typically, you won’t have any need to call undo() explicitly. ViewKit provides automatic
undo handling for your application using the VkUndoManager class, as described in
Chapter 6, “ViewKit Undo Management and Command Classes.” All you have to do is
provide undo callback functions for your VkMenuAction objects and create an instance
of VkUndoManager as described in Chapter 6.

Confirmable Menu Actions

The VkMenuConfirmFirstAction class, which is derived from VkMenuAction,
provides a selectable menu item that performs an action. When the user chooses this type
of menu item, the application posts a question dialog asking the user for confirmation.
The application performs the action only if the user confirms it.

Because the VkMenuConfirmFirstAction class is intended for irrecoverable actions (for
example, deleting a file), VkMenuConfirmFirstAction objects do not support undo
callback functions.

The VkMenuConfirmFirstAction class uses a XmPushButtonGadget to implement the
menu choice and the VkQuestionDialog class to implement the question dialog. (See
“Question Dialog” on page 215 for more information on the VkQuestionDialog class.)

The question displayed in the confirmation dialog is determined by the value of the
resource noUndoQuestion, which ViewKit looks up relative to the menu item’s widget.
For example, if you have a menu item named “quit,” set the question text for that item
by including a resource specification such as this:

*qui t. noUndoQuesti on: Do you really want to quit?

If you do not provide a value for this resource, ViewKit uses the default question: “This
action cannot be undone. Do you want to proceed anyway?”

Menu Toggles

The VkMenuToggle class, which is derived from VkMenuAction, provides a two-state
toggle as a menu item. To enforce radio behavior on a group of toggles, you must add
them to a VkRadioSubMenu object; otherwise, VkMenuToggle objects exhibit simple
checkbox-style behavior. A VkMenuToggle object is implemented as a
ToggleButtonGadget.

131

Chapter 5: Creating Menus With ViewKit

132

In addition to the public functions provided by VkMenultem, VkMenuToggle provides
functions for setting and retrieving the toggle state:

* You can set the visual state of a VkMenuToggle object, without activating its
associated callback, using VkMenuToggle::setVisualState():

voi d set Vi sual St at e(Bool ean state)

setVisualState() selects the toggle if state is TRUE, and deselects the toggle if state is
FALSE.

* You can set the visual state of a VkMenuToggle object and activate its associated
callback with VkMenuToggle::setStateAndNotify():

voi d set St at eAndNot i f y(Bool ean state)

® You can retrieve the current value of a VkMenuToggle object using
VkMenuToggle::getState():

Bool ean get State()
getState() returns TRUE if the toggle is currently selected, and FALSE if it is

currently deselected.
Menu Labels

The VkMenulLabel class provides a non-selectable label as a menu item. A
VkMenuLabel object is implemented as a LabelGadget.

The VkMenuLabel class does not provide any public functions other than those
implemented by VkMenultem.
Menu Separators

The VkMenuSeparator class provides a non-selectable separator as a menu item. A
VkMenuSeparator object is implemented as a SeparatorGadget.

You can give a menu separator a name if you choose. This allows you to manipulate it
like any other menu item.

The VkMenuSeparator class does not provide any public functions other than those
implemented by VkMenultem.

ViewKit Menu Base Class

ViewKit Menu Base Class

This section describes the abstract VkMenu class, which provides the basic features of
the ViewKit menu classes. It describes how to construct menus, manipulate items
contained in the menus, and use the menu access functions. Because all ViewKit menu
classes are derived from VkMenu, the functions and techniques described in this section
apply to all menu classes.

Constructing Menus

The methods of constructing menus are the same for all types of menus (menu bars,
options menus, and so on). The examples in this section use the VkMenuBar class, but
the principles are similar for any of the ViewKit menu classes.

You can build menus either by passing a static menu description to the class constructor
for a menu, or by adding items dynamically through function calls. You can mix the two
approaches, initially defining a static menu structure and then dynamically adding items
as needed.

By default, ViewKit menus, are built using work procedures since this shortens
application startup times. You should turn this off if there is a conflict with your
application’s own workproc usage. To do so, use VkMenu::useWorkProcs():

static void useWrkProcs(Bool ean flag = TRUE)

Constructing Menus From a Static Description

To construct a menu from a static description, you must create a VkMenuDesc array that
describes the contents of the menu and then pass that array as an argument to an
appropriate menu constructor. This section describes the format of the VkMenuDesc
structure and provides examples of its use.

133

Chapter 5: Creating Menus With ViewKit

134

The VkMenuDesc Structure

The definition for the VkMenuDesc structure is:

struct VkMenuDesc {
VkMenul t eniType menuType;

char *name;

Xt Cal | backPr oc callback;
VkMenuDesc *submenu;
Xt Poi nt er clientData,

Xt Cal | backPr oc undoCallback;

}s

The purposes of the VkMenuDesc fields are as follows:

menuType

name

callback

submenu

clientData

undoCallback

The type of menu item. The value of this field must be one of the
enumerated constants listed below.

The menu item’s name, which is also used as the menu item’s default
label.

An Xt-style callback procedure that is executed when this menu item is
activated.

A pointer to an array of a VkMenuDesc structures that describes the
contents of a submenu.

Data that is passed to the callback procedure when it is executed.

A callback procedure that can be executed to undo the effects of the
actions of the activation callback. Implementation of support for
undoing actions is described in Chapter 6, “ViewKit Undo Management
and Command Classes.”

The menuType parameter is an enumerated value of type VkMenultemType. Possible
values are as follows:

ACTION A selectable menu item, implemented as a VkMenuAction object.

CONFIRMFIRSTACTION
A selectable menu item, implemented as a VkMenuConfirmFirstAction
object, which performs an action that the user must confirm before it is
executed.

TOGGLE A two-state toggle button gadget, implemented as a VkMenuToggle

object.

ViewKit Menu Base Class

LABEL A label, implemented as a VkMenuLabel object.
SEPARATOR A separator, implemented as a VkMenuSeparator object.
SUBMENU A cascading submenu, implemented as a VkSubMenu object.

RADIOSUBMENU
A cascading submenu that acts as a radio-style pane, implemented as a
VkRadioSubMenu object.

END A constant that must terminate all menu descriptions.

Not all fields are used for each menu item type. Table 5-1 summarizes the optional and
required fields for each menu item type.

Table 5-1 Required and Optional Parameters in a Static Menu Description®

menuType name callback submenu clientData? undoCallback
ACTION R o¢ I (@) (@)
CONFIRMFIRSTACTION R ob 1 O 1

TOGGLE R oP I 0 I

LABEL R 1 1 1 1
SEPARATOR O 1 1 1 1

SUBMENU R I R od I
RADIOSUBMENU R 1 R (o 1

END R 1 1 1 1

a. R = required parameter; O = optional parameter; I = ignored parameter.

b. If you provide a default client data argument to the menu constructor, that value is used for all menu items
for which you do not explicitly provide a client data parameter.

c. While this parameter is optional, the menu item is useless unless you provide a callback function.

d. If you provide a client data parameter, that value is used as default client data for all menu items in the
submenu.

135

Chapter 5: Creating Menus With ViewKit

136

For example, consider the following array definition:

class EditWndow public WKWndow {
private:
static WkMenuDesc edit Menu[];
...

b

VkMenuDesc Edi t Wndow. : edi t Menu[] = {
{ ACTION "Qut", &Edi t Wndow: : cut Cal | back,
NULL, NULL, &Edi t Wndow : undoQut Cal | back },
{ ACTION "Copy", &HditWndow :copyCal | back,
NULL, NULL, &HEdi t Wndow : undoCopyCal | back },
{ ACTIQON "Paste", &Hi t Wndow : past eCal | back,
NULL, NULL, &Edi t Wndow: : undoPast eCal | back },

{ ACTIQN "Search" &Hdi t Wndow : sear chCal | back }

{ SEPARATCR },

{ OO\FI RWFI RSTACTI QN "Revert", &HditWndow : revert Cal | back },
{ BEND}

}

The editMenu array describes a simple menu for editing in an application. The menu
consists of five actions and a separator. The menu’s Cut item calls the cutCallback()
function when it is activated with no client data passed to it. Cut also supports an undo
action through the undoCutCallback() function. The Copy and Paste items work
similarly.

The Search action does not support an undo action. Presumably, the action performed by
this item is either too complex to undo or is meaningless to undo.

The Revert item is implemented as a CONFIRMFIRSTACTION. When the user activates
this item, the application posts a confirmation dialog to warn the user that the action
cannot be undone.

ViewKit Menu Base Class

As a more complex example, consider a menu that contains two submenus, each of
which contains two selectable items. You could describe this menu with definitions such
as:

cl ass Text Wndow. public VKW ndow {

private:
static VkMenuDesc nenu[];
static VkMenuDesc applicationPane[];
static VkMenuDesc editPane[];
I

}s

VkMenuDesc Text W ndow. : appl i cati onPane[] = {
{ ACTION, "Open", &TextW ndow: : openCal | back },
{ ACTION, "Save", &TextW ndow. :saveCall back },

{ END }
s
VkMenuDesc Text W ndow. : edi t Pane[] = {
{ ACTION, "Cut", &Text W ndow: : cut Cal | back },
{ ACTION, "Paste", &TextW ndow :pasteCall back },
{ END }
s

VkMenuDesc Text W ndow: : menu[] = {
{ SUBMENU, "Application", NULL, applicationPane },
{ SUBMENU, "Edit", NULL, editPane },
{ END }

b

After constructing a static menu description, you create it by passing it as an argument
to a menu constructor. For example, to implement the menus defined above as a menu
bar, you can execute:

VkMenuBar *nenubar = new VkMenuBar (mrenu) ;

You can implement the same menu as a popup menu simply by passing the definition to
a popup menu constructor:

VkPopupMenu *popup = new VkPopupMenu(nmenu) ;

137

Chapter 5: Creating Menus With ViewKit

138

Special Considerations for Xt Callback Client Data When Using Static Menu
Descriptions

As described in “Using Xt Callbacks With Components” on page 21, when using Xt-style
callbacks in ViewKit, pass the this pointer as client data to all Xt callback functions.
Callback functions then retrieve this pointer, cast it to the expected component type, and
call a corresponding member function.

However, you cannot use the this pointer when you define a static data member. To get
around this limitation, menu constructors accept a defaultClientData argument. If you
provide a value for this argument, any menu item that does not provide a client data
argument uses this argument instead. This allows you to specify menus statically while
still allowing you to use an instance pointer with Xt callbacks. The code fragment
Example 5-1 illustrates this technique.

Example 5-1 Providing Default Client Data When Using Static Menu Descriptions
cl ass Sanpl eW ndow: public VKW ndow {

private:
static void oneCal |l back(Wdget, XtPointer, XtPointer);
static void twoCal | back(W dget, XtPointer, XtPointer);
static void cutCallback(Wdget, XtPointer, XtPointer);
static void pasteCall back(Wdget, XtPointer, XtPointer);

static VkMenuDesc applicationPane[];
static VkMenuDesc editPane[];
static VkMenuDesc nenu[];

public:
Sanpl eW ndow const char *nane);

/1 O her nenbers
s
Sanpl eW ndow. : Sanpl eW ndow(char *name) : VKW ndow(nane)

{
set MenuBar (new VkMenuBar (menu, (XtPointer) this));

/1 O her actions

ViewKit Menu Base Class

Note: VkWindow::addMenuPane(), VkWindow::addRadioMenuPane(), and the form
of the VkWindow::setMenuBar() function that accepts a VkMenuDesc array as an
argument all automatically use the this pointer as default client data for the menu bars
and menu panes that they create.

Creating a Menu Bar Using a Static Description

Example 5-2 illustrates using a static description of a menu tree to create a menu bar. The
program creates its main window using MyWindow, a subclass of VkWindow. The
menu description and all menu callbacks are contained within the MyWindow subclass
definition.

Example 5-2 Creating a Menu Bar Using a Static Description

#i ncl ude <VKk/ VKApp. h>

#i ncl ude <VK/ VKW ndow. h>
#i ncl ude <Vk/ VkMenu. h>
#i ncl ude <i ostream h>

#i ncl ude <Xm Label . h>

cl ass MyW ndow:. public VKW ndow {
private:
static void sanpl eCal | back(Wdget, XtPointer , XtPointer);
static void quitCallback(Wdget, XtPointer , XtPointer);

void quit();
voi d sanple();

static VkMenuDesc subMenu[];

static VkMenuDesc sanpl eMenuPane[];
static VkMenuDesc appMenuPane[];
static VkMenuDesc mai nMenuPane[];

public:
MyW ndow(const char *nane);
~M/W ndow() ;

virtual const char* cl assNanme();

139

Chapter 5: Creating Menus With ViewKit

MW ndow: : MW ndow(const char *nanme) : VKW ndow(nane)

{
W dget | abel = XnCreatelLabel (nai nW ndowW dget (),
NULL, 0);
set MenuBar (mai nMenuPane) ;
addVi ew(| abel) ;
}
MW ndow. : ~MyW ndow()
{
/1 Enpty
}
const char* MyW ndow: : cl assNane()
{
return "MyW ndow';
}

/1 The nenu bar is essentially a set of cascadi ng nenu panes,
/1 top level of the nmenu tree is always defined as a |list of subnenus

VkMenuDesc MyW ndow: : mai nMenuPane[] = {

{ SUBMENU, "Application", NULL, MyW ndow: :appMenuPane },

{ SUBMENU, "Sanple", NULL, MyW ndow. : sanpl eMenuPane },
{ END }
i
VkMenuDesc MyW ndow: : appMenuPane[] = {
{ ACTI ON, "One", &WW ndow: : sanpl eCal | back },
{ ACTI ON, "Two", &WW ndow: : sanpl eCal | back 1},
{ ACTI ON, "Thr ee", &WW ndow: : sanpl eCal | back 1},
{ SEPARATOR, “Menu Separator”},
{ ACTI ON, "Quit", &WW ndow: : qui t Cal | back },
{ END },
b
VkMenuDesc MyW ndow: : sanpl eMenuPane[] = {
{ LABEL, "Test Label" },
{ SEPARATOR, “Sanmpl e Menu Separator”},
{ ACTI ON, "An Action", &WW ndow: : sanpl eCal | back },
{ ACTI ON, "Anot her Action", &WW ndow: :sanpl eCall back },
{ SUBMENU, "A Subnenu", NULL, MyW ndow: : subMenu 1},
{ END },
b

140

ViewKit Menu Base Class

VkMenuDesc MyW ndow: : subMenu[] = {

{ ACTION, "foo", &WW ndow: : sanpl eCal | back 1},
{ ACTION, "bar", &WW ndow: : sanpl eCal | back 1},
{ ACTION, "baz", &WW ndow: : sanpl eCal | back 1},
{ END },

b

voi d MyW ndow:. : sanpl e()

{

cout << "sanple callback" << "\n" << flush;
}

voi d MyW ndow: : sanpl eCal | back(W dget, XtPointer clientData, XtPointer)

{
MW ndow *obj = (MyW ndow *) cli ent Dat a;
obj - >sanpl e() ;

}

voi d MyW ndow: : qui t Cal | back (Wdget, XtPointer, XtPointer)

{
t heAppl i cati on->quit Yoursel f();

}
void main(int argc, char **argv)
{
VKApp *ny App new VKApp("Menudenp", &argc, argv);

MW ndow *menuW n new MyW ndow(" MenuW ndow") ;

menuW n- >show() ;
myApp->run() ;
}

When you run this program, you see the window shown in Figure 5-2.

Application Sample Help

d menu

Figure 5-2 Main Window With Menu Bar Created by Static Description

141

Chapter 5: Creating Menus With ViewKit

The first pane, shown in Figure 5-3, contains three selectable entries (actions), followed
by a separator, followed by a fourth action. The first three menu items simply invoke a
stub function when chosen. The fourth item calls quitCallback(), which exits the
application.

_ =.1 MenuWindow ; a ;D ‘
Application I Sample Help

One a ment

fwo
fhree

it

Figure 5-3 Menu Pane Created by a Static Description

The second menu pane, shown in Figure 5-4, demonstrates a non-selectable label, a
separator, and a cascading submenu.

1 1

u =.§ MenuWindow ! a ID ‘

Appiication Samp.-‘el Help

a fest L abef
An Action
Another Action
A Submenit " e
bar
baz
Figure 5-4 Menu Pane Containing a Label and a Submenu

142

ViewKit Menu Base Class

In addition to implementing these application-defined menu panes, ViewKit can
automatically add a Help menu to a menu bar, which provides a user interface to a help
system. “ViewKit Help Menu” on page 310 describes the Help menu. “Using an External
Help Library” on page 310 describes how to add an interface to an external help system
to a ViewKit application.

Constructing Menus Dynamically

In addition to the static description approach demonstrated in the previous section,
ViewKit allows applications to construct menus and menu items dynamically using
functions defined in VkMenu. This section describes the menu-creation functions and
provides examples of their use.

Functions for Dynamically Creating Menus

The VkMenu class provides a number of member functions for creating menus. Each
function adds a single menu item to a given menu. You can use these functions at any
time in your program. Even if you created a menu using a static definition, you can use
these functions to add items to the menu.

VkMenu::addAction() adds to a menu a selectable menu action, implemented as a
VkMenuAction object:

VkMenuActi on *addActi on(const char *mname,
Xt Cal | backPr oc actionCallback = NULL,
Xt Poi nt er clientData = NULL,
int position = -1)

VkMenuActi on *addActi on(const char *name,
Xt Cal | backPr oc actionCallback,
Xt Cal | backPr oc undoCallback,
Xt Poi nt er clientData,
int position = -1)

143

Chapter 5: Creating Menus With ViewKit

144

addAction() creates a VkMenuAction object named name and adds it to the menu. By
default, addAction() adds the item to the end of the menu; if you specify a value for
position, add Action() adds the item at that position. actionCallback is the callback function
that performs the item’s action, and undoCallback is the callback function that undoes the
action. If you do not provide an undo callback, the action cannot be undone and does not
participate in the ViewKit undo mechanism as described in Chapter 6. clientData is client
data passed to the callback functions. Following ViewKit conventions as described in
“Using Xt Callbacks With Components” on page 21, pass the this pointer as client data so
that the callback functions can retrieve the pointer, cast it to the expected component
type, and call a corresponding member function.

VkMenu::addConfirmFirstAction() adds to a menu a selectable menu action,
implemented as a VkMenuConfirmFirstAction object:

VkMenuConfi rnfirst Action *
addConfirnfFirst Acti on(const char *mname,
Xt Cal | backPr oc actionCallback = NULL,
Xt Poi nter clientData = NULL,
i nt position = -1)

addConfirmFirstAction() creates a VkMenuConfirmFirstAction object named name and
adds it to the menu. By default, addConfirmFirstAction() adds the item to the end of the
menu; if you specify a value for position, addConfirmFirstAction() adds the item at that
position. actionCallback is the callback function that performs the item’s action, and
clientData is client data passed to the callback function. As described above, pass the this
pointer as client data.

VkMenu::addToggle() adds to a menu a selectable menu toggle, implemented as a
VkMenuToggle object:

VkMenuToggl e *addToggl e(const char *name,
Xt Cal | backPr oc actionCallback = NULL,
Xt Poi nter clientData = NULL,
int state = -1)
i nt position = -1)

addToggle() creates a VkMenuToggle object named name and adds it to the menu. By
default, addToggle() adds the item to the end of the menu; if you specify a value for
position, addToggle() adds the item at that position. If you provide a state argument,
addToggle() sets the initial state of the toggle to that value. actionCallback is the callback
function that performs the item’s action, and clientData is client data passed to the
callback function. As described above, pass the this pointer as client data.

ViewKit Menu Base Class

VkMenu::addLabel() adds to a menu a non-selectable menu label, implemented as a
VkMenuLabel object:

VkMenuLabel *addLabel (const char *name,
i nt position = -1)

addLabel() creates a VkMenuLabel object named name and adds it to the menu. By
default, addLabel() adds the item to the end of the menu; if you specify a value for
position, addLabel() adds the item at that position.

VkMenu::addSeparator() adds to a menu a non-selectable menu separator,
implemented as a VkMenuSeparator object:

VkMenuSepar at or *addSepar at or (const char *name,
i nt position = -1)

addSeparator() creates a VkMenuSeparator object named name and adds it to the menu.
By default, addSeparator() adds the item to the end of the menu; if you specify a value
for position, addSeparator() adds the item at that position.

VkMenu::addSubmenu() adds to a menu a submenu, implemented as a VkSubMenu
object:

VkSubMenu *addSubmenu(VkSubMenu * submenu,
i nt position = -1)

VkSubMenu *addSubmenu(const char *name,
i nt position = -1)

VkSubMenu *addSubnmenu(const char *name,
VkMenuDesc * menuDesc)
Xt Poi nt er *defaultClientData = NULL)
int position = -1)

addSubmenu() is overloaded so that you can: 1) add an existing VkSubMenu object;
2) create and add a VkSubMenu object containing no items; or 3) create and add a
VkSubMenu object from the static menu description, menuDesc. If you create and add
the submenu using the static menu description, you can also provide a defaultClientData
value that is used as the default client data for all items contained by the submenu. By
default, addSubmenu() adds the item to the end of the menu; if you specify a value for
position, addSubmenu() adds the item at that position.

Note: The m in addSubmenu() is lowercase, whereas the M in VkSubMenu is
uppercase.

145

Chapter 5: Creating Menus With ViewKit

146

VkMenu::addRadioSubmenu() adds to a menu a submenu that enforces radio-style
behavior on the toggle items it contains:

VkRadi oSubMenu *addRadi oSubnenu(VKkRadi oSubMenu * submenu,
i nt position = -1)

VkRadi oSubMenu *addRadi oSubmenu(const char *name,
i nt position = -1)

VkRadi oSubMenu *addRadi oSubnenu(const char *name,
VkMenuDesc * menuDesc)
Xt Poi nt er *defaultClientData = NULL)
int position = -1)

addRadioSubmenu() is overloaded so that you can do one of the following:
* Add an existing VkRadioSubMenu object.
® Create and add a VkRadioSubMenu object containing no items.

® Create and add a VkRadioSubMenu object from the static menu description,
menuDesc.

If you create and add the submenu using the static menu description, you can also
provide a defaultClientData value that is used as the default client data for all items
contained by the submenu. By default, addSubmenu() adds the item to the end of the
menu; if you specify a value for position, addSubmenu() adds the item at that position.

Note: The min addRadioSubmenu() is lowercase, whereas the M in VkRadioSubMenu
is uppercase.

VkMenu::add() adds an existing menu item to a menu:

voi d add(VkMenul t em *item, int position = -1)

By default, add() adds the item to the end of the menu; if you specify a value for position,
add() adds the item at that position. Though you can use add() to add any type of menu
item to a menu, you typically need it to add only the ViewKit undo manager and
VkMenuActionObject objects. “Undo Management” on page 173 describes the ViewKit
undo manager, and “Command Classes” on page 184 describes the
VkMenuActionObject class.

ViewKit Menu Base Class

Creating a Menu Bar Dynamically

Example 5-3 is functionally equivalent to Example 5-2. It constructs a menu by adding
items one at a time to the window’s menu bar and to individual menu panes.

Example 5-3 Creating a Menu Bar Dynamically

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

<\Kk/ VKkApp. h>
</ VKW ndow, h>
</ WkSubMenu. h>
<K/ WkMenu. h>
<Xnd Label . h>

<i ostream h>

cl ass M/Wndow public VkWndow {
private:

static void sanpl eCal | back(Wdget, Xt Pointer, XtPointer);

static void quitCall back(Wdget, Xt Pointer, XtPointer);

pr ot ect ed:

voi d

public:

sanpl e() ;

M/Wndow(const char *nane);
~MWndow() ;

virtual const char* classNane();

b

M/W ndow : MM\Wndow(const char *name) : WkWndow(nare)

{

Wdget |abel = Xn(reatelabel (nai nWWndowW¥dget(), "a nenu",

/1 Add a nenu pane

VkSubMenu *appMenuPane = addMenuPane(" Appl i cation");

appMenuPane- >addAct i on(" (ne",
appMenuPane- >addAct i on(" Two",

appMenuPane- >addAct i on(" Three", &WW ndow : sanpl eCal | back,

(Xt Pointer) this);
(Xt Pointer) this);

(Xt Pointer) this);

appMenuPane- >addSepar at or () ;
appMenuPane- >addAction("Quit", &WWndow : quit Cal | back,

(Xt Pointer) this);

&WW ndow: : sanpl eCal | back,

&WW ndow: : sanpl eCal | back,

NULL, 0);

147

Chapter 5: Creating Menus With ViewKit

/1 Add a nmenu second pane
VkSubMenu *sanpl eMenuPane = addMenuPane(" Sanpl e") ;

sanpl eMenuPane- >addLabel (" Test Label ");

sanpl eMenuPane- >addSepar at or () ;

sanpl eMenuPane- >addAct i on(" An Action",
&WW ndow. : sanpl eCal | back,
(Xt Pointer) this);

sanpl eMenuPane- >addAct i on(" Anot her Acti on”,
&WW ndow: : sanpl eCal | back,
(Xt Pointer) this);

/1 Oreate a cascadi ng subnenu

VkSubMenu *subMenu = sanpl eMenuPane- >addSubnenu(" A Subrenu”) ;

subMenu- >addAct i on("foo", &WWndow : sanpl eCal | back, (XtPointer) this);
subMenu- >addActi on("bar", &W¥Wndow : sanpl eCal | back, (Xt Pointer) this);
subMenu- >addAct i on("baz", &WWndow : sanpl eCal | back, (XtPointer) this);

addvi ew(| abel);

}
M/W ndow. : ~M/W ndow()
{
Il Enpty
}

const char* M/Wndow : cl assNane() { return "M/Wndow';}

voi d M/Wndow:. : sanpl eCal | back(Wdget, Xt Pointer clientData, Xt Pointer)

{
M/Wndow *obj = (M/Wndow *) clientData;
obj - >sanpl e() ;
}
voi d M/Wndow:. : sanpl e()
{
cout << "sanpl e call back" << "\n" << flush;
}

148

ViewKit Menu Base Class

voi d MWndow:. : qui t Cal | back (Wdget, Xt Pointer, XtPointer)

{
t heAppl i cati on->qui t Your sel f();

}

void main(int argc, char **argv)

{
VKApp *nyApp = new VKApp(" Menu", &argc, argv);
MWndow *wlL = new MW ndow("nenuW ndow');
wWl- >show() ;
nyApp->run() ;

}

Manipulating Items in Menu

One of the advantages of the ViewKit menu system is the ability to manipulate the items
in a menu after the menu has been created. The ViewKit menu system allows menu items
to be manipulated by sending messages to any menu item. Menu items can also be found
and manipulated by name.

Finding Items in a Menu

The VkMenu::findNamedItem() function allows you to find an item in a menu given its
component name:

VkMenul t em *fi ndNanedl t em(const char *name,
Bool ean caseless = FALSE)

findNamedItem() finds and returns a pointer to a menu item of the specified name
belonging to the menu object or any submenus of the menu object. You can also pass an
optional Boolean argument specifying whether or not the search is case-sensitive. If
findNamedItem() finds no menu item with the given name, it returns NULL. If multiple
instances of the same name exist, findNamedItem() returns the first name found in a
depth-first search.

Note: Remember that you need to cast the return value if you need to access a member
function provided by a VkMenultem subclass. For example, if you search for a toggle
item, remember to cast the return value to VkMenuToggle before calling a member
function such as VkMenuToggle::setVisualState().

149

Chapter 5: Creating Menus With ViewKit

150

Activating and Deactivating Items in a Menu

The VkMenu::activateItem() function makes a menu item sensitive so that it accepts user
input (that is, a user can choose the item):

VkMenul tem *acti vat el ten{const char *name)

You provide as an argument to activateltem() the name of the menu item to activate. This
is the same name that you gave the menu item when you created it. activateItem()
returns a VkMenultem pointer to the item activated (or NULL if you did not provide a
valid menu item name). By default, all menu items are activated (sensitive) when they
are created.

The VkMenu::deactivateltem() function makes a menu item insensitive so that it does
not accept user input (that is, a user cannot choose the item):

VkMenul t em *deacti vat el t en{const char *name)

You provide as an argument to deactivateItem() the name of the menu item to deactivate.
This is the same name that you gave the menu item when you created it. deactivateltem()
returns a VkMenultem pointer to the item deactivated (or NULL if you did not provide
a valid menu item name). When it is insensitive, the menu item appears “grayed out”
when you display the menu. You can reactivate a menu item by calling deactivateltem()
on that item.

Note that instead of using VkMenu::activateltem() and VkMenu::deactivateItem() to
activate and deactivate menu items, you could retain pointers to all of your menu items
and use VkMenultem::activate() and VkMenultem::deactivate(), respectively. The
effect is the same no matter which functions you use, though typically it is easier to use
the VkMenu functions. “Activating and Deactivating Menu Items” on page 127
describes VkMenultem::activate() and VkMenultem::deactivate().

Removing Items From a Menu

If you want to remove a menu item from a menu, you can call VkMenu::removeltem():

VkMenul t em *renovel t em(const char * name)

You provide as an argument to removeltem() the name of the menu item to remove from
the menu. This is the same name that you gave the menu item when you created it.
removeltem() returns a VkMenultem pointer to the item removed. removeltem() does
not destroy a menu item; it simply removes the item from the menu hierarchy.

ViewKit Menu Base Class

Note that instead of using VkMenu::removeltem(), you can retain pointers to all of your
menu items and use VkMenultem::remove(). The effect is the same no matter which
functions you use, though typically you it is easier to use the VkMenu functions.
“Displaying and Hiding Menu Items” on page 126 describes VkMenultem::remove().

Replacing Items in a Menu

You can replace an item in a menu with another menu item using VkMenu::replace():

VkMenul t em *repl ace(const char *name, VkMenultem * newltem)

replace() first uses VkMenu::findNamedItem to find the item specified by name. Then it
removes that item from the menu and adds the menu item specified by newltem in its
place. replace() returns a pointer to the menu item that you replaced.

Manipulating Menu Items

The program in Example 5-4 allows users to dynamically add and remove items from a
menu, and also to activate and deactivate items.

Example 5-4 Manipulating Menu Items

#i ncl ude <Vk/ VKApp. h>

#i ncl ude <Vk/ VKW ndow. h>
#i ncl ude <Vk/ VkMenu. h>

#i ncl ude <VK/ VkSubMenu. h>
#i ncl ude <Xm Label . h>

#i ncl ude <stream h>

#i ncl ude <stdlib. h>

cl ass MyW ndow. public VKW ndow {
private:
static void addOneCal | back (Wdget, XtPointer, XtPointer);

static void renoveOneCal | back (W dget, XtPointer, XtPointer);
static void activateOneCal | back (Wdget, XtPointer, XtPointer);
static void deactivateOneCal | back(W dget, XtPointer, XtPointer);
static void sanpl eCal | back (W dget, XtPointer, XtPointer);
static void quitcCallback (Wdget, XtPointer, XtPointer);

151

Chapter 5: Creating Menus With ViewKit

152

protect ed:
VkSubMenu *_appMenuPane;
VkSubMenu *_nenuPaneTwo;

voi d addOne();

voi d renoveOne();

voi d activateOne();
voi d deactivateOne();

voi d sanpl e();
public:
MyW ndow(const char *nane);
~M/W ndow() ;
virtual const char* classNane();
s
MW ndow: : ~MyW ndow()
{
/'l Enpty
}

const char* MyW ndow: : cl assName() { return "MyW ndow';}

voi d MyW ndow: : sanpl eCal | back(W dget, XtPointer clientData, XtPointer)

{
MW ndow *obj = (MyWndow *) clientData;
obj - >sanpl e();

}
voi d MyW ndow: : sanpl e()
{
cout << "sanple call back" << "\n" << flush;
}

voi d MyW ndow: : addOneCal | back(W dget, XtPointer clientData, XtPointer)
{

MW ndow *obj = (MyWndow *) clientData;

obj - >addOne() ;

}
voi d MyW ndow: : addOne()
{
_nmenuPaneTwo- >addActi on("A New Action", &WW ndow. : sanpl eCal | back,
(Xt Pointer) this);
}

ViewKit Menu Base Class

voi d MyW ndow: : r emoveOneCal | back(W dget, Xt Pointer clientData,

Xt Poi nt er)
{
MyW ndow *obj = (MyW ndow *) clientDat a;
obj - >removeOne();
}
voi d MyW ndow: : r enroveOne()
{
_menuPaneTwo- >r emovel tem(" A New Action");
}
voi d MyW ndow: : acti vat eOneCal | back(W dget, XtPointer clientData,
Xt Poi nt er)
{
MW ndow *obj = (MyW ndow *) cli ent Dat a;
obj - >acti vat eOne();
}
voi d MyW ndow: : acti vat eOne()
{
_menuPaneTwo- >activateltem("A New Action");
}
voi d MyW ndow: : deact i vat eOneCal | back(W dget, Xt Pointer clientData,
Xt Poi nt er)
{
MW ndow *obj = (MyW ndow *) cli ent Dat a;
obj - >deacti vat eOne() ;
}
voi d MyW ndow: : deacti vat eOne()
{
_menuPaneTwo- >deacti vatel tem("A New Action");
}

voi d MyW ndow: : qui t Cal | back (W dget, XtPointer, XtPointer)
{

}

MW ndow: : \PW ndow(const char *nane) : VKW ndow(nane)
{

t heAppl i cation->quit Yoursel f();

W dget |abel = XnCreatelabel (mai nW ndowW dget(), "a nmenu",
NULL, 0):

153

Chapter 5: Creating Menus With ViewKit

154

/1 Add a nenu pane
_appMenuPane = addMenuPane(" Application");

_appMenuPane- >addActi on(" Add One",
&WW ndow: : addOneCal | back,
(Xt Pointer) this);
_appMenuPane- >addAct i on(" Renove One",
&WW ndow. : r emoveOneCal | back,
(Xt Pointer) this);
_appMenuPane- >addActi on("Activate One",
&WW ndow: : acti vat eOneCal | back,
(Xt Pointer) this);
_appMenuPane- >addAct i on(" Deacti vate One",
&WW ndow: : deact i vat eOneCal | back,
(Xt Pointer) this);
_appMenuPane- >addSepar at or () ;
_appMenuPane- >addAction("Quit",
&WW ndow. : qui t Cal | back,
(XtPointer) this);

/1 Add a menu second pane
_menuPaneTwo = addMenuPane(" PaneTwo");

addVi ew(| abel) ;

void main(int argc, char **argv)

{

VKkApp *nyApp = new VKApp("MenuDenp3", &argc, argv);
MW ndow *menuWn = new MyW ndow(" menuW ndow") ;

menuW n- >show() ;
myApp->run() ;

ViewKit Menu Base Class

Menu Access Functions
The VkMenu class also provides access functions to help manipulate menu items.

You can determine the number of items currently associated with a menu by using
VkMenu::numlItems():

int numtens() const

You can determine the position of an item in a menu with VkMenu::getItemPosition():

int getltenPosition(VkMenultem* item)
int getltenPosition(char *name)
int getltenPosition(Wdget w)

You can specify the menu item by pointer, name, or widget. getItemPosition() returns
the position of the item within the menu, with zero representing the first position in the
menu.

As a convenience, you can also access items in a menu using standard array subscript
notation:

VkMenul tem * operator[] (int index) const

For example, you can use VkMenu::numlItems() with the array subscript notation to
loop through an entire menu and perform an operation on all of the items it contains. For
example, if menubar is a menu, the following code prints the name and class of each item
in the menubar menu:

for (i=0; i < menubar->numtens(); i++)
cout << "Nanme: " << (*menubar)[i]->name() << "\t"
<< "Cass: " << (*nenubar)[i]->className() << "\n";

155

Chapter 5: Creating Menus With ViewKit

Using ViewKit Menu Subclasses

156

This section describes the features of each ViewKit menu subclass. In addition to specific
member functions listed, each class also supports all functions provided by the VkMenu
class.

Menu Bar

The VkMenuBar class provides a menu bar designed to work with the VkWindow class.
In addition to the functions described in this section, the VkWindow class provides some
member functions for installing a VkMenuBar object as a menu bar. “Menu Bar
Support” on page 108 describes the functions provided by VkWindow.

Examples of menu bar construction were given in “Creating a Menu Bar Using a Static
Description” on page 139 (Example 5-2) and “Creating a Menu Bar Dynamically” on
page 147 (Example 5-3).

Menu Bar Constructors

There are four different versions of the VkMenuBar constructor:

VkMenuBar (Bool ean showHelpPane = TRUE)

VkMenuBar (const char *name,
Bool ean showHelpPane

TRUE) ;

VkMenuBar (VkMenuDesc * menuDesc,
Xt Poi nt er defaultCientData= NULL,
Bool ean showHelpPane = TRUE)

VkMenuBar (const char *name,
VkMenuDesc *menuDesc,
Xt Poi nt er defaultCientData = NULL,
Bool ean showHelpPane = TRUE)

To work with Silicon Graphics’ color schemes, give the menu bar the name “menuBar.”
(For information on schemes, consult Chapter 3, “Using Schemes,” in the IRIX Interactive
Desktop Integration Guide.) The forms of the constructor that do not take a name argument
automatically use the name “menuBar.” You can specify another name, but schemes does
not work correctly if you do.

Using ViewKit Menu Subclasses

If you use a form of the VkMenuBar constructor that accepts a menuDesc argument, the
constructor creates a menu from the VkMenuDesc structure you provide.

Some forms of the constructor also accept an optional defaultClientData argument. If this
argument is provided, any menu item that does not provide a client data argument uses
this argument instead. This allows menus to be specified statically, while still allowing
an instance pointer to be used with callbacks, as described in “Special Considerations for
Xt Callback Client Data When Using Static Menu Descriptions” on page 138.

The last argument to each version of the constructor is a Boolean value that specifies
whether the constructor should create a help pane that interfaces to the Silicon Graphics
help system. The default is to automatically provide the help pane. The help pane is
implemented by the VkHelpPane class (see “ViewKit Help Menu” on page 310 for more
information).

Menu Bar Access Functions

The VkMenuBar class also provides two functions for accessing the menu bar’s help
pane. The helpPane() member function returns a pointer to the menu bar’s help pane:

VkHel pPane *hel pPane() const
If the menu bar does not have a help pane, helpPane() returns NULL.

The showHelpPane() member function controls whether or not the menu bar’s help
pane is visible:

voi d showHel pPane(Bool ean showit)

Submenus

The VkSubMenu class supports pulldown menu panes. You can use these menu panes
within a menu bar (a VkMenuBar object), or as a cascading, pull-right menu in a popup
or pulldown menu.

Submenu Constructor

You should seldom need to instantiate a VkSubMenu object directly. You can add a
submenu to any type of menu by calling that menu’s addSubmenu() member function.
You can also add menu panes to the menu bar of a VkWindow object by calling
VkWindow::addMenuPane().

157

Chapter 5: Creating Menus With ViewKit

158

For those cases where you need to instantiate a VkSubMenu object directly, the form of
the constructor to use is as follows:

VkSubMenu(const char *name,
VkMenuDesc *menuDesc = NULL,
Xt Poi nt er defaultClientData = NULL)

name specifies the name of the submenu. If you provide the optional menuDesc argument,
the constructor creates a menu from the VkMenuDesc structure you provide. If you
provide the optional defaultClientData argument, any menu item that does not provide a
client data argument uses this argument instead. This allows menus to be specified
statically, while still allowing an instance pointer to be used with callbacks, as described
in “Special Considerations for Xt Callback Client Data When Using Static Menu
Descriptions” on page 138.

Submenu Utility and Access Functions

The VkSubMenu class provides a couple of additional public member functions:

* Motif supports tear-off menus, which enable the user to retain a menu pane on the
screen. If tear-off behavior is enabled for a menu pane, a tear-off button, which has
the appearance of a dashed line, appears at the top of the menu pane. The user can
tear off the pane by clicking the tear-off button.

By default, tear-off behavior is disabled for all menu panes. You can change the
tear-off behavior of a submenu using VkSubMenu::showTearOf£():

voi d showTear O f (Bool ean showlt)

If you pass the Boolean value TRUE to showTearOff(), the submenu displays the
tear-off button; if you pass the value FALSE, it hides the tear-off button.

You can also enable tear-off behavior for a menu by setting its XmNtearOffModel
resource to XmTEAR_OFF_ENABLED (for example, in a resource file).

* You can access the RowColumn widget used to implement the submenu’s
pulldown pane by calling VkSubMenu::pulldown():

W dget pul | down()

Note: The baseWidget() function of a VkSubMenu object returns the
CascadeButton widget required by Motif pulldown menus.

Using ViewKit Menu Subclasses

Radio Submenus

The VkRadioSubMenu class, derived from VkSubMenu, supports pulldown menu
panes. Its function is similar to that of VkSubMenu, but the RowColumn widget used as
a menu pane is set to exhibit radio behavior. This class is intended to support
one-of-many collections of VkToggleltem objects. You can use VkRadioSubMenu
objects as menu panes within a menu bar (a VkMenuBar object), or as a cascading,
pull-right menu in a popup or pulldown menu.

It is seldom necessary to directly create a VkRadioSubMenu object. You can add radio
submenus to any VkMenuBar, VkPopupMenu, or VkSubMenu by calling those
classes” addRadioSubmenu() member function. You can also add menu panes to a
VkWindow by calling VkWindow::addRadioMenuPane().

Radio Submenu Constructor

You seldom need to instantiate a VkRadioSubMenu object directly. You can add a radio
submenu to any type of menu by calling that menu’s addRadioSubmenu() member
function. You can also add radio menu panes to the menu bar of a VkWindow object by
calling VkWindow::addRadioMenuPane().

For those cases where you need to instantiate a VkRadioSubMenu object directly, the
form of the constructor to use is as follows:

VkRadi oSubMenu(const char *name,
VkMenuDesc *menuDesc = NULL,
Xt Poi nt er defaultClientData = NULL)

name specifies the name of the radio submenu. If you provide the optional menuDesc
argument, the constructor creates a menu from the VkMenuDesc structure you provide.
If you provide the optional defaultClientData argument, any menu item that does not
provide a client data argument uses this argument instead. This allows menus to be
specified statically, while still allowing an instance pointer to be used with callbacks, as
described in “Special Considerations for Xt Callback Client Data When Using Static
Menu Descriptions” on page 138.

159

Chapter 5: Creating Menus With ViewKit

Radio Submenu Utility and Access Functions

The VkRadioSubMenu class does not provide any public member functions in addition
to those provided by the VkSubMenu class. For information on the utility and access
functions provided by VkSubMenu, see “Submenu Utility and Access Functions” on
page 158.

Using a Radio Submenu Object
Example 5-5 demonstrates the use of the VkRadioSubMenu class.

Example 5-5 Using a VkRadioSubMenu Object

#i ncl ude <WKk/ \WKApp. h>

#i ncl ude <Wk/ VKW ndow. h>

#i ncl ude <W/ \KkSubMenu. h>

#i ncl ude <W/ \KRadi oSubMenu. h>
#i ncl ude </ WkMenu. h>

#i ncl ude <X Label . h>

#i ncl ude <stream h>

#incl ude <stdlib. h>

class MWndow. public WKWndow {
private:

static voi d sanpl eCal | back(Wdget, X Pointer , Xt Pointer);
static void quitCall back(Wdget, X Pointer , XtPointer);

pr ot ect ed:
voi d sanpl e();
public:

M/Wndow(const char *nane);
~MWndow() ;

virtual const char* classNane();

160

Using ViewKit Menu Subclasses

M/W ndow. : ~M/W ndow()

{
Il Enpty
}
voi d MWndow. : sanpl eCal | back(Wdget, XtPointer clientData , Xt Pointer)
{
M/Wndow *obj = (M/Wndow *) clientData;
obj - >sanpl e() ;
}

const char* M/Wndow : cl assNarme() { return "M/Wndow';}

voi d M/Wndow:. : sanpl e()
{

}

voi d MWndow:. : quit Cal | back (Wdget, Xt Pointer, XtPointer)
{

}

M/W ndow : MMWndow(const char *name) : WkWndow(narne)
{

cout << "In Sanpl e Call back" << "\n" << flush;

exit(0);

Wdget |abel = XnOreatelabel (nai nWndow/W¥dget(), "a nenu",
/1 Add a nmenu pane

VkSubMenu *appMenuPane = addMenuPane(" Appl i cation");

NULL, 0);

appMenuPane- >addActi on(" e", &WWndow : sanpl eCal | back, (Xt Pointer) this);
appMenuPane- >addActi on(" Two", &WWndow : sanpl eCal | back, (Xt Pointer) this);

appMenuPane- >addSepar at or () ;

appMenuPane- >addAction(" Qi t", &WWndow : quitCal | back, (Xt Pointer) this);

/1 Add a nmenu second pane
VkSubMenu *sanpl eMenuPane = addMenuPane(" Sanpl e") ;

sanpl eMenuPane- >addLabel (" Test Label ");
sanpl eMenuPane- >addSepar at or () ;

sanpl eMenuPane- >addAct i on("An Action", &WWndow : sanpl eCal | back,

(Xt Pointer) this);

161

Chapter 5: Creating Menus With ViewKit

/1 Oreate a cascadi ng subnenu

VKkRadi oSubMenu *subMenu = sanpl eMenuPane- >addRadi oSubrenu(" A Subrenu™) ;
subMenu- >addToggl e("foo", &WWndow : sanpl eCal | back, (Xt Pointer) this);
subMenu- >addToggl e("bar", &WWndow : sanpl eCal | back, (X Pointer) this);
subMenu- >addToggl e("baz", &YW ndow : sanpl eCal | back, (Xt Pointer) this);

addvi ew(| abel);

E/Oid mai n(int argc, char **argv)

{ VKApp *nyApp = new VKApp("Menu", &argc, argv);
MWndow *wl = new M/Wndow("nenuw ndow');
wl- >show() ;

} nyApp->run() ;

Option Menus

The VkOptionMenu class supports option menus. You can use this component
anywhere in your interface.

Note: Unlike many other ViewKit components, VkOptionMenu objects are
automatically visible when you create them; you do not need to call show() initially to
display a VkOptionMenu object.

Option Menu Constructors

There are two different versions of the VkOptionMenu constructor that you can use:

VkQOpt i onMenu(W dget parent,
VkMenuDesc *menuDesc,
Xt Poi nt er defaultClientData = NULL)

VkOpt i onMenu(W dget parent,
const char *name = "opti onMenu",
VkMenuDesc *menuDesc = NULL,
Xt Poi nt er defaultClientData = NULL)

162

Using ViewKit Menu Subclasses

You must provide a parent argument specifying the parent widget of the option menu.

To work with Silicon Graphics’ color schemes, give the option menu the name
“optionMenu.” (For information on schemes, consult Chapter 3, “Using Schemes,” in the
IRIX Interactive Desktop Integration Guide.) The forms of the constructor that do not take a
name argument automatically use the name “optionMenu.” You can specify another
name, but schemes does work correctly if you do.

If you provide the optional menuDesc argument, the constructor creates a menu from the
VkMenuDesc structure you provide.

If you provide the optional defaultClientData argument, any menu item that does not
provide a client data argument uses this argument instead. This allows menus to be
specified statically, while still allowing an instance pointer to be used with callbacks. This
is described in “Special Considerations for Xt Callback Client Data When Using Static
Menu Descriptions” on page 138.

Setting the Option Menu Label

To specify the string that is displayed as the option menu'’s label, you must set the
XmNlabelString resource for the menu’s label widget. To do so you can do one of the
following:

¢ Use the VkComponent::setDefaultResources() function to provide default resource
values.

® Setresource values in an external app-defaults resource file. Any values you
provide in an external file override values that you set using the
VkComponent::setDefaultResources() function. This is useful when your
application must support multiple languages; you can provide a separate resource
file for each language supported.

¢ Set the resource value directly using the XtSetValues() function. Values you set
using this method override any values set using either of the above two methods.
You should generally avoid using this method as it “hard codes” the resource
values into the code, making them more difficult to change.

163

Chapter 5: Creating Menus With ViewKit

164

All option menus must be named “optionMenu” to work with Silicon Graphics’ color
schemes, so if you set the label through a resource value, qualify the resource
specifications with the name of a parent widget or component so that the X resource
database can distinguish between instances of VkOptionMenu. For example, you can
use resource specifications such as *mainWindow*optionMenu*labelString and
*eraphWindow*optionMenu*labelString to distinguish between an option menu that is
a descendant of an XmMainWindow component and one that is a descendant of an
SgGraph widget, respectively.

Selecting Items in an Option Menu

You can programmatically set the selected item in an option menu using
VkOptionMenu::set():

voi d set (char* name)
voi d set (int index)
voi d set (VKMenul t em *item)

You can specify the selected item either by a pointer to the item, the item’s component
name, or the item’s index (position) in the option menu, where the top item in the menu
has an index of zero.

Determining Selected Items in an Option Menu

There are two functions that you can use to determine which item is selected in an option
menu:

* You can retrieve the index (position) of the currently selected menu item using
VkOptionMenu::getIndex():

int getlndex()

getIndex() returns the index (position) of the selected item, where the top item in
the menu has an index of zero.

* You can retrieve a pointer to the currently selected menu item using
VkOptionMenu::getItem():

VkMenul tem *getltem()

Using ViewKit Menu Subclasses

Option Menu Utility Functions

Normally, the width of the option menu is set to be that of the largest item it contains.
You can force the option menu to a different width using VkOptionMenu::forceWidth():

voi d forceWdth(int width)
forceWidth() sets all of the items in the option menu to be width pixels wide.
Example 5-6 illustrates the use of a VkOptionMenu class.

Example 5-6 Using a VkOptionMenu Object

PHECETERTLEE T n i i n i n i b rnn g
/1 Denmonstrate viewkit interface to option nenus
NNy
ncl ude <W/ WKApp. h>

ncl ude <W/\KS npl eW ndow. h>

#i ncl ude <W/ WKQpt i onMenu. h>

#i ncl ude <stream h>

#i ncl ude <Xm RowCol unn. h>

class M\Wndow. public WKS npl eWndow {

private:
static void sanpl eCal | back(Wdget, XtPointer , XtPointer);
stati c WkMenuDesc M/W ndow: : opt i onPaneDesc|[];

pr ot ect ed:

voi d sanpl e(Wdget, Xt Pointer);
VKOpt i onMenu *_opt i onMenu;

public:

M/Wndow(const char *nane);
~MWndow();

virtual const char* classNane();

165

Chapter 5: Creating Menus With ViewKit

WVkMenuDesc MyW ndow: : opt i onPaneDesc[] = {
{ ACTION "Red", &W/W ndow: : sanpl eCal | back},
{ ACTI QN "Geen", &WWndow : sanpl eCal | back},
{ ACTION "Blue", &WWndow :sanpl eCal | back},

{ BNO,

b

M/W ndow : MM\Wndow(const char *nare) : WKS npl eWndow(nare)

{
Wdget rc = XmOr eat eRowCol urm(mai nWndowwdget (), "rc", NUL, 0);
_optionMenu = new VkQpt i onMenu(rc, optionPaneDesc, (Xt Pointer) this);
_opti onMenu->set ("G een");
addMvi ew(rc);

}

M/W ndow. : ~M/W ndow()

{

}

const char* M/Wndow : cl assNane() { return "M/Wndow';}

voi d M/Wndow:. : sanpl eCal | back(Wdget w, XtPointer clientData, Xt Pointer callData)

{
M/Wndow *obj = (M/Wndow *) clientData;
obj - >sanpl e(w, cal | Data);
}
voi d M/Wndow:. : sanpl e(Wdget, Xt Pointer)
{
cout << "Selected items index ="
<< _opti onMenu- >get | ndex()
<<", name ="
<< _optionMenu->get | teng) - >nane()
<< "\ n"
<< flush;
}

166

Using ViewKit Menu Subclasses

void main(int argc, char **argv)

{
VKApp *app = new VKApp(" ption", &argc, argv);
MWndow *wn = new M/Wndow("QptionMenu");
W n->show() ;
app->run();

Popup Menus

The VkPopupMenu class supports popup menus. You can attach a ViewKit popup
menu to one or more widgets in your application so that it pops up automatically
whenever the user clicks any of those widgets with the right mouse button. You can also
pop up the menu programmatically.

Popup Menu Constructors

There are four versions of the VkPopupMenu constructor:

VkPopupMenu(VkMenuDesc * menuDesc,
Xt Poi nt er defaultClientData = NULL)

VkPopupMenu(const char *name = "popupMenu”,
VkMenuDesc *menuDesc = NULL,
Xt Poi nt er defaultClientData = NULL)

VkPopupMenu(W dget parent,
VkMenuDesc *menuDesc = NULL,
Xt Poi nt er defaultClientData = NULL)

VkPopupMenu(W dget parent,
const char *name = "popupMenu",
VkMenuDesc *menuDesc = NULL,
Xt Poi nt er defaultClientData = NULL)

The forms of the constructor that do not take a name argument automatically use the

name “popupMenu.” You can specify another name, but schemes does not work
correctly if you do.

167

Chapter 5: Creating Menus With ViewKit

168

If you provide the optional menuDesc argument, the constructor creates a menu from the
VkMenuDesc structure you provide.

If you provide the optional defaultClientData argument, any menu item that does not
provide a client data argument uses this argument instead. This allows menus to be
specified statically, while still allowing an instance pointer to be used with callbacks. This
is described in “Special Considerations for Xt Callback Client Data When Using Static
Menu Descriptions” on page 138.

If you use a form of the VkPopupMenu constructor that accepts a parent argument, the
constructor automatically attaches the menu to the widget. This builds the menu as a
child of the widget and installs an event handler to pop up the menu whenever the user
clicks the widget with the right mouse button. For more information on attaching a
popup menu to a widget, see the description of VkPopupMenu::attach() in “Attaching
Popup Menus to Widgets” on page 168.

Attaching Popup Menus to Widgets

The VkPopupMenu::attach() function attaches a popup menu to a widget:
virtual void attach(Wdget w)

The first call to attach() creates all widgets in the popup menu, using the given widget as
the parent of the menu. attach() then adds an event handler to post the menu
automatically whenever the user clicks the widget with the right mouse button.
Subsequent calls to attach() add the ability to post the menu over additional widgets.

Popping Up Popup Menus

Once you have attached a popup menu to one or more widgets in your application,
ViewKit automatically posts the menu whenever the user clicks any of those widgets
with the right mouse button.

You can also post the menu programmatically even if you have not attached the popup
menu to a widget, by first building the menu using VkPopupMenu::build():

virtual void buil d(Wdget parent)

build() builds the menu as a child of the parent widget, but does not install an event
handler to post the menu.

Using ViewKit Menu Subclasses

Once you have built the menu, you can post it with VkPopupMenu::show():

virtual void show XEvent *buttonPressEvent)

show() requires an X ButtonPress event as an argument to position the menu on the
screen. This requires you to register your own event handler to handle the ButtonPress
events.

build() and show() support applications that wish to control the posting of menus
directly. Normally, attach() provides an easier way to use popup menus.

Using a Popup Menu
Example 5-7 illustrates the use of the VkPopupMenu class.

Example 5-7 Using a VKPopupMenu Object

THCEEEEETEEEE b rr i ni i n b iy
/1 Sanpl e programthat denonstrates how to create a popup nenu
LHCEEEECEEEEEE b nr i b r bbb ni
#i ncl ude <W/ WKApp. h>

#i ncl ude <Wk/ VKW ndow. h>

#i ncl ude <W/ VkPopupMenu. h>

ncl ude <stream h>

#i ncl ude <X Label . h>

class MWndow. public WkWndow {
private:
VkPopupMenu *_popup;

static void sanpl eCal | back(Wdget, XtPointer , XtPointer);
voi d sanpl e();

stati c WkMenuDesc subMenu[];
stati ¢ WKMenuDesc sanpl eMenuPane[] ;

pr ot ect ed:

169

Chapter 5: Creating Menus With ViewKit

public:
M/Wndow(const char *nane);
~M/Wndow() ;
virtual const char* classNane();
b
MW ndow : MW ndow(const char *nane) : VkWndow(nane)
{
Wdget |abel = XnQreateLabel (mai nWndowW¥dget (), "a nenu", NULL, 0);
_popup = new VKkPopupMenu(| abel , sanpl eMenuPane, (Xt Pointer) this);
addvi ew(| abel);
}
M/W ndow. : ~M/W ndow()
{
}

const char* M/Wndow : cl assNane() { return "M/Wndow';}

/!l The menu bar is essentially a set of cascading nenu panes, so the
/1 top level of the nenu tree is always defined as a |ist of subnenus

VkMenuDesc MyW ndow: : sanpl eMenuPane[] = {

{ LABHEL, "Test Label "},

{ SEPARATCR },

{ ACTION "An Action", &WW ndow : sanpl eCal | back},
{ ACTIQN "Anot her Action", &WWndow : sanpl eCal | back},
{ SUBMENU, "A Subrrenu”, NULL, M/Wndow : subMenu},

{ ENO},

b

VKkMenuDesc MW ndow: : subMenu[] = {
{ ACTTQ\ "foo", &WW ndow: : sanpl eCal | back},

{ ACTIQN "bar", &WW ndow: : sanpl eCal | back},
{ ACTITAN "baz", &WW ndow: : sanpl eCal | back},

{ N3,
S

170

Putting Menus in the Overlay Planes

voi d MW ndow:. : sanpl e()

{
cout << "sanpl e callback" << "\n" << flush;
}
voi d M/Wndow:. : sanpl eCal | back(Wdget, X Pointer clientData , Xt Pointer)
{
M/Wndow *obj = (M/Wndow *) clientData;
obj - >sanpl e() ;
}

void mai n(int argc, char **argv)
{

WKApp *nyApp
M/Wndow *nenuWn

new VKApp(" Menudeno”, &argc, argv);
new M/W ndow(" MenuW ndow') ;

nenuW n- >show() ;

nyApp- >run() ;

Putting Menus in the Overlay Planes

By default, menus appear in the normal planes. ViewKit menus, however, may be
explicitly placed in the overlay planes. Doing so prevents the menus from causing expose
events that disturb such things as complex GL rendering in the normal planes.

There are three ways to enable menus in the overlay planes:

¢ Call VkMenu::useOverlayMenus(TRUE). This forces menus into the overlay
planes, with no way to put them back in the normal planes without recompiling.

¢ Put the resource string “*useOverlayMenus:True” in your application’s default file.
This will put menus in the overlay planes by default, but allow users to use the
normal planes by changing their . Xdefaults file.

Note: This is an application-specific resource. There is no class resource, so
“*UseOverlayMenus” is not supported.

¢ Have users add the -useOverlayMenus command-line switch when they run your
application if they wish to use the overlay planes for menus.

171

Chapter 5: Creating Menus With ViewKit

172

If you do decide to place menus in the overlay planes, here are some factors to consider:

Menus are placed in the deepest available overlay planes: generally 4- or 8-bit
planes, occasionally 2-bit planes.

If the deepest available overlay is 2 bits, any menus placed in that visual may not
look right. Because the colormap in the 2-bit overlay planes only has three color
entries (the fourth being a transparent pixel), any items in the menus other than
labels (for example cascade or toggle buttons) may look odd.

Other applications using the overlay planes may display in the wrong colors when
the application posting the menu gets colormap focus. The colors in the other
applications may flash because the menu’s colormap is installed and replaces any
previous overlay colormap.

Tear-off menus may display in the wrong colors. Since tear-off menus are no longer
transient, they may be susceptible to color distortions as in previous examples.

Chapter 6

————

Undo Management

ViewKit Undo Management and Command Classes

Many applications offer users the ability to reverse or “undo” various actions. This
chapter describes how ViewKit provides undo support. It also describes how ViewKit
supports command classes, commands implemented as classes.

Figure 6-1 shows the inheritance graph for ViewKit classes that support undo
management and command classes.

VkMenuUndoManager

Figure 6-1 Inheritance Graph for the ViewKit Classes Supporting Undo Management and
Command Classes

This section describes the ViewKit undo manager, which supports reversing or
“undoing” actions.

Overview of ViewKit Undo Management

The VkMenuUndoManager class is the basis of ViewKit’s undo manager. The ViewKit

undo manager provides an easy-to-use method for users to undo commands that they
issue to your application.

173

Chapter 6: ViewKit Undo Management and Command Classes

174

The user interface to the ViewKit undo manager is a single menu item that you add to
one of your application’s menus. By default, the label of that menu item is “Undo:
last_command”, where last_command is the name of the last command the user issued.
Whenever the user issues a command, the undo manager automatically updates the
menu item to reflect the latest command. To undo the command, the user simply chooses
the undo manager’s menu item.

By default, ViewKit’s undo manager provides multi-level undo support. The undo
manager keeps commands on a stack. When the user undoes a command, the undo
manager pops it from the stack, revealing the previously executed command. Once a
user has undone at least one command, executing any new command clears the undo
stack. Also, executing any non-undoable command clears the undo stack. If you choose,
you can also force the undo manager to provide only single-level undo support, where it
remembers only the last command the user issued.

You can use the undo manager to support undoing any command, regardless of whether
the user issues the command through a menu or through other interface methods (for
example, pushbuttons). The undo manager also supports undoing command classes as
implemented by the VkAction(3x) and VkMenuActionObject(3x) classes described in
“Command Classes” on page 184. In most cases, all you need to provide for each
command is a callback function that reverses the effects of that command.

Using ViewKit’'s Undo Manager

The programmatic interface to the undo manager is simple to use. Because the
VkMenuUndoManager class is a subclass of VkMenultem, you can add it to a menu
and manipulate it as you would any other menu item.

To add undo support for an undoable menu item (VkMenuAction(3x) and
VkMenuToggle(3x) items), simply provide an undo callback function (a function that
reverses the effects of the item’s action) when you either statically or dynamically define
the menu item. Similarly, to add undo support for a command class (VkAction and
VkMenuA ctionObject objects), you provide a member function to undo the effects of
the command. For those action that are not implemented in your application as menu
items or action classes, you can add undo callbacks directly to the undo stack.

Undo Management

Instantiating the ViewKit Undo Manager

Do not directly instantiate a VkMenuUndoManager object in your program. If you
provide an undo callback to any menu item or if you use a subclass of VkAction or
VkMenuActionObject in your program, ViewKit automatically creates an instance of
VkMenuUndoManager named “Undo”. (“Command Classes” on page 184 describes
the VkAction and VkMenuActionObject classes.) The <Vk/VkMenultem.h> header file
provides thellndoManager, a global pointer to this instance. To access the ViewKit undo
manager, simply use this global pointer.!

Adding the Undo Manager to a Menu

You add the undo manager to a menu just as you would any other menu item: using the
VkMenu::add() function of the menu object to which you want to add the undo manager.
For example, the following line adds the undo manager to a menu pane specified by the
variable edit:

edi t - >add(t heUndoManager) ;

You cannot include the undo manager in a static menu description; however, you can
add the undo manager to a statically-defined menu after creating the menu. To specify
the position of the undo manager within the menu, include a position parameter when
you add the undo manager. For example, the following line adds the undo manager to
the top of a menu pane specified by the variable edit:

edi t - >add(t heUndoManager, 0);

Providing Undo Support for Actions That Are Menu Items

To add undo support for an undoable menu item (VkMenuAction and VkMenuToggle
items), simply provide an undo callback function when you define the menu item. The
undo callback function should reverse the effects of the item’s action.

! thelndoManager is actually implemented as a compiler macro that invokes a VkUndoManager access
function to return a pointer to the unique instantiation of the VkUndoManager class. Although you
should never need to use this access function directly, you might encounter it while debugging a
ViewKit application that uses the undo manager.

175

Chapter 6: ViewKit Undo Management and Command Classes

For example, the following static description describes a Cut menu item that executes the
callback function cutCallback() when the user chooses the item and undoCutCallback()
when the user undoes the command:

class EditWndow public WWndow {
private:
static WkMenuDesc edit Pane[];
static void cutCal | back(\Wdget, Xt Pointer, Xt Pointer);
static void undoQut Cal | back(Wdget, Xt Pointer, XtPointer);

...
b
VKkMenuDesc Edi t Wndow: : edi t Pane[] = {
{ ACTION "Qut", &HEdi t Wndow: : cut Cal | back,
NULL, NULL, &HEdi t Wndow : undoQut Cal | back },
} { BEND}

You could do the same thing by adding the menu item dynamically:

cl ass EditWndow public VkWndow {
private:
stati c VkSubMenu *edi t Menu;
static void cut Cal | back(\Wdget, Xt Pointer, Xt Pointer);
static voi d undoQut Cal | back(Wdget, Xt Pointer, XtPointer);

...

1
Edi t Wndow : Edi t Wndow(char *nane) : WKW ndow(nane)
{

...

edi t Menu- >addActi on("Qut", &EditWndow : cut Cal | back,

&FEdi t Wndow: : undoQut Cal | back, this);

}

Providing Undo Support for Actions That Are Not Menu Items

Sometimes you might want to provide undo support for an action not implemented as a
menu item (for example, an action invoked by a pushbutton). ViewKit allows you to do
this by adding the action directly to the undo stack using VkMenuUndoManager::add():

voi d add(const char *name,
Xt Cal | backPr oc undoCallback,
Xt Poi nt er clientData)

176

Undo Management

The name argument provides a name for the action to appear in the undo manager’s
menu item. The undoCallback argument must be an Xt-style callback function that the
undo manager can call to undo the action. The undo manager passes the clientData
argument to the undo callback function as client data when it invokes the callback.
Following ViewKit conventions as described in “Using Xt Callbacks With Components”
on page 21, you should pass the this pointer as client data so that the callback function
can retrieve the pointer, cast it to the expected component type, and call a corresponding
member function.

Note: add() simply adds an action to the undo stack; it does not “register” a permanent
undo callback for an action. Once the undo stack is cleared, the undo information for that
action is deleted. If you later perform the action again and you want to provide undo
support for that action, you must use add() again to add the action to the undo stack.

Example 6-1 shows a simple example of adding an action to the undo stack. The
MyComponent constructor creates a pushbutton as part of its widget hierarchy and
registers actionCallback() as the button’s activation callback function. actionCallback(),
in addition to performing an action, adds undoActionCallback() to the undo stack.

Example 6-1 Adding a Non-Menu Item Directly to the Undo Stack
M/Conponent : publ i ¢ WkConponent {

public:
M/Conponent (const char *, Wdget);
voi d acti onCal | back(Wdget, Xt Pointer, X Pointer);
voi d undoActi onCal | back(Wdget, Xt Pointer, X Pointer);
...

|

M/Conponent : : M/Conponent (const char *, \Wdget parent)
{
...
Wdget button = XnOreat ePushButton(vi eswVdget, "button", NULL, 0);
Xt AddCal | back(button, XmiNacti vat eCal | back,
&WWndow : acti onCal | back, (Xt Pointer) this);
...

177

Chapter 6: ViewKit Undo Management and Command Classes

178

voi d M/Conponent : : acti onCal | back(Wdget w, Xt Poi nter clientData,
Xt Poi nter call Data)

{

/] Performaction...

t heUndoManager - >add(" Acti on", &WGConponent : : undoActi onCal | back, this);
}

Providing Undo Support for Command Class Objects

The ViewKit classes that support command classes, VkAction and
VkMenuActionObject, both require you to override the pure virtual function undoit(),
which the undo manager calls to undo an action implemented as a command class.
“Command Classes” on page 184 describes how to use VkAction and
VkMenuActionObject to implement command classes.

Enabling and Disabling Multi-Level Undo Support

By default, VkMenuUndoManager provides multi-level undo support. The undo
manager keeps commands on a stack. When the user undoes a command, the undo
manager pops it from the stack, revealing the previously executed command. Once a
user has undone at least one command, executing any new command clears the undo
stack. Also, executing any undoable command clears the undo stack.

Supporting multi-level undo in your application can be difficult. If you prefer to support
undoing only the last command executed, you can change the behavior of the undo
manager with the VkMenuUndoManager::multiLevel() function:

void mul tiLevel (Bool ean flag)

If flag is FALSE, the undo manager remembers only the last command executed.

Clearing the Undo Stack

You can force the undo manager to clear its command stack with the
VkMenuUndoManager::reset() function:

voi d reset()

Undo Management

Examining the Undo Stack

You can examine the contents of the undo manager’s command stack using
VkMenuUndoManager::historyList():

VkConponent Li st *hi storyList()

historyList() returns a list of objects representing commands that have been executed
and are available to be undone. Commands are listed in order of execution; the last
command executed is the last item in the list. All of the objects in the list are subclasses
of VkMenultem. Commands added directly to the undo stack (as described in
“Providing Undo Support for Actions That Are Not Menu Items” on page 176) or
commands implemented as VkAction objects (as described in “Command Classes” on
page 184) appear as VkMenuA ctionStub objects. VkMenuActionStub is an empty
subclass of VkMenuAction.

Setting the Label of the Undo Manager Menu Item

The label that the undo manager menu item displays is of the form
Undo_label:Command_label. Undo_label is the value of the labelXmNlabelString resource of
the undo manager. By default, this value is “Undo”. You can change this string (for
example, for a German-language app-defaults file) by providing a different value for the
XmNlabelString resource. For example, you could set the resource as follows:

*Undo. | abel String: Annul

Command_label is the label for the last executed command registered with the undo
manager, determined as follows:

* For commands executed by menu items—VkMenuAction, VkMenuToggle, or
VkMenuActionObject (described in “Command Classes” on page 184) objects—
the label is the item’s XmNIlabelString resource.

* For VkAction objects (described in “Command Classes” on page 184), the undo
manager uses the object’s “labelString” resource if one is defined, otherwise it uses
the VkAction object’s name as the label.

e For actions that you add directly to the undo stack (described in “Providing Undo
Support for Actions That Are Not Menu Items” on page 176), the undo manager
uses the action name that you provided when you added the action.

179

Chapter 6: ViewKit Undo Management and Command Classes

Using ViewKit’'s Undo Manager

Example 6-2 demonstrates the use of the undo manager.

Example 6-2 Using the Undo Manager

NN NN NNy
/1 Sinple exanpl e to exercise W undo facilities
RNy

#i ncl ude <W/ WKkApp. h>

#i ncl ude </ WKW ndow. h>
#i ncl ude </ WKMenu. h>

#i ncl ude <Wk/ VkMenul t em h>
#i ncl ude </ WkSubMenu. h>
#i ncl ude <stream h>

#i ncl ude <Xn Label . h>

#i ncl ude <Xmf RowCol um. h>
#i ncl ude <Xni PushB. h>

class MWndow. public WKWndow {

private:

static void pushCal | back(Wdget,
static voi d undoPushCal | back(Wdget,

Xt Poi nter, Xt Pointer);
Xt Poi nter, Xt Pointer);

static void oneCal | back(Wdget,
static void twoCal | back(Wdget,
static void threeCal | back(Wdget,

XtPointer , XtPointer);
XtPointer , XtPointer);
Xt Pointer , XtPointer);

static voi d undoOneCal | back(Wdget,
static voi d undoTwoCal | back(Wdget,
static voi d undoThreeCal | back(Wdget,

Xt Pointer , XtPointer);
Xt Pointer , XtPointer);
Xt Pointer , XtPointer);

static void quitCall back(Wdget,

void quit();
voi d one();

voi d two();
void three();
voi d undone();

voi d undoTwo();
voi d undoThree();

180

Xt Pointer , XtPointer);

Undo Management

|

stati ¢ WkMenuDesc appMenuPane[];
stati ¢ WKMenuDesc nai nMenuPane[] ;

public:

M/Wndow(const char *nane);
~MWndow();
virtual const char* classNane();

M/W ndow : MM\Wndow(const char *name) : WKkWndow(narre)

{

}

Wdget rc = X eat eRowCol urm(mai nWndowWdget (), "rc", NUL, 0);

Wdget label = XnOreatelabel (rc, "an undo test”, NULL, 0);

Wdget pb = XnQreatePushButton(rc, "push", NULL, 0);

Xt AddCal | back(pb, XniNacti vat eCal | back, &W4/\Wndow : pushCal | back,
(Xt Pointer) this);

Xt ManageChi | d(| abel) ;

Xt ManageChi | d(pb) ;

set MenuBar (mai nMenuPane) ;

VkSubMenu *edi t MenuPane = addMenuPane("Edit");

edi t MenuPane- >add(t heUndoManager) ;

addMvi ew(rc);

M/W ndow. : ~M/W ndow()

{
}

const char* M/Wndow : cl assNane()

{
}

return "M/Wndow';

181

Chapter 6: ViewKit Undo Management and Command Classes

/!l The menu bar is essentially a set of cascading nenu panes, so the
/1 top level of the nenu tree is always defined as a |ist of subnenus

VkMenuDesc M/Wndow: : nai nMenuPane[] = {
{ SUBBMENU, "Application', NJLL, M/Wndow : appMenuPane},
{ BND

1

VkMenuDesc M/W ndow: : appMenuPane[] = {
{ ACTION "Command Onhe", &WWndow : oneCal | back, NULL, NULL,
&WW ndow : undotneCal | back },
{ ACTIQON "Command Two", &M/Wndow : twoCal | back, NULL, NULL,
&WW ndow : undoTwoCal | back },
{ ACTION "Command Three", &WWndow :threeCal | back, NULL, NULL,
&WW ndow : undoThr eeCal | back },

{ SEPARATCR },
{ GO RWIRSTACTION "Quit", &WWndow: : qui t Cal | back},
{ B\O,
b
voi d M/Wndow:. : one()
{
cout << "Command (nhe executed" << "\n" << flush;
}
voi d MW ndow:. : two()
{
cout << "Command Two executed" << "\n" << flush;
}
voi d MWndow:. : t hree()
{
cout << "Command Three executed" << "\n" << flush;
}
voi d MyW ndow: : undoQne()
{
cout << "lhdoi ng Conmand ne" << "\n" << flush;
}
voi d MW ndow:. : undoTwo()
{
cout << "UNdoi ng Conmand Two" << "\n" << flush;
}

182

Undo Management

voi d M/Wndow: : undoThr ee()
{

}

voi d M/Wndow:. : oneCal | back(Wdget, X Pointer clientData, X Pointer)
{

cout << "Undoing Command Three" << "\n" << flush;

M/Wndow *obj = (M/Wndow *) clientData;
obj - >one() ;
}
voi d M/Wndow. : t woCal | back(Wdget, X Pointer clientData, X Pointer)

{
M/Wndow *obj = (M/Wndow *) clientData;
obj ->two() ;

voi d M/Wndow: : t hreeCal | back(Wdget, X Pointer clientData, X Pointer)

{
M/Wndow *obj = (M/Wndow *) clientData;
obj ->three();

}

voi d M/Wndow. : undoOneCal | back(Wdget, Xt Pointer clientData, Xt Pointer)

{
M/Wndow *obj = (M/Wndow *) clientDat a;
obj - >undone() ;
}
voi d MWndow: : undoTwoCal | back(Wdget, Xt Pointer clientData, Xt Pointer)
{
M/Wndow *obj = (M/Wndow *) clientData;
obj - >undoTwo() ;
}
voi d M/Wndow:. : undoThr eeCal | back(Wdget, XtPointer clientData, X Pointer)
{
M/Wndow *obj = (M/Wndow *) clientData;
obj - >undoThr ee() ;
}

voi d M\Wndow:. : quit Cal | back (Wdget, Xt Pointer clientData, Xt Pointer)

{
M/Wndow *obj = (M/Wndow*) clientDat a;
del ete obj;

183

Chapter 6: ViewKit Undo Management and Command Classes

Command Classes

184

voi d M/Wndow:. : pushCal | back(Wdget, XtPointer clientData, Xt Pointer)
{

cout << "doing a push comand\n" << flush;
t helhdoManager - >add(" Push”, &WW ndow : undoPushCal | back, (Xt Pointer) clientDa

ta);
}

voi d M/Wndow:. : undoPushCal | back(Wdget, Xt Pointer clientData, Xt Pointer)
{

}

cout << "undoi ng the push command\n" << fl| ush;

nmai n(int argc, char **argv)

{
VKApp *app = new VkApp(" Menudeno”, &argc, argv);
MWndow *wn = new M/Wndow"MenuW ndow');
W n->show() ;
app->run();
}

This section describes the VkAction class, which supports ViewKit command classes.
Command classes allow you to implement actions as objects.

Overview of Command Classes

Nearly every user action in an interactive application can be thought of as a “command.”
Programmers typically implement commands as functions (callback functions, for
example) that are invoked as a result of some user action. This section explores an
approach in which each command in a system is modelled as an object.

Command Classes

Representing commands as objects has many advantages. Many commands have some
state or data associated with the command, while others may involve a set of related
functions. In both cases, a class allows the data and functions associated with a single
logical operation to be encapsulated in one place. Because command objects are complete
and self-contained, you can queue them for later execution, store them in “history” lists,
re-execute them, and so on. Representing commands as objects can also facilitate
undoing the command. For example, to prepare to undo a command, you might need to
save some state data before executing the command. When you model commands as
objects, you can store this information in data members.

The VkMenuAction class (described in “Menu Actions” on page 130) implements the
command class model to a certain extent in that it allows you to specify callback
functions both for performing an action and undoing that action. But the
VkMenuAction class does not provide a true command class in that it does not allow
you to encapsulate any data or support functions the action might need within a discrete
object. Furthermore, you must use the VkMenuAction class within a menu; it does not
allow you to implement command classes activated by pushbuttons, text fields, or other
input mechanisms.

ViewKit provides two abstract classes to implement command classes in an application:
VkAction and VkMenuActionObject. VkAction supports commands that do not
appear in menus and VkMenuA ctionObject supports commands that appear in menus.
VkAction does not inherit from any other classes, whereas VkMenuActionObject is a
subclass of VkMenuAction, which allows you to add instances of it to a menu and
manipulate them as you would any other menu item.

You can encapsulate with a subclass of VkAction or VkMenuActionObject any data or
support functions required to perform an action. Additionally, commands implemented
as subclasses of VkAction and VkMenuA ctionObject automatically register themselves
with the ViewKit undo manager whenever you execute them.

Using Command Classes in ViewKit

To use command classes in ViewKit, you must create a separate subclass for each
command in your application.

185

Chapter 6: ViewKit Undo Management and Command Classes

186

Command Class Constructors

The syntax of the VkAction constructor is as follows:

VKAct i on(const char *name)

Each class derived from VkAction should provide a constructor that takes at least one
argument: the object’s name. All derived class constructors should pass the name to the
VkAction constructor to initialize the basic class data members, and then initialize any
subclass-specific data members.

The syntax of the VkMenuActionObject constructor is as follows:
VkMenuAct i onQbj ect (const char *name, Xt Pointer clientData = NULL)

Each class derived from VkMenuActionObject should provide a constructor that takes
two arguments: the object’s name and optional client data. All derived class constructors
should pass the name and the client data to the VkMenuA ctionObject constructor to
initialize the basic class data members, and then initialize any subclass-specific data
members.

The VkMenuA ctionObject constructor stores the client data in the protected data
member _clientData:

void *_clientData

VkMenuActionObject objects do not use the _clientData data member for callback
functions. Instead it is simply an untyped pointer that you can use to pass any
information your command object might need. For example, you could pass a pointer to
another object, a value, a string, or any other value. You can access and manipulate
_clientData from member functions of your command subclass.

Overriding Virtual Functions

Both VkAction and VkMenuActionObject have two protected pure virtual functions
that you must override—doit() and undoit():

virtual void doit()
virtual void undoit()

doit() performs the command class’s action; undoit() undoes the action.

Command Classes

Using Command Classes as Menu Items

You can use command classes derived only from VkMenuActionObject in a ViewKit
menu. Because VkAction is not derived from VkMenultem, it does not provide the
services required of a menu item.

You cannot specify VkMenuA ctionObject objects in a static menu description; you must
add them dynamically using VkMenu::add(), which is described in “Functions for
Dynamically Creating Menus” on page 143.

Activating Command Classes

When a user chooses a VkMenuActionObject command object from a menu, ViewKit
executes the command by calling the object’s doit() function. ViewKit also automatically
registers the command with the undo manager.

To activate a command object that is a subclass of VkAction, call that action’s execute()
member function:

voi d execute()

execute() calls the object’s doit() function. execute() also registers the command with the
undo manager.

Note: Do not call a command object’s doit() function directly. If you do, ViewKit cannot
register the command with the undo manager.

Setting the Label Used by Command Classes

You can set the label of a VkMenuA ctionObject command object as you would any
other VkMenultem item: by setting the object’s XmNlabelString resource or by calling
the object’s setLabel() function. “Setting Menu Item Labels” on page 128 describes how
to set the label for a menu item.

Because VkAction objects are command classes and not interface classes, they
technically do not have labels; however, the undo manager requires a label that it can
display after you have executed a VkAction command. Therefore, ViewKit allows you
to set the value of a labelString resource for VkAction objects, qualified by the object’s
name. For example, if you have an instance of a VkAction named “formatPara,” you can
set the label for this object by providing a value for the formatPara.labelString resource:

*f or mat Par a: For mat Par agr aph

187

Chapter 6: ViewKit Undo Management and Command Classes

188

If you do not provide a value for a VkAction object’s labelString resource, the undo
manager uses the object’s name as the label.

Note: The VkAction labelString resource is a “synthetic” resource, not a widget
resource. The only way that you can set the value of this resource is through a resource
file. You can’t use XtSetValues() because the object contains no widgets, and you can’t
use setDefaultResources() because VkAction is not a subclass of VkComponent.

Chapter 7

Using Dialogs in ViewKit

This chapter introduces the basic ViewKit classes needed to create and manipulate the
dialogs in a ViewKit application. Figure 7-1 shows the inheritance graph for these

classes.
— VkinfoDialog
— VkWarningDialog
- VKkErrorDialog — VkFatalErrorDialog
— VkBusyDialog — VKlinterruptDialog — VkProgressDialog
| VkComponent - VkDialogManager /| VkQuestionDialog

— VkPromptDialog

— VKFileSelectionDialog

|
— VkGenericDialog

“—VkColorChooserDialog

Figure 7-1 Inheritance Graph for the ViewKit Dialog Classes

189

Chapter 7: Using Dialogs in ViewKit

Overview of ViewKit Dialog Management

Creating all of the dialogs your application uses when you start the application is
inefficient: the dialogs, which might or might not be displayed, take time to create,
consume memory, and tie up server resources. If an application does not create a dialog
until it is needed, the application is smaller and has faster initial startup time; however,
depending on the performance of the system, there may be an unacceptable delay in
posting each dialog because the application must create a new dialog for each message.

The compromise used by ViewKit is to cache dialogs when they are created. When a
particular dialog is no longer needed, the application unmanages that dialog but retains
it in the cache. Then, if the cache contains an unused dialog widget when the application
needs to post a dialog, the application reuses the cached dialog widget; otherwise it
creates a new dialog widget. ViewKit caches up to one dialog of each class for each
window in the application (for example, information dialogs and question dialogs are
cached separately).

The ViewKit dialog classes also offer the following features:

* Single function mechanisms for posting dialogs.

¢ Ability to post any dialog in non-blocking, non-modal mode; modal mode; and two
blocking modes.

¢ Positioning in multiwindow applications.
* Posting of dialogs even when windows are iconified, if desired.

¢ Correct handling of dialog references when widgets are destroyed.

ViewKit Dialog Class Overview

190

ViewKit encapsulates dialog management, including caching, in the abstract
VkDialogManager class that serves as a base class for other, specific dialog classes. Each
type of dialog in ViewKit has a separate class derived from VkDialogManager. Each
class is responsible for managing its own type of dialog (for example, each class
maintains its own dialog cache).

The dialog classes provided by ViewKit fall into three categories: information and error
dialogs; busy dialogs; and data input dialogs.

ViewKit Dialog Class Overview

The information and error dialogs provide feedback to the user about actions or
conditions in the application. The dialog classes in this category are as follows:

VkInfoDialog Displays information.

VkWarningDialog
Warns the user about the consequences of an action (for example, that an
action will irretrievably delete items).

VkErrorDialog
Informs the user of an invalid action (such as entering out-of-range data)
or a potentially dangerous condition (for example, the inability to create
a backup file).

VKkFatalErrorDialog
Informs the user of a fatal error; the application terminates when the
user acknowledges the dialog.

The busy dialogs inform the user that an action is underway which might take
considerable time. While a busy dialog is displayed, the user cannot interact with the
application. The dialog classes in this category are as follows:

VkBusyDialog
Dialog displayed while the application is busy.

VkInterruptDialog
Dialog that allows the user to interrupt the action.

VkProgressDialog
Dialog that displays a bar graph indicating the percentage of the task
that has been completed.

The data input dialogs allow the application to request input from the user. The dialog
classes in this category are as follows:

VkQuestionDialog
Allows the user to choose among simple choices by clicking
pushbuttons.

VkPromptDialog
Prompts the user to enter a text string.

VkColorChooserDialog
Displays an SgColorChooser dialog, using the caching facilities of the
VkDialogManager class.

191

Chapter 7: Using Dialogs in ViewKit

VKkFileSelectionDialog
Allows the user to interactively browse and select a file or directory.

VkPrefDialog Supports preference dialogs capable of displaying a wide variety of
program-configurable controls that allow the user to observe and set
values used by the program. Chapter 8, “Preference Dialogs,” discusses
preference dialogs.

Additionally, ViewKit provides the VkGenericDialog class, an abstract class providing
a convenient interface for creating custom dialogs that use the ViewKit interface.

Do not directly instantiate dialog manager objects in your program for the predefined
dialog types. ViewKit automatically creates an instance of an appropriate dialog
manager if you attempt to use a predefined dialog type in your program.

The header file for each dialog class provides a global pointer to the instance of that
class’s dialog manager. The name of the pointer consists of “the” followed by the dialog
type. For example, the global pointer to the information dialog manager declared in
<Vk/VkInfoDialog.h> is thelnfoDialog, the global pointer to the error dialog manager
declared in <Vk/VkErrorDialog.h> is theErrorDialog, and so forth. To access the dialog
managers in your application, simply use these global pointers.!

Note: VkGenericDialog, being an abstract class designed for creating customized
dialogs, does not automatically create a dialog manager or provide a global pointer.

ViewKit Dialog Base Class

192

This section describes the dialog management features provided by the abstract
VkDialogManager base class. It describes how to post dialogs, unpost dialogs, set dialog
titles, and set dialog button labels. Because all ViewKit dialog management classes are
derived from VkDialogManager, the functions and techniques described in this section
apply to all dialog management classes.

! These global pointers are actually implemented as compiler macros that invoke access functions to
return pointers to the unique instantiation of the dialog managers. Although you should never need to
use these access functions directly, you might encounter them while debugging a ViewKit application
that uses dialogs.

ViewKit Dialog Base Class

Posting Dialogs

This section describes the various methods of posting dialogs and provides some simple

examples.

Methods of Posting Dialogs

ViewKit offers four different functions for posting dialogs:

post()

postModal()

postBlocked()

postAndWait()

Posts a non-blocking, non-modal dialog. The function immediately
returns, and the application continues to process user input in all
windows.

Posts a non-blocking, full-application-modal dialog. The function
immediately returns, but the user cannot interact with any application
windows until after dismissing the dialog.

Posts a blocking, full-application-modal dialog. The user cannot interact
with any application windows until after dismissing the dialog.
Furthermore, the function does not return until the user dismisses the
dialog.

Posts a blocking, full-application-modal dialog. The user cannot interact
with any application windows until after dismissing the dialog.
Furthermore, the function does not return until the user dismisses the
dialog. postAndWait() is simpler to use than postBlocked(), but it does
not allow as much programming flexibility.

post(), postModal(), and postBlocked() accept the same arguments. They are also
overloaded identically to allow for almost any combination of arguments without
resorting to using NULLSs as placeholders. Consult the VkDialogManager(3x) reference
page for a complete listing of the overloaded versions of the post(), postModal(), and
postBlocked() functions. The following is the most general form of the post() function:

virtual Wdget post (const char *msg = NULL,

Xt Cal | backPr oc 0kCB = NULL,
Xt Cal | backPr oc cancelCB = NULL,
Xt Cal | backProc applyCB = NULL,

Xt Poi nt er clientData = NULL,
const char * helpString = NULL,
W dget *parent = NULL)

193

Chapter 7: Using Dialogs in ViewKit

The following are the arguments for these methods:

msg

okCB

cancelCB

applyCB

clientData

helpString

parent

194

The message to display in the dialog. This string is first treated as a
resource name, which is looked up relative to the dialog widget. If it
exists, the resource value is used as the message. If the resource does not
exist, or if the string contains spaces or newline characters, the string
itself is used as the message.

Most dialogs are not useful if you do not provide a message argument:
they display no text. VkFileDialog and VkPreferenceDialog are
exceptions in that they provide their own complex interfaces.

An Xt-style callback function executed when the user clicks the OK
button. (All dialogs except for the VkBusyDialog and
VkInterruptDialog dialogs display an OK button by default.)

An Xt-style callback function executed when the user clicks the Cancel
button. For many of the dialog classes, ViewKit does not display a Cancel
button unless you provide this callback.

An Xt-style callback function executed when the user clicks the Apply
button. For many of the dialog classes, ViewKit does not display an
Apply button unless you provide this callback.

Client data to pass to the button callback functions. Following ViewKit
conventions as described in “Using Xt Callbacks With Components” on
page 21, you should normally pass the this pointer as client data so that
the callback functions can retrieve the pointer, cast it to the expected
component type, and call a corresponding member function.

A help string to pass to the help system. See , “Using a Help System With
ViewKit,” for information on the help system. If you provide a string,
the dialog displays a Help button.

The widget over which ViewKit should display the dialog. If you do not
provide a widget, or if the given widget is hidden or iconified, ViewKit
posts the dialog over the main window if it is managed and not
iconified. (“Managing Top-Level Windows” on page 66 describes how
the main window is determined.) If both the widget you specify and the
main window are hidden or iconified, ViewKit posts the dialog as a
child of the hidden application shell created by the VkApp class. Also
see the description of VkDialogManager::centerOnScreen() in “Dialog
Access and Utility Functions” on page 204.

ViewKit Dialog Base Class

All versions of the post(), postModal(), and postBlocked() functions return the widget
ID of the posted dialog. You should rarely need to use this value.

Note: The arguments that you provide apply only to the dialog posted by the current call
to post(), postModal(), and postBlocked(); they have no effect on subsequent dialogs.
For example, if you provide an apply callback function to a call to post(), it is used only
for the dialog posted by that call. If you want to use that callback for subsequent dialogs,
you must provide it as an argument every time you post a dialog.

postAndWait() provides a simpler method for posting blocking, application-modal
dialogs than postBlocked(). The most general form of the postAndWait() function is as
follows:

virtual VKD al ogReason post AndWait (const char *msg = NULL,
Bool ean ok = TRUE,
Bool ean cancel = TRUE,
Bool ean apply = FALSE,
const char * helpString = NULL,
W dget *parent = NULL)

msg is the message to display in the dialog. As with the other posting functions,
postAndWait() first treats the string as a resource name, which it looks up relative to the
dialog widget. If the resource exists, postAndWait() uses the resource value as the
message. If postAndWait() finds no resource, or if the string contains spaces or newline
characters, it uses the string itself as the message. The next three arguments determine
which buttons the dialog should display. A TRUE value displays the button and a FALSE
value hides the button. helpString and parent specify a help string and a parent window,
just as with the other posting functions.

Note: The arguments that you provide apply only to the dialog posted by the current call
to postAndWait(); they have no effect on subsequent dialogs.

When you call postAndWait(), ViewKit posts the dialog, enters a secondary event loop,
and does not return until the user dismisses the dialog. Unlike postBlocked(),
postAndWait() handles all callbacks internally and simply returns an enumerated value
of type VkDialogReason, indicating which button the user chose. The possible return
values are VkDialogManager::OK, VkDialogManager::CANCEL, or
VkDialogManager::APPLY. postAndWait() is useful for cases in which it is necessary or
convenient not to go on to the next line of code until the user dismisses the dialog. For
example:
if (theFileSectionDi al og->post AndWait() == VkDi al ogManager:: K)

int fd = open(theFileSel ectionDialog->fileName(), O _RDONLY);

195

Chapter 7: Using Dialogs in ViewKit

196

Note: postAndWait() posts dialogs as full-application modal dialogs to minimize
potential problems that can be caused by the secondary event loop, but you should be
aware that the second event loop is used and be sure that no non-re-entrant code can be
called.

As with the other functions for posting a dialog, postAndWait() is overloaded to allow
for almost any combination of arguments without resorting to using NULLs as
placeholders. Consult the VkDialogManager reference page for a complete listing of the
overloaded versions of postAndWait().

Note: Under certain circumstances, using postAndWait() can cause some unexpected
consequences. If you have your own custom dialog, and you delete a widget within it
from an event handler such as prePost(), the widget will not be destroyed until the event
handler returns. Therefore, widgets that you destroyed will still appear in the dialog.
This is because the phase 2 destroy does not happen until the return from the XtDispatch.
There are several workarounds you can try if this proves to be a problem:

* Do not use postAndWait(). Simply post the dialog, return from your event handler,
then do whatever you need to do. This may result in flashing, since widgets may be
momentarily posted before they are destroyed.

* Unmanage any widget that should not appear. The object will still be there, but will
not be visible.

* Keep the dialog cleaned up as you go along. Set up the dialog initially with only
permanent items. Then, whenever the dialog is posted, add whatever objects you
need. Finally, whenever that dialog is taken down, return it to the original state. You
can handle this by catching both OK and Cancel callbacks.

Posting Dialogs
The following line posts a simple non-modal, non-blocking information dialog over the

application’s main window:

t hel nf oDi al og- >post (" You have new mail in your system mail box");

Figure 7-2 shows the appearance of this dialog when posted. Because the call did not
provide any callback for the OK button, when the user clicks the button, ViewKit simply
dismisses the dialog.

ViewKit Dialog Base Class

Figure 7-2 Information Dialog

You could also specify the message as an X resource. In the above example, you could
name the resource something such as newMailMessage and set it in a resource file with
the following line:

*newMai | Message: You have new mail in your system mail box

Then you could use this line to post the information dialog:

t hel nf oDi al og- >post (" newMai | Message") ;

The following code displays a non-modal, non-blocking question dialog over the
application’s main window:

voi d Mai | Wndow. : newMai | ()

{
...
t heQuesti onDi al og- >post (" Read new mai | ?",
&Mai | W ndow: : r eadMai | Cal | back,
(Xt Pointer) this);
/1
}

Figure 7-3 shows the appearance of this dialog when posted. If the user clicks the OK
button, the program dismisses the dialog and executes the
MailWindow::readMailCallback() function. Following ViewKit conventions as
described in “Using Xt Callbacks With Components” on page 21, the client data
argument is set to the value of the this pointer so that MailWindow::readMailCallback()
can retrieve the pointer, cast it to the expected component type, and call a corresponding
member function.

197

Chapter 7: Using Dialogs in ViewKit

198

. |Head new mail? |

o) |

Figure 7-3 Question Dialog

Because the call to post() did not provide any callback for the Cancel button, when the
user clicks the button, ViewKit simply dismisses the dialog. If instead you needed to
perform some type of cleanup operation when the user clicks the Cancel button, you
would need to provide a callback for the Cancel button:

voi d Mai | Wndow. : newMai | ()

{
...
t heQuesti onDi al og- >post (" Read new mai | ?",
&Mai | W ndow: : readMni | Cal | back,
&Wai | W ndow:. : cl eanupMai | Cal | back,
(Xt Pointer) this);
I
}

In general, you should try to encapsulate all dialog callbacks and related information in
the subclass of the object with which they are associated. For example, for dialogs that
are associated with a specific window, you include all the code related to those dialogs
in the subclass definition for that window.

This technique is illustrated in Example 7-1, a simple program which uses the
VkWarningDialog class to post a warning dialog.

Example 7-1 Posting a Dialog

ncl ude <W/\WKApp. h>

#i ncl ude <WKk/\KS npl eW ndow h>
ncl ude <W/ WKVWér ni ngD al og. h>
#i ncl ude <X PushB. h>

ViewKit Dialog Base Class

class M\Wndow. public WKS npl eWndow {

b

pr ot ect ed:

static void postCal | back(Wdget, Xt Pointer, X Pointer);

public:

M/Wndow (const char *nane);

~M/Wndow ();

virtual const char* classNanme();

MW ndow : MW ndow (const char *nane) : kS npl eWndow (nane)

{

}

Wdget button =

XnOr eat ePushBut t on (mai nWWndowwWdget (), "Push M",
NULL, 0);

Xt AddCal | back(button, XnmNacti vat eCal | back,
&W/W ndow. : post Cal | back,
(Xt Pointer) this);

addvi ew(but ton);

const char* M/Wndow : cl assNane() { return "M/Wndow'; }

M/W ndow : ~M/W ndow()

{
}

[l Enpty

voi d M/Wndow:. : post Cal | back(Wdget, Xt Pointer clientData, Xt Pointer)

{

}

t heVér ni ngD al og- >post ("Vétch Qut!!!", NULL,

(M/Wndow *) clientData);

void main (int argc, char **argv)

{

VkApp *app
M/Wndow *win

W n->show() ;
app->run();

new WApp("D al og", &argc, argv);
new M/Wndow("D al og");

199

Chapter 7: Using Dialogs in ViewKit

Manipulating Dialogs Prior to Posting

Using a prepostCallback

If you wish to make changes to a dialog before it is posted, but you do not wish to use
subclasses, you can use VkDialogManager::prepostCallback. This callback is invoked just
before a dialog is displayed. The callData parameter indicates the dialog widget about to
be displayed.

Using prepost()

VkDialogManager provides an overloaded, protected function, prepost(), which allows
a subclass to manipulate dialogs before they are posted. Called from
VkDialogManager::post(), prepost() is responsible for finding or creating a dialog to be
displayed by the post() functions. The two versions of prepost() are as follows:

W dget prepost (const char *nmessage,
const char *hel pString,
VKSi npl eW ndow *par ent)

virtual Wdget prepost (const char *nessage,
Xt Cal | backProc okCB = NULL,
Xt Cal | backProc cancel CB = NULL,
Xt Cal | backProc appl yCB = NULL,
Xt Poi nter clientData = NULL,
const char *hel pString = NULL,
VKkSi npl eW ndow *parent = NULL)

If you use derived classes that need to perform some operations on a dialog widget
before displaying it, you should do the following;:

1. Override prepost().

2. Call VkDialogManager::prepost() directly to obtain a widget.
3. Do any additional operations you need to do.
4

Return the Widget returned by VkDialogManager::prepost().

200

ViewKit Dialog Base Class

Unposting Dialogs

After posting a dialog, you might encounter situations in which you want to unpost it
even though the user has not acknowledged and dismissed it. For example, your
application might post an information dialog that the user doesn’t bother to
acknowledge. At some later point, the information presented in the dialog might no
longer be valid, in which case the application should unpost the dialog. In situations such
as these, you can use the VkDialogManager::unpost() function to remove the dialog:

voi d unpost ()
voi d unpost (W dget w)

If you provide the widget ID of a specific dialog, unpost() dismisses that dialog.
Otherwise, unpost() dismisses the most recent dialog of that class posted.

If you want to dismiss all dialogs of a given class, you can call the
VkDialogManager::unpostAll() function:

voi d unpostAll ()

For example, the following dismisses all information dialogs currently posted:

t hel nf or mati onDi al og- >unpost Al | ();

Setting the Title of the Dialog

By default, ViewKit sets the title of a dialog (displayed in the window manager title bar
for the dialog) to the name of the application; however, you have the ability to set dialog
titles on both a per-class and per-dialog basis.

If you want all dialogs of a certain class to have a title other than the default, you can
specify the title with an X resource. For example, you could set the title of all warning
dialogs in an application to “Warning” by including the following line in a resource file:

*war ni ngDi al og. di al ogTitle: Warning

You can use the VkDialogManager::setTitle() function to set the title for the next dialog
of that class that you post:

void setTitle(const char *mnextTitle = NULL)

201

Chapter 7: Using Dialogs in ViewKit

202

setTitle() accepts as an argument a character string. setTitle() first treats the string as a
resource name which it looks up relative to the dialog widget. If the resource exists,
setTitle() uses the resource value as the dialog title. If setTitle() finds no resource, or if
the string contains spaces or newline characters, it uses the string itself as the dialog title.

setTitle() affects only the next dialog posted; subsequent dialogs revert to the default title
for that class.

For example, imagine an editor that uses the question dialog to post two dialogs, one that
asks “Do you really want to replace the current buffer?” and one that asks “Do you really
want to exit?” If you want different titles for each dialog, you could define resources for
each:

*repl aceTitl e: Dangerous Replacenent Dial og
*exitTitle: Last Chance Before Exit Dial og

Then to post the question dialog for replacing the buffer, call the following:

theQuestionD al og->setTitl e("repl aceTitle");

theQuesti onD al og->post ("Do you real ly want to repl ace the current buffer?",
&Hdi t Wndow: : r epl aceBuf f er Cal | back,
Xt Pointer) this);

Figure 7-4 shows the resulting dialog.

. |Do vou really want to replace the current buffer?|

Figure 7-4 Setting the Dialog Title

ViewKit Dialog Base Class

To post the exit question dialog as a modal dialog, call the following:

theQuestionDi al og->setTitle("exitTitle");

t heQuesti onDi al og- >post Modal ("Do you really want to exit?",
&Edi t W ndow: : r epl aceBuf f er Cal | back,
(Xt Pointer) this);

Figure 7-5 shows the resulting dialog.

. |Do you really want to exit?|

Figure 7-5 Another Example of Setting the Dialog Title

Setting the Button Labels

The button labels (the text that appears on the buttons) used for a dialog are controlled
by the XmNokLabelString, XmNcancelLabelString, and XmNapplyLabelString
resources. The default values of these resources are respectively “OK”, “Cancel”, and

I/Applyll‘
You can use the VkDialogManager::setButtonLabels() function to set the button labels
for the next dialog that you post:

voi d set ButtonLabel s(const char *ok = NULL,
const char *cancel = NULL,
const char *apply = NULL)

203

Chapter 7: Using Dialogs in ViewKit

204

setButtonLabels() accepts as arguments up to three character strings: the first string
controls the label for the OK button, the second the label for the Cancel button, and the
third the label for the Apply button. If you pass NULL as an argument for any of these
strings, the corresponding button uses the default label. setTitle() first treats each string
as a resource name, which it looks up relative to the dialog widget. If the resource exists,
setTitle() uses the resource value as the button label. If setTitle() finds no resource, or if
the string contains spaces or newline characters, it uses the string itself as the button
label.

setButtonLabels() affects only the next dialog posted; subsequent dialogs revert to the
default button labels.

Dialog Access and Utility Functions

The VkDialogManager class also provides some access and utility functions to help
manipulate dialogs.

VkDialogManager::centerOnScreen() controls the algorithm that ViewKit uses to
determine where on the screen to post a dialog:

voi d cent er OnScr een(Bool ean flag)

If flag is TRUE, ViewKit uses the following algorithm:

1. If you provide a parent window argument when you call one of the posting
functions, and that window is visible and not iconified, ViewKit posts the dialog
over that window.

2. Ifa) you provide a parent window argument but the window is hidden or iconified,
or b) you do not provide a parent window argument, ViewKit creates the dialog as a
child of the hidden application shell created by the VkApp class and posts the
dialog over that shell. Unless you or the user explicitly sets the geometry for the
application, ViewKit centers the application shell on the screen, so the dialog
appears centered on the screen.

ViewKit Dialog Base Class

If flag is FALSE, ViewKit uses the following algorithm, which is the default algorithm:

1. If you provide a parent window argument when you call one of the posting
functions, and that window is visible and not iconified, ViewKit posts the dialog
over that window.

2. Ifa) you provide a parent window argument but the window is hidden or iconified,
or b) you do not provide a parent window argument, ViewKit attempts to create the
dialog as a child of the application’s main window and post the dialog over that
window. (“Managing Top-Level Windows” on page 66 describes how the main
window is determined.)

3. 1If the main window is hidden or iconified, ViewKit creates the dialog as a child of
the hidden application shell created by the VkApp class and posts the dialog over
that shell. Unless you or the user explicitly sets the geometry for the application,
ViewKit centers the application shell on the screen, so the dialog appears centered
on the screen.

VkDialogManager::enableCancelButton() sets whether or not the default will be to
provide a Cancel button in future dialogs, and allows the application to determine when
a dialog was closed without using the cancel button, such as by a window manager
action:

VkDi al ogManager : : enabl eCancel Button (Bool ean flag)

VkDialogManager:lastPosted() returns the widget ID of the last dialog posted of that
class:

W dget | ast Post ed()

VkDialogManager::setVisual() sets visual resources:

voi d setVisual (VKkVisual *v)

setVisual() overrides any visual arguments that may have been passed in using
setArgs().

VkDialogManager::setArgs() allows you to pass in resources to be used when creating
the first dialog;:

void setArgs (Arglist list, Cardinal argCnt)

205

Chapter 7: Using Dialogs in ViewKit

Whichever way you set them, dialog arguments should be set just once, before any
dialog is created. Due to the way ViewKit caches dialogs, resetting the dialog creation
arguments after the first dialog is created results in an undefined action.

Using the ViewKit Dialog Subclasses

206

This section describes the features of each ViewKit dialog subclass. In addition to specific
member functions listed, each class also supports all functions provided by the
VkDialogManager class.

Information Dialogs

The VkInfoDialog class supports standard Motif information dialogs. The global
pointer to the information dialog manager, declared in <Vk/VkInfoDialog.h>, is
thelnfoDialog.

Use information dialogs to display useful information. Do not use information dialogs to
display error messages, which should be handled by the VkErrorDialog,
VkWarningDialog, or VkFatalErrorDialog class.

Because the message contained in an information dialog should not require any decision
to be made by the user, information dialogs display only the OK button by default. If you
need the user to make a selection, you should use another dialog class such as
VkQuestionDialog.

VkInfoDialog does not provide any additional functions beyond those offered by the
VkDialogManager.

Example 7-2 shows a simple example of posting an information dialog. Note that the
window subclass that posts the dialog defines the dialog title and message as resource
values.

Using the ViewKit Dialog Subclasses

Example 7-2 Posting an Information Dialog

#i ncl ude <Vk/ VKW ndow. h>
#i ncl ude <VKk/ kI nf oDi al og. h>

cl ass Mai |l Wndow. public VKW ndow {
public:
Mai | W ndow(const char*);
voi d newMni | ();
I

private:
static String _defaul t Resources[];
I

}s

String Mil Wndow. : _def aul t Resources[] = {

"-*newMai | Msg: You have new nmail in your system mail box.",

"-*newMai | Title: New Mai | ",
NULL

}s

Mai | W ndow: : Mai | W ndow(const char *nane) : VKSi npl eW ndow (nhane)
{

set Def aul t Resour ces(mai nW ndowW dget (), _defaul t Resources);

/1
}
voi d Mai |l Wndow. : newMai | ()
{
I,
t hel nfoDi al og->setTitl e("newvai I Title");
t hel nf oDi al og- >post (" newMai | Msg") ;
/1
}

207

Chapter 7: Using Dialogs in ViewKit

208

Figure 7-6 shows the appearance of the resulting dialog.

Figure 7-6 Information Dialog

Warning Dialogs

The VkWarningDialog class supports standard Motif warning dialogs. The global
pointer to the warning dialog manager, declared in <Vk/VkWarningDialog.h>, is
theWarningDialog.

Use VkWarningDialog to warn the user of the consequences of an action. For example,
VkWarningDialog is appropriate for warning the user that an action will irretrievably
delete information.

By default, the dialogs posted by VkWarningDialog contain only an OK button;
however, according to Open Software Foundation style guidelines, if you have posted a
warning dialog to warn the user about an unrecoverable action, you must allow the user
to cancel the destructive action. To add a Cancel button to your warning dialog, simply
provide a cancel callback function when you post the dialog.

Tip: If you perform the action in the warning dialog’s OK callback, you can simply
define an empty function as a cancel callback. If the user clicks the warning dialog’s OK,
button, the ok callback performs the action; if the user clicks the Cancel button, ViewKit
dismisses the dialog without performing any action.

VkWarningDialog does not provide any additional functions beyond those offered by
the VkDialogManager.

Using the ViewKit Dialog Subclasses

Error Dialogs

The VkErrorDialog class supports standard Motif error dialogs. The global pointer to the
error dialog manager, declared in <Vk/VkErrorDialog.h>, is theErrorDialog.

Use VkErrorDialog to inform the user of an invalid action (such as entering out-of-range
data) or potentially dangerous condition (for example, the inability to create a backup
file).

The messages contained in the error dialogs should not require any decision to be made
by the user. Therefore, the error dialogs display only the OK button by default. If you
need the user to make a selection, you should use another dialog class such as
VkQuestionDialog.

VkErrorDialog does not provide any additional functions beyond those offered by the
VkDialogManager.

Fatal Error Dialogs

The VkFatalErrorDialog class supports an error dialog that terminates the application
when the user dismisses it. The global pointer to the fatal error dialog manager, declared
in <Vk/VkFatalErrorDialog.h>, is theFatalErrorDialog.

Use VkFatalErrorDialog only for those errors from which your program cannot recover.
For example, VkFatalErrorDialog is appropriate if an application terminates because it
cannot open a necessary data file. When the user acknowledges the dialog posted by
VkFatalErrorDialog, the application terminates by calling VkApp::terminate() with an
error value of 1. “Quitting ViewKit Applications” on page 65 describes the terminate()
function.

The messages contained in a fatal error dialog should not require any decision to be made
by the user. Therefore, the fatal error dialog displays only the OK button by default.

VkFatalErrorDialog does not provide any additional functions beyond those offered by
the VkDialogManager.

209

Chapter 7: Using Dialogs in ViewKit

210

Busy Dialog

The VkBusyDialog class supports a busy dialog (also called a working dialog in Motif)
that is displayed when the application is busy. The global pointer to the busy dialog
manager, declared in <Vk/VkBusyDialog.h>, is theBusyDialog.

Unlike most other dialog classes, you should not directly post and unpost the busy
dialog. VkBusyDialog is used by the VkApp object to display a busy dialog when you
place the application in a busy state. The busy dialog is displayed automatically when
you call VkApp::busy(), and dismissed automatically when you make a corresponding
call to VkApp::notBusy(). VkApp also allows you to use the VkApp::setBusyDialog()
function to use a busy dialog other than that provided by VkBusyDialog. Consult
“Supporting Busy States” on page 75 for more information about how VkApp handles
busy states.

Because the busy dialog is intended to lock out user input during a busy state, by default
the busy dialog does not display any buttons. If you want to allow the user to interrupt
the busy state, you should use the VkApp::setBusyDialog() function to substitute the
VkInterruptDialog class object for the normal busy dialog.

VkBusyDialog does not provide any additional functions beyond those offered by the
VkDialogManager.

Interruptible Busy Dialog

The VklInterruptDialog class supports an interruptible busy dialog that you can
substitute for the normal busy dialog. The dialog posted by the VkInterruptDialog class
includes a Cancel button that the user can click to cancel the current action. The global
pointer to the interruptible busy dialog manager, declared in <Vk/VkInterruptDialog.h>,
is thelnterruptDialog.

In addition to those functions offered by the VkDialogManager class,
VkInterruptDialog provides the wasInterrupted() member function:

Bool ean wasl nterrupted()

Applications that use VkInterruptDialog must periodically call wasInterrupted() to
determine whether the user has clicked the dialog’s Cancel button since the last time the
function was called. The period of time between checks is up to the application, which
must weigh responsiveness against time spent checking.

Using the ViewKit Dialog Subclasses

Note that wasInterrupted() also calls VkApp::handlePendingEvents() to process any
events that have occurred while the application was busy. Because checking for
interrupts involves entering a secondary event loop for a short time, you should beware
of any problems with re-entrant code in any callbacks that could be invoked.

Also note that you are responsible for performing any cleanup operations required by
your application if the user interrupts a process before it is finished (that is, before you
would normally call VkApp::notBusy() to end the busy state).

VkInterruptDialog also provides the ViewKit callback
VkInterruptDialog::interruptedCallback. This callback allows objects to register a member
function to be called when the user clicks the Cancel button of a VkInterruptDialog
dialog. This callback can be called only if the application calls
VkInterruptDialog::wasInterrupted().

Unlike most other dialog classes, you should not directly post and unpost the
interruptible busy dialog. You can use the VkApp::setBusyDialog() function to instruct
the VkApp object to use the interruptible busy dialog rather than the normal busy dialog
provided by the VkBusyDialog class. The following line shows how you could do this
in a program:

t heAppl i cati on->set BusyDi al og(thel nterrupt D al og);

The following line instructs the VkApp object to revert to the normal busy dialog:
t heAppl i cati on- >set BusyDi al og(NULL) ;

If you instruct the VkApp object to use the interruptible busy dialog, it is displayed
automatically when you call VkApp::busy(), and dismissed automatically when you
make a corresponding call to VkApp::notBusy(). Consult “Supporting Busy States” on
page 75 for more information about how VkApp handles busy states.

The code fragment in Example 7-3 installs the interruptible busy dialog and performs a

simulated lengthy task, checking for interrupts periodically. After completing the task,
the code reinstalls the normal busy dialog.

211

Chapter 7: Using Dialogs in ViewKit

212

Example 7-3 Using the Interruptible Busy Dialog
int i;

/1 Install the interruptible dialog as the dialog
/1 to post when busy

t heAppl i cati on->set BusyDi al og(thel nterruptD al og);
/1 Start being "busy"
t heAppl i cati on- >busy("Very Busy", (BusyWndow *) clientData);

for(i=0; i<10000; i++)

{
/1l Every so often, see if the task was interrupted
if(thelnterruptDi al og->waslnterupted())
break; // kick out of current task if user interrupts
}
sl eep(l);
}

/1 Task done, so we’'re not busy anynore
t heAppl i cati on- >not Busy() ;
/1l Restore the application’s busy dialog as the default

t heAppl i cati on->set BusyDi al og(NULL) ;

Progress Dialog

The VkProgressDialog class supports applications that perform lengthy, interruptible
tasks, and wish to display a progress report to the user. This class displays a bar graph
showing what percentage of the job has been completed, and how much remains to be
done. See Figure 7-7 for an example of a progress dialog.

The global pointer to the interruptible busy dialog manager, declared in
<Vk/VkProgressDialog.h>, is theProgressDialog.

Using the ViewKit Dialog Subclasses

VkProgressDialog is used in nearly the same way as VkInterruptDialog. The only
addition is the setPercentDone() method, which changes the dialog’s graphical progress
indicator.

The prototype for setPercentDone() is as follows:

voi d set Percent Done(i nt percentDone)
percentDone should be an integer between 0 and 100, where 100 represents completion.

By default, VkProgressDialog shows a Cancel button that permits the user to interrupt
the current task. If you do not wish to allow users to interrupt your task, you can prevent
the Cancel button from appearing by passing FALSE as the second parameter in the
VKProgressDialog constructor.

Figure 7-7 Progress Dialog
Example 7-4 shows a code segment that installs the progress dialog and performs a

simulated lengthy task, checking for interrupts periodically and updating the progress
indicator.

213

Chapter 7: Using Dialogs in ViewKit

214

Example 7-4 Using the Progress Dialog

int i;

/1 Install the progress dialog as the dialog to post when busy
t heAppl i cati on->set BusyDi al og(t heProgressDi al og);

/1 Start being “busy”

t he application->busy(“Very Busy”, (BusyWndow *) clientData);
int percentDone = 0;

for (i =0; i < 10000; i++)

{

/1 Every so often see if the task was interrupted

if (theProgressDi al og->waslnterrupted())

{
}

br eak; /1 kick out of current task if user interrupts

/1 Update the percent done indicator. Do this only if we’ ve made
/1 nore than one percent increnment in progress. This avoids
/1 updating the dialog nore frequently than is really necessary.

if ((i/100) > percent Done)

{
per cent Done = i/100;

t hePr ogr essDi al og- >set Per cent Done(per cent Done) ;

}

sl eep(l);
}
/| Task done, so we’'re not busy anynore
t heAppl i cati on->not Busy();

/! Restore the application’s busy dialog as the default

t heAppl i cati on- >set BusyDi al og(NULL) ;

Using the ViewKit Dialog Subclasses

Question Dialog

The VkQuestionDialog class supports standard Motif question dialogs. These allow the
user to select among simple choices by clicking pushbuttons. The global pointer to the
question dialog manager, declared in <Vk/VkQuestionDialog.h>, is theQuestionDialog.

As described in “Posting Dialogs” on page 193, the post(), postModal(), and
postBlocked() functions allow you to specify callback functions to be executed when the
user clicks the OK, Cancel, or Apply button. These callbacks apply only to the dialog
posted by the current function call; they do not affect any subsequent dialog postings.
You can also provide client data that is passed to all of the callbacks. Following ViewKit
conventions as described in “Using Xt Callbacks With Components” on page 21, you
should normally pass the this pointer as client data so that the callback functions can
retrieve the pointer, cast it to the expected component type, and call a corresponding
member function.

For the postAndWait() function, instead of providing callbacks, you simply pass a
Boolean value for each button specifying whether or not it is displayed. Unlike the other
posting functions, the value returned by postAndWait() is an enumerated constant of
type VkDialogReason (defined in VkDialogManager). This value is CANCEL, OK, or
APPLY, corresponding to the button the user clicked.

By default, VkQuestionDialog displays only the OK and Cancel buttons.
VkQuestionDialog displays the Apply button only if you provide a callback for that
button.

VkQuestionDialog does not provide any additional functions beyond those offered by
the VkDialogManager.

Prompt Dialog

The VkPromptDialog supports standard Motif prompt dialogs that allow the user to

enter a text string. The global pointer to the prompt dialog manager, declared in
<Vk/VkPromptDialog.h>, is thePromptDialog.

215

Chapter 7: Using Dialogs in ViewKit

216

You can use VkPromptDialog any time you need to prompt the user to enter a single
piece of information. If you need the user to enter more than one value, you should
consider whether it is more appropriate to create a preference dialog as described in
Chapter 8, “Preference Dialogs.” Another option is to create your own custom dialog
using VkGenericDialog as described in “Deriving New Dialog Classes Using the
Generic Dialog” on page 223.

By default, VkPromptDialog displays only the OK and Cancel buttons.
VkPromptDialog displays the Apply button only if you provide a callback for that
button.

VkPromptDialog::setText() allows you to enter an initial text string in the prompt
dialog’s text field.

One method of obtaining the text string the user entered in the prompt dialog is to extract
it and use it in the OK callback function (and the apply callback function if you provide
one). Example 7-5 demonstrates this technique.

Example 7-5 Extracting the Text String From a Prompt Dialog

voi d Mai | Wndow: : okCal | back(Wdget w, Xt Pointer, clientData, Xt Pointer call Data)

{
Mai | Wndow *obj = (Mai |l Wndow *) clientDat a;
obj - >ok(w, cal |l Data);

}
voi d Mai | Wndow. : ok(Wdget dial og, XtPointer callData);
{
char *_text;
Xngel ecti onBoxCal | backStruct *cbs = (Xngel ecti onBoxCal | backStruct *)cal | Dat a;
Xn8t ri ngGet Lt oR cbs- >val ue,
XnFONTLI ST_DEFAULT_TAG
& text);
...
}

Another method of obtaining the text string is to call VkPromptDialog::text() after the
user has dismissed the dialog:

const char *text()

Using the ViewKit Dialog Subclasses

If the user clicks the OK button, the dialog accepts the currently displayed text as input
and uses that string as the return value of text(). If the user clicks the Cancel button, the
dialog discards the currently displayed value and any previously-displayed string the
dialog might have contain is returned as the value of text(). Do not attempt to free the
string returned by text(). Typically, you should call text() only if you post the dialog using
postAndWait() and postAndWait() returns a value of VkDialogManager::OK.

Caution: The following are two points that you should keep in mind when using
VkPromptDialog:

* Do not use text() from within one of the VkPromptDialog callback functions.
VkPromptDialog sets the value returned by text() using its own OK callback
function. Because Motif does not guarantee the calling order of callback functions,
you cannot be certain that text() will return the correct value from within another
callback function.

* Be aware that subsequent posting of thePromptDialog can alter the text value. In rare
conditions, if you post non-modal, non-blocking dialogs, this could occur even
before you retrieved the value using text(). To prevent this, either retrieve the text
string in the OK callback function as shown in Example 7-5, or call text() only after
posting the dialog using postAndWait() and verifying that postAndWait() returned
the value VkDialogManager::OK).

File Selection Dialog
The VkFileSelectionDialog class supports standard Motif file selection dialogs (an
example of which is shown in Figure 7-8). These allow the user to interactively browse

and select a file or directory. The global pointer to the file selection dialog manager,
declared in <Vk/VkFileSelectionDialog.h>, is theFileSelectionDialog.

217

Chapter 7: Using Dialogs in ViewKit

Figure 7-8 File Selection Dialog

You can set the initial directory displayed by the dialog using
VKkFileSelectionDialog::setDirectory():

void setDirectory(const char *directory)
If you do not explicitly set a directory, the dialog defaults to the current directory.

You can set the initial filter pattern used by the dialog, which determines the files
displayed in the list box by using VkFileSelectionDialog::setFilterPattern():

void setFilterPattern(const char *pattern)

218

Using the ViewKit Dialog Subclasses

If you do not explicitly set a selection, the dialog displays all files in a directory.

You can set the initial selection used of the dialog using
VkFileSelectionDialog::setSelection():

voi d set Sel ection(const char *selection)

One method of obtaining the selection string of the file selection dialog is to extract it and
use it in the OK callback function. Example 7-6 demonstrates this technique.

Example 7-6 Extracting the Text String From a File Selection Dialog

voi d Mai | Wndow: : okCal | back(Wdget w, Xt Pointer, clientData, X Pointer call Data)
{

Mai | Wndow *obj = (Mai |l Wndow *) client Dat a;

obj - >ok(w, callData);

}
voi d Mai | Wndow: : ok(\Wdget dial og, XtPointer callData);
{
char *_text;
X | eSel ect i onBoxCal | backStruct *cbs =
(XnFi | eSel ecti onBoxCal | backStruct *) cal | Dat a;
Xn®t ri ngGet Lt oR(cbs- >val ue,
XnFONTLI ST_DEFAULT_TAG
& text);
...
}

Another method of obtaining the selection string is to call
VKkFileSelectionDialog::fileName() after the user has dismissed the dialog:

const char* fil eName()

If the user clicks the OK button, the dialog accepts the currently displayed text as input
and uses that string as the return value of fileName(). If the user clicks the Cancel button,
the dialog discards the currently displayed value, and any previously-displayed string
the dialog might have contained is returned as the value of fileName(). Do not attempt
to free the string returned by fileName(). Typically, you should call fileName() only if
you post the dialog using postAndWait(), and postAndWait() returns a value of
VkDialogManager::OK.

219

Chapter 7: Using Dialogs in ViewKit

220

Caution: The following are two points that you should keep in mind when using
VKkFileSelectionDialog:

¢ Do not use fileName() from within one of the VkFileSelectionDialog callback
functions. VkFileSelectionDialog sets the value returned by fileName() using its
own OK callback function. Because Motif does not guarantee the calling order of
callback functions, you cannot be certain that fileName() will return the correct
value from within another callback function.

* Be aware that subsequent posting of theFileSelectionDialog can alter the selection
value. In rare conditions, if you post non-modal, non-blocking dialogs, this could
occur even before you retrieve the value using fileName(). To prevent this, either
retrieve the selection string in the OK callback function, or call fileName() only after
posting the dialog using postAndWait(), and verifying that postAndWait()
returned the value VkDialogManager::OK).

The following code fragment shows a simple example of using the
VkFileSelectionDialog class:

#i ncl ude <i ostream h>
#i ncl ude <Vk/ VKFil eSel ecti onDi al og. h>

I
t heFi | eSel ecti onDi al og->setDirectory(“/usr/tnp”);

i f(theFileSel ectionbi al og->post AndWait() == VkDi al ogManager : : CK)
cout << "File nane: " << theFil eSel ectionDi al og->fil eName()
<< '\'n" << flush;

Color Chooser Dialog

The VkColorChooserDialog class displays an SgColorChooser dialog widget that
provides a powerful user-friendly interface for selecting colors (see Figure 7-9). The color
chooser provides a color hexagon, color sliders, and editable text fields. The color
hexagon allows the user to pick a color by sight. The sliders and text fields let the user
choose a color by hue, saturation, and value (HSV), or by the levels of red, green, and
blue (RGB). The user has the option of displaying and manipulating different
combinations of sliders: value only, value and RGB, and HSV and RGB. The color chooser
dialog also allows the user to store one color for reference (the “stored color”) while
selecting another one (the “current color”).

Using the ViewKit Dialog Subclasses

For more information about color chooser dialogs, see the VkColorChooserDialog(3x)
and SgColorChooser(3X) reference pages. For a demonstration of the
VkColorChooserDialog class, see the example program in /usr/share/src/ViewKit/Dialogs.

The global pointer to the color chooser dialog manager, declared in
<Vk/VkColorChooserDialog.h>, is theColorChooserDialog.

Options Sliders

Palette Colors

Current
Color:

Stored
Color:

Hue A.513

Saturation| 8.553

Value 1.686

Red ex7z ||| A 1
Blue Bxff I 4

‘ 014 | ‘ Applyl ‘Cancell ‘ Help |

Figure 7-9 Color Chooser Dialog

221

Chapter 7: Using Dialogs in ViewKit

VkColorChooserDialog Access Functions

The VkColorChooserDialog class provides access functions to set and obtain the current
and stored color selections. Each of these functions has two variations. One set uses true
XColors, with color component values in the range of 0 to 64K. The other set uses colors
suitable for non-X graphics, with component values in the range of 0 to 255.
You can obtain the current color by using one of the following functions:
e getColor()

XCol or* get Col or (Voi d)

Returns a pointer to the current color, whose values range from 0 to 255.
e getXColor()

XCol or* get XCol or (void)

Returns a pointer to the current color, which is a true XColor.

You can set colors by using the following functions:

setColor()
void setCol or (short r, short g, short b)

Sets both the current and stored colors; requires color values from 0 to 255.

e setXColor()

voi d set XCol or (unsigned short r, unsigned short g,
unsi gned short b)

Sets both the current and stored colors; requires standard XColor colors.

e setCurrentColor()

void setCurrentCol or (short r, short g, short b)
Sets the current color; requires color values from 0 to 255.

e setCurrentXColor()

voi d set Current XCol or (unsigned short r, unsigned short g,
unsi gned short b)

Sets the current color; requires standard XColor colors.

222

Using the ViewKit Dialog Subclasses

e setStoredColor()
voi d set StoredCol or (short r, short g, short b)

Sets the stored color; requires color values from 0 to 255.

e setStoredXColor()

voi d set StoredXCol or (unsigned short r, unsigned short g,
unsi gned short b)

Sets the stored color; requires standard XColor colors.

Deriving New Dialog Classes Using the Generic Dialog

The VkGenericDialog class is an abstract subclass of VkDialogManager. It provides a
convenient interface for creating custom dialogs that use the ViewKit interface. Custom
dialogs that you derive from this class automatically support caching and all the other
features supported by VkDialogManager. You can post and manipulate your custom
dialogs using the functions provided by VkDialogManager.

Minimally, when you derive a new dialog class, you must override the
VkGenericDialog::createDialog() function to create the dialog used by your class:

virtual Wdget createDi al og(Wdget parent)

ViewKit passes to createDialog() the parent widget for the dialog, and createDialog()
must return the dialog you create. Your overriding function must first call
VkGenericDialog::createDialog(), which creates a MessageBox dialog template. By
default, the dialog displays OK and Cancel buttons. Then, you simply add the interface
to the MessageBox widget.

You can change the buttons displayed by default and other characteristics for your
custom dialog by setting certain protected data members:

Boolean _showOK
Set this value to TRUE (the default) to force the OK button to always
appear in your custom dialog. If you set _showOK to FALSE, the OK
button appears only if you provide an OK callback function when
posting the dialog.

223

Chapter 7: Using Dialogs in ViewKit

224

Boolean _showCancel
Set this value to TRUE (the default) to force the Cancel button to always
appear in your custom dialog. If you set _showCancel to FALSE, the
Cancel button appears only if you provide a cancel callback function
when posting the dialog.

Boolean _showApply
Set this value to TRUE to force the Apply button to always appear in your
custom dialog. If you set _showApply to FALSE (the default), the Apply
button appears only if you provide an apply callback function when
posting the dialog.

Boolean _allowMultipleDialogs
The default behavior of the VkDialogManager class is to allow multiple
dialogs of any given type to be posted at once. The VkDialogManager
class calls derived classes’s createDialog() member function as needed
to create additional widgets. For some types of dialogs, it makes more
sense to allow only one instance of a particular dialog type to exist at any
one time. For example, multiple nested calls to VkApp::busy() should
not normally produce multiple dialogs. If you set _allowMultipleDialogs
to FALSE, the VkDialogManager class does not create additional
dialogs, but reuses an existing dialog in all cases.

Boolean _minimizeMultipleDialogs
Normally, VkDialogManager caches dialogs on a per-top-level window
basis. If there are many top-level windows, this could result in having
many dialogs of the same type, which may be undesirable for some
types of dialogs, particularly if they are expensive to create. If you set
_minimizeMultipleDialogs TRUE, VkDialogManager reuses any existing
dialog that is not currently displayed. VkDialogManager creates a new
dialog only if all existing instances of the dialog type are currently
displayed.

Also, by default ViewKit dismisses your dialog whenever the user clicks either the OK or
Cancel button, and keeps the dialog posted whenever the user clicks the Apply button.
You can change this behavior by overriding the functions VkDialogManager::ok(),
VkDialogManager::cancel(), and VkDialogManager::apply(), respectively:

virtual void ok(Wdget dialog, Xt Pointer callData)

virtual void cancel (Wdget dialog, XtPointer callData)
virtual void apply(Wdget dialog, Xt Pointer callData)

Putting Dialogs in the Overlay Planes

ViewKit calls these functions whenever the user clicks one of the buttons in the dialog.
By default, ok() and cancel() unpost the dialog and apply() is empty. You can override
these functions to change the unposting behavior or to perform any other actions you
want.

Putting Dialogs in the Overlay Planes

By default, dialogs appear in the normal planes. ViewKit dialogs, however, may be
explicitly placed in the overlay planes. Doing so prevents the dialogs from causing
expose events that disturb such things as complex GL rendering in the normal planes.

There are three ways to enable dialogs in the overlay planes:

e (Call VkDialogManager::useOverlayDialogs(TRUE). This forces dialogs into the
overlay planes, with no way to put them back in the normal planes without
recompiling.

e Put the resource string “*useOverlayDialogs:True” in your application’s default file.
This will put dialogs in the overlay planes by default, but allow users to use the
normal planes by changing their . Xdefaults file.

Note: This is an application-specific resource. There is no class resource, so
“*UseOverlayDialogs” is not supported.

* Have users add the -useOverlayDialogs command-line switch when they run your
application if they wish to use the overlay planes for dialogs.

If you do decide to place dialogs in the overlay planes, here are some factors to consider:

e Dialogs are placed in the deepest available overlay planes: generally 4- or 8-bit
planes, occasionally 2-bit planes.

e If the deepest available overlay is 2 bits, any dialogs placed in that visual may not
look right. Because the colormap in the 2-bit overlay planes only has three color
entries (the fourth being a transparent pixel), any items in the dialog other than
labels (for example cascade or toggle buttons) may look odd.

e Other applications using the overlay planes may display in the wrong colors when
the application posting the dialog gets colormap focus. The colors in the other
applications may flash because the dialog’s colormap is installed and replaces any
previous overlay colormap.

225

Chapter 8

Preference Dialogs

This chapter introduces the basic ViewKit classes needed to create and manipulate

preference dialogs in a ViewKit application. Figure 8-1 shows the inheritance graph for
these classes.

Figure 8-1

——— e,

VkGenericDialog VkPrefDialog
VkPrefText
VkPrefToggle
VkPrefOption
VkPrefLabel
VKkPrefSeparator
 VkPrefcustom] VkPrefEmpty
VkPrefRadio
VKkPrefGroup
VkPrefList

Inheritance Graph for the ViewKit Preference Dialog Classes

227

Chapter 8: Preference Dialogs

Overview of ViewKit Preference Dialogs

228

Preference dialogs allow users to customize the behavior of an application. Without
high-level support, preference dialogs can take considerable time and effort to write
because they can involve large numbers of text input fields, labels, toggle buttons, and
other controls. A user expects preference dialogs to work in a specific way, as well.
Usually, a user sets a number of preferences and then clicks an Apply button or an OK
button to apply all changes at once. A user also expects to be able to click Cancel and
return all preferences to their previous state, regardless of how many changes the user
might have made.

ViewKit supports an easy-to-use collection of classes for building preference dialogs.
Rather than dealing directly with widgets, their placement, callbacks, and so on,
programmers who use ViewKit can simply create groups of preference items. These items
maintain their own states, which allows an application to simply query each item to see
if ithas been changed. Layout is handled automatically, and ViewKit provides the ability
to apply or revert all preferences to their previous state.

ViewKit Preference Dialog Class

In ViewKit, preference dialogs are implemented as a specialized class of dialog.
Specifically, the base preference dialog class, VkPrefDialog, is a subclass of
VkGenericDialog, which is in turn a subclass of VkDialogManager. Thus, the
VkPrefDialog class inherits all of the functions and data members provided by these
base classes.

However, there are some significant differences in the way you use preference dialogs in
your programs compared to the other dialog classes. For the other dialog classes, a single,
reusable instance of each type of dialog is sufficient. Details such the message, the button
labels, or the dialog title change from posting to posting, but the general dialog behavior
remains the same.

Overview of ViewKit Preference Dialogs

On the other hand, individual postings of preference dialogs often vary significantly;
they usually have greatly different preference items and data structures associated with
each preference item. Therefore, unlike the other dialog classes, VkPrefDialog does not
create a global instance of a preference dialog. Instead, you must create a separate
instance of VkPrefDialog for each preference dialog that you want to display in your
program. For very simple preference dialogs (for example, just a few toggle buttons), you
might be able to directly instantiate a VkPrefDialog object; however, in most cases you
should create a separate subclass of VkPrefDialog for each preference dialog in your
application.

For each preference dialog, you create a collection of preference items and associate them
with the dialog. Each preference item maintains its own state or value, and your program
can query the value of preference items as needed. Users can change the values
associated with any number of preference items, then click the Apply button to apply all
changes and keep the dialog up, or the OK button to apply all changes and dismiss the
dialog. Users can also click the Cancel button to return all preferences to their last applied
values and dismiss the dialog.

The VkPrefDialog class also supplies a ViewKit callback named prefCallback. The
preference dialog activates this callback whenever the user clicks the dialog’s Apply, OK,
or Cancel button.

ViewKit Preference Item Classes

The basis for all ViewKit preference item classes is the abstract class VkPrefltem, which
is derived from VkComponent. All preference items are derived from the base class
VkPrefItem, which provides a common set of manipulation functions.

Preference items can be divided into three groups: those that implement various controls

such as text fields, toggles, and option menus; those that are “ornamental”; and those
that arrange other preference items and manage them as a group.

229

Chapter 8: Preference Dialogs

230

The following preference items implement controls:
VkPrefText A text field.

VkPrefToggle A single toggle button (you can group multiple toggle buttons into a
VkPrefRadio item, described below, to enforce radio-style behavior of
the buttons).

VkPrefOption An option menu.

The following preference items are ornamental:
VkPrefLabel A text label.

VkPrefSeparator
A separator.

VkPrefEmpty A “null” item that you can use to add extra space between other items.

The following preference items create groups of items:

VkPrefGroup Defines a group of related items. You can specify either vertical or
horizontal layout; the default is vertical. With a vertical layout,
VkPrefGroup pads items so that they take equal space. You have the
option of displaying a label for the group.

VkPrefRadio A subclass of VkPrefGroup for managing a group of toggle items in a
radio box style. You can specify either vertical or horizontal layout; the
default is vertical. Items are always padded so that they take equal
space. You have the option of displaying a label for the group.

VkPrefList Defines a group of related items. The VkPrefList class arranges its items
vertically. Unlike VkPrefGroup, items are not padded so that they take
equal space; instead, each item takes only as much space as it needs.
Also in contrast to VkPrefGroup, VkPrefList does not display any label
for the group.

Each preference item maintains its own state or value, and your program can query the
value of preference items as needed. Preference items automatically handle updating
their stored values when the user clicks the preference dialog’s Apply or OK button, and
reverting to their previous values when the user clicks the dialog’s Cancel button.

Overview of ViewKit Preference Dialogs

Building a ViewKit Preference Dialog

Figure 8-2 shows an example of a preference dialog created using the ViewKit classes.

Document Properties

Mumbering:

Pagination:
<> Single-sided < Double-sided

Teut:
Smart Gluotes Smart Spaces

[Zoc] Cromn | care |

Figure 8-2 ViewKit Preference Dialog

Example 8-1 lists the code used to create this preference dialog.

Example 8-1 Creating a ViewKit Preference Dialog

RNy
/1 DocPrefD ag. c++
RNy

ncl ude <W/ WKApp. h>
#i ncl ude <W/\WPrefD al og. h>
#i ncl ude <Wk/\KPrefltemh>

231

Chapter 8: Preference Dialogs

class DocPrefDi al og: public WkPrefD al og {
prot ect ed:

KPref Label *di al ogNane;

\KPr ef Separ at or *sepl;

KPref Text *first PageNunber ;
KPref Qotion *firstPageS de;
KPref G oup *nunber G oup;

KPr ef Separ at or *sep2;

KkPr ef Toggl e *pagi nS ngl eSi de;
\KPr ef Toggl e *pagi nDoubl eS de;
KPr ef Radi 0 *pagi nati onG oup;
\KPr ef Separ at or *sep3;

KPr ef Toggl e *t ext Quot es;
KPref Toggl e *t ext Spaces;
VKPref G oup *text @ oup;

WKPref Li st *doclLi st ;

static String _defaul t Resources[];
virtual Wdget createD al og(\Wdget parent);

public:

DocPrefD alog (const char *nane);
~DocPref D al og() ;
virtual const char* className();

b

String DocPrefD al og: : _defaul t Resources[] = {
“*di al ogNaneBase. | abel St ri ng: Docurent Properties”,
“*nunber G oupLabel . | abel Stri ng: Nunberi ng: ”,
“*first PageNunber Label . | abel String: 1st Page #: ",
“*firstPageS delLabel .| abel String: 1st Page:”,
“*firstPageR ght: R ght”,
“*firstPageleft: Left”,
“*pagi nat i on@ oupLabel . | abel String: Pagi nati on: ",
“*pagi nS ngl eS deBase. | abel S ring: S ngl e-si ded”,
“*pagi nDoubl eS deBase. | abel S ri ng: Doubl e- si ded”,
“*text G oupLabel . | abel String: Text:”,
“*text Quot esBase. | abel String: Shrart Quotes”,
“*t ext SpacesBase. | abel String: Shrart Spaces”,

NULL

b

232

Overview of ViewKit Preference Dialogs

DocPrefD al og: : DocPref D al og (const char *nane) : WkPrefD alog (nane)
{

/1 Enpty
}
Wdget DocPrefD al og: : createD al og(Wdget parent) {
set Def aul t Resour ces(parent, _def aul t Resour ces) ;
KPref Label *di al ogNane = new \KPr ef Label (“di al oghane”) ;
\KPr ef Separ at or *sepl = new \KPref Separ at or (“sepl”);
KPref Text *firstPageNunber = new WKPref Text (“first PageNunber”) ;
VKkPref Qoti on *firstPageS de = new \KPref Qption(“firstPageS de”, 2);
firstPageS de->set Label (0, “firstPageR ght”);
firstPageS de->set Label (1, “firstPagelLeft”);
VKPref G oup *nunber G oup = new KkPref G oup(“nunber G oup”) ;
nunber G oup- >addl t en{ f i r st PageNunber) ;
nunber G oup- >addl t en{f i r st PageS de) ;
KPr ef Separat or *sep2 = new \KPr ef Separ at or (“sep2”);

\KPr ef Toggl e *pagi nS ngl eS de
KPr ef Toggl e *pagi nDoubl eS de

= new KPr ef Toggl e(“pagi nS ngl eS de”);

= new KPr ef Toggl e(“ pagi nDoubl eS de”) ;
VKPr ef Radi 0 *pagi nati onG oup = new \KPref Radi o(“pagi nati onG oup”, TRUE);
pagi nat i onQ oup- >addl t en{ pagi nS ngl eS de) ;

pagi nat i onQ oup- >addl t en{ pagi nDoubl eS de) ;

KPr ef Separ at or *sep3 = new \KPref Separ at or (“sep3”);

KPref Toggl e *t ext Quot es
KPr ef Toggl e *t ext Spaces

new \KPr ef Toggl e(“t ext Quot es”);
new \KPr ef Toggl e(“t ext Spaces”) ;

VKPref Goup *text Goup = new VKkPref G oup(“text Goup”, TRIE);
t ext @ oup- >addl t en{'t ext Quot es) ;
t ext @ oup- >addl t en{'t ext Spaces) ;

WKPref Li st *docLi st = new \KPref Li st (“docList”);
doclLi st ->addl t en{ di al og\ane) ;

doclLi st - >addl t en{sepl);

doclLi st - >addl t en{ nunber G oup) ;

233

Chapter 8: Preference Dialogs

234

doclLi st - >addl t en{sep2) ;

doclLi st - >addl t en{ pagi nat i onG oup) ;
doclLi st - >addl t en{ sep3) ;

doclLi st - >addl t en{t ext G oup) ;

set | ten{docLi st);
Wdget base = WKkPrefD al og: : creat eD al og(parent);

ret urn(base);

}

DocPref D al og: : ~DocPref O al og()
{

/1 Enpty
}

const char* DocPrefD al og: : cl assNane()

{
return “DocPrefD al og”;

}

void main (int argc, char **argv)

{

VkApp *app = new WKApp(“Pref D al ogDenoApp”, &argc, argv);
DocPref D al og *docPrefs = new DocPref D al og(“ docPrefs”);

docPr ef s- >show() ;
app->run();

}

To post this dialog, you simply create an instance of the DocPrefDialog class and use one
of the post() functions described in “Posting Dialogs” on page 193. For example:

DocPr ef Di al og *docPref = new DocPref Di al og("docPref");

I
docPr ef - >post () ;

You can retrieve the value of a preference item with the getValue() function as described
in “Getting and Setting Preference Item Values” on page 237. For example:

Bool ean snart Spaces;
I
smart Spaces = docPref - >t ext Spaces- >get Val ue() ;

ViewKit Preference Item Base Class

ViewKit Preference Item Base Class

All preference items are derived from an abstract base class, VkPrefItem, which defines
the structure of ViewKit preference items and provides a common set of manipulation
functions.

Preference Item Labels

Most preference items contain two top-level widgets: a base widget and a label widget.
The base widget implements the preference items “control” mechanism (for example, a
text field, an option menu, or a toggle button). The label widget (actually implemented
as a gadget) displays a text label for the item.

The name of the base widget is the string “Base” appended to the name of the preference
item as given in its constructor. The name of the label widget is the string “Label”
appended to the name of the preference item as given in its constructor. So, if you create
a VkPrefText object named “firstName,” the name of the base widget is “firstNameBase”
and the name of the label widget is “firstNameLabel.”

To specify the string that is displayed as the label, you must set the XmNlabelString
resource for the label widget. There are various ways to do this:

* Use the VkComponent::setDefaultResources() function to provide default resource
values. See “Creating Preference Dialog Subclasses” on page 261 for information on
using the setDefaultResources() function when you create a subclass of
VkPrefDialog.

® Set resource values in an external app-defaults resource file. Any values you
provide in an external file will override values that you set using the
VkComponent::setDefaultResources() function. This is useful when your
application must support multiple languages; you can provide a separate resource
file for each language supported.

® Set the resource value directly using the XtSetValues() function. Values you set
using this method override any values set using either of the above two methods.
You should avoid using this method, because it “hard codes” the resource values
into the code, making them more difficult to change.

235

Chapter 8: Preference Dialogs

236

The code fragment in Example 8-2 sets the labels for two VkPrefText items using the first
method.

Example 8-2 Setting Default Resource Values for Preference Items

#i ncl ude <Vk/ VkPrefDi al og. h>
#i ncl ude <Vk/ VkPrefltem h>

cl ass NanmeDi al og: public VkPrefDi al og {
public:
VKPref Text *firstNane;
VKPref Text *| ast Nane;
/1

pr ot ect ed:
W dget createDi al og(W dget)

private:
static String _defaul t Resources[];
I

b

String NaneDi al og:: _defaul t Resources[] = {
"*firstNaneLabel .| abel String: First Name:",

"*| ast NanmeLabel . | abel Stri ng: Last Nane:",
s
W dget NaneDi al og: : creat eDi al og(W dget parent)
{
set Def aul t Resour ces(mai NW ndowW dget (), _defaul t Resources);
firstNane = new VKPref Text ("firstNane");
| ast Nane = new VKPref Text ("Il ast Nane") ;
VKkPrefLi st *naneLi st = new VKkPrefList("nanmeList");
/1
}

Not all items display a label. VkPrefSeparator is an example of this type of preference
item. Some preference items, such as VkPrefGroup, allow you to specify in the
constructor whether or not you want to display a label for the item. The sections
appearing later in this chapter that describe individual preference items discuss how
each item uses its label widget.

ViewKit Preference Item Base Class

Getting and Setting Preference Item Values

Preference items that allow the user to input information—VkPrefText, VkPrefToggle,
and VkPrefOption—have values associated with them. Each such item stores its own
value internally. This value might or might not match the value currently displayed in
the preference dialog. Because users can click the Cancel button to return all preferences
to their last applied values, a preference item must not immediately store a new value
that a user enters. Only when the user clicks the dialog’s Apply or OK button do
preference items update their internally stored values to match the values displayed on
the screen.

Preference items provide a getValue() function that updates the internally-stored value
with the currently displayed value and returns the updated value. The getValue()
function is not actually declared in the VkPrefItem base class because different types of
preference items use different types of values (for example, VkPrefToggle uses a Boolean
value whereas VkPrefText uses a character string). Each preference item with an
associated value provides its own definition of getValue().

The setValue() function allows you to programmatically set the internally stored value
of a preference item. The setValue() function automatically updates the displayed value
to reflect the new internal value. As with the getValue() function, setValue() is not
actually declared in the VkPrefltem base class; each preference item with an associated
value provides its own definition of setValue().

The VkPreflItem::changed() function checks to see whether or not the user has changed
the value displayed on the screen so that it no longer matches the item’s internally stored
value:

vi rtual Bool ean changed()
If the value has changed, changed() returns the Boolean value TRUE; otherwise, it

returns FALSE. You should use changed() as a test to determine whether or not you need
to call getValue() for a preference item.

237

Chapter 8: Preference Dialogs

238

Preference Item Access Functions

The activate() and deactivate() functions control whether or not a preference item is
activated:

voi d activate()
voi d deactivate()

If the item is deactivated, the item is “grayed out” on the screen and the user cannot
change the item’s value. Call activate() to activate an item and deactivate() to deactivate
an item.

Occasionally you might want to achieve certain effects by manually setting the height of
a preference item’s label or base widget. The setLabelHeight() and setBaseHeight()
functions each accept as an argument an Xt Dimension value and respectively set the
item’s label and base widget to the given height:

voi d set Label Hei ght (Di nensi on h)
voi d set BaseHei ght (Di nensi on h)

The labelHeight() function returns the current height of the item’s label widget, and the
baseHeight() function returns the current height of the item’s base widget, each
expressed as an Xt Dimension value:

Di mensi on | abel Hei ght ()

Di mensi on baseHei ght ()

The labelWidget() function returns the item’s label widget:
W dget | abel W dget ()

labelWidget() returns NULL if an item does not have a label widget.

The type() function returns an enumerated value of type VkPrefltemType that identifies
an item’s type:

virtual VkPrefltenType type()

Valid return values are: PI_group, PI_list, PI_radio, PI_text, PI_toggle, PI_option,
PI_empty, PI_label, P1_separator, PI_custom, and PI_none.

ViewKit Preference Item Classes

The isContainer() function returns TRUE if the preference item is one used to group (or
contain) other items:

vi rtual Bool ean isContainer()

Currently, isContainer() returns true for VkPrefGroup, VkPrefRadio, and VkPrefList
items.

ViewKit Preference lItem Classes

The following sections describe the preference item classes provided by ViewKit. In
addition to specific member functions listed, each class also supports all functions
provided by the VkPrefltem class.

Text Fields

The VkPrefText class supports text field preference items, allowing users to enter text
strings. Figure 8-3 shows a simple preference dialog containing a text field preference
item.

Enter you name:

Figure 8-3 Preference Dialog With a Text Field Preference Item

The VkPrefText constructor has the following form:

VKPref Text (const char *name, int columns = 5)

239

Chapter 8: Preference Dialogs

240

The VkPrefText constructor expects as its first argument the name of the preference item.
You can optionally provide as a second argument an integer value specifying the default
number of columns for the text field.

For example, creating the text field shown in Figure 8-3 requires only this line:

VKkPr ef Text *nanme = new VKkPref Text ("nane");

To set the label for the text field you must set the XmNIlabelString resource of the
preference item’s label widget. Therefore, to set the label as shown in Figure 8-3, you
must set the resource:

*namelLabel . | abel String: Enter your nane:

Refer to “Preference Item Labels” on page 235 for more information on setting the label
of a preference item.

Use the getValue() function to retrieve the internally-stored value of the text field:

char *get Val ue()

getValue() duplicates the internal value and then returns a pointer to the duplicate
string. (You should free this string when you no longer need it.) For example, the
following line retrieves the value of the name text field shown above:

user Nane = nane- >get Val ue();

Use the setValue() function to programmatically set the value of the text field:

voi d set Val ue(const char *str)

setValue() copies the string that you pass as an argument, sets the internally-stored value
to that string, and updates the value displayed by the text field. For example, the
following line sets the value of the name text field shown above to “John Doe”:

nane- >set Val ue("John Doe");

Toggle Buttons

The VkPrefToggle class supports a single toggle button preference item. You can group
multiple toggle buttons using a VkPrefGroup or VkPrefList item, and you can enforce
radio-style behavior on a group of toggles by grouping them in a VkPrefRadio item.
These classes are discussed later in this chapter.

ViewKit Preference Item Classes

Figure 8-4 shows a simple preference dialog containing a single toggle button preference
item.

History Erase

o (g o |

Figure 8-4 Preference Dialog With Toggle Button Preference Item

The VkPrefToggle constructor has the following form:
VKkPr ef Toggl e(const char *mname, Bool ean forceLabelFormat = FALSE)

The first argument the VkPrefToggle constructor expects is the name of the preference
item. For example, creating the toggle button shown in Figure 8-4 requires only the line:

VKkPref Toggl e *erase = new VkPref Toggl e("erase");

You can provide an optional Boolean value as a second argument to the VkPrefToggle
constructor. A TRUE value forces the VkPrefToggle object to create and use a label
widget as described in “Preference Item Labels” on page 235. Otherwise, if the value is
FALSE, the behavior of the label is determined as described below in “Setting Toggle
Preference Item Labels.” The default value is FALSE.

Setting Toggle Preference Item Labels

Setting the label for a toggle preference item is more complex than with other preference
items. Unlike many of the other preference items, the ToggleButton widget that is the
base widget of the VkPrefToggle item includes a text label. Therefore, to set that label,
you must set the XmNlabelString resource of the preference item’s base widget instead
of its label widget. For example, to set the label as shown in Figure 8-4, you must set the
resource:

*eraseBase. | abel String: History Erase

241

Chapter 8: Preference Dialogs

242

This works for all cases except for when a toggle is an item in a vertical VkPrefGroup or
VkPrefRadio item that contains items other than toggles. (A group that contains more
than one type of preference item is a non-homogenous group; a group that contains only
one type of preference item is a homogenous group.) To understand why this is done,
consider first a simple vertical VkPrefGroup containing only two toggle buttons, as
shown in Figure 8-5. In this case, the labels appear to the right side of the buttons as they
normally do.

Homogenous Group
Toggle One

Toggle Two

ﬁ__

Figure 8-5 Toggle Preference Items in a Homogenous Vertical Group

When toggle items appear in a homogenous group like the one shown in Figure 8-5, you
should set the XmNlabelString resources for the base widgets of the toggle items. For
example:

*firstToggl eBase. | abel String: Toggl e One
*secondToggl eBase. | abel String: Toggle Two

However, the labels for most other preference items appear to the left of the items. Left
uncorrected, if a vertical, non-homogenous VkPrefGroup or VkPrefRadio contained a
toggle item, the label for the toggle would not align with the other labels.

Therefore, in the case of a non-homogenous vertical VkPrefGroup or VkPrefRadio,
ViewKit sets the XmNlabelString resource of all toggle items’ base widgets to NULL and
instead displays their label widgets. The result is that all of the preference items’ labels
correctly align, as shown in Figure 8-6.

ViewKit Preference Item Classes

Mon-homogenous Group

Toggle One

Toggle Two

Figure 8-6 Toggle Preference Items in a Non-Homogenous Vertical Group

When toggle items appear in a non-homogenous, vertical group like the one shown in
Figure 8-6, you should set the XmNlabelString resources for the label widgets of the
toggle items rather than the base widgets. For example:

*firstToggl eLabel .| abel String: Toggl e One
*secondToggl eLabel . | abel String: Toggle Two

Note that if you provide the Boolean value TRUE as a second argument to the
VkPrefToggle constructor, the VkPrefToggle object always creates and uses a label

widget instead of using the base widget’s text label.

Refer to “Preference Item Labels” on page 235 for more information on setting the label
of a preference item.

Getting and Setting Toggle Preference Item Values

Use the getValue() function to retrieve the Boolean value of the toggle:

Bool ean get Val ue()

243

Chapter 8: Preference Dialogs

244

For example, the following line retrieves the value of the firstToggle toggle shown above:

toggl eSet = firstToggl e->get Val ue();

Use the setValue() function to programmatically set the value of the toggle:

voi d set Val ue(Bool ean wvalue)

setValue() sets the internally-stored value to the Boolean value you pass as an argument,
and updates the value displayed by the toggle. For example, the following line sets the
value of the secondToggle toggle shown above to TRUE:

secondToggl e- >set Val ue(TRUE) ;

Option Menus

The VkPrefOption class supports option menu preference items, allowing users to
choose an option from a menu. Figure 8-7 shows a simple preference dialog containing
an option menu preference item.

;) ;)

=| optionPref

Alignment
Side: | Afign Left =
Afign Center

Align Right
| Dk T |g“r.f: T Cancel

Figure 8-7 Preference Dialog With Option Menu Preference Item

The VkPrefOption constructor has the following form:

VKPref Opti on(const char *name, int numEntries)

The VkPrefOption constructor expects as its first argument the name of the preference
item. The second argument is an integer value specifying the number of entries in the
option menu.

ViewKit Preference Item Classes

For example, you can create the option menu shown in Figure 8-7 with this line:
VKkPref Option *align = new VkPref Option("align", 3);

Setting Option Menu Preference Item Labels

To set the label for the option menu, you must set the XmNlabelString resource of the
preference item’s label widget. Therefore, to set the label as shown in Figure 8-7, you
must set the resource as follows:

*al i gnLabel . | abel String: Alignnent

Refer to “Preference Item Labels” on page 235 for more information on setting the label
of a preference item.

To set the labels for the individual items in the option menu, use the setLabel() function:

voi d set Label (int index, const char *label)

setLabel() expects two arguments. The first is an integer value specifying the index of the
of the menu item. Menu items are numbered starting with 0.

The second setLabel() argument is a character string. This string is first treated as a
resource name which is looked up relative to the menu item’s widget. If the resource
value exists, it is used as the label. If no resource is found, or if the string contains spaces
or newline characters, the string itself is used as the label.

For example, the following lines directly set the labels for the option menu items shown
in Figure 8-7:

al i gn->set Label (0, "Align Left");
al i gn->setlLabel (1, "Align Center");
al i gn->set Label (2, "Align Right");

On the other hand, the following lines set the labels using resource values:

al i gn->set Label (0, "alignLeft");
al i gn->set Label (1, "alignCenter");
al i gn->set Label (2, "alignRight");

245

Chapter 8: Preference Dialogs

246

In the second case, you would also have to set the appropriate resource values. You could
do so using the setDefaultResources() function, or you could include the following lines
in a resource file:

*align*alignLeft: Align Left

*align*alignCenter: Align Center

*al i gn*alignRi ght: Align R ght

You can retrieve the label for a given item using the getLabel() function:

char *getLabel (i nt index)
index is the index of the menu item.

Note: getLabel() returns the same string that you passed to setLabel() when setting the
item’s label. Therefore, if you set the item’s label by specifying a resource name,
getLabel() returns the resource name, not the value of the resource.

Dynamically Changing the Number of Option Menu Items

In the VkPrefOption constructor, you must provide an argument specifying the number
of elements in the option menu. However, after creating an option menu preference item,
you can resize it as needed using the setSize() function:

voi d set Si ze(int numEntries)

setSize() accepts an integer argument specifying the new size of the option menu. If the
new size is smaller than the old size, setSize() automatically deletes all unneeded
widgets. If the new size is larger, setSize() automatically creates and manages any
additional widgets needed.

You can determine the current size of an option menu preference item using the size()
function:

int size()

You can access any of the button widgets contained in the option menu with the
getButton() function:

W dget get Button(int index)

Simply specify the index of the button you want and getButton() returns the appropriate
widget.

ViewKit Preference Item Classes

Getting and Setting Option Menu Preference Item Values

Use the getValue() function to retrieve the internally stored value of the option menu:

int getVal ue()

getValue() returns an integer value specifying the index of the chosen menu entry. For
example, the following line retrieves the value of the align text field shown above:

al i gnnent = align->getVal ue();

Use the setValue() function to programmatically set the value of the option menu:

voi d setVal ue(int index)

setValue() sets the internally stored value to the index value you pass as an argument,
and updates the value displayed by the option menu. For example, the following line sets
the value of the alignment text field shown above to 1, corresponding to the “Align
Center” option:

al i gn->set Val ue(1);

Labels

The VkPrefLabel class supports text labels for preference dialogs.

Note: VkPrefLabel is useful only in conjunction with VkPrefList. You should not use
VkPrefLabel with either VkPrefGroup or VkPrefRadio; VkPrefLabel does not create a

label widget and therefore it does not align properly with other items contained in a
VkPrefGroup or VkPrefRadio item.

247

Chapter 8: Preference Dialogs

248

Figure 8-8 shows a simple preference dialog containing a label preference item.

Document Properties

[o | [oon | caree |

Figure 8-8 Preference Dialog With Label Preference Item

The only argument the VkPrefLabel constructor expects is the name of the preference
item:

VkPr ef Label (const char *name)

For example, creating the label shown in Figure 8-8 requires only this line:
VkPr ef Label *di al ogNane = new VKkPr ef Label ("di al ogNane") ;

Many other ViewKit preference items include label widgets in addition to their base
widget; however, in the case of the VkPrefLabel item, the label is the base widget.
Therefore, in preference item groups, a VkPrefLabel item aligns with other base widgets,
not with other label widgets.

Because the label that is displayed for a VkPrefLabel item is the base widget, you set the
label’s text by setting the XmNIlabelString resource of the item’s base widget. Therefore,
to set the label as shown in Figure 8-8, you must set the resource as follows:

*di al ogNaneBase. | abel String: Docunent Properties

Refer to “Preference Item Labels” on page 235 for more information on setting the label
of a preference item.

ViewKit Preference Item Classes

Separators
The VkPrefSeparator class supports a simple separator for use in preference dialogs.

Note: VkPrefSeparator is useful only in conjunction with VkPrefList. You should not
use VkPrefSeparator with either VkPrefGroup or VkPrefRadio; VkPrefSeparator does
not create a label widget and therefore it does not align properly with other items
contained in a VkPrefGroup or VkPrefRadio item.

The only argument the VkPrefSeparator constructor expects is the name of the
preference item:

VKPr ef Separ at or (const char *name)

For example:

VkPr ef Separ at or *sep = new VkPref Separator ("sep");

“Empty” Space Preference Iltems
The VkPrefEmpty class provides a “null” item that you can use to add extra space
between other items. This preference item is useful only in conjunction with one of the

grouping preference items: VkPrefGroup, VkPrefRadio, or VkPrefList.

The VkPrefEmpty constructor accepts no arguments:
VKPref Enpty()

For example:

VkPref Enpty *space = new VKkPref Enpty();

Groups of Preference Items
ViewKit provides three classes for creating groups of items: VkPrefGroup,

VkPrefRadio, and VkPrefList. Both VkPrefRadio and VkPrefList are implemented as
subclasses of VkPrefGroup.

249

Chapter 8: Preference Dialogs

Comparison of Group Preference ltems

VkPrefGroup defines a group of related items. You can specify either vertical or
horizontal layout; the default is vertical. With a vertical layout, VkPrefGroup pads items
so that they take equal space. You have the option of displaying a label for the group.

Figure 8-9 shows an example of a vertical VkPrefGroup item with a label. The label is
the group item’s label widget, not a VkPrefLabel item. The VkPrefGroup item
right-aligns the labels for all of the items it contains. (Because the VkPrefToggle items are
part of a non-homogenous VkPrefGroup item, you must set the XmNlabelString
resources of their label widgets instead of their base widgets, as described in “Setting
Toggle Preference Item Labels” on page 241.) Also, all items are allocated the same
amount of vertical space. If you were to add a larger item to this group, the group item
would allocate for each item the same amount of vertical space.

Document Properties

Smart Quotes

Smart Spaces

ok | o | [cone

P |
Figure 8-9 Vertical VkPrefGroup Item With Label

Figure 8-10 shows the same preference items grouped by a horizontal VkPrefGroup
item with a label.

250

ViewKit Preference Item Classes

Document Properties

1st Page #: - 1st Page: -I Smart Quotes Smart Spaces

Figure 8-10 Horizontal VkPrefGroup Item With Label

VkPrefList is similar to VkPrefGroup; however, it supports only a vertical orientation
and it does not support displaying a group label. Unlike VkPrefGroup, VkPrefList does
not pad its items so that they take equal space; instead, each item takes only as much
space as it needs. Typically, you use a VkPrefList item to group other group items. For
example, in Example 8-1, the top-level VkPrefList item contained a VkPrefLabel item
and two VkPrefGroup items—one vertical and one horizontal—separated by two
VkPrefSeparator items.

VkPrefList is also the only grouping item to which you should add VkPrefLabel or
VkPrefSeparator items. You should not use VkPrefLabel or VkPrefSeparator with
either VkPrefGroup or VkPrefRadio; they do not create label widgets and therefore do
not align properly with other items contained in a VkPrefGroup or VkPrefRadio item.

Figure 8-11 shows an example of a VkPrefList. Note that the VkPrefList item does not
contain a group label; if you want to provide a label for a VkPrefList item, you can
include a VkPrefLabel item in it. Also note that the VkPrefList item does not align the
labels of the items it contains. (Because the VkPrefToggle items are part of a VkPrefList
item, you must set the XmNlabelString resources of their base widgets instead of their
label widgets, as described in “Setting Toggle Preference Item Labels” on page 241.) Each
item is allocated only as much vertical space as it needs. If you were to add a larger item
to this group, it would not affect the vertical spacing of the other items.

251

Chapter 8: Preference Dialogs

252

1st Page #:

1st Page:

[t = |

Smart Gluotes
Smart Spaces

E__

VkPrefRadio is almost identical to VkPrefGroup except that you use it only for
enforcing radio-style behavior on the VkPrefToggle items that it contains. You should
add only VkPrefToggle items to a VkPrefRadio item. Otherwise, VkPrefRadio supports
the same functionality as VkPrefGroup.

Figure 8-11 VkPrefList Item

Figure 8-12 shows an example of a vertical VkPrefRadio item with a label. The label is
the group item’s label widget, not a VkPrefLabel item. Because the VkPrefToggle items
are part of a homogenous VkPrefRadio item, you must set the XmNlabelString resources
of their base widgets instead of their label widgets, as described in “Setting Toggle
Preference Item Labels” on page 241.

ViewKit Preference Item Classes

Background color:

<> Red
<> Green

< Blue

[0 | ooy | camee |

Figure 8-12 VkPrefRadio Item With Label

Creating Group Preference Items

The VkPrefGroup constructor has the following form:

VKkPr ef Goup(const char *name,
Bool ean horizOrientation = FALSE,
Bool ean noLabel = FALSE)

The VkPrefGroup constructor expects as its first argument the name of the preference
item. The second argument is an optional Boolean value that determines the orientation
of the group; FALSE, the default value, specifies a vertical orientation and TRUE specifies
a horizontal orientation. The third argument is an optional Boolean value that
determines whether or not to display a label for the group; FALSE, the default value,
specifies that the group should display the label and TRUE specifies that the group should
not display the label.

For instance, Example 8-1 contained the following constructor:
VkPr ef G oup *nunber Group = new VkPref G oup(" nunber G oup");

253

Chapter 8: Preference Dialogs

254

This created a new VkPrefGroup item named “numberGroup” with a vertical
orientation and a visible label. Example 8-1 also contained the following constructor:

VKkPref Group *horizGroup = new VkPref G oup("horizG oup",
TRUE, TRUE);

This created a new VkPrefGroup item named “horizGroup” with a horizontal
orientation and no visible label.

The VkPrefRadio constructor accepts the same arguments as the VkPrefGroup
constructor:

VkPr ef Radi o(const char *name,
Bool ean horizOrientation = FALSE,
Bool ean noLabel = FALSE)

For instance, Example 8-1 contained the following constructor:

VkPr ef Radi 0 *pagi nati onGroup = new VKPref Radi o(" pagi nati onG oup");

This created a new VkPrefRadio item named “paginationGroup” with a vertical
orientation and a visible label.

VkPrefList accepts only one argument, a character string specifying the name of the
item:

VkPr ef Li st (const char *name)

As noted earlier, all VkPrefList items have a vertical orientation and do not display a
label. Example 8-1 created a VkPrefList item as the top-level preference item to contain
all other preference items:

VKkPrefList *docLi st = new VkPrefList("docList");

Adding and Deleting Preference Items from a Group Item

After creating a group item, you can add other items to it with the addItem() function:
voi d addlten(VKPref|tem *item)

ViewKit Preference Item Classes

Preference items appear in the order in which you add them. Example 8-1 added five
preference items to the docList preference item:

doclLi st - >addl t en(di al ogNane) ;
doclLi st - >addl t en(sepl);

doclLi st - >addl t em(nunber G- oup) ;
doclLi st - >addl t em(sep2) ;

doclLi st - >addl t en(hori zG oup) ;

Once you have added items to a group item, you can access an individual child item with
the item() function:

VKkPrefltem *iten(int item)

Simply provide an integer index value as an argument and item() returns a pointer to the
desired preference item. The numbering of preference items within a group begins with
0, so to retrieve a pointer to the numberGroup item added above to docList, you could use
the line:

item = doclLi st->i ndex(2);

The size() function returns the number of preference items currently associated with a
group item:

int size()

The deleteChildren() function deletes all the items contained by a group item:

virtual void del eteChildren()

Note that this function does not just disassociate the items from the parent group item, it
actually deletes the items. This is useful for freeing memory in a destructor. ViewKit does
not provide any means of disassociating preference items without deleting them or of
deleting individual items in a group. This should not pose a problem as most
applications create preference dialogs at startup and almost never need to modify them
afterwards.

Monitoring the Values of Preference Items Associated with a Group Item

The group preference items provide a changed() function just like all other preference
items; however, changed() operates differently with group items than it does with
individual preference items. In group items, changed() calls the changed() functions of
all child items in the group and returns TRUE if any of the child items have changed.

255

Chapter 8: Preference Dialogs

Setting Group Item Labels

To set the label for a VkPrefGroup or VkPrefRadio item, you must set the
XmNlabelString resource of the preference item’s label widget. (Remember that
VkPrefList items do not display labels.) Example 8-1 illustrated this by setting the labels
for numerous group items:

*nunber GroupLabel . | abel String: Nunber i ng:
*pagi nati onG oupLabel . | abel String: Pagination:
*t ext G- oupLabel . | abel Stri ng: Text :

Refer to “Preference Item Labels” on page 235 for more information on setting the label
of a preference item.

ViewKit Preference Dialog Class

256

The base preference dialog class, VkPrefDialog, is a subclass of VkGenericDialog,
which is in turn a subclass of VkDialogManager. Thus, the VkPrefDialog class inherits
all of the functions and data members provided by these base classes. For example, you
post preference dialogs using the various post() variants, you set a preference dialog’s
title using the setTitle() function, and you set its button labels using the
setButtonLabels() function.

Creating a Preference Dialog

Unlike the other dialog classes, VkPrefDialog does not create a global instance of a
preference dialog. Instead, you must create a separate instance of VkPrefDialog for each
preference dialog that you want to display in your program. For very simple preference
dialogs (for example, just a few toggle buttons), you might be able to directly instantiate
a VkPrefDialog object; however, in most cases you should create a separate subclass of
VkPrefDialog for each preference dialog in your application. This is described in
“Creating Preference Dialog Subclasses” on page 261.

The form of the VkPrefDialog constructor is as follows:
VkPr ef Di al og(const char *name, VKPrefltem *item = NULL)

ViewKit Preference Dialog Class

The VkPrefDialog constructor expects as its first argument the name of the preference
dialog. The second argument is an optional pointer to a preference item that the dialog
should use as the top-level preference item. See “Setting the Preference Items for a
Preference Dialog” on page 257 for more information on setting the top-level preference
item.

For example, the following line creates a preference dialog named “simplePref”:

VkPrefDi al og *sinpl ePref = new VkPrefDi al og("sinplePref");

Setting the Preference Items for a Preference Dialog

A preference dialog can have only one top-level preference item. In most cases, you use
a group item such as VkPrefList as the top-level item.

As described in “Creating a Preference Dialog” on page 256, you can set the top-level
preference item in the VkPrefDialog constructor. You can also set the top-level item with
the setlItem() function:

voi d setltem VKPrefltem *item)

Note: If the preference dialog already has a top-level preference item associated with it,
setItem() replaces that item with the new item, but does not delete the old item. This
allows you to reuse the old preference item later.

For example, the following line sets the item docList as the top-level item of the preference
dialog simplePref:

si mpl ePref->set|tem(docList);

The item() function returns a pointer to the top-level item associated with a preference
dialog:

VkPrefltem *iten()
Posting and Dismissing Preference Dialogs
You post preference dialogs using any of the various post() variants provided by the base

ViewKit dialog classes. You should not pass a message string argument to the post()
function when posting a preference dialog.

257

Chapter 8: Preference Dialogs

258

For example, the following line posts the simplePref dialog as a non-modal, non-blocking
dialog:

si npl ePr ef - >post () ;

You should rarely have to unpost a preference dialog programmatically. ViewKit
automatically dismisses a preference dialog when the user clicks either the OK or Cancel
button. If for some reason you do need to unpost a preference dialog from your program,
use the unpost() function.

Responding When the User Clicks a Preference Dialog Button

When the user clicks the OK or Apply button on a preference dialog, the dialog
automatically applies any change of values to the preference dialog’s items by setting the
items’s internally-stored values so that they match whatever is currently displayed on
the screen. If the user clicks the OK button, the preference dialog calls its hide() function
to remove itself from the screen. If the user clicks on the Apply button, the preference
dialog remains visible on the screen.

When the user clicks the Cancel button on a preference dialog, the dialog automatically
resets all of the dialog’s preference items’s on-screen values so that they match the items’s
internally-stored values. Additionally, the preference dialog calls its hide() function to
remove itself from the screen.

The VkPrefDialog class also supplies a ViewKit member function callback named
prefCallback. The preference dialog activates this callback whenever the user clicks the
dialog’s Apply, OK, or Cancel button. The callback passes as call data an enumerated value
of type VkDialogReason, which is defined in VkDialogManager. The value can be any
of VkDialogManager::OK, VkDialogManager::APPLY, or VkDialogManager:CANCEL,
corresponding to the button that the user clicked. To notify components in your
application when the user changes preferences associated with a preference dialog,
register member functions with this ViewKit callback.

ViewKit Preference Dialog Class

Note: When the user clicks the OK button, ViewKit first updates the preference items’s
internally stored values and activates the prefCallback callback with
VkDialogManager::APPLY as the call data. Then, ViewKit activates the prefCallback
callback with VkDialogManager::OK as the call data. In some ways, this is analogous to
an Motif pushbutton performing an activate() action followed by a disarm() action when
a user clicks it. You can use this feature to perform certain actions whenever the user
updates preference values by clicking either the Apply or OK button, and a separate set
of actions when the user dismisses the preference dialog by clicking the OK button.

For example, consider a window, myWindow, that is a member of the subclass
MyWindow, derived from VkWindow. In this example, assume that there is a preference
dialog, displayPrefs, that is a member of the subclass DisplayPrefDialog, derived from
VkPrefDialog, that allows the user to specify certain display parameters such as the font.
myWindow could register its member function MyWindow:fontChanged() to be called
whenever the user clicks a button in the preference dialog displayPrefs, by using the
following line of code:

di spl ayPr ef s->addCal | back(VkPr ef Di al og: : pref Cal | back,
this,
(VkCal | backMet hod) &WW ndow: : f ont Changed) ;

When MyWindow::fontChanged() is called, it checks to see if any of the parameters in
which it is interested have changed and, if so, performs whatever processing is needed.
For example:

voi d MyW ndow: : f ont Changed(VkConponent *obj,
void *clientData,
voi d *cal | Dat a)

Di spl ayPref Di al og *di al og = (Di spl ayPref Di al og*) obj;
MW ndow *wi n = (MW ndow*) clientdata;
VkDi al ogManager : : VkDi al ogReason reason =
(VkDi al ogManager : : VKD al ogReason) cal | Dat a;

/1 |If the user clicked Cancel, nothing changed
if (reason == VKD al ogManager : : CANCEL)

return;
/1 Now process new preference val ues as needed ...

259

Chapter 8: Preference Dialogs

260

Using Values Set in a Preference Dialog
To retrieve the value of a preference item, simply call that item’s getValue() function.

This implies that preference items must be accessible to all components that need to use
the preference values. For example, if you create a subclass for a preference dialog,
declare as “public” those preference items that you want to access outside of the dialog.

Example 8-3 shows the header for a NamePref subclass in which two preference items,
firstName and lastName, are declared “public.” These two preference items can be
accessed by other components in the applications.

Example 8-3 Declaring Preference Items Publicly Accessible

cl ass NanmePref: public VkPrefDi al og {

protected:
VkPref G oup *nameG oup;

static String _defaul t Resources[];
virtual Wdget createDi al og(Wdget parent);

public:
VKkPref Text *firstName;
VkPr ef Text *| ast Nane;

NamePref (const char *nane);
~NamePr ef () ;
virtual const char* cl assNane();

}s

The NamePref subclass also contains a group, nameGroup, which is declared “protected.”
In most cases, outside components would not need to access a group item. One case in
which it could be useful to make a group item publicly accessible is if you want other
components to be able to activate and deactivate a group of preference items by calling
the activate() and deactivate() functions on that group item.

ViewKit Preference Dialog Class

Creating Preference Dialog Subclasses

The preferred method of handling preference dialogs in ViewKit applications is to create
a separate subclass for each preference dialog in the application. Properly designed, a
preference dialog can serve as a self-contained component that you can use in multiple
applications.

The first step in creating a preference dialog subclass is to decide what preference items
toinclude. List all of the information you want to be able to set with the preference dialog
and determine which preference item class is appropriate for each item. For example, an
item requiring text input is an obvious candidate for a VkPrefText item. However, an
item allowing the user to choose one of several options can be handled by either a single
VKkPrefOption item or a number of VkPrefToggle items grouped with a VkPrefRadio
item. Presumably, you want all of these preference items to be accessible outside of the
preference dialog, so you want to declare these items in the “public” section of your class
declaration.

Then determine the layout you want for the preference dialog. You should group similar
items together so that a user can easily find and set related items. The layout determines
what group items you need. Usually, you can define these items in the “private” or
“protected” section of your class declaration; however, in some cases, you might want to
declare some groups as “public.” For example, you might want to be able to activate and
deactivate a group of preference items by calling the activate() and deactivate() functions
on that group item.

Then determine how you want to “publicize” changes in preference items to other
components in your application. In many cases, those components can simply call the
getValue() functions for appropriate items as needed. However, some components need
to be notified immediately whenever certain preference items change. In most cases,
these components can register ViewKit member function callbacks with the preference
dialog that are called whenever the user clicks one of the dialog’s buttons. The
components can then test for changes in preference item values in their callback
functions and react accordingly.

In some cases, you might need to perform special processing when the user clicks one of
the preference dialog’s buttons. In that case, you can override the default ok(), apply(),
or cancel() function for the dialog. These functions are called whenever the user clicks
the corresponding button. In your override definition, you should perform whatever
processing is needed and then call the base VkPrefDialog::0k(), VkPrefDialog::apply(),
of VkPrefDialog::cancel() function as appropriate.

261

Chapter 8: Preference Dialogs

262

Usually you should also provide a set of default resource values to serve as labels for all
the dialog’s preference items. To do so, you must override the createDialog() function,
which creates and manages all of the widgets in a preference dialog. Your preference
dialog’s createDialog() function must perform the following tasks, in order:

1.

2
3
4.
5

Call setDefaultResources() to set the dialog’s default resources.

Create all preference items for the dialog.

Set the dialog’s top-level item using the setItem() function.

Call the base VkPrefDialog::createDialog() function to create the dialog.

Pass the dialog’s base widget, returned by VkPrefDialog::createDialog(), as the
return value of createDialog().

Example 8-1 shows a complete example of a preference dialog subclass. You could
include DocPrefDialog dialogs in any application that needed to set various document
parameters.

Chapter 9

Handling Visuals With ViewKit

This chapter describes the VkVisual class, a convenience class for dealing with X11
visuals. For ideas on how to use this class, see the examples in the
usr/share/src/ViewKit/Basic/Visual directory.

Overview of the VkVisual Class

Dealing with the interaction between widgets and X11 visuals can be complicated (see
“Overview of X Visuals” on page 264 for more information). Programmers often decide
to stick with the default visual when another visual would be more appropriate. Code,
even library code, that assumes default visual attributes is commonplace.

The VkVisual class is designed to handle many of the confusing details so you can use
the most appropriate visual for your needs. Of course, since VkVisual simplifies the
model, applications that have more complex needs must still use direct Xlib or OpenGL
calls. For most situations, however, VkVisual will be sufficient.

With VkVisual, it is easy to do such things as

* obtain an existing widget’s full visual information

e obtain information about the default visual

® pick the best visual for a Shell or for an entire application by describing its semantic
characteristics (for instance, getting the “deepest overlay visual”)

* deal with actual visuals, default or non-default, in a consistent and robust way that
works across different kinds of hardware

® obtain a suitable window for use when creating a graphics context (GC) or a
pixmap

263

Chapter 9: Handling Visuals With ViewKit

The VkVisual class itself deals with global issues, such as

® associating a single colormap with a single visual

e coordinating X11 visual information with that provided by the root window’s
SERVER_OVERLAY_VISUALS property

Each VkVisual instance deals with all of the information pertinent to a single visual. You

can set up a visual as any of the following:

e acaller-defined visual

¢ the same visual a specific widget is using

¢ the same visual a specific ViewKit component is using

e the default visual

The visual information can also be reset to a new visual (using setVisual()), but all old

visual information is then lost. If an application still needs both sets of visual
information, it should create a second VkVisual object instead of resetting the first one.

Information such as the colormap or the read-only ArgList are created as needed. Any
such information is cached, and reused as appropriate.

Overview of X Visuals

264

This section explains some basic points about X, Xt, and X11 visuals. It is important to
understand this information if you are going to put all or part of your application’s
graphical user interface in a non-default visual.

X11 Visual Attributes

X11 does not attach any semantic meaning to a visual. For example, there is no concept
of an overlay visual. There is, however, a semi-standard convention that has been
adopted by workstation vendors:

e Avisual’s level is the framebuffer level with which the visual is associated. This is a
hardware-related term having nothing to do with X Window stacking order.

* Levels less than zero refer to underlays.

Overview of X Visuals

¢ Level zero refers to the normal planes. The default visual is generally, but not
necessarily, in the normal planes.

¢ Levels greater than zero refer to overlay planes.

e Each X11 visual is associated with exactly one level.

* Each level can be associated with more than one visual.

e SERVER_OVERLAY_VISUALS is a property on the root window, relating each X11

visual to its level.

An X11 window has several attributes that need to be consistent when the window is
created. If an application sets these values inconsistently, or if it allows an inconsistent
value to be inherited, the X server will return a fatal BadMatch error.

¢ XCreateWindow(3X) must be passed a consistent visual and depth.

¢ The following fields in the XSetWindow Attributes structure passed to
XCreateWindow(3X) must be consistent with the visual and depth:

- Background pixmap— must be NULL or of the stated depth.

- Background pixel—used if the background pixmap is NULL. The pixel value
must not exceed the colormap size.

— Border pixmap—must be NULL or of the stated depth.

— Border pixel— used if the border pixmap is NULL. The pixel value must not
exceed the colormap size.

- Colormap—must match the visual.

You cannot change the depth and visual after the window is created, but you can change
the XSetWindow Attributes values.

Xt Visual Handling
In order to achieve the required consistency in visual attributes when dealing with
widgets in non-default visuals, there are several factors you have to keep in mind:

e Widget access to the popup or overlay bitplanes is by means of non-default X11
visuals on a Silicon Graphics workstation.

e A gadget does not have any visual resources of its own, because it draws into its
parent’s window.

265

Chapter 9: Handling Visuals With ViewKit

266

Each widget class, because it is derived from the Core class, has borderPixmap,
borderColor, colormap, and depth attributes. Each widget instance inherits the
values of these attributes from its parent widget.

Shell and its subclasses are the only standard widgets that have an XmNvisual
resource (and hence an X11 visual) directly associated with them. (However, there
can be special widgets, such as the SgVisualDrawingArea widget
[<Sgm/VisualDrawingA.h>], that have an associated X11 visual. Such special widgets
are not common.)

Most widgets do not have a visual resource, so they must inherit their visual. If a
widget does not have an XmNvisual resource, you cannot explicitly set its visual at
creation time. To put these widgets into a non-default visual, their widget parent
must be in a non-default visual.

Any widget that does not have a visual resource explicitly set at creation time
inherits its visual from its parent window.

For all widgets other than Shell widgets, the parent window is the parent widget’s
window. This results in inheriting a consistent set of values.

For Shell widgets, the parent window is the root window. Thus, if the parent widget
uses a visual different from the root window’s visual, you must explicitly set at least
some of the Shell’s visual resources. If you do not, an X server BadMatch fatal error
will occur.

Visual Inheritance in ViewKit

To avoid mismatches, ViewKit explicitly sets the visual information for all new Shell
widgets it creates. This includes all menus and dialogs. Shell visual attributes are set in
the following ways:

If visual information is passed in by the application, that information is used.

If the widget is a menu, and useOverlayMenus is set, an appropriate visual is
chosen.

If the widget is a dialog, and useOverlayDialogs is set, an appropriate visual is
chosen.

If none of the above apply, ViewKit sets the Shell (that is, menu or dialog) to the
widget parent’s visual.

Overview of X Visuals

The net effect is that you will not need to worry about visual inheritance in most of your
ViewKit applications.

It is possible to place the top shell (VkApp’s unrealized shell) in a non-default visual.
Because of the inheritance described above, this effectively resets the visual for the rest
of the application (see VkApp(3x), useOverlayApps() and preRealizeFunction()).

Maintaining Consistency

In order to maintain consistency when using visuals, there are several points you should
keep in mind:

Visual consistency issues are especially important when creating Shell widgets, but
they are also important at other times. For example, you cannot use a pixmap or a
GC at a depth other than the one for which it was created.

Colormaps and pixel values need to be kept consistent. In general, the same pixel
will not be the same color in the various colormaps. Be sure you use the correct
pixel value for the current colormap.

Avoid the BlackPixel and WhitePixel macros, because they return pixel values
suitable for use only with the normal planes colormap. For example, BlackPixel
returns a pixel that is black in the colormap for the normal planes, but is generally
transparent in the overlay colormaps.

Pixel values determined using the default colormap should not be used with
another colormap. If the pixel exists at all, you are likely to get the wrong color. If
the pixel does not exist (such as when you try to apply a pixel greater than 3 to a
2-bit overlay colormap), an X protocol error will occur.

Colormaps belonging to widgets in one of the overlay visuals may well be smaller
than the default colormap, and pixel 0 may well be transparent.

Some hardware has a 2-bit level 1 visual, a 2-bit level 2 visual, and a 4-bit level 1
visual that are not entirely independent. The two-bit colormaps are independent,
but they may overlap with the 4-bit colormap. The framebuffer pixels of the 4-bit
visual may overlap with those of the 2- bit visuals. On such hardware, using the
4-bit visual is discouraged.

267

Chapter 9: Handling Visuals With ViewKit

268

Colormap Coordination

There is no such thing as a system default colormap for any visual other than the default
visual. If a VkVisual instance refers to the default visual, it automatically uses the default
colormap. The first VkVisual instance that refers to each non-default visual creates a
suitable colormap for that visual. Subsequent VkVisual instances that refer to the same
visual re-use the colormap that the first instance created. This effectively establishes
default colormaps for a single application. There is currently no supported way for
multiple independent applications to cooperate on using a common colormap.

An application is guaranteed to have its colormaps installed only when it has colormap
focus. Consequently, there may be colormap flashing. When an application gets
colormap focus, all of the colormaps the application has declared are installed (whether
or not it actually needs them). Each of these colormaps remains until another application
needs to have it replaced. Any of your application’s windows that use a conflicting
colormap will not return to correct colors until your application next gets colormap
focus.

Override widgets (menus and dialogs) are responsible for installing their own
colormaps. Such widgets do not have their colormaps installed unless the application
gets colormap focus and specifically installs the colormaps. ViewKit arranges automatic
installation of any needed colormaps for the menu and dialog widgets it creates. If you
create any directly, you must call XSetWMColormapWindows() yourself.

Failure to destroy colormaps that VkVisual creates causes colormap leakage in the
X server. Fortunately, from a practical point of view, most applications do not need to be
concerned with this, for the following reasons:

e All created colormaps are deleted when the application terminates. Unless a lot of
colormaps are being created, this should be adequate.

® VkVisual reuses colormaps. Unless the application sets forceNewColormap or uses
setColormap(), there will be at most one colormap for each visual used. This is
normally few enough that they can be ignored until they are destroyed when the
application terminates.

* Any VkVisual that is constructed by passing it a widget uses the colormap from
that widget. Such a colormap should not be explicitly destroyed.

Useful Enums

Useful Enums

The VkVisual class provides some useful enums:

enum colors

enum index

enum planes

enum col ors { MAX_AVAI LABLE_COLCRS}

Using this for the number of colors in the constructor, or in a
setVisual() call, means that the deepest visual that otherwise satisfies
the request criteria is considered a match.

enum i ndex {RESET, FIRST, NEXT, LAST}

You can pass this to VkVisuallnfo(int) when using it to iterate over the
visuals list.

enum pl anes {NORMAL_LEVEL, OVERLAY LEVEL, UNDERLAY_ LEVEL,
MAX_OVERLAY LEVEL, M N_OVERLAY_ LEVEL,
MAX_UNDERLAY_ LEVEL, M N_UNDERLAY_ LEVEL,
ANY_LEVEL}

This specifies which level bit planes are being requested. These
constants do not conflict with any legitimate specific level. Calls to the
constructor, or to setVisual(), can specify either the explicit level
required or one of these enum values:

e NORMAL_LEVEL—The normal planes.

e OVERLAY_LEVEL—Any overlay planes.

e UNDERLAY_LEVEL—Any underlay planes.

¢ MAX_OVERLAY_LEVEL—Highest available overlay level.

¢ MIN_OVERLAY_LEVEL—Lowest available overlay level.

e MAX_UNDERLAY_LEVEL—Underlay level closest to zero.

e MIN_UNDERLAY_LEVEL—Underlay level furthest from zero.
e ANY_LEVEL—Does not matter which level.

269

Chapter 9: Handling Visuals With ViewKit

enum status enum st atus {FAI LURE, SUCCESS, ALMOST}

These are the values that setVisual() can return. It is up to an
application to notice that it did not receive SUCCESS, and make
appropriate adjustments, if necessary.

¢ SUCCESS —The visual found is exactly what was requested.

e ALMOST—The visual found is likely to be close enough. It is up to
the application to query the attributes to see whether they are
acceptable.

e FAILURE—There was a serious problem, such as setVisual() could
not get the right visual class. This generally means that the default
visual had to be assigned.

setVisual() returns the lowest status found in processing any of the
parameters. If anything failed, setVisual() returns FAILURE. If nothing
failed, but something was ALMOST, then setVisual() returns ALMOST.
setVisual() returns SUCCESS only if everything succeeded.

enum transparency
enum transparency { TRANSPARENT_NONE,
TRANSPARENT_PI XEL,
TRANSPARENT _MASK,
TRANSPARENT _DONT_CARE}

These are the kind of transparencies that a visual supports.

VkVisual Constructors and Destructor

The following are the constructors and destructors for the VkCutPaste class:

e VkVisual (Wdget w = NULL,
Bool ean forceNewCmap = FALSE)

® VkVisual (const VkComponent *component,
Bool ean forceNewCmap = FALSE)

e \kVisual (int visualClass,
i nt level = NORVAL_LEVEL,
i nt colors = MAX_AVAI LABLE_COLORS,
CARD32 xparentRequested = TRANSPARENT_DONT_CARE,
Bool ean forceNewCmap = FALSE)

270

Member Functions

Member Functions

e \KkVisual

e \KkVisual

(const VkVisual&)

&operator = (const VkVisual&)

e virtual ~VkVisual ()

This section describes the VkVisual’s public functions.

Setting the Class’s Visual Information

setColormap()

virtual Colormap set Col ormap (Col ormap cmap = NULL,
Bool ean setDefault = FALSE)

Makes any colormap you pass in the object’s current colormap. If you
do not pass in a colormap, setColormap() creates a new, empty one that
matches the current visual.

If setDefault is TRUE, setColormap() sets the new colormap as the
default one for the visual associated with this VkVisual instance.

setColormap() returns the now-current colormap.

Note: setColormap() never frees a colormap because it has no way of
knowing whether that colormap is still needed. Each time you call
setColormap(), it overwrites the address of the previous map. It is up to
your application to free any previous colormap before you call
setColormap(). If you still need the previous colormap, you should
make sure you have the address recorded. You can obtain the address by
calling colormap().

271

Chapter 9: Handling Visuals With ViewKit

setVisual() This function is overloaded to allow you to set visuals several different
ways:

e virtual void setVisual (Wdget w = NULL,
Bool ean forceNewCmap = FALSE)

Resets the VkVisual to the visual of the widget or gadget w. If no
widget or gadget is passed in, then setVisual() sets the VkVisual to
the default visual.

If forceNewCmap is TRUE, setVisual() creates a new, empty
colormap. Otherwise, setVisual() reuses an existing colormap for
this visual, if one is available. Unless you know you need a new
colormap, you should leave forceNewCmap FALSE.

e virtual void setVisual (const VkComponent *component,
Bool ean forceNewCmap = FALSE)

Resets the current instance of VkVisual to the visual used by
component->baseWidget().

If forceNewCmap is TRUE, setVisual() creates a new, empty
colormap. Otherwise, setVisual() reuses an existing colormap for
this visual, if one is available. Unless you know you need a new
colormap, you should leave forceNewCmap FALSE.

e virtual VKkVisual::status setVisual (int visualClass,
int level,
i nt colors,
CARD32 transparent,
Bool ean forceNewCmap = FALSE)

Resets the instance’s visual to be as close to the specified calling
parameters as possible. This version always sets some visual; if
there is no better match, it sets the default visual.

visualClass must be one of the constants from <X11/X.h>,

Stati cG ay, G ayScal e, St ati cCol or, PseudoCol or, Tr ueCol or,
or Di r ect Col or. If the application asks for a class not supported by
the current screen, setVisual() returns FAILURE and provides the
default visual.

272

Member Functions

level specifies the type of plane you want. setVisual() always tries
to give you the type of visual you request (for instance, a specific
level, overlay planes, underlay planes, or normal planes).
setVisual() goes by the following rules:

If level is one of the enum constants, that level is used.
If level is a legal explicit level, it is used directly.

If level is greater than the maximum level, then the maximum level
is used.

If level is less than the minimum level, then the minimum level is
used.

If the requested plane or planes exist for the specified visual class,
setVisual() returns SUCCESS.

If the requested plane has no visual of the requested class, but there
is a normal planes visual of the requested class, then the normal
planes visual is used and setVisual() returns ALMOST.

If none of the above apply, setVisual() sets the instance’s default
visual, and returns FAILURE.

Data Access Functions

argCnt()

argList()

virtual int argCnt() const

Returns the number of visual arguments in the ArgList returned by
argList().

The overloaded versions of this function are as follows:

virtual ArgList argList() const

Returns the pointer to a read-only ArgList suitable for using in Xt
calls such as these:

VKkVi sual vi s(parent) ;
Xt Set Val ues(w, wvis.argList(), vis.argCnit()) ;

273

Chapter 9: Handling Visuals With ViewKit

274

className()

colormap()

e virtual void argList(Arg *args, Cardinal *offset) const

Appends the visual arguments to the ArgList, args, and increments
the count, offset, by the number of arguments it appended.

e inline void argList(Arg *args, int *offset) const

Works the same as the previous version, except that it takes an int*
for offset instead of a Cardinal*.

const char *cl assName(void) const
Returns the class name of VkVisual, which is “VkVisual”.
virtual Col ormap col ormap() const

Returns the colormap associated with this instance of the VkVisual
class. If there is no colormap, an empty, sharable one is created.

colormapCreated()

depth()

maxLevel()

minLevel()

numColors()

visual()

visualID()

vi rtual Bool ean col ormapCreated() const

Returns TRUE if the current colormap was created by VkVisual. This
can be used by the application to tell whether or not the colormap
should be destroyed when no longer needed.

virtual int depth() const

Returns the depth associated with this instance’s visual.
virtual int maxLevel () const

Returns the maximum framebuffer level for the current screen.
virtual int mnLevel () const

Returns the minimum framebuffer level for the current screen.
virtual int nunCol ors() const

Returns the number of colors in the colormap associated with this
instance’s visual.

virtual Visual *visual () const
Returns this instance’s visual.
virtual VisuallD visuallD() const

Returns the visual ID of this instance’s visual.

Member Functions

vkVisualInfo()

The overloaded versions of this function are as follows:

virtual const
VKkVi sual | nfo *vkVi sual | nfo(Vi sual | D vid) const

Returns a pointer to the VkVisuallnfo structure associated with the
specified visual.

virtual const
VkVi sual I nfo *vkVi sual | nfo(Vi sual *wvis= NULL) const

Returns a pointer to the VkVisuallnfo structure associated with the
specified visual. If vis is NULL, the current visual is used.

virtual const
VkVi sual I nfo *vkVi sual | nf o(const W dget w) const

Returns a pointer to the VkVisuallnfo structure associated with the
widget’s visual.

virtual const
VKkVi sual I nfo *vkVi sual I nfo(int index) const

Returns a pointer to one of the VkVisuallnfo structures from the
global list maintained by VkVisual. Possible arguments are:

An integer from 0 to the number of available visuals.

RESET—Resets the global record so that a call to
VkVisualInfo(NEXT) will return a pointer to the first structure.
Returns NULL.

FIRST—Returns a pointer to the first structure.

NEXT—Returns a pointer to the first structure beyond the
previously retrieved one, regardless of how it was retrieved. If the
previously retrieved structure was the last structure, a RESET is
done and a NULL pointer is returned. The next
VkVisualInfo(NEXT) call will then return a pointer to the first
structure.

275

Chapter 9: Handling Visuals With ViewKit

276

window()

vi rtual W ndow wi ndow() const

Returns some window associated with this instance’s visual. There is
no guarantee as to which window you will get back, even if you used
the VkVisual(widget) constructor. Typical use of this window is as a
parameter to create a GC or to call the Xpm pixmaps routines (which
derive visual information from the window they are passed).

If VkApp’s window is associated with this instance’s visual, VkApp’s
window are returned, regardless of what other windows are also
associated with the visual. If the root window is associated with this
instance’s visual, the root window is returned. For any other X11 visual,
a matching new InputOutput unmapped window is created the first
time a window is needed for that particular visual. Windows are reused
later as necessary. Separate VkVisual instances return the same
window if the instances are for the same X11 visual.

Because a window may be re-used, it is important that the application
not delete it.

Debugging Functions

indexString()

planesString()

printAll(

print()

virtual const char *indexString(index index) const
Prints, to stderr, the string equivalent to the passed enum value.
virtual const char *planesString(planes plane) const
Prints, to stderr, the string equivalent to the passed enum value.
virtual void printAll() const

Prints, to stderr, a variety of details about the visuals of the current
display.

These are the overloaded versions of this function:
e virtual void print() const
Prints, to stderr, the visual information from the VkVisual instance.
e virtual void print(const Wdget w) const
Prints, to stderr, the visual information matching the widget w.
e virtual void print(const VkVisuallnfo *vis) const

Prints, to stderr, the visual information from wvis.

Member Functions

e wvirtual void print (VisuallD vid) const

Prints, to stderr, the visual information from the specified visual.
e virtual void print (const Visual *wvis) const

Prints, to stderr, the visual information from the specified visual.
e virtual void print (int index) const

Prints, to stderr, the visual information from VkVisualInfo(index).

statusString() virtual const char *statusString(status status) const

Prints, to stderr, the string equivalent to the passed enum value.

transparencyString()
virtual const
char *transparencyString(transparency trans) const

Prints, to stderr, the string equivalent to the passed enum value.

visualClassString()
virtual const char *visual CassString(int visClass) const

Prints, to stderr, the string equivalent to the passed value
(“Pseudocolor”, and so on).

Static Functions

visualParent()
static Wdget visual Parent (W dget w, Visual **v)

Returns the first widget in the widget tree (w or an ancestor of w), that
has a visual attribute. Normally, this widget is a subclass of Shell, but it
could be an SgVisualDrawingArea or any other widget that has a
XmNvisual resource.

visualParentArgs()
static void visual Parent Args(W dget parent, Arg *args, i nt *cnt)

Retrieves a set of visual resources consistent with the parent widget.
The resources are copied into args and cnt is updated. All visual
resources except XmNvisual are copied from the parent. XmNvisual is
copied from the visual parent of parent.

277

Chapter 9: Handling Visuals With ViewKit

VkVisual Examples

278

Example 9-1 and Example 9-2 illustrate how easy it is to deal with visuals using the
VkVisual class:

Example 9-1 Putting a Single Widget in a Non-default Visual Using VkVisual

W dget p; /1 Parent wi dget
char *c = “Questions”; /1l Wdget’s nane
VKVi sual vis(p); /1 Get the visual info

XnCr eat eQuesti onDi al og(p, c, vis.argList(), vis.argCtnt());

Example 9-2 Creating a GC of the Right Depth

Di spl ay *dpy;
VKkVi sual vis(wi dget);

XCr eat eGC(dpy, vis.w ndow(),...);

Putting your entire application into a non-default visual is only a little more complicated.
See “Putting Applications in the Overlay Planes” on page 86 for more details.

Chapter 10

ViewKit Cut and Paste

This chapter describes the VkCutPaste class, which provides copy, paste, drag, and drop
capabilities. Figure 10-1 shows the inheritance graph for VkCutPaste.

I VkCallbackObject H—— VkCutPaste
.

Figure 10-1 Inheritance Graph for VkCutPaste

Overview of ViewKit Cut and Paste

The VkCutPaste class provides a simple C++ API that helps developers add
inter-application Copy, Paste, Drag, and Drop capabilities to their applications easily,
and with little or no worrying about the complex protocols of Motif and the X Window
System. However, developers should be familiar with the style guidelines covered in the
Inter-Client Communication Conventions Manual, IRIX Interactive Desktop User Interface
Guidelines, and IRIX Interactive Desktop Integration Guide in order to provide a consistent
look and feel in their applications.

Although it is called VkCutPaste, this class does not provide a specific cut function.
However, a cut can be implemented in virtually all programs by calling the copy
functions, followed by calling a delete function specific to your program.

The VkCutPaste class uses the Xt Intrinsics and Motif to implement a standard

X Selection ICCCM compliant communication, so your application must link with those
libraries to use this API. VkCutPaste does not require other parts of ViewKit, and can be
used in a standard Motif application.

If you wish to examine a sample program using VkCutPaste, you can find one at
Jusr/share/src/ViewKit/CutPasteDragDrop/cutpastel.c++.

279

Chapter 10: ViewKit Cut and Paste

Primary and Clipboard Transfer Models

VkCutPaste supports both the Primary Transfer Model and the Clipboard Transfer
Model (see Chapter 7, “Interapplication Data Exchange,” in the IRIX Interactive Desktop
Integration Guide for more information on these transfer models). PRIMARY refers to
copying data by highlighting it using the mouse. When the middle mouse button is
clicked, the data is pasted to the current location of the mouse pointer. CLIPBOARD
refers to copying data by using a menu selection (for instance, Copy in an Edit menu) or
a keyboard accelerator (Ctrl+c). The user must use another menu selection (for example,
Paste in an Edit menu) or keyboard accelerator (Ctrl+v) to paste the data at the desired
location.

The behavior of the PRIMARY and CLIPBOARD selections depend entirely on how you
choose to implement them. VkCutPaste does not dictate any particular behavior.
However, by custom, data on the CLIPBOARD selection tends to be more permanent. It
normally remains even if the original data is cut or no longer selected, and even if new
data has since been selected. It generally is cleared only if the user makes another
selection, and then uses a menu selection or keyboard accelerator to place the new
selection on the clipboard.

Also by custom, data on the PRIMARY selection tends to be more transient. It normally
is replaced when different data is highlighted. Depending on how you implement the
PRIMARY selection, it may also be cleared when the selected data is cut or no longer
highlighted.

Consult the Inter-Client Communication Conventions Manual, IRIX Interactive Desktop User
Interface Guidelines, and IRIX Interactive Desktop Integration Guide for style guidelines.

VkCutPaste Constructor and Destructor

280

The following are the VkCutPaste constructor and destructor.
VkCutPaste() VkCut Past e(W dget w)

Instantiates a VkCutPaste object. The widget, w, must not be destroyed
for the life of the VkCutPaste class, since it is used during the execution
of most of the VkCutPaste functions. Do not pass the same widget into
more than one concurrent instance of the VkCutPaste class.

Copying Data

Copying Data

~VkCutPaste()
voi d ~VkCut Past e(voi d)

This deletes any remaining memory allocated by the VkCutPaste class.
Because the class sometimes creates temporary files, it is important
always to delete a VkCutPaste object when you are finished with it.

In order to use the copy and paste or drag and drop capabilities, you must instantiate the
VkCutPaste class in your program (probably at program start-up). You can do this with
the following two lines of code, where someWidget is any widget in your Motif or ViewKit
program that will be valid during the lifetime of the VkCutPaste class:

#i ncl ude <Vk/ VKkCut Paste. h>
VKkCut Paste *cnp = new VkCut Past e(someW dget) ;

For most purposes, VkCutPaste::clear(), VkCutPaste::putCopy(), and VkCutPaste
export() are the only functions necessary to implement a copy capability.
VkCutPaste::registerLoseSelection() handles the occasions when your application loses
ownership of one of the selections.

clear() voi d cl ear (Atom selection, Time time = CurrentTi ne)

Clears the indicated selection (either “CLIPBOARD” or “PRIMARY”),
and frees any memory that was allocated as part of an earlier
putCopy(). After the clear() function is called, no data is being offered
to any other ICCCM clients on the indicated selection.

putCopy() Bool ean put Copy(At om selection,
At om target,
Xt Poi nt er data,
unsi gned | ong numBytes) ;

Creates a copy of the data, which is made available to other clients by
export(). The data passed into putCopy() can be freed immediately after
this call. target identifies the kind of data you are trying to exchange.

If your application does not call clear() before calling putCopy(),
putCopy() appends the current data to any data already on the
selection.

281

Chapter 10: ViewKit Cut and Paste

282

export() Bool ean export (At om selection, Tinme time = CurrentTi ne);

Makes the data on the indicated selection available to other ICCCM
clients.

registerLoseSelection()
voi d registerLoseSel ecti on(At om selection,
LoseSel ecti onProc loseSelProc,
voi d *clientData)

Registers a callback procedure to be invoked when the application loses
ownership of the selection. This is especially useful in the case of the
PRIMARY selection, since in the loseSelProc callback the application
should unhighlight what was previously highlighted as the PRIMARY
selection. You typically call registerLoseSelection() once, right after
you instantiate the VkCutPaste class.

The prototype for the LoseSelectionProc is as follows:

t ypedef void (*LoseSel ecti onProc) (W dget w,
At om selection,
voi d *clientData) ;

The following code fragment, which would appear in a menu callback, demonstrates the
use of these copying functions. In this case, the user has highlighted an XPM image and
selected Copy from the Edit menu:

extern VkQut Paste *cnp;
extern Xt Poi nter inage; /1 pointer to XPMimage buffer
extern unsi gned | ong nunByt es; /1 nunber of bytes of inmage data

Atom xad i pboard = Xm nt er nAt on{dpy, “CLI PBOARD’, Fal se); /1 get clipboard atom

At om xaXPM = Xm nt er nAt on{dpy, “XPM, False); /1 get XPMatom
cnp->cl ear (xaCLl PBOARD) ; /'l clear clipboard

cnp- >put Copy(xaCLl PBOARD, xaXPM inage, nunBytes); /1 nmake copy of XPMinage
cnp- >expor t (xaCLl PBOARD) ; /1 make data avail abl e

Once this code has run, any application on your desktop that has implemented the
standard X Window Copy and Paste protocol can paste the XPM image.

To make this image available on the PRIMARY selection, you simply substitute
XA_PRIMARY for xaCLIPBOARD.

Pasting Data

Pasting Data

In most cases, the recommended function for pasting data into an application is
VkCutPaste:importImmediate(). In some rare instances, however, you may need to use
VkCutPaste:import().

importImmediate()
Xt Poi nt er i nport| nmedi at e(At omselection,
At om * interestList,
i nt interestListLen,
At om * targetRet,
unsi gned | ong *numBytesRet,
Ti me theTime = CurrentTine);

Imports Copy and Paste data from any ICCCM client. This function
blocks until the data is retrieved.

The selection is either “CLIPBOARD” or “PRIMARY”. The interestList is
an array of targets this application accepts, in order of preference. For
example, interestList[0] might be XPM, interestList[1] might be GIF_89,
and interestList[2] might be STRING. interestListLen would then be 3.
For a list of registered targets, see the VkCutPaste(3x) reference page.

importImmediate() accepts any target on the interestList or any target
that can be converted to one of the targets on the list (see “Using Data
Type Converters” on page 295 for more information on data type
conversion). The function returns an XtPointer to the data or a NULL
pointer (meaning that none of the requested targets were available). In
the above example, if an acceptable target were found, targetRet would
be XPM, GIF_89, or STRING.

importImmediate() makes a copy of the interestList, so you can free the
memory immediately after this call completes.

Since this function uses its own secondary event loop, some clients
might want to avoid this call.

283

Chapter 10: ViewKit Cut and Paste

284

import() voi d i nmport (At om selection,
At om * interestList,
i nt interestListLen,
I npor t Cal | backPr oc importProc,
voi d *clientData = NULL,
Ti me theTime = CurrentTine);

Acts like importImmediate() except that it is non-blocking and requires
a callback. For instance, your application could call importimmediate()
with an interestList containing XPM, GIF_89, and STRING. If at least
one of those targets is available, then importProc is called with data set to
a valid XtPointer. If none of the acceptable targets are available,
importProc is called with data set to NULL.

Since import() makes a copy of the interestList, you can free the memory
immediately after this call completes, even if the importProc has not yet
been called.

The prototype for the ImportCallbackProc is as follows:

typedef void (*InportCall backProc) (W dget w,
At om target,
Xt Poi nt er data,
unsi gned | ong numBytes,
voi d *clientData) ;

The following code sample, which would appear in a menu callback, illustrates the paste
capability. In this example, the application accepts a GIF image or an XPM image (your
list of acceptable formats can be as long as you like; this example just happens to use
two). The user has selected Paste from the Edit menu.

Xt Poi nter i mage;
unsi gned | ong nunByt es;

Atom xad i pboard = Xm nt er nAt on{dpy, “CLI PBOARD’, Fal se);
Atomxa@ F 89 = XmnternAton{dpy, “QF 89", False);
At om xaXPM = Xni nt er nAt on{dpy, " XPM, Fal se);

AtominterestlList[2];
interestList[0] = xad F_89;
interestList[1] = xaXPM
int numtenslnList = 2;

Dragging Data

Dragging Data

i mage = cnp->i nport | medi at e(xaCLl PBOARD, interestList, nunitenslnList,
& arget Ret, &unBytes);

if (image == NUL)
printf(“No i mages avail abl e”);
else if (targetRet ==xad F_89)
printf(“AF inmage received’);
else if (targetRet == xaXPV)
printf(“XPMimage received’);

The image that is returned should eventually be freed as follows:

Xt Free(i mage) ;

The VkCutPaste class provides two dragging functions. VkCutPaste::dragAwayCopy/()
are sufficient for most needs. The advanced programmer may want more control,
however, and so may wish to use VkCutPaste::dragAwayCopyExtended().

dragAwayCopy()

W dget dragAwayCopy(W dget w,
XEvent *xev,
At om target,
Xt Poi nt er data,
unsi gned | ong numBytes,
Dr agAway Cal | backPr oc dragAwayProc = NULL,
voi d *clientData = NULL) ;

Drags away data from the current application. You can free data
immediately after calling this function, because dragAwayCopy()
makes a copy of the data for its own use. The XEvent should be the
ButtonPress event that initiated the drag. The optional dragAwayProc is
called after the drag completes. One of the parameters to dragAwayProc
indicates if the drag was successful or not.

dragAwayCopy() returns the DragContext created for this drag and
drop transaction (see the XmDragStart(3X) reference page).

285

Chapter 10: ViewKit Cut and Paste

The prototype for the DragAwayCallbackProc is as follows:

typedef void (*DragAwayCal | backProc) (W dget w,
Bool ean result,
voi d *clientData) ;

dragAwayCopyExtended()
W dget dragAwayCopyExt ended(W dget w,

XEvent *xev,
At om * targetList,
Xt Poi nt er *dataList,
unsi gned | ong *lenList,
i nt numDragltems,
Dr agAway Cal | backPr oc dragAwayProc = NULL,
voi d *clientData = NULL,
ArglLi st args = NULL,

int numArgs = 0);

Does exactly what dragAwayCopy() does, but provides more options
for the advanced programmer. For example, you could specify the drag
away data as more than one target (it should be the same conceptual
object, just in different formats, like GIF and XPM format data of the
same image). You could also use this function to create various drag
icons by specifying those parameters in the args argument. args and
numArgs are passed off to XmDragStart(). Several args are not allowed:
XmNconvertProc, XmNdragOperations, XmNexportTargets,
XmNnumExportTargets, and XmNclientData. See the
XmDragContext(3X) reference page for more information on other,
valid arguments. The Motif Drop Copy protocol (XmDROP_COPY) is
the only drag-and-drop operation that the VkCutPaste class supports.

dragAwayCopyExtended() returns the DragContext created for this
drag-and-drop transaction (see the XmDragStart(3X) reference page).

The following is the prototype for the Drag AwayCallbackProc:

t ypedef void (*DragAwayCal | backProc) (W dget w,
Bool ean result,
voi d *clientData) ;

286

Accepting Drops

Accepting Drops

The following code sample illustrates dragging. The user has just clicked a mouse button
on an XPM image and has begun dragging it out of your application:

extern WkQut Paste *cnp;

extern Xt Poi nter inage; /1 pointer to the XPMinage data
extern unsigned | ong nunBytes /1 nunber of bytes of inage data
extern Wdget theWdget; /1 wi dget where drag began
extern XBvent *xev; /1 ButtonPress Event that

/1 triggered the drag
At om xaXPM = Xm nt er nAt on{dpy, “XPM, Fal se);
cnp- >dr agAnayCopy(t heWdget, xev, xaXPM inage, nunBytes);
/] at this point, you can free the data

The two optional parameters, dragAwayProc and clientData, are not usually specified, but
if you want to be notified when the drag is finished, or if it was successful, you can pass
in a callback procedure and any data you want. For example:

/1 dragAnay@B i s invoked after conpletion of the drag

voi d dragAnayCB(Wdget w, Bool ean dragSuccess, Xt Pointer clientData)
{

printf(“Drag success = %", dragSuccess);
printf(“dientData = Ox%”, clientData);
}

Your call to dragAwayCopy() would then be like this:

cnp- >dr agAnayCopy(t heWdget, xev, xaXPM inage, nunBytes,
dragAnay(CB, (Xt Pointer) 123);

ViewKit provides two functions for creating a drop site. VkCutPaste::registerDropSite()
is sufficient for most needs. The advanced programmer may want more control,
however, and so may wish to use VkCutPaste::registerDropSiteExtended(). If you are
interacting with the Silicon Graphics IRIX Interactive Desktop, see “Accepting Drops
From the IRIX Interactive Desktop” on page 291.

287

Chapter 10: ViewKit Cut and Paste

registerDropSite()

Bool ean regi sterDropSite(Wdget w,
At om * interestList,
i nt interestListLen,
Dr opSi t eCal | backPr oc dropProc,
voi d *clientData = NULL) ;

Registers a widget as a drop site. The interestList argument is a list of
what data targets the drop site accepts, in order of preference. When
another client drops data on this widget, the dropProc is called. The
target passed to dropProc is the first target in the interestList that the
other client can supply, or for which a converter exists (see “Using Data
Type Converters” on page 295 for more information about converting
data types).

The following is the prototype for the DropSiteCallbackProc:

typedef void (*DropSiteCall backProc)(Wdget w,
At om target,
Xt Poi nt er data,
unsi gned | ong numBytes,
int x,
int y,
voi d *clientData) ;

registerDropSiteExtended ()

288

Bool ean regi sterDropSiteExtended(W dget w,
At om * interestList,
i nt interestListLen,
Dr opSi t eCal | backPr oc dropSiteCallbackProc,
Dr agCal | backProc dragCallbackProc = NULL,
voi d *clientData = NULL,
Arg *args = NULL,
i nt numArgs = 0);

Does exactly what registerDropSite() does, but provides more options
for the advanced programmer. For example, you could create various
drop icons by specifying those parameters in the args argument. args
and numArgs are passed off to XmDropSiteRegister(). Some args are
not allowed: XmNdragProc, XmNdropProc, XmNdropSiteOperations,
XmNimportTargets, and XmNnumImportTargets. See the

Accepting Drops

XmDropSite(3X) reference page for information on other, valid
arguments. The Motif Drop Copy protocol (XmDROP_COPY) is the
only drag-and-drop operation the VkCutPaste class supports.

The DropSiteCallbackProc is called when the user drops some data on
the specified widget. The target passed to the DropSiteCallbackProc is
the first target found in interestList that the other client is offering, or for
which a converter exists (see “Using Data Type Converters” on

page 295).

The prototype for the DropSiteCallbackProc is as follows:

t ypedef void (*DropSiteCall backProc)(Wdget w,
At om target,
Xt Poi nt er data,
unsi gned | ong numBytes,
int x,
int y,
voi d *clientData) ;

The DragCallbackProc is called when the user drags some data over the
specified widget. The target passed to the DragCallbackProc is the first
target found in interestList that the other client is offering, or for which a
converter exists (see “Using Data Type Converters” on page 295).

The following is the prototype of the DragCallbackProc:
t ypedef void (*DragCal | backProc) (W dget w,

At om target,

i nt reason,

int x,

int y,

voi d *clientData) ;
These are the reasons that can be passed to the dragCallbackProc:
¢ XmCR_DROP_SITE_LEAVE_MESSAGE
¢ XmCR_DROP_SITE_ENTER_MESSAGE
¢ XmCR_DROP_SITE_MOTION_MESSAGE

unregisterDropSite()
Bool ean unregi sterDropSite(Wdget w);

Unregisters a drop site, making it stop accepting drops of any kind.

289

Chapter 10: ViewKit Cut and Paste

290

The following code sample illustrates a drop. In this example, the application’s widget
accepts an XPM image or a GIF image (your list of acceptable formats can be as long as
you like; this example just happens to use two). After creating the widget, you might
include something like this:

At om xaXPM = Xm nt er nAt om(dpy, “XPM', Fal se);
Atom xad F_89 = Xm nternAtom(dpy, “d F_89", False);

/1 dropProcCB wil be invoked whenever an image is dropped on the w dget

voi d dropProcCB(Wdget w, Atomtarget, XtPointer data,
unsi gned | ong nunBytes, int x, int vy,
Xt Poi nter clientData)

{
if (target == xaxXPM
printf(“XPM | nage dropped at x=%l, y=%.", X, Vy);
else if (target == xad F_89)
printf(“dF I nage dropped at x=%d, y=%.", X, y);
/1 at sonme point, you should “XtFree(data)” to free the nmenory
}

/1 this code is done once, and nakes the indicated widget a drop site
/1
extern Wdget theW dget; /1 widget that is to becone a drop site

AtominterestList[2];
interestList[O0] xaXPM /1 we first prefer XPM

interestList[1] xad F_89; /1 we also accept AF
int numtenslnList = 2;

cnp->regi sterDropSite(theWdget, interestList,
num t ensl nLi st, dropProcCB, (XtPointer) 123);

Accepting Drops From the IRIX Interactive Desktop

Accepting Drops From the IRIX Interactive Desktop

When a user drags a file icon from the IRIX Interactive Desktop, the Desktop transfers
the file information via an _SGI_ICON target. The VkCutPaste class provides some
convenience routines for parsing this data:

getFilenamesFromSGI_ICON()
Bool ean get Fi | enanmesFronBSA _| CON(char *sgilconData,
unsi gned | ong numBytes,
char ***fileNameArrayRet,
i nt *numFilesRet)

Parses the data of target _SGI_ICON that the IRIX Interactive Desktop
uses to drag one or more files around. This is a convenience function
that facilitates your application’s acceptance of files from the desktop.
You can call this function from a DropSiteCallbackProc when your
application receives a target of _SGI_ICON. After your application is
finished with the filename list, you should free the memory allocated
inside getFilenamesFromSGI_ICON() by calling
freeFilenamesFromSGI_ICON().

freeFilenamesFromSGI_ICON()
voi d freeFil enamesFronBSAd _| CON(char ** fileNameArray,
i nt numfFiles)

This frees the data returned from getFilenamesFromSGI_ICON().

The following code fragment illustrates the use of getFilenamesFromSGI_ICON() and
freeFilenamesFromSGI_ICON() within a DropSiteCallbackProc:

At om xaSGE _|I CON = Xml nt ernAt on{dpy, “_SA _| CON', Fal se);
voi d dropProcCB(Wdget w, Atomtarget, XtPointer data,

unsi gned | ong nunByt es,
int x, int y, XtPointer clientData);

{
if (target == xaSG3 _I CON)
{
int nunfFil enanes = O;
char **fil enanes = NULL;

printf(“drop of _SE _ICON at %, %\n”, X, y);

201

Chapter 10: ViewKit Cut and Paste

if (cnp->getFil enanmesFronSd _| CON((char *)data, nunBytes,
& i |l enanmes, &nun¥il enanes))

{
int i;
for (i = 0; i < nunFilenanes; i++)
{
printf(“\tdropped file %: %\n", i, filenanes[i]);
}
cnp->freeFi | enamesFronSd _| CON(fi | enanmes, nunFil enanes);
}
}
if (data !'= NULL)
{
Xt Free(data);
}

}
/1l this code is done once, and makes the indicated widget a drop site
extern Wdget theW dget; /1 widget that is to becone a drop site

AtominterestList[1];
interestList[0] = xaSd _I CON, /1 only interested in _SGA _|I CON

int nunmltenslnList = 1;

cnp->regi sterDropSite(theWdget, interestList, num tenslnList,
dr opProcCB, (XtPointer)123);

Registering New Data Types

292

Before you can pass a particular target to a VKCutPaste method, the VkCutPaste class
must be aware of the target and its properties. The VkCutPaste class has a long list of
known targets (see the VkCutPaste(3x) reference page). However, if your application
creates a new, custom target, you must describe it by calling
VkCutPaste::registerDataType().

Registering New Data Types

registerDataType()
voi d regi sterDataType(At om target,
At om type,
int format,

unsi gned | ong flags =
CUTPASTE_NORVAL_TYPE,

Dest royProc destroyProc = NULL,

voi d *clientData = NULL)

Registers a data target with the VkCutPaste class, and at the same time
tells the class what the type, format, and flags are (for more information
on targets, types, and formats, see the Inter-Client Communication
Conventions Manual). This is commonly done only once per data type,
immediately after the creation of the instance of the VkCutPaste class.
You must register a data type only for types not already in
VkCutPaste’s list of registered targets. See the VkCutPaste(3x)
reference page for a list of registered targets.

For the purposes of this chapter, the term “filename type” refers to a
string type that is the name of a file being copied and pasted or dragged
and dropped. The term “normal type” refers to a large block of
malloc’ed memory that is being copied and pasted or dragged and
dropped.

The flags argument is a bit mask of the following flags:
e CUTPASTE_NORMAL_TYPE

e CUTPASTE_HIDDEN_TYPE

e CUTPASTE_FILENAME_TYPE

A CUTPASTE_HIDDEN_TYPE means that this target will never be
published to other clients. This is unusual, but can be useful if you are
using an internal representation you do not wish to expose.

You must flag any new “filename” target as a
CUTPASTE_FILENAME_TYPE so that the VkCutPaste class can deal
with it properly. When registering a new filename target, you must also
pass in a destroyProc that can be called to remove the file when
necessary.

293

Chapter 10: ViewKit Cut and Paste

294

The prototype for the DestroyProc is as follows:

t ypedef void (*destroyProc)(Wdget w,
At om selection,
At om target,
Xt Poi nt er data,
unsi gned | ong numBytes,
voi d *clientData) ;

The DestroyProc cleans up any auxiliary data that is no longer needed.
The VkCutPaste class calls the DestroyProc at various times,
immediately after deleting a target from an internal buffer.

The most common use of a DestroyProc is when the target is a filename
target. The filename is the actual target, and the cloned file on disk is
the auxiliary data. The DestroyProc removes the cloned file when the
VkCutPaste class no longer needs it. The DestroyProc should NOT free
the filename memory.

The following DestroyProc can be used verbatim for any filename type:

static void destroyProc(Wdget w, Atom sel ection,
Atom target, XtPointer data,
unsi gned | ong nunByt es,
voi d *clientDat a)

if (data !'= NULL) /] protect against errors
unlink((char *) data); /1 renove the file

}

The following code fragment illustrates the use of registerDataType().
You do not need to use this code, since the XPM_FILE target is already a
registered data type. However, this code does serve as a valid example:

At om xaXPM FI LE = Xml nt er nAt on{dpy, “XPM FILE’, False);
cnp->regi st er Dat aType(xaXPM_FILE, [/ “target” is XPM_FILE
xaXPM FILE, // “type” is XPM FILE
8, /] “format” is 8
CUTPASTE_FI LENAVE_TYPE,
destroyProc,
NULL) ;

Using Data Type Converters

getDataTypelnfo()
Bool ean get Dat aTypel nf o(At om target,
At om * type,
int *format,

unsi gned | ong *flags)

Receives a target, and passes back the target’s type and format (as
specified in the Inter-Client Communication Conventions Manual), and
any associated flags. getDataTypelnfo() returns True if it finds the
target, and False otherwise. The VkCutPaste class already has an
extensive list of registered targets. You can add types to this list by
calling registerDataType().

Using Data Type Converters

The VkCutPaste class provides integral support for converters from one data type to
another. Converters are used to increase the number of targets your application can offer
(copying and dragging), or accept (pasting and dropping). For example, if you call
dragAwayCopy() with XPM data, and a drop site in another ICCCM application only
accepts images of type GIF_89, then the drop would normally fail. However, if you have
registered a converter from XPM to GIF_89, the VkCutPaste class automatically calls
your converter and successfully drops the GIF_89 on the destination client.

registerConverter()
voi d regi sterConverter (Atom from,
At om to,
Convert Proc converter,
CanConvert Proc canConvertProc = NULL,
voi d *clientData = NULL)

Registers a converter between two data targets. For example, if you
have registered a converter from XPM to GIF_89, and you
dragAwayCopy() an XPM, the VkCutPaste class automatically calls
your converter when the drop site accepts only GIF_89.

295

Chapter 10: ViewKit Cut and Paste

The prototype for the converter is as follows:

t ypedef Bool ean (*ConvertProc) (W dget w,
At om selection,
voi d *clientData,
At om srclarget,
Xt Poi nt er src,
unsi gned | ong numSrcBytes,
At om dstTarget,
Xt Poi nter *dst,
unsi gned | ong *numDstBytes)

The VkCutPaste class provides the ability to use an optional
canConvertProc so that your application can conditionally offer
conversion support for a given target. The canConvertProc returns True
if the converter can perform the requested conversion, and False
otherwise. The VkCutPaste class calls the canConvertProc to ensure that
VkCutPaste does not offer targets that it cannot actually produce. If
your conversions always work under all circumstances, do not register
a CanConvertProc.

This is the prototype for the CanConvertProc:

t ypedef Bool ean (*CanConvertProc) (W dget w,
At om selection,
voi d *clientData,
At om srcTarget,
Xt Poi nter src,
unsi gned | ong numSrcBytes,
At om dstTarget) ;

296

Using Data Type Converters

Example 10-1 demonstrates registering a XPM to GIF_89 converter:

Example 10-1 Registering an XPM to GIF89 Converter

extern Display *dpy;
At om xaXPM = Xm nt er nAt om(dpy, “XPM', Fal se);
Atom xad F_89 = Xm nternAton(dpy, “G F_89", False);

Bool ean xpnToG f Converter (W dget w, Atom selection,

Bool

}

cnp-

voi d *clientData,

At om srcTarget, XtPointer src,
unsi gned | ong nuntr cByt es,

At om dst Target, XtPointer *dst,
unsi gned | ong *nunDst Byt es)

if (srcTarget != xaXPM || dstTarget != xad F_89)
return(Fal se); /'l this shoul d never happen

nunDst Bytes = / cal cul ate enough menory for Gf */
*dst = (XtPointer) malloc(*nunDstBytes);

/'l insert code here to convert fromthe source XPM i nage
/1 into a GF and place it in the newy mall oced nenory.

return(True); /1 return True if the conversion is successful

ean xpnToG f Conver si onl sPossi bl e(W dget w, Atom sel ection,
voi d *clientData,
At om srcTar get,
Xt Poi nter src,
unsi gned | ong nunfrcByt es,
At om dst Tar get)

if (srcTarget != xaXPM || dstTarget != xad F_89)
return(Fal se); /] this shoul d never happen

nunber O Col or sl nXPM = di scover Nunber O Col or sl nXPM src) ;

i f (nunber O Col or sl nXPM < 256) /! AF only has 256 colors
return(True);

el se
return(Fal se); /1 we cannot convert this GF

>regi st erConverter(xaXPM xad F_89, xpnToG fConverter,
xpniroG f Conver si onl sPossi bl e, NULL);

297

Chapter 10: ViewKit Cut and Paste

After this single registerConverter() call, your converter is automatically called in each
of four possible scenarios:

1. If you export an XPM, but the importing client accepts only GIF_89.
2. If you dragAway XPM, but the client you drop on accepts only GIF_89.

3. If youwant to import a GIF_89, but the sending client doesn’t offer GIF_89, but does
offer XPM.

4. If a drop on you only offers XPM, but you accept only GIF_89.

File and Data Ownership

298

Changes in the ownership of files and data during copy, paste, drag, and drop operations
can be difficult to trace. The pseudocode examples in this section detail the ownership
changes during different stages of data transfer. The examples show code implementing
copy, paste, drag, and drop of both normal data and filename data.

Filename data simply means the data being transferred is a filename. For example, when
transferring an XPM_FILE target, the data transferred is actually the filename, not the
data contained in the file. The receiving application needs to retrieve the filename, then
access the file. Normal data means that the data being transferred is a block of malloc’ed
memory.

The VkCutPaste class recognizes targets as being filename targets only if they have been
registered with the CUTPASTE_FILENAME_TYPE flag. See the VkCutPaste(3x)
reference page for a list of registered targets.

Note: Applications should seldom need to use filename targets for cut, paste, drag, and
drop operations. In fact, exchanging filenames with other applications does not work
when the sender and receiver applications are running on different computers. When
given a choice between filename targets and the corresponding normal targets,
applications should always exchange the normal targets.

In these pseudocode samples (Example 10-2 to Example 10-10), cnp is an instance of the
VkCutPaste class, and the filename target is any target that has been registered with the
CUTPASTE_FILENAME_TYPE flag.

File and Data Ownership

Example 10-2 Data and File Ownership Changes While Copying Filenames

/] Create a file on disk. Ownership of the file will be transferred
/1 to the VKkCutPaste class at putCopy() tinmne.

char *filename = create a file, return the malloced fil enane;
/1 Clear any prior putCopy() or export().
cnp->clear();

/1 Copy the filename ‘filename’, and transfer the ownership of the

/1 file on disk to the VkCutPaste class. Note that the file itself

/1 is NOT copied, only the filenane. The client can now free the

/1 menmory used by filename, but nust NOT reference the disk file again
/1 NOTE: |f the client has registered a destroyProc for this

/1 filename type, the VkCutPaste class might call that destroyProc to
/1 remove the original disk file. In that case, the client should honor
/1 the request and renove the file.

cnp->put Copy(fil enane);

/1 The VkCut Paste cl ass has nade a copy of the filenane, so the
/1 original data should be freed by the client.

free(fil ename);

/! Make the data available to other clients.

cnp->export();

/1 Some time later, if the VkCut Paste class gets a request for this

// filenane, the VkCutPaste class will clone the file, and hand off to

/1 the requesting client the cloned filename. Omership of this
/1 cloned file is transferred to the requesting client.

/1 The next tine clear() is called, any data that has been copied

/1 during prior putCopy() calls is freed, and any files that the

/'l VkCut Past e cl ass has obtai ned ownership of during prior putCopy()
/1 calls are renpbved. After this clear(), this VkCutPaste instance
/1 no longer has any data avail able for export.

cnp->cl ear();

299

Chapter 10: ViewKit Cut and Paste

300

Example 10-3 Data and File Ownership Changes While Pasting Filenames

/1 dient requests a filenane target. The fil enane returned and the
/'l corresponding file on disk are now owned by this client. It is
/'l therefore the responsibility of the requesting client to renove
/1 (unlink()) the file when the client is finished with it, and

/1 free the fil enane.

filename = cnp->inportlmedi ate();

/] After this client is done with the file, the file nust be
/1 renpved, and the filenane freed.

unlink(filenane);
Xt Free(fil enamne);

Example 10-4 Data and File Ownership Changes While Copying Normal Data

/!l Create some data in nmenory.

char *data = create sonme data;

/1 Clear any prior putCopy() or export().
cnp->clear();

/1 The VKkCut Paste class nakes a copy of the data. This copy of
/1 the data will be freed during the next “clear()” operation.

cnp- >put Copy(dat a) ;

/1 The VKkCut Paste class has made a copy of the data, so the original
/1 data should be freed by the client.

free(data);
/! Make the data available to other clients.
cnp->export ();

/1 The next tine clear() is called, any data that has been copied

/1 during prior putCopy() calls is freed, and any files that the

/1 VKkCut Paste cl ass has obtai ned ownershi p of during prior putCopy()
/1 calls are renpbved. After this clear(), this VkCutPaste instance no
/1 longer has any data avail able for export.

cnp->cl ear();

File and Data Ownership

Example 10-5 Data and File Ownership Changes While Pasting Normal Data

/1 Client requests the data. This data is now owned by this
// client. The client will use the data, and should free it when
/1 it is done processing the data.

data = cnp->i nportl medi ate();
/'l Free the inported data when you are done processing it.
Xt Free(dat a) ;

Example 10-6 Data and File Ownership Changes While Dragging Filename Data

/'l Create a file on disk. Ownership of the file will be
/1 transferred to the VkCutPaste class at dragAwayCopy() tine.

char *filename = create a file, return the nalloced fil enang;

/1 Copy the filenane ‘filenane’, and transfer the ownership of the
/1 file on disk to the VkCutPaste class. Note that the file itself
/1 is NOT copied, only the filenane. The client can now free the

/1 memory used by filename, but nust NOT reference the disk file

/1 again. The VkCutPaste class will free this copy of the data, and
/1 remove the file when the drag and drop operation is conplete.

/1

/1 NOTE: |f the client has registered a destroyProc for this filenane
/1 type, the VKkCutPaste class mght call that destroyProc to renove
/1l the original disk file. In that case, the client should honor the
/1 request and renove the file.

cnp- >dr agAwayCopy(fi |l enane);

/1 The VkCut Paste cl ass has nade a copy of the filenane, so the
/1 original data should be freed by the client.

free(fil enane);

/1 Some time later, if the VkCutPaste class gets a request for this
/1 filename, the VkCutPaste class will clone the file, and hand off
/1 the cloned filenane to the requesting client. Oanership of this
/1 cloned file is transferred to the requesting client. The

/1 original file is renbved when the drag and drop operation is

/1l compl ete.

301

Chapter 10: ViewKit Cut and Paste

Example 10-7 Data and File Ownership Changes While Accepting Filename Data

/1

The “drop” client registers a drop site.

cnp- >regi st er DropSi t e(dr opFi | enanmeCal | back) ;

/1
/1
/11
/1
/1
/1

Sorme time |ater, the dropFil enameCal | back() routine is called.

I nside of the dropFil enaneCal | back, the fil enane passed in and
the corresponding file on disk are now owned by this client. It
is therefore the responsibility of the requesting client to renove
(unlink()) the file when the client is finished with it, and free
the fil enane.

dr opFi | enaneCal | back(fil enane)

{

}

/1 Do some processing on the file.
unlink(filenane);

[/l After this client is done with

// the file, the file nust be renpved,

// and the filenane freed.

Xt Free(fil ename);

Example 10-8 Data and File Ownership Changes While Dragging Normal Data

I

Create sone data in nenory.

char *data = create sone data;

/1
I
I

The VkCut Paste cl ass makes a copy of the data. The VkCut Paste
class will free this copy of the data when the drag and drop
operation is conplete.

cnp- >dr agAway Copy(dat a) ;

11

The client can now free the original data.

free(data);

302

File and Data Ownership

Example 10-9 Data and File Ownership Changes While Accepting Normal Data

/1 The “drop” client registers a drop site.

cnp->regi st er DropSi t e(dr opDat aCal | back) ;

/1

/1 Some time later, the dropDataCall back() routine is called.

dr opDat aCal | back(dat a)

{
/1 Do some processing with this data.
/1 Free the data when you are done processing it.
Xt Free(data);

}

Example 10-10 Data and File Ownership Changes While Accepting _SGI_ICON Data
/1 The drop client registers a drop site that accepts _SGA _| CON data

cnp->regi sterDropSite(dropSA _I CONcal | back) ;

/1 Some time later, the dropSA _I CONcal | back() routine is called.

/1 Inside the dropSG _I CONcal | back, this client reads the fil enanes
/1l out of the SA@ |CON data, but DOES NOT own the files and must not
/1 nmodify themor renove them This client does need to free the

/1 _SG _|I CONdat a.

dropSA _I CONcal | back(_SA _I CONdat a)
{

/|l CGet the filenanes, read sone data fromthe files, etc.

Xt Free(_SGA _I CONdat a) ;

303

Chapter 10: ViewKit Cut and Paste

Miscellaneous Functions

304

The VkCutPaste class also provides several utility functions that you may find useful.

primaryAtom()

At om pri mar yAt on{(void)

Returns the PRIMARY atom. This is a convenience function, and
returns exactly the same thing as Xm nt er nAt on(dpy, “PRI MARY",
Fal se).

clipboard Atom()

getVersion()

getWidget()

At om cl i pboar dAt on{ void)

Returns the CLIPBOARD atom. This is a convenience function, and
returns exactly the same thing as Xm nt er nAt on(dpy, “CLI PBOARD",
Fal se).

unsi gned | ong get Ver si on(void)

Returns the version number of this implementation of the VkCutPaste
class. For example, version 1.0 would be 0x010000, version 2.01 would
be 0x020100, and so on.

W dget get W dget (void)

Returns the widget that was originally passed to the VkCutPaste
constructor.

getXServerTime()

Ti me get XSer ver Ti ne(void)

Invokes a round trip to the X-Server, and returns a server time stamp.
You should try to avoid this call. Instead, you should pass the
CurrentTime flag to VkCutPaste functions, or (even better) use the time
stamp of a recent X-Event. However, there may be some rare situations
where there are no X-Events available and CurrentTime does not work,
so this convenience function provides a fail-safe way to get a valid
server time stamp.

Miscellaneous Functions

setTransactionsTimeout()
voi d set Transacti onsTi neout (unsi gned | ong numSeconds)

Sets the transaction time-out. The default Motif time-out is 5 seconds,
which means that if the remote client does not respond to a request for
data within 5 seconds, the transaction is cancelled and no data is
transferred. For some large data targets, or those that require long
conversions, 5 seconds may not be adequate.

isOwnedByMe()
Bool ean i sOmedByMe(At om selection)

Returns True if the selection is currently owned by the calling client.
This can be used to optimize the speed of Paste() when the client would
have exchanged data with itself anyway.

isOwnedbyLocalHost()
Bool ean i sOmedByLocal Host (At om selection)

Returns True if the indicated selection is currently owned by a client
running on the same machine as this client. This call is useful if you are
planning to copy and paste filenames with other clients, since a file that
is on a different machine is not accessible to your client. Some examples
of filename targets are XPM_FILE and GIF_89_FILE. Normal types like
XPM and GIF_89 are always safe and always work, and should be used
instead, unless there is some overwhelming reason to exchange
filenames.

getLocalReference()
Bool ean get Local Ref er ence(At om selection,
At om target,
Xt Poi nt er *dataRet,
unsi gned | ong *numBytesRet)

Allows you to retrieve the contents of the local export selection. This is
not based on X Selections. This only gives you a pointer, so the data
must not be freed or modified. Returns a pointer to the data at index (if
multiple putCopy() were called, the first one is at index 0, the second is
atindex 1, and so on).

305

Chapter 10: ViewKit Cut and Paste

getLocalTypeReference()
Bool ean get Local TypeRef er ence(At om selection,
At om target,
Xt Poi nter *dataRet,
unsi gned | ong *numBytesRet)

Does exactly the same thing as getLocalReference(), but instead of
specifying an index, you specify the target you wish to retrieve from the
exported selection.

putReference()
Bool ean put Ref er ence(At om selection,
At om target,
Xt Poi nt er data,
unsi gned | ong numBytes)

Can be used instead of putCopy() when the data is so large that an
extra copy would be impossible or impractical. This function does not
make a copy of the data, so you should never free data until after you
call remove() to remove the currently exported data from the selection.
If, for some reason, the data becomes invalid, you must call remove().

remove() Bool ean renove(At om selection, At om target) ;

Removes the indicated target from the currently exported selection. For
example, if you had called putReference(XPM) earlier, and now for
some reason, the XPM data is no longer valid, you must call
remove(XPM).

306

Chapter 11

Using a Help System With ViewKit

ViewKit supports several ways for a user to obtain help: context-sensitive help (both
through the F1 key and a help menu), help menus, help buttons, and popup and
message-line help (QuickHelp).

For the developer, the ViewKit API provides entry points to an external help library, to
the SGIHelp system, or to a simple default help capability that may be sufficient for many
applications. You can also combine any of these help capabilities with QuickHelp, which
provides popup and message-line help, and operates independently of any other type of
help.

ViewKit Programmatic Interface to a Help Library

ViewKit allows you to implement help in several different ways. You can use the built-in
help capability, link to SGIHelp, or link to an external library. You must include
<Vk/VkHelpAPI.h> if you wish to implement online help.

ViewKit applications interact with a help library through three C functions:
SGIHelpInit(), SGIHelpMsg(), and SGIHelpIndexMsg(). To use an external help
library with a ViewKit application, you need to implement only these three functions.

Note: ViewKit makes all calls to the help system. Your application should never need to
call SGIHelpInit(), SGIHelpMsg(), or SGIHelpIndexMsg() directly. The only exception
would be if you create a help button in your application without using the
VkDialogManager class (see “Application Help Button Procedures” on page 314).

SGIHelplInit() initializes the help system:

int SG Hel plnit(Display *display, char *appClass, char *)

VKkApp calls SGIHelplInit() from its constructor. display is the application’s Display
structure, and appClass is the application’s class name. The third argument to

SGIHelplInit() is reserved for future Silicon Graphics use. A return value of 0 indicates
failure.

307

Chapter 11: Using a Help System With ViewKit

Using ViewKit Help

308

A ViewKit application calls SGIHelpMsg() when it needs to request help:
int SA Hel pMsg(char *in_key, char *, char *)

in_key is a character token that SGIHelpMsg() uses to look up help material. The value
of in_key depends on how the user requested help. The subsections that follow describe
how the value is determined. The other arguments to SGIHelpMsg() are reserved for
future Silicon Graphics use. A return value of 0 indicates failure.

A ViewKit application calls SGIHelpIndexMsg() to display an index of help available:
int SG Hel pl ndexMsg(char *in_key, char *)

in_key is a character token that SGIHelpIndexMsg() uses to look up a help index. The
value of in_key depends on how the user requested help. The subsections that follow
describe how the value is determined. The other argument to SGIHelpIndexMsg() is
reserved for future Silicon Graphics use. A return value of 0 indicates failure.

The ViewKit library, libvk, includes a simple help capability that allows you to provide
help messages for your application by defining them in the X resource database. This
may be sufficient for your needs.

Both SGIHelpMsg() and SGIHelpIndexMsg() are defined to accept the in_key character
token argument and look up the resource in_key.helpText in the X resource database.
They then display the retrieved help text in an Motif information dialog. If these
functions cannot find an appropriate resource value, they display the message Sorry,
no hel p available on this topic in the dialog.

The following lines show how you create the help message specifications for an
application:

*hel pText: Application default hel p message

r owl hel pText : Hel p nessage for the rowl widgets and its descendants
r ow2 hel pText : Hel p nessage for the row2 widgets and its descendants
*row2*start*hel pText: Special hel p nessage for start, a child w dget of row2
*over vi ew*hel pText : Overvi ew hel p nessage

In this example, the *helpText resource specification provides a default help message for
the entire application. If a widget does not have a more specific help message resource
specification, the application displays this default help message.

Using the SGIHelp Library

The *row1*helpText and *row2*helpText resource specifications provide help messages
for these widgets and their descendants. For example, you could use a specification like
this to provide a help message for a group of toggles or push buttons in a RowColumn
widget.

The *row2*start*helpText specification provides a help message for a start widget, a
descendant of the row2 widget. It overrides the *row2*helpText message.

*overview*helpText provides a message that the application displays when the user
chooses Overview from the Help menu.

Using the SGIHelp Library

As documented in the IRIX Interactive Desktop Integration Guide, the Silicon Graphics help
library, libhelpmsg, handles communication with the help server. libhelpmsg depends on
the libX11 library, so you must specify - | hel pnsg before -1 X11 in the compilation or
linking command.

For example, to compile a file hellohelp.c++ to produce the executable hellohelp, you would
enter the following:

CC -0 hel |l ohel p hell ohel p. c++ -1l hel pnsg -1 X11

For specific information and examples about how to implement SGIHelp, see Chapter 9,
“Providing Online Help with SGIHelp,” in the IRIX Interactive Desktop Integration Guide.
Keep in mind, however, that in most instances, ViewKit makes the calls to
SGIHelpInit(), SGIHelpMsg(), and SGIHelpIndexMsg() for you. Your application will
seldom have to call these functions directly (see “ViewKit Programmatic Interface to a
Help Library” on page 307).

For general and stylistic information about using SGIHelp, see Chapter 4, “IRIX

Interactive Desktop Services,” in the IRIX Interactive User Interface Guidelines. For
information on writing SGIHelp, see the Iris InSight Professional Publisher User’s Guide.

309

Chapter 11: Using a Help System With ViewKit

Using an External Help Library

ViewKit allows you to link to an external help library if you so choose. In order for this
to work correctly, your library must be a Dynamic Shared Object (DSO) that contains the
three C functions that serve as entry points to the help system, SGIHelpInit(),
SGIHelpMsg(), and SGIHelpIndexMsg(). These functions are then called instead of the
ViewKit Help functions that are provided with libvk. Since ViewKit predefines
SGIHelpInit(), SGIHelpIndexMsg(), and SGIHelpMsg as weak symbols, they are
overridden by your library, and no conflict will ensue. For more information, see the
VkHelp(3x) reference page.

If you do decide to write your own help library, you can examine ViewKit’s help
functions to get some ideas. The source is included in
Jusr/share/src/ViewKit/Utilities/VkHelpAPI.c++.

ViewKit Support for Building Help

ViewKit Help Menu

310

The default ViewKit help capability also provides support for determining the token
strings passed to the help system. To use this feature, you must not link with any other
help library. After you determine all of the token strings you need, you can then link with
your chosen help library to provide the final help system for your application.

To determine the token strings, set the *helpAuthorMode resource for your application

to TRUE. Then the help system displays the token string passed to the help system
instead of the help message it would normally display

The Help menu, implemented by the VkHelpPane class, provides a simple user interface
to a help system.

Implementation of the Help Menu

VkHelpPane is a subclass of VkSubMenu. VkHelpPane automatically provides five
standard menu items, as shown in Figure 11-1.

ViewKit Help Menu

1 1

|=l MenuWindow .Ln-LD_ ‘
Application Sample W

a menu Click for Help Shift+£1
Overview

Index
Kevs & Shortouts

Product Information

Figure 11-1 ViewKit Help Menu

The first four items interface to a help system. This help system must provide help
request handling and appropriate help messages for the menu item selected:

Click for Help
Provides context-sensitive help. When the user chooses this item, the
cursor changes into a question mark. The user can then click any widget
in the application, which calls SGIHelpMsg(). The in-key character
token provided to SGIHelpMsg() is the fully qualified instance name
hierarchy for the widget

Overview Requests overview help. The in_key character token provided to
SGIHelpMsg() is “ApplicationName.overview”.

Index Requests an index of available help topics. The in_key character token
provided to SGIHelpMsg() is “ApplicationName.index” .

Keys & Shortcuts
Requests help on keys and shortcuts. The in_key character token
provided to SGIHelpMsg() is “ApplicationName.keys”.

Product Information
Displays the Product Information dialog described in “Maintaining
Product and Version Information” on page 80. The Product Information
dialog has no connection to the help system.

311

Chapter 11: Using a Help System With ViewKit

312

Because VkHelpPane is a subclass of VkSubMenu, you can also use the functions
provided by VkSubMenu (see “Using ViewKit Menu Subclasses” on page 156) to add
custom Help menu items and delete predefined Help menu items.

Adding the Help Pane to a Menu

The VkMenuBar constructor, described in “Menu Bar Constructors” on page 156,
accepts a showHelpPane argument. If this argument is TRUE (the default) the
VkMenuBar constructor automatically creates a VkHelpPane object and installs it in the
menu bar.

You can create a VkHelpPane object and add it to another menu, for example a popup
menu, but you should rarely need to do this.

X Resources Associated With the Help Pane

The following X resources affect the appearance and behavior of the VkHelpPane class:

*helpMenu.labelString
The label for the Help menu (default value “Help”).

*helpMenu.mnemonic
The Help menu mnemonic (default value “H”).

*helpMenu.helpOnContextMenultem.labelString
The label for the context-sensitive help item (default value “Click for
Help”).

*helpMenu.helpOnContextMenultem.mnemonic

The context-sensitive help item mnemonic (default value “C”).

*helpMenu.helpOnContextMenultem.accelerator
The context-sensitive help item accelerator (default value “Shift+F1”).

*helpMenu.helpOnContextMenultem.acceleratorText
The context-sensitive help item accelerator label (default value
“Shift+F1”).

*helpMenu.helpOverviewMenultem.labelString
The label for the help overview item (default value “Overview”).

*helpMenu.helpOverviewMenultem.mnemonic
The help overview item mnemonic (default value “O”).

Other Types of Help

*helpMenu.helpIndexMenultem.labelString
The label for the help index item (default value “Index”).

*helpMenu.helpIndexMenultem.mnemonic
The help index item mnemonic (default value “I1”).

*helpMenu.helpKeysMenultem.labelString
The label for the keys and shortcuts item (default value “Keys &
Shortcuts”).

*helpMenu.helpKeysMenultem.mnemonic
The keys and shortcuts item mnemonic (default value “K”).

*helpMenu.help VersionMenultem.labelString
The label for the product information item (default value “Product
Information”).

*helpMenu.help VersionMenultem. mnemonic
The product information item mnemonic (default value “P”).

Other Types of Help

Context-Sensitive Help Procedures

ViewKit calls SGIHelpMsg() when the user presses the F1 key while the mouse pointer
is over a widget (unless you have provided XmNhelpCallback functions for widgets in
your application). The in_key character token that your application provides to
SGIHelpMsg() is the fully qualified instance name hierarchy for the widget.

Dialog Help Procedures
When you post a dialog as described in “Posting Dialogs” on page 193, you have the
option of providing a helpString argument. If you provide a helpString argument, the

dialog posted displays a Help button.

When the user clicks the Help button, ViewKit calls SGIHelpMsg(), passing the
helpString as the in_key character token.

313

Chapter 11: Using a Help System With ViewKit

QuickHelp

314

Application Help Button Procedures

If you provide a Help button not created by the VkDialogManager class, your
application must call SGIHelpMsg() directly.

QuickHelp is a facility that displays a string when the pointer enters a widget. Help can
be displayed in a message line at the bottom of the window, in a small balloon that pops
up next to the pointer (“balloon help” or “popup help”), or both. Each can have its own
separate help text, typically a brief phrase for popup help, and a more detailed message
for the message line.

QuickHelp availability is controlled by the resources showHelp, showPopupHelp, and
showMsgLineHelp:

e If showHelp is FALSE, no QuickHelp is shown. This provides an easy way to enable
or disable the entire QuickHelp system.

e If showPopupHelp is FALSE, popup help is not shown. If showPopupHelp and
showHelp are both TRUE, then popup help is shown.

e If showMsgLineHelp is FALSE, no message-line help is shown. If
showMsgLineHelp and showHelp are both TRUE, then message-line help is shown.

Space is allocated for the message line only if message-line help is already enabled when
the window is first created.

QuickHelp usability includes getting balloons promptly when you want them, but not
getting them when you do not want them. This requires guessing what the user wants at
any given time, and so has no perfect solution. In an attempt to come as close as possible,
QuickHelp has several timers.

The timers control how soon and how long a balloon is displayed once the pointer enters
a widget. The delay time before a balloon is displayed depends on whether the user is
deemed to be in browse mode or non-browse mode. The user is considered to be in
browse mode when the pointer enters two or more widgets in succession at a relatively
slow speed. In this mode, all balloons after the first are displayed more quickly. If the user
stops browsing for a set length of time, the application returns to non-browse mode.

QuickHelp

Since these timings greatly affect the usability of QuickHelp, they have been carefully set
to minimize both the number of unwanted balloons and the length of time users must
wait to receive wanted help. If the default timings do not work for your application, you
may reset them.

helpTextWaitTime
The delay after entering a widget, when not in browse mode, before the
QuickHelp balloon is posted.

helpTextBrowseWaitTime
The delay after entering a widget, when in browse mode, before the
QuickHelp balloon is posted.

helpTextTimeUp
The length of time a QuickHelp balloon remains posted.

helpTextBrowseCancelTime
The length of time after leaving a widget before browse mode is
cancelled.

helpTextBrowseVelocity
The pointer velocity below which users are considered to be browsing
and above which they are considered to be in transit. A QuickHelp
balloon is posted when users are browsing, but not when they are in
transit.

QuickHelp also provides some miscellaneous resources:

helpTextInsensitive
Controls whether or not QuickHelp is given when entering insensitive
widgets.

smallWidget Determines where the help balloon is displayed, in relation to the
widget. If either dimension of a widget is below the number of pixels
specified in the resource smallWidget, then the widget is considered to
be a small widget.

For a small widget, if the narrow dimension is its height, the balloon is
displayed below the widget (for example, a horizontal scroll bar). If the
narrow dimension is its width, the balloon is displayed beside the
widget (for example, a vertical scroll bar).

For large widgets, the balloon is displayed near the part of the widget
where the pointer first entered it.

315

Chapter 11: Using a Help System With ViewKit

316

Two other resources are intended for developers to use in debugging but may also be
useful to some end users.

dumpTree

Prints the name and class for each of the widgets in the widget tree at the
time the dump is done. This can be useful as a starting point for creating
the QuickHelp text for each widget.

Note: A common error is to forget that this cannot dump any widget
that has not yet been created at the time of the dump. For example, since
ViewKit usually creates menus later in a workProc, dumpTree is likely
to run before the workProc is completed. Therefore, those menus will
not be included in the widget tree, because the tree will be dumped
before the menus exist. For more information on creating menus, see the
reference page for VkMenu(3x), useWorkProcs(Boolean).

showWidgetInfo

Causes QuickHelp to display the widget name, rather than any
QuickHelp text. This can be useful when trying to figure out just what a
widget is called so you can set a resource for it. For this to work,
showHelp must be set to TRUE. If you want the widget name to be
displayed in a popup balloon, showPopupHelp must be set to TRUE. If
you want the widget name to be displayed on the message line,
showMsgLineHelp must be set to TRUE.

And, finally, there are two per-widget resources that provide the actual help strings,
msgLineHelpText and popupHelpText. Both of these are of resource class
QuickHelpText. If one of these resources is not set for any given widget, the user is not
shown that type of help message, even if showHelp, showPopupHelp, and
showMsgLineHelp are all set to TRUE.

Chapter 12

The ViewKit Graph Component

ViewKit provides a high-level component, VkGraph, for displaying and manipulating
complex arc-and-node graphs. Figure 12-1 shows the inheritance graph for VkGraph
and an auxiliary class, VkNode.

VkGraph
______________ |
: VkComponent I‘—|:
L
VkNode

Figure 12-1 Inheritance Graph for the ViewKit Graph Classes

Overview of ViewKit Graphs

VkGraph is a self-contained ViewKit component for displaying and manipulating
complex arc-and-node graphs. The graph can be disconnected and can contain cycles.
VkGraph can arrange the nodes horizontally or vertically and change the orientation
interactively. VkGraph also provides controls for interactive zooming, node
repositioning, and node alignment. Figure 12-2 shows an example of a graph created
using the VkGraph component.

317

Chapter 12: The ViewKit Graph Component

318

Application Help

Grandchnd 1

<

Grandchnd ‘

Chlld 2

| oozl |19 N === =] |l |7

Figure 12-2 Graph Created With VkGraph

All nodes displayed by a VkGraph component must be instances of the VkNode class
or subclasses that you derive from it. By default, VkNode creates an SglconGadget, but
if you create a subclass VkNode, you can use any widget for a node.

Graph Widget

The basis of the VkGraph class is the SgGraph widget, which manages and displays the
graph. This section provides an overview of the SgGraph widget. For in-depth
information on interacting with the graph widget, consult the SgGraph(3x) reference

page.
A primary responsibility of the SgGraph widget is to clearly and systematically lay out

the nodes. The graph layout algorithm is a simple and efficient tree layout algorithm
designed to handle forests of nodes. It lays out nodes as a multi-rooted tree.

Overview of ViewKit Graphs

By default, the graph widget created by the VkGraph class operates in a read-only mode
in which the graph widget is used primarily as a layout manager for arranging the node
widgets. By modifying certain SgGraph resources, you can also interactively edit the
displayed graph, creating and moving arcs and nodes. However, to support most of the
functionality of the edit mode, you must provide callback functions and other
information to the graph widget so that you can interpret the edit operations and use
them in your program.

Refer to the SgGraph(3x) reference page for details on the resources and callbacks used
for edit mode. Also refer to the example in /usr/share/src/ViewKit/ComponentDemos/graph.

Building a Graph

The process of building and displaying a graph using the VkGraph component consists
of the following steps:

1. Creating the nodes.

2. Specifying node connectivity.

3. Indicating which nodes to display.

4. Laying out the graph.

Example 12-1 illustrates this process by showing the code used to create the graph shown
in Figure 12-2.

Example 12-1 Creating a Graph Using VkGraph

#i ncl ude <Vk/ VKApp. h>
#i ncl ude <W/ WKW ndow. h>
#i ncl ude <K/ WKNode. h>
#i ncl ude <\WK/ K@ aph. h>
#i ncl ude </ WKMenu. h>

319

Chapter 12: The ViewKit Graph Component

class G aphWndow public VKW ndow {

public:

QG aphWndow(const char *);

~@ aphWndow() ;

virtual const char* classNane();
pr ot ect ed:

K@ aph *graph;
VKkNode *p_node, *cl_node, *c2_node, *gcl node, *gc2_node;

private:
static void quitCall back (Wdget, XtPointer, Xt Pointer);
stati ¢ WkMenuDesc appMenuPane[];
b

VkMenuDesc G aphWndow : appMenuPane[] = {

{ ACTIQON "Qit", &3 aphWndow : qui t Cal | back },

{ BEND}
¥
@ aphWndow. : G aphWndow(const char *name) : VkWndow(nane)
{

/1 O eate nodes

p_node = new WKNode(" parent Node", "Parent");

cl node = new VkNode("childNodel", "Child 1");

c2_node = new VkNode("childNode2", "Child 2");

gcl_node = new VkNode(" grandChi | dNodel”, "G andchild 1");
gc2_node = new VkNode(" gr andChi | dNode2", "G andchild 2");

[/l Oreate graph

graph = new K@ aph("graph", nai n\WWndow/¥dget());

/1 Add nodes to graph

gr aph- >add(p_node, c1_node); /1 p_node is parent to cl node
gr aph- >add(p_node, c2_node); /1 p_node is parent to c2_node

gr aph- >add(c1_node, gcl_node); /1 cl_node is parent to gcl_node
gr aph->add(c1_node, gc2_node); /1 cl_node is parent to gc2_node

320

Overview of ViewKit Graphs

gr aph->di splayA | (); /1 Display all nodes in graph
gr aph- >doLayout () ; /1 Layout the graph
addMi ew(gr aph) ; /] Set graph to be w ndow s view
addMenuPane(" Appl i cati on", appMenuPane); /1 Create menu bar
}
G aphW ndow. : ~@ aphW ndow()
{
del et e graph;
del ete p_node;
del ete cl node;
del ete c2_node;
del ete gcl_node;
del et e gc2_node;
}
const char* G aphWndow : cl assNane()
{
return "Q aphWndow';
}

voi d G aphWndow : quitCal | back (Wdget, Xt Pointer, XtPointer)

{
t heAppl i cati on->qui t Your sel f();

}

void nain(int argc, char **argv)

{
VKApPp *nyApp = new VKApp(" G aphM ewer", &argc, argv);
@ aphWndow *graphWn = new G aphW ndow(" Q- aphVi ewer ") ;

gr aphWn- >show() ;
nyApp->run() ;

321

Chapter 12: The ViewKit Graph Component

322

This example creates a VkWindow subclass to contain the graph. The graph itself is
created in the GraphWindow constructor:

1.

The program creates five nodes. These nodes are instances of the VkNode class,
which is described in “ViewKit Node Class” on page 327. The version of the
VkNode constructor used in this example accepts a name that is used for internal
reference and a label that is displayed.

The program creates a VkGraph object. The VkGraph constructor accepts as
arguments a name and a parent widget, in this case, the main window widget
obtained by mainWindowWidget().

The program adds the nodes to the graph using VkGraph::add(). When called with
pointers to two nodes, this function associates the nodes with the graph, and marks
the first node as being the parent of the second node. In this way, the program
specifies the structure of the graph.

The program calls VkGraph:displayAll(), which indicates that the graph should
display all nodes.

The program calls VkGraph::doLayout(), which lays out the graph according to the
layout algorithm and manages all widgets associated with the graph.

Interactive Viewing Features Provided by VkGraph

In addition to displaying a graph, VkGraph automatically provides controls for
interactively manipulating the graph. One set of controls is contained in the control
panel, shown in Figure 12-3, which appears along the bottom of the graph.

Zoom Menu
Zoom Out

Zoom In
Graph Overview
Multiple Arcs
Realign
Rotate

Figure 12-3 Graph Command Panel

Overview of ViewKit Graphs

The control panel contains buttons and a menu that allow the user to interactively control
various characteristics of the graph’s display. Using the control panel, the user can

zoom in or out

display a graph overview

toggle between displaying and hiding duplicate arcs connecting nodes
align nodes

toggle between horizontal and vertical orientation

Additionally, VkGraph automatically creates popup menus that contain commands that
allow the user to hide and display nodes in the graph.

Zooming

VkGraph provides eight preset zoom settings that allow the user to shrink or enlarge the
size of the graph. The user can directly set the zoom value using the Zoom menu shown
in Figure 12-4.

323

Chapter 12: The ViewKit Graph Component

324

Figure 12-4 Interactively Changing the Graph Zoom Value

Clicking the Zoom Out button (the down-arrow button immediately to the right of the
Zoom menu) changes the zoom setting to the next lower value, and clicking the Zoom In
button (the up-arrow button to the right of the Zoom Out button) changes the zoom
setting to the next higher value.

Graph Overview

The user can display an overview of all a graph’s visible nodes by clicking the Graph
Overview button.

Overview of ViewKit Graphs

Within the overview window is a viewport that represents the boundaries of the graph
visible in the main graph window. The user can click the viewport and drag it to a new
location to change the area visible in the main graph window. As the user drags the
viewport, the main graph window scrolls to match the viewport’s location in the
overview.

The overview window also contains an Admin menu with these commands:

“Scale to Fit” Scales the graph in the window to match the aspect ratio of the window.

“Show Arcs” Shows the arcs between nodes. This option is turned on by default; if the
arcs clutter the window, the user can turn off the option, which removes
the arcs from the window.

“Close” Closes the overview window.

Displaying Duplicate Arcs

By default, the graph displays only a single arc between nodes, even if you define
multiple connections between the nodes. The user can click the Multiple Arcs button to
display multiple arcs between nodes; the graph displays an arc for each connection you
defined. The user can turn off the multiple-arc display by clicking the Multiple Arcs
button again.

Realigning Nodes
Occasionally, as a result of moving or displaying nodes, your graph display might

become cluttered. The Realign button “cleans up” the graph display by laying out all
visible nodes again.

Toggling Between Horizontal and Vertical Orientation
The default graph orientation is horizontal. The user can change to a vertical orientation

by clicking the Rotate Graph button. The user can return to the horizontal orientation by
clicking the Rotate Graph button again.

325

Chapter 12: The ViewKit Graph Component

326

Hiding and Displaying Nodes

VkGraph provides controls that allow the user to hide a single node, reveal a node’s
parents or children, or collapse the part of the graph that branches from a node. To
perform any of these actions, the user moves the pointer onto the node and presses the
right mouse button to open the popup Node menu. The Node menu contains four
commands; only commands applicable to that node are made available. Nonapplicable
commands are grayed. The commands are as follows:

“Hide Node” Hides the node and connecting arcs from the graph.

“Collapse Subgraph”
Hides all descendent nodes and connecting arcs.

“Show Immediate Children”
Displays the node’s immediate child nodes and connecting arcs. This
command does not display more than the first subordinate level of
nodes.

“Show Parents”
Displays the node’s immediate parent nodes and connecting arcs.

Edit Mode Operations

There are additional operations that a user can perform if you set the graph to edit mode,
as described in “Graph Widget” on page 318. By default, the graph widget created by the
VkGraph class operates in read-only mode. You can set the graph widget to edit mode
in a VkGraph subclass.

Note: To support much of the functionality of the edit mode, you must provide callback
functions and other information to the graph widget so that you can interpret the edit
operations and use them in your program. Refer to the SgGraph(3x) reference page for
details on the resources and callbacks used for edit mode.

You must select one or more nodes before you can perform an operation on it. You can
select nodes only if the graph is in edit mode. By default, the graph is created in
display-only mode.

ViewKit Node Class

ViewKit Node Class

To perform most operations in edit mode, the user must first select one or more nodes.
The user can select a single node by clicking it with the left mouse button. The graph
highlights the selected node. The user can select additional nodes by holding down the
Control key and clicking additional nodes with the left mouse button. The user can also
select multiple nodes with a bounding box by moving the pointer to a spot on the graph
where there is no node or arc, then holding down the left mouse button and dragging out
a bounding box. When the button is released, all nodes fully enclosed by the box are
selected. (Partially enclosed nodes aren’t selected.)

The user can deselect nodes by clicking the left mouse button on a blank section of the
graph.

The user can move a node by clicking that node with the middle mouse button and then
dragging the node anywhere in the graph window. The user can move several nodes at
once by first selecting the nodes and then clicking any one of the nodes with the middle
mouse button and dragging the nodes to their new position.

The popup Selected Nodes menu allows the user to perform an operation on all selected
nodes. To open the Selected Nodes menu, the user moves the pointer to any blank area
of the graph, and then presses the right mouse button. The menu has three commands:

“Hide Selected Nodes”
Hides all selected nodes and their connecting arcs.

“Collapse Selected Nodes”
Hides all descendent nodes and connecting arcs of the selected nodes.

“Expand Selected Nodes”
Displays the immediate children of all the selected nodes.

VkGraph requires that all nodes that it contains be instances of either the VkNode class
or a subclass of VkNode. The VkNode class is responsible for tracking the connectivity,
display characteristics, and other features of the nodes. VkNode is a subclass of
VkComponent.

The VkNode class provides only basic support for interacting with the node widget. In
particular, you can set the string displayed as a label through the VkNode constructor;
however, you can create subclasses of VkNode that support any widget type, as
discussed in “Creating Node Subclasses” on page 331.

327

Chapter 12: The ViewKit Graph Component

328

Basic Node Functionality

This section describes the basic functionality provided by the VkNode class. Most
VkNode functions other than the constructor are for use by VkGraph; however, you
might occasionally find some of the utility and access functions useful.

Node Constructor and Destructor

The VkNode constructor has two forms:
VKkNode(const char *mname, const char *label = NULL)

VkNode(const char *name, VkNode *parent,
const char *label = NULL)

name is the node’s component name. You should provide unique names for all nodes.
label is the label that the node displays when visible in a graph. If you do not provide a
label, the node uses the component name as the label. You can optionally provide a
pointer to an existing node, which the constructor uses as a parent node for the new
node.

As an example, the following line of code creates the node state19 with the internal name
“state19” and the label “Indiana”:

VkNode statel9 = new VkNode("statel9", "Indiana");

The following line of code creates a new node, city41, as a child of state19. The name of
the new node is “city41” and the label is “Terre Haute”:

VkNode city4l = new VKNode("city4l", statel9, "Terre Haute");

Note: The VkNode constructor merely initializes internal variables; it does not create
any widgets. The VkGraph object of which a VkNode object is a member can create and
destroy node widgets as needed. The VkGraph object calls a protected member function,
VkNode::build(), whenever it needs to create a node’s widget. “Creating Node
Subclasses” on page 331 discusses build() in more detail.

The VkNode destructor destroys the node’s widget if it exists and deallocates all other
internal storage.

ViewKit Node Class

Node Utility Functions

VkNode maintains a list of child nodes that you can access using the access functions
described in “Node Access Functions” on page 329. By default, the order of the child
nodes in this list depends on the order in which you specified the child relationships. The
first child node you specify has an index of 0, the second 1, and so on.You can use the
VkNode::sortChildren() to sort the immediate child nodes of a node:

voi d sortChildren()

The default algorithm used by sortChildren() sorts nodes alphabetically by their internal
node names (not their labels).

You can direct VkNode to use a different sort comparison function with
VkNode::setSortFunction():

static void setSortFunction(VkNodeSortFunction func)

The type definition of VkNodeSortFunction is as follows:
typedef int (*VkNodeSort Function)(VkNode *, VkNode *)

The function you provide must be a static function that accepts as arguments two nodes,
and returns an integer value less than zero if the first node comes before the second node,
zero if the two nodes are equal, and greater than zero if the second node comes before the
first node. For example, the following function sorts nodes by their label strings:

static int sortNodesByLabel (VkNode *one, VkNode *two)
{

int value = strcnp(one->label (), two->label());
return val ue;

}

(“Node Access Functions” on page 329 describes VkNode::1abel().)

Node Access Functions

VkNode provides a number of access functions for obtaining values associated with a
node.

You can retrieve the node’s component name using VkNode::name():

char *nane() const

329

Chapter 12: The ViewKit Graph Component

330

You can retrieve the node’s label string with VkNode::label():

virtual char *label ()

If you did not provide a label string in the node constructor, the value of the label string
is the same as the component’s name.

You can determine the number of parent and child nodes with VkNode::nParents() and
VkNode::nChildren(), respectively:

int nParents() const
int nChildren() const

You can retrieve a specific parent or child node using VkNode::parent() and
VkNode::child() respectively:

VkNode *parent (int index) const
VkNode *chil d(int index) const

By default, the order of the parent and child nodes depends on the order in which you
specified the parent or child relationships. The first parent node you specify has an index
of 0, the second 1, and so on. Initially, the child nodes are numbered similarly; however,
if you sort the child nodes using the sortChildren() function, the nodes are reordered
according to the sort function you used. For example, if you sorted the child nodes
alphabetically by component name, the first child node alphabetically has an index of 0,
the second 1, and so on.

You can find a particular parent or child node by component name using
VkNode:findParent() and VkNode::findChild(), respectively:

VkNode *findParent (char *name)
VkNode *findChil d(char *mname)

These functions return a pointer to the node if found, and NULL if they do not find the
node. These functions search only immediate parent or child nodes, not all ancestor or
descendent nodes.

ViewKit Node Class

Creating Node Subclasses

You can create subclasses of VkNode to extend its features in a variety of ways to
maintain additional data or to change the way the node displays itself in a graph. Some
possibilities include the following:

e providing access functions for setting and retrieving resources of the default
SglconGadget(3x) widget provided by the VkNode base class

e using widgets other than the default SglconGadget(3x) widget

e creating additional data members and member functions to store
application-specific node information

You have a great deal of flexibility in deciding how to extend the VkNode class. The

important restriction that you must keep in mind is that the VkGraph object of which a
VkNode object is a member can create and destroy node widgets as needed. Therefore,
in your subclass function definitions you cannot assume that your node’s widget exists.

The VkGraph object calls a protected member function, VkNode::build(), whenever it
needs to create a node’s widget. If you want to use the additional features of the default
SglconGadget widget or if you want to use a different widget in you subclass, you must
override build():

virtual void buil d(Wdget parent)

If you simply want to use the additional features of the default SglconGadget widget,
you can call VkNode::build() from within your subclass’s build() function to create the
SglconGadget widget and set the widget’s label. Then, you can perform any additional
operations you want. (Consult the SglconGadget(3x) reference page for more
information on using this widget.) For example:

voi d MyNode: : bui | d(W dget parent)
{

VkNode: : bui | d(parent);

/1 Additional setup...
}

If you want to use your own widget or widget hierarchy, create the widget(s) using parent
as the parent widget, and assign the widget or root of a widget hierarchy to the
_baseWidget data member. After creating the _baseWidget, call installDestroyHandler(),
as described in “Handling Component Widget Destruction” on page 24.

331

Chapter 12: The ViewKit Graph Component

ViewKit Graph Class

332

From within a VkNode subclass you can also access the _label data member:

char *_label

_label contains the node’s label string as set by the VkNode constructor.

This section describes how to build and manipulate graphs using the VkGraph class.
Minimally, you must perform the following actions to build and display a ViewKit

graph:

1. Create the VkGraph object.

2. Create the nodes as instances of VkNode or a subclass.

3. Add the nodes to the graph and specify the node connectivity.
4. Indicate which nodes to display.

5. Lay out the graph.

VkGraph Constructor and Destructor

The VkGraph constructor is simple with few arguments. You must provide a name and
the parent widget for the graph:

VKG aph(char *name, W dget parent)

The VkGraph destructor destroys the graph. It does not destroy any VkNode objects
that are part of the graph.

Adding Nodes and Specifying Node Connectivity

After you create nodes, you must add them to the graph object you created. Also, if you
didn’t specify the parent-child relationship for the nodes when you created them, you
should supply the remaining connectivity information when adding the nodes to the
graph. (See “ViewKit Node Class” on page 327 for information on creating nodes.)

ViewKit Graph Class

The VkGraph::add() function adds nodes to a graph object:
virtual int add(VkNode *node)

virtual void add(VkNode *parent, VkNode *child,
char *attribute = NULL)

If you supply only one node pointer as an argument, add() simply adds the node to the
graph. If you have already added the node to the graph, add() does nothing.

If you supply two node pointers as arguments, add() adds both nodes to the graph and
establishes the first node as the parent of the second node. If you have already added
either node to the graph, add() does not add the node again, but it does establish the
parent-child relationship between the nodes.

Note: The second form of add() establishes the parent-child relationship between nodes
even if one already exists. Thus, it is possible to have more than one connection between
nodes. By default, the graph displays only a single arc between connected nodes, even if
you define multiple connections between the nodes. However, as described in
“Displaying Duplicate Arcs” on page 325, by clicking the graph’s Multiple Arcs button
the user can force the graph to display an arc for each connection you defined. To turn off
the multiple-arc display, the user can click the Multiple Arcs button again.

When specifying a parent-child connection using add(), you can specify an attribute for
that connection. An attribute is an arbitrary name that you can use to control the
appearance of the arc widget that connects the two nodes. For example, assume that you
add two nodes to a graph as follows:

graph->add(parent, child, "primry");
gr aph->add(parent, child, "secondary");

The resulting graph displays two connecting arcs between the two nodes. You can now
specify X resources to control various aspects of the arc. For example:

*primary*foreground: red
*primary*arcDirection: bi di rect ed
*secondar y*f or egr ound: bl ue
*secondary*arcDirection: undirected
*secondary*styl e: Li neOnOf f Dash

333

Chapter 12: The ViewKit Graph Component

334

You can use this method to set many of the resources supported by the SgArc widget. The
resources you can specify are: XmNforeground, XmNtoSide, XmNfromSide,
XmNfromPosition, XmNtoPosition, XmNarcDirection, XmNfontList, XmNarcWidth,
XmNstyle, and XmNdashes. See the SgArc(3x) reference page for details on these
resources.

The following code fragment creates a graph, creates two nodes, establishes a
parent-child relationship between the nodes, and adds the nodes to the graph:

gr aph = new VkG aph("graph", parent);
p_node = new VkNode("parent Node", "Parent");
cl_node = new VkNode("chil dNodel", p_node, "Child 1");

gr aph- >add(p_node) ;
gr aph->add(cl_node);

Note that in this example, the connection between the two nodes is established when you
create c1_node. Therefore, you must add the nodes to the graph using separate calls to
add(). Suppose that, instead of the two separate calls, you execute this:

gr aph->add(p_node, cl_node);

Then you not only add the two nodes to the graph, but you establish a second connection
between the nodes.

You can accomplish the same result as above by creating the nodes without providing the
parent-child relationship, and then specifying the connection when you add the nodes to
the graph. The following code fragment is functionally equivalent to that shown above:

gr aph = new VkG aph("graph", parent);
p_node = new VkNode("parent Node", "Parent");
cl _node = new VkNode("chil dNodel", "Child 1");

gr aph->add(p_node, cl _node);

Removing Nodes

You can remove nodes from a graph using VkGraph::remove():

virtual void renove(VkNode *node, Bool ean deleteNode = FALSE)

By default, remove() removes the node from the graph but does not delete it. If you set
the deleteNode argument to TRUE, remove() deletes the node when it removes it.

ViewKit Graph Class

Indicating Which Nodes to Display

Once you have added all nodes to a graph and specified their connectivity, you must
indicate which nodes the graph should display. VkGraph provides many functions that
allow you to display or hide all of the graph, individual nodes, and portions of node
subtrees.

After displaying nodes, you should call one of the graph layout member functions as
described in “Laying Out the Graph” on page 338. Otherwise, the nodes might not
display in desired locations.

The basic display functions are VkGraph::displayAll() and VkGraph::clearAll():

virtual void displayAl ()
void clearAll ()

displayAll() displays all nodes and clearAll() hides all nodes. Typically, after creating
your graph, you execute displayAll() to display all of the nodes. For example:

graph->di spl ayAl | ();

Sometimes you might want to display only portions of your graph. VkGraph provides
functions to operate on either single nodes or subtrees of nodes.

The VkGraph::display() function displays a single node:

virtual void display(VkNode *child)
virtual VkNode *di spl ay(char *name)

You can provide display() with either a pointer to the node or the component name of
the node. If you provide the node’s name, this function returns a pointer to the node.

VkGraph::undisplay() hides a single node:

virtual void undispl ay(VkNode *node)
virtual void hi deNode(VkNode *node)

VkGraph::hideNode() is equivalent to undisplay().

335

Chapter 12: The ViewKit Graph Component

336

VkGraph also provides a large number of functions that display or hide portions of the
graph:

displayWithChildren() displays a node and all of its immediate child nodes (not all
descendent nodes):

virtual void displayWthChildren(VkNode *node)
virtual VkNode *di spl ayWthChil dren(char *mname)

If you provide the node’s name, this function returns a pointer to the node.

expandNode() is functionally equivalent to displayWithChildren() except that it
also calls VkGraph::doSubtreeLayout() to lay out the child nodes according to the
graph’s layout algorithm:

virtual void expandNode(VkNode *node)

See “Laying Out the Graph” on page 338 for more information on
doSubtreeLayout().

displayWithAllChildren() displays a node and all of its descendent nodes:

virtual void displayWthAl Il Chil dren(VkNode *node)
virtual VkNode *di splayWthAl | Children(char *name)

If you provide the node’s name, this function returns a pointer to the node.

expandSubgraph() is functionally equivalent to displayWithAllChildren() except
that it also calls VkGraph::doSubtreeLayout() to lay out the child nodes according
to the graph’s layout algorithm:

virtual void expandSubgraph(VkNode *node)

See “Laying Out the Graph” on page 338 for more information on
doSubtreeLayout().

hideAllChildren() hides all of a node’s descendent nodes:

virtual void hideAll Children(VkNode *rnode)

Note that this function does not hide node itself.
hideWithAllChildren() hides a node and all of its descendent nodes:
virtual void hideWthAll Children(VkNode *node)

ViewKit Graph Class

e displayWithParents() displays a node and all of its immediate parent nodes (not all
ancestor nodes):

virtual void displayWthParents(VkNode *node)
virtual VkNode *di spl ayWt hParent s(char *mname)

If you provide the node’s name, this function returns a pointer to the node.

¢ displayWithAllParents() displays a node and all of its ancestor nodes:

virtual void displayWthAl Il Parents(VkNode *node)
virtual VkNode *di spl ayWt hAl | Parent s(char *mname)

If you provide the node’s name, this function returns a pointer to the node.

* hideParents() hides all of a node’s immediate parent nodes (not all ancestor nodes):
virtual void hideParents(VkNode *node)
Note that this function does not hide node itself.

¢ displayParentsAndChildren() displays a node and all of its immediate parent and
child nodes (not all ancestor and descendent nodes):

virtual void displ ayParent sAndChi | dren(VkNode *node)
vi rtual VkNode *di spl ayPar ent sAndChi | dren(char *name)

If you provide the node’s name, this function returns a pointer to the node. Note
that this function does display node itself.

¢ hideParentsAndChildren() hides all of a node’s immediate parent and child nodes
(not all ancestor and descendent nodes):

virtual void hideParent sAndChi |l dren(VkNode *node)
Note that this function does not hide node itself.

You can also create your own functions for determining whether or not nodes are
displayed and then use the VkGraph::displaylIf() function to apply those functions:

virtual void displaylf(VkG aphFilterProc)

The type definition of VkGraphFilterProc is as follows:
t ypedef Bool ean (*VKG aphFilterProc) (VkNode);

337

Chapter 12: The ViewKit Graph Component

338

The function you provide must be a static function that accepts a node as an arguments
and returns TRUE if the node should be displayed.

Note: displaylf() does not hide (that is, call undisplay()) if the filter function returns
FALSE for a node. Therefore, if you want to display only those nodes for which the filter
function returns TRUE, you must first call clearAll().

For example, the following function displays only those nodes whose names begin with
the string “state”:

static Bool ean displ aySt at e(VkNode *node)

{
if (strcnp("state", node->nane(), 5)
return TRUE;
el se
return FALSE;
}

Laying Out the Graph

The final step in displaying a graph is to lay it out. Laying out the graph arranges the
widgets in a logical manner and then manages the widgets.

To lay out the entire graph, call the VkGraph::doLayout() function, which applies the
layout algorithm to the entire graph and then manages all widgets associated with the
graph:

voi d doLayout ()

If you modify the graph after displaying it, or if you allow the user to edit the graph
interactively, the graph might become cluttered and you might want to lay out the graph
again. To do so you can call doLayout() again to force the graph to reapply the layout
algorithm to the graph to clean up the display. As an example, the Realign button
provided on the graph command panel simply calls doLayout() whenever the user clicks
the button.

ViewKit Graph Class

If, after displaying the graph, you display any additional nodes (for example, using the
VkGraph:display() function), you must force a layout of the graph to manage all the
widgets you created. You can call doLayout() again to do so, but this applies the layout
algorithm to the entire graph. Doing so could produce major changes in the layout of the
entire graph, which could be disruptive and undesired if the user has previously moved
nodes. Also, it could take considerable time if the graph is large. In this case, you can
instead call the VkGraph::doSubtreeLayout() function which, given a root node, applies
the layout algorithm to just a subtree of the graph:

voi d doSubt reeLayout (VkNode *node)

For example, the following code fragment illustrates displaying a graph, graph, and then
displaying another node, newNode:

/1 At this point, all nodes are created, the connectivity is
/1 specified, and certain nodes selected to be displayed

/1 Lay out and display the graph

gr aph- >doLayout () ;
/1 Mark newNode to be displ ayed

gr aph->di spl ay(newNode) ;

/1 Display newNode, re-laying out only the subtree
/1 under newNode

gr aph- >doSubt r eeLayout (newNode) ;

VkGraph::doSparseLayout() is a special-purpose build and layout function that
displays the relationship between a node and its grandparent nodes even if the node’s
parents are not displayed:

voi d doSpar selLayout ()

doSparseLayout() performs a special build of the graph and whenever it finds a node
with an undisplayed parent node, it checks to see whether there are any displayed
grandparent nodes. If doSparseLayout() finds such grandparent nodes, it creates a
dashed-line arc (instead of a solid-line arc) to connect the node and its grandparent
nodes. After finishing the build process, doSparseLayout() performs a layout of the
entire graph and manages all widgets associated with the graph.

339

Chapter 12: The ViewKit Graph Component

340

Butterfly Graphs

So far, this chapter has discussed creating tree graphs using the VkGraph class.
However, VkGraph also supports butterfly graphs, which display only a central node and
its immediate parent and child nodes. The central node of a butterfly graph is called the
butterfly node.

VKkGraph can construct a butterfly graph from any graph specification. All you need to
do is call VkGraph::displayButterfly() to specify one node as the butterfly node;
VkGraph automatically determines which nodes to display:

virtual void displayButterfly(VkNode *node)
virtual VkNode *di splayButterfly(char *name)

Then call VkGraph::doLayout() to lay out the graph as you normally would. For
example, assuming that you have already defined a graph specification for a graph called
graph, the following code fragment would instruct the graph object to display a butterfly
graph centered on the node centerNode:

graph->di spl ayButterfly(centerNode);
gr aph- >doLayout () ;

After displaying a butterfly graph, you can use displayButterfly() to specify a new
butterfly node and display a different butterfly graph given the same graph specification.
For example, the following code fragment illustrates setting a new butterfly node,
newCenter, after displaying the butterfly graph in the example above:

gr aph->di spl ayButterfly(newCenter);
gr aph->doLayout () ;

After displaying a butterfly graph, you can return to displaying a normal tree graph by
setting the layout style to XmGRAPH using the VkGraph::setLayoutStyle() function:

virtual void setLayoutStyl e(char type)

For example, the following code fragment illustrates displaying the entire graph
specified by graph after displaying the butterfly graphs above:

gr aph- >set Layout St yl e(XnGRAPH) ;
graph->di spl ayAl | ();
gr aph->doLayout () ;

ViewKit Graph Class

Displaying a Graph Overview

As discussed in “Graph Overview” on page 324, by clicking the Graph Overview button
in the graph command panel, a user can display an overview of all a graph’s visible
nodes.

You can also display the overview window programmatically using
VkGraph::showOverview():

voi d showOvervi ew)

Call VkGraph::hideOverview() to programmatically hide the overview window:
voi d hi deOvervi ew)

You can obtain a pointer to the overview window’s VkWindow object using

VkGraph::overviewWindow():
VKW ndow *overvi ewW ndow()

Graph Utility Functions

VkGraph provides the following utility functions:
* VKkGraph:setZoomOption() sets the zoom value for the graph:
virtual void setZoonmOption(int index)

Pass to this function the integer index corresponding to the index in the Zoom
Menu of the magnification that you want. (“Zooming” on page 323 describes the
Zoom Menu and its default values.)

* VkGraph:sortAll() sorts all nodes associated with the graph by calling
VkNode::sortChildren() on all nodes:

void sortAll ()
“Node Utility Functions” on page 329 describes VkNode::sortChildren().

341

Chapter 12: The ViewKit Graph Component

342

VkGraph::forAllNodesDo() allows you to perform some action on all nodes
registered with a graph. The type definition of VkGraphNodeProc is as follows:

typedef void (*VkG aphNodeProc) (VkNode *)
The function you provide must be a static function that accepts a node as an
arguments and has a void return value:

virtual void forAl |l NodesDo(VkG aphNodeProc function)

VkGraph::makeNodeVisible() ensures that a particular node is in the visible
portion of the graph’s window:

voi d makeNodeVi si bl e(VkNode *node)

If the node you specify is not currently visible, makeNodeVisible() scrolls the
graph until the specified node appears in the visible portion of the window.

VkGraph::saveToFile() prompts the users for a filename and saves a PostScript®
version of the graph to that file:

voi d saveToFil e()

VkGraph::setSize() allows you to pre-allocate space in your graph’s internal tables
for the number of nodes you specify:

voi d set Size(int entries)

If you know how many nodes you plan to add to your graph, calling setSize()
before adding nodes to your graph can save time because the graph can allocate all
memory needed in one operation instead of expanding the tables dynamically as
you add nodes. Your graph can still allocate additional space if you actually add
more nodes than you reserved space for using setSize().

Graph Access Functions

VkGraph provides the following access functions for obtaining values associated with
the graph:

VkGraph:numNodes() returns the number of nodes in the graph:
i nt nunNodes()

VkGraph:find() returns the first VkNode object registered with the VkGraph
object that has the given name:

VkNode *find(char *name)

ViewKit Graph Class

* VkGraph::graphWidget() returns the SgGraph widget instantiated by the
VkGraph component:

W dget graphW dget ()
Not all the functionality of the SgGraph widget is encapsulated in the VkGraph

class, and it is sometimes useful to set various resources directly on the graph
widget.

¢ VkGraph:workArea() returns the XmForm widget at the bottom of the VkGraph
component, which contains the graph controls:

W dget wor kArea()
You can use this area to add additional controls.

¢ VKkGraph:twinsButton() returns the Multiple Arcs button widget used to control
whether sibling arcs are shown:
W dget twi nsButton()

¢ VkGraph:relayButton() returns the Realign button widget used to relay the graph:
W dget rel ayButton()

* VkGraph:reorientButton() returns the Rotate button widget used to reorient the
graph:
W dget reorientButton()

Reusing a Graph Object

Occasionally, after displaying one graph, you might want to display an entirely different
graph. The simplest method of accomplishing this is to create another VkGraph object
for the new graph.

However, creating a new graph object entails the overhead of creating many new widgets
and data structures. Sometimes it is simpler, faster, and more appropriate to re-use the
existing graph object. For example, consider a window in which you are displaying a
graph of C++ class hierarchies associated with a program. The window might contain
controls that allow the user to select other programs to examine. If the user selects a new
program to examine, the most convenient thing to do would be to keep the existing
graph object but “clear it” of all existing information.

343

Chapter 12: The ViewKit Graph Component

344

The VkGraph:tearDownGraph() function provides this ability:
virtual void tear DownG aph()

It tears down the graph by destroying all arc and node widgets and deleting all VkNode
objects associated with the graph. This function is equivalent to deleting all VkNode
objects associated with the graph, deleting the graph object, and creating a new graph
object with the same name, but entails less overhead processing than if you were to
explicitly perform these actions separately.

ViewKit Callbacks Associated With VkGraph

The VkGraph class declares two ViewKit member function callbacks.

VkGraph activates the VkGraph::arcCreatedCallback whenever the graph creates a SgArc
widget to connect two nodes. The arcCreatedCallback callback includes as call data the
newly created SgArc widget. See the SgArc(3x) reference pages for information on the
SgArc widget.

VkGraph activates the VkGraph::arcDestroyedCallback whenever the graph destroys all
arc widgets as a result of a call to VkGraph::clearAll() (see “Indicating Which Nodes to
Display” on page 335). VkGraph activates the arcDestroyedCallback callback once for
every arc destroyed, including as call data the SgArc widget destroyed. See the SgArc(3x)
reference pages for information on the SgArc widget.

X Resources Associated With VkGraph

VKkGraph sets several X resources that specify the labels of its popup menus. You can
override these values in an app-defaults file if you want to provide your own labels. The
resources and their default values are as follows:

gr aph popupMenu* hi deNode*| abel S ri ng: H de Node

gr aph popupMenu* col | apseSubgr aph*| abel Stri ng: Col | apse Subgr aph

gr aph popupMenu* expandQneLevel *| abel String: Show | nedi ate Chi | dren
gr aph popupMenu* expandSubgr aph*| abel Stri ng: Expand Subgraph

gr aph popupMenu* hi dePar ent s. | abel Stri ng: H de Parents

gr aph popupMenu* expandPar ent s. | abel St ri ng: Show Parent s

gr aph popupMenu* sel ect edNodes. | abel Stri ng: Sel ect ed Nodes

gr aph popupMenu* hi deSel ect edNodes. | abel St ri ng: H de

gr aph popupMenu* col | apseSel ect edN\odes. | abel String: ol | apse
gr aph popupMenu* expandSel ect edNodes. | abel Stri ng: Expand

ViewKit Graph Class

Subclassing VKkGraph

VkGraph provides much of the functionality that you should require for displaying and
manipulating graphs. In most other cases, you can obtain a pointer to the SgGraph
widget using the graphWidget() access function and operate directly on the widget.

However, sometimes you might want to perform additional processing when certain
actions occur. In a case like this, you can create a subclass of VkGraph. VkGraph
provides a number of virtual “hook” functions that you can override and implement
additional functionality:

VkGraph::buildCmdPanel() builds the command panel at the bottom of the graph:
virtual void buil dChdPanel (W dget parent)

You can override this function to create your own custom command panel for your
graph.

VkGraph::buildZoomMenu() builds the Zoom menu, the Zoom Out button, and the
Zoom In button as part of the command panel:

virtual void buil dZoomvenu(W dget parent)

VkGraph::addMenultems() allows you to modify the Node popup menu described
in “Hiding and Displaying Nodes” on page 326:

virtual void addMenul t ens(VkPopupMenu * menu)

You can override this function and use the various functions provided by the
VkMenu class to add new menu item or delete default menu items. “ViewKit Menu
Base Class” on page 133 describes the functions provided by VkMenu.

VkGraph::popupMenu() posts the Node popup menu (described in “Hiding and
Displaying Nodes”):

virtual void popupMenu(VkNode *node, XEvent *event)

345

Chapter 12: The ViewKit Graph Component

346

The function receives two arguments: a pointer to the node on which the user
clicked the right mouse button, and the X ButtonPress event. By default, the
function does the following;:

1. Activates and deactivates menu items to reflect the valid options for the node.
2. Sets the label of the popup menu to be the same as the label of the node.
3. Calls the popup menu’s show() function, passing event as an argument.

You can override this function if you want to change its behavior or support any
additional menu items that you added by overriding addMenultems().

VkGraph::addDesktopMenultems() allows you to modify the Selected Nodes
popup menu (described in “Edit Mode Operations” on page 326):

virtual void addDeskt opMenul t ens(VkPopupMenu *menu)

You can override this function and use the various functions provided by the

VkMenu class to add new menu items or delete default menu items. “ViewKit
Menu Base Class” describes the functions provided by VkMenu.

VkGraph::twinsVisibleHook() is called when the user toggles the Multiple Arcs or
“twins” button:

virtual void tw nsVisibl eHook(Bool ean state)

The new state of the twins buttons is passed as an argument to this function. By
default, the function is empty. You can override this function to perform additional
operations when the graph changes its display mode.

Chapter 13

Miscellaneous ViewKit Display Classes

This chapter contains descriptions of miscellaneous ViewKit classes that you use
primarily to display information or to manage display items. Figure 13-1 shows the
inheritance graph for these classes.

VkTickMarks
|- T T T T T T T T T | 1
! VkComponent ! VkDoubleBuffer
L e 1| e |
VkResizer
VkWidgetList —— VkAlignmentGroup

Figure 13-1 Inheritance Graph for the Miscellaneous ViewKit Display Classes

ViewKit Support for Double-Buffered Graphics

VkDoubleBuffer is an abstract class that provides support for components that need to
display double-buffered graphics.

Note: VkDoubleBuffer provides software double-buffering only; it does not use the
hardware double-buffering available on many Silicon Graphics workstations. As a result,
you might notice some flickering in your VkDoubleBuffer animations.

You must create a separate subclass of VkDoubleBuffer for each double-buffered
display component in your application. In each subclass, you include the Xlib calls to
create the text or graphics that the component displays. You do not have to worry about
handling Expose events or resize requests, because VkDoubleBuffer handles these
automatically.

347

Chapter 13: Miscellaneous ViewKit Display Classes

348

The public interface to VkDoubleBuffer consists simply of a function that your
application calls whenever it needs to update the component’s display. For example, to
drive an animation, you could set a timer to update a component at a desired interval.

Double Buffer Constructor and Destructor

The VkDoubleBuffer constructor accepts the standard ViewKit component constructor
arguments, a component name and a parent widget:

VkDoubl eBuf f er (const char *mname, W dget parent)

The constructor creates the various widgets and Pixmaps used by the component and
installs callbacks to handle Expose events and resize requests. In your subclass
constructor, you can initialize any graphics contexts and other data that your component
requires.

The VkDoubleBuffer destructor frees the widgets and Pixmaps allocated by the
VkDoubleBuffer constructor:

~VkDoubl eBuf f er ()

In your subclass destructor you should free any graphics contexts and other data
allocated by your component.

Drawing in the Double Buffer Component

The VkDoubleBuffer class calls your component’s draw() function when your
component needs to draw a new frame:

virtual void draw()

draw() is declared by VkDoubleBuffer as a pure virtual function, and it is the only
function you must override when creating a derived class of VkDoubleBuffer. The
draw() function should use Xlib calls to display text or graphics by drawing to the
_canvas data member:

Pi xmap _canvas

The derived class always draws to the back buffer, although the derived class does not
need to be aware of this. The VkDoubleBuffer class copies the contents of this Pixmap
to the front buffer as needed.

Tick Marks for Scales

Switching Buffers in the Double Buffer Component

VkDoubleBuffer::update() is the public member function that the application calls to
update the component’s display:

virtual void update()

update() calls your component’s draw() function to obtain a new frame. Then it swaps
buffers, and if the component is currently displayed, updates the screen with the
contents of the front buffer. Finally, update() clears the back buffer by filling it with the
component’s background color.

Handling Double Buffer Component Resize Requests

VkDoubleBuffer automatically handles window resize requests, resizing the front and
back buffers and filling them with the component’s background color. If you need to
perform additional operations in your derived class, you can override the virtual
function VkDoubleBuffer::resize():

virtual void resize()

VkDoubleBuffer calls resize() after resizing and reinitializing the buffers. The new
height and width of the drawing area are contained in the _width and _height data
members:

Di mensi on _width
Di nensi on _height

Tick Marks for Scales

The VkTickMarks class, derived from VkComponent, displays a vertical set of tick
marks. Most frequently, you would use this component next to a vertical Motif
XmScale(3Xm) widget. By default, a VkTickMarks component right-justifies its tick
marks and displays its labels to the left, which is appropriate if you display the
component to the left of a scale. You can also configure a VkTickMarks component to
left-justify its tick marks and display its labels to the right, which is appropriate if you
display the component to the right of a scale. Figure 13-2 shows an example of each
version of the tick marks.

349

Chapter 13: Miscellaneous ViewKit Display Classes

350

Figure 13-2 VkTickMarks Component

Tick Marks Component Constructor

The VkTickMarks constructor accepts five arguments:

VKTi ckMar ks(char* name, W dget parent, Bool ean IabelsToLeft = TRUE,
Bool ean noLabels = FALSE, Bool ean centerLabels = FALSE)

The first two arguments are the standard ViewKit component constructor arguments, a
component name and a parent widget. If labelsToLeft is TRUE, the tick marks are
right-justified and the labels appear to the left; if labelsToLeft is FALSE, the tick marks are
left-justified and the labels appear to the right. If you set noLabels to TRUE, the
VkTickMarks component does not display any labels. If you set centerLabels to TRUE,
the VkTickMarks component centers the labels. This is useful if you want to center a
VkTickMarks object between two XmScale widgets.

Configuring the Tick Marks

You can set the scale of the tick marks with the VkTickMarks::setScale() function:

voi d setScal e(int min, int max,
i Nt majorInterval, int minorlnterval)

Tick Marks for Scales

min and max specify the minimum and maximum values for the tick mark component. If
you set the VkTickMarks component to display labels, it displays these minimum and
maximum values next to the bottom and top tick marks respectively.

majorInterval and minorInterval specify the tick mark spacing. You can specify the number
of units (not pixels) between each major and minor tick mark.

For example, the following sets the minimum value of the ticks VkTickMarks object to
0, the maximum to 1000, the major interval to 100, and the minor interval to 50:

ticks->set Scal e(0, 1000, 100, 50);

Figure 13-3 shows the resulting display of the VkTickMarks object.

—h

=

=

(=]
I

=

Figure 13-3 Setting Tick Mark Scale and Spacing

If you do not use setScale() to set the scale of the tick marks, VkTickMarks uses the
values of the resources minimum, maximum, majorInterval, and minorInterval to set the
respective scale values.

You can add additional labels to the scale with VkTickMarks::addLabel():

voi d addLabel (i nt wvalue)

The VkTickMarks object displays a label at the value you indicate. You can call
addLabel() multiple times to add multiple labels.

351

Chapter 13: Miscellaneous ViewKit Display Classes

352

The VkTickMarks::setMargin() function controls the VkTickMarks margins:

voi d set Margi n(i nt marginTop, int marginBottom) ;

setMargin() allows you to specify the spacing between the top of the VkTickMarks
component and the first tick mark, and the bottom of the component and the last tick

mark. The default settings are designed for use next to an XmScale widget: the first and
last tick marks align horizontally with the mark in the middle of the scale’s slider.

X Resources Associated With the Tick Marks Component

The VkTickMarks class provides several X resources that determine display
characteristics of the component:

minimum The initial minimum value (default value 0).

maximum The initial maximum value (default value 10).

majorInterval The major tick interval (default value 5).

minorInterval The minor tick interval (default value 1).

majorSize The width in pixels of the major tick marks (default value 10).
minorSize The width in pixels of the minor tick mark width (default value 6).
labelSpacing The spacing in pixels between tick marks and labels (default value 3).

marginTop The margin in pixels between the top of the component and the top tick
mark (default value 19).

marginBottom The margin in pixels between the bottom of the component and the
bottom tick mark (default value 19).

lineThickness The thickness in pixels of the tick marks thickness (default value 1).

label foreground
The foreground color used for labels and tick marks.

label.background
The background color used for labels and tick marks.

label.fontList The font used for labels.

Management Classes for Controlling Component and Widget Display Characteristics

Management Classes for Controlling Component and Widget Display Characteristics

ViewKit provides some management classes that control the display of components and
widgets. These classes function as attachments: you attach them to one or more existing
widgets or components. Then you can use the management class to control some aspect
of displaying the widgets and components to which the class is attached.

ViewKit Support for Aligning Widgets

The VkAlignmentGroup class provides support for aligning collections of widgets with
each other in various ways. VkAlignmentGroup is derived from the convenience class
VkWidgetList. Consult the VkWidgetList(3x) reference page for more information on
that class.

To use the VkAlignmentGroup class, you create a VkAlignmentGroup object, add
widgets or components to the group, and then call one of the alignment functions
provided by VkAlignmentGroup.

The Alignment Group Constructor and Destructor

The VkAlignmentGroup constructor does not take any arguments:

VKAl i gnment Group()

VkAlignmentGroup objects do not require names because they are not components;
ViewKit uses names to uniquely identify the widget trees of components, and the
VkAlignmentGroup class does not create any widgets.

The VkAlignmentGroup destructor destroys only the VkAlignmentGroup object. If
you have widgets managed by the object, they are unaffected by the
VkAlignmentGroup destructor.

Adding Widgets and Components to an Alignment Group

Use the add() function to add widgets or components to a VkAlignmentGroup object:

virtual void add(Wdget w)
virtual void add(VkConponent *obj)
virtual void add(VkOptionMenu *menu)

353

Chapter 13: Miscellaneous ViewKit Display Classes

354

If you provide a widget, add() adds that widget to the alignment group. If you provide
a pointer to a component, add() adds the component’s base widget to the alignment
group. If you provide a pointer to a VkOptionMenu object, add() adds all menu items
individually to the VkAlignmentGroup object rather than adding the VkOptionMenu
object as an entity.

Removing Widgets and Components From an Alignment Group

You can remove widgets or components from a VkAlignmentGroup object with the
remove() function inherited from VkWidgetList:

virtual void renove(Wdget w)
virtual void renmove(VkConmponent *obj)

Provide the widget ID or component pointer that you used to add the widget or
component to the alignment group.

Aligning Widgets and Components in an Alignment Group

To align or distribute the elements in a VkAlignmentGroup object, call one of the
following functions (all of which take no arguments and have a void return type):

alignLeft() Aligns the left edges of all widgets by repositioning all widgets so that
the left side of each widget is moved to the rightmost left edge of any
widget in the group.

alignRight() Aligns the right edges of all widgets by repositioning all widgets so that
the right side of each widget is moved to the rightmost position
occupied by any widget in the group.

alignTop() Aligns the top edges of all widgets by repositioning all widgets so that
the top of each widget is moved to the bottommost top edge of any
widget in the group.

alignBottom() Aligns the bottom edges of all widgets by repositioning all widgets so
that the bottom of each widget is moved to the bottommost position
occupied by any widget in the group.

alignWidth() Resizes all widgets to the width of the largest widget in the group.
alignHeight() Resizes all widgets to the height of the largest widget in the group.
makeNormal() Returns all widgets to their desired widths and heights.

Management Classes for Controlling Component and Widget Display Characteristics

distribute Vertical()
Repositions all widgets so that they are positioned evenly in the vertical
direction, according to the spacing between widgets, between the
position of the first and last widgets in the group.

distributeHorizontal()
Repositions all widgets so that they are positioned evenly in the
horizontal direction, according to the spacing between widgets, between
the position of the first and last widgets in the group.

Alignment Group Access Functions

VkAlignmentGroup provides the following access functions:

¢ VkAlignmentGroup:width() returns the maximum width of all widgets in the
group. This value is not set until after you have called alignWidth().

Di mensi on wi dt h()

e VKkAlignmentGroup::height() returns the maximum height of all widgets in the
group. This value is not set until after you have called alignHeight().

Di mensi on hei ght ()

* VKkAlignmentGroup::x() returns the minimum x position of all widgets in the
group. This value is not set until after you have called either alignLeft() or
alignRight().

Posi tion x()

* VKkAlignmentGroup::y() returns the minimum y position of all widgets in the
group. This value is not set until after you have called either alignTop() or
alignBottom().

Position y()
VkAlignmentGroup also inherits all of the access and utility functions provided by

VkWidgetList. Consult the VkWidgetList(3x) reference page for more information on
that class.

355

Chapter 13: Miscellaneous ViewKit Display Classes

ViewKit Support for Resizing and Moving Widgets

The VkResizer class provides controls for moving and resizing an existing widget.
Figure 13-4 shows a simple example of a push button with a VkResizer attachment.

Figure 13-4 Widget With a VkResizer Attachment

If you use the left mouse button to click either of the square handles provided by the
VkResizer object, you can drag the handle to a new location. When you release the
handle, the VkResizer object resizes the widget to which it is attached so that the widget
matches the new size of the VkResizer object. Figure 13-5 shows an example of resizing
the pushbutton shown in Figure 13-4.

356

Management Classes for Controlling Component and Widget Display Characteristics

Figure 13-5 Effect of Resizing a Widget With a VkResizer Attachment

If you use the middle mouse button to click either of the square handles provided by the
VkResizer object, you can drag the entire widget to a new location. When you release the
handle, the VkResizer object moves the widget to which it is attached to the new location
of the VkResizer object. Figure 13-6 shows an example of moving the pushbutton shown
in Figure 13-5.

Figure 13-6 Effect of Moving a Widget With a VkResizer Attachment

357

Chapter 13: Miscellaneous ViewKit Display Classes

358

To use the VkResizer class, you create a VkResizer object, associate an existing widget
with the object, and then display the resizer’s geometry controls.

Resizer Constructor and Destructor

The VkResizer constructor accepts two Boolean arguments:
VkResi zer (Bool ean autoAdjust = FALSE, Bool ean liveResize = FALSE)

autoAdjust controls whether the VkResizer object automatically tracks outside geometry
changes of its attached widget. If you set this value to TRUE, the VkResizer object
automatically adjusts its geometry controls whenever its attached widget changes
geometry. If you set this value to FALSE, you must call the VkResizer::adjustGeometry()
function whenever you want the VkResizer object to adjust its geometry controls to the
geometry of its attached widget. The default value of this argument is FALSE.

liveResize controls whether the widget itself or a rectangle representing the widget area is
displayed during geometry changes. Setting the second parameter to TRUE causes
intermediate geometry changes in the attached widget, which may affect performance.
The default value is FALSE.

VKkResizer objects do not require names because they are not components; ViewKit uses
names to uniquely identify the widget trees of components, and the VkResizer class
does not create any widgets.

The VkResizer destructor destroys only the VkResizer object. If you have a widget
attached to the object, it is unaffected by the VkResizer destructor.

Attaching and Detaching a Resizer Object to and From a Widget

Once you have created a VkResizer object, use the VkResizer::attach() function to attach
it to an existing widget:

voi d attach(W dget w)

You can also attach a VkResizer object to a component by attaching it to the component’s
base widget. For example, if resizer is a VkResizer object and obj is a component, you can
attach the resizer to the component as follows:

resi zer->attach(obj->baseWdget());

Management Classes for Controlling Component and Widget Display Characteristics

If the VkResizer object is already attached to a widget, it detaches from the old widget
before attaching to the new one. You can use the VkResizer::detach() function to detach
a VkResizer object from a widget without immediately attaching it to another:

voi d detach()

Displaying the Resizer Object’'s Geometry Controls

After attaching a VkResizer object to a widget, you must call the VkResizer object’s
VkResizer::show() function to display its geometry controls:

voi d show()

You can hide the geometry controls by calling the VkResizer object’s VkResizer::hide()
function:

voi d hide()

The VkResizer::shown() function returns a Boolean value indicating whether the
VkResizer object is visible and displaying its geometry controls:

Bool ean shown()

Resizer Utility Functions

You can configure the VkResizer object’s geometry manipulations with the
VkResizer::setIncrements() function:

voi d setlncrenents(int resizeWidth, int resizeHeight,
i nt moveX, int moveY)

setIncrements() accepts four integer arguments. The first two arguments specify the
resize increments in the horizontal and vertical dimension, respectively. The last two
arguments specify the move increments in the horizontal and vertical dimension,
respectively. Setting an increment to zero prohibits resizing or moving in that dimension.

ViewKit Callbacks Associated With the Resizer

The VkResizer class also provides a ViewKit member function callback named
VkResizer::stateChangedCallback:

static const char *const stateChangedCal |l back

359

Chapter 13: Miscellaneous ViewKit Display Classes

360

This callback informs the application when VkResizer has modified the geometry of its
attached widget. The callback supplies as call data a value of the enumerated type
VkResizerReason (defined in <Vk/VkResizer.h>). The value can be any of VR _resizing,
VR_moving, VR _resized, or VR_moved. VR _resizing and VR_moving indicate that
resizing or moving are in progress, and are sent repeatedly as the user adjusts the
geometry. VR_resized and VR_moved indicate that the resizing or moving is complete,
and are sent when the user releases the VkResizer geometry controls.

Chapter 14

Miscellaneous ViewKit Data Input Classes

This chapter contains descriptions of miscellaneous ViewKit classes that you would use
primarily for data input. Figure 14-1 shows the inheritance graph for these classes.

— VkCheckBox VkRadioBox

Fm——— == — VkTabPanel

— VkComponent
b L1 VkCompletionField

______________ - VkRepeatButton
| VkCallbackObject |-
= VkModified VkModifiedAttachment
VkGangedGroup
VkWidgetList ~|:
VKkRadioGroup
Figure 14-1 Inheritance Graph for the Miscellaneous ViewKit Input Classes

361

Chapter 14: Miscellaneous ViewKit Data Input Classes

Check Box Component

362

The VkCheckBox class, derived from VkComponent, provides a simple method for
creating check boxes. Instantiating the component creates an empty, labeled component
to which you can add individual toggle buttons. VkCheckBox provides a variety of
methods for determining when the user changes the state of a toggle button; you can use
the method most convenient for your applications. You can also programmatically
change the values of the toggle buttons.

Creating a Check Box

The VkCheckBox constructor accepts the standard ViewKit component name and
parent widget arguments:

VkCheckBox(const char *name, W dget parent)

The constructor creates an empty, labeled component.

Adding Toggles to the Check Box

You add toggle buttons to the check box using the VkCheckBox::addItem() function:

W dget addltem(char *name, Bool ean state = FALSE,
Xt Cal | backProc proc = NULL,
Xt Poi nt er clientData = NULL)

name is the name of the toggle item. You can specify its initial state by providing a state
argument; TRUE sets the toggle and FALSE clears it.

You can also provide an Xt-style callback function, proc, that VkCheckBox activates
whenever the user changes the value of the toggle; and clientData, which VkCheckBox
passes as client data to the callback function. Following ViewKit conventions as
described in “Using Xt Callbacks With Components” on page 21, if you provide a
callback function, you should pass the this pointer as client data so that the callback
functions can retrieve the pointer, cast it to the expected component type, and call a
corresponding member function. “Using Xt-Style Callbacks to Handle Changes in Check
Box Toggle Values” on page 366 further discusses how to use the callback function.

Check Box Component

Setting Check Box and Toggle Labels

The VkCheckBox component creates a LabelGadget named “label” to display a label.
Each toggle button in the check box is implemented as a ToggleButtonGadget. The name
of the gadget is the name string that you provide to addItem() when you add the toggle.

Set the XmNlabelString resource of the check box label and its toggles to set their labels:

Use the VkComponent::setDefaultResources() function to provide default resource
values as described in “Setting Default Resource Values for a Component” on
page 30.

Set resource values in an external app-defaults resource file. Any values you
provide in an external file will override values that you set using the
VkComponent::setDefaultResources() function. This is useful when your
application must support multiple languages; you can provide a separate resource
file for each language supported.

Set the resource values directly using the XtSetValues() function. Values you set
using this method override any values set using either of the above two methods.
You should avoid using this method because it “hard codes” the resource values
into the code, making them more difficult to change.

For example, consider a simple window that contains only a check box with four toggles,
as shown in Figure 14-2.

Selections: ——|

[First choice

[0 Second chaoice
[Third choice
[Fourth choice

Figure 14-2 Sample Check Box

363

Chapter 14: Miscellaneous ViewKit Data Input Classes

Example 14-1 shows the code used to create this check box.

Example 14-1 Code to Create Sample Check Box

ncl ude </ WKApp. h>
ncl ude <W/\KS npl eW ndow. h>
#i ncl ude <K/ \WKkCheckBox. h>

cl ass CheckBoxWndow public VKkS npl eWndow {
pr ot ect ed:
virtual Wdget setWlnterface (Wdget parent);
static String _defaul t Resources[];

public:
CheckBoxWndow (const char *nane) : kS npl eWndow (nane) { }
~CheckBoxW ndow() ;
virtual const char* classNane();

|

CheckBoxW ndow. : ~CheckBoxW ndow()
{}

const char* CheckBoxWndow : cl assNanme() { return "CheckBoxWndow'; }

String CheckBoxWndow : _def aul t Resour ces[] = {
"*check*| abel .1 abel String: Selections:",
"*check*one*| abel String: First choice",
"*check*t wo*| abel String: Second choi ce",
"*check*t hree*l abel String: Third choi ce",
"*check*four*| abel Sring: Fourth choice",
NULL

b

Wdget CheckBoxWndow. : set Wpl nterface (Wdget parent)
{

set Def aul t Resour ces(parent, _def aul t Resour ces) ;

WkCheckBox *cb = new WCheckBox("check", parent);
cb->addl t en{" one");

cb->addl ten{"two");

cb->addl ten{"three");

364

Check Box Component

cb->addl ten{"four");

cb->show() ;

return cb->baseWdget ();
}

void main (int argc, char **argv)

{

VKApp *cbApp = new WKApp(" checkBoxApp", &argc, argv);
CheckBoxW ndow *cbWn = new CheckBoxW ndow(" checkbox") ;

cbWn->show() ;
cbApp->run() ; }

Setting and Getting Check Box Toggle Values

After creation, you can programmatically set the state of any toggle with the
VkCheckBox::setValue() function:

voi d setVal ue(int index, Bool ean newValue)

index is the position of the toggle in the check box; the first toggle in the check box has an
index of 0. newValue is the new state for the toggle; TRUE sets the toggle and FALSE clears
it.

Note: Setting a toggle using setValue() activates the toggle’s valueChanged callback.
This in turn activates all of the VkCheckBox object’s methods for detecting changes in
toggle values as described in “Recognizing Changes in Check Box Toggle Values” on
page 366.

You can set the values of multiple toggles using the VkCheckBox::setValues() function:

voi d set Val ues(Bool ean *wvalues, int numValues)

The Boolean array values specifies the new values for a group of toggles in the check box
beginning with the first toggle. numValues specifies the number of values the values array
contains.

Note: Setting toggles using setValues() activates each toggle’s valueChanged callback.
This, in turn, activates all of the VkCheckBox object’s methods for detecting changes in
toggle values, as described in “Recognizing Changes in Check Box Toggle Values,” once
for each toggle changed.

365

Chapter 14: Miscellaneous ViewKit Data Input Classes

366

You can retrieve the value of a specific toggle with the VkCheckBox::getValue() function:

int getValue(int index)

index is the position of the toggle in the check box; the first toggle in the check box has an
index of 0. The function returns TRUE if the toggle is set and FALSE if the toggle is not
set.

Recognizing Changes in Check Box Toggle Values

VkCheckBox provides three different methods that you can use to determine when the
user changes the value of a toggle: Xt-style callbacks, ViewKit callbacks, and subclassing.
You can use whichever method is most convenient.

Using Xt-Style Callbacks to Handle Changes in Check Box Toggle Values

The first method of determining when the user changes a toggle value is to register an
Xt-style callback for each toggle button. When you create a toggle with the addItem()
function, you can optionally specify a callback function and client data. When the value
of the toggle changes, the callback function is called with the client data you provided,
and a pointer to a XmToggleButtonCallbackStruct structure as call data.

For example, the following adds a toggle named “lineNumbers” to the parametersBox
check box and registers a callback function:

M/Conponent : : M/Conponent (const char *nanme, Wdget parent) : VkConponent (nane)
{
...
par anet er sBox- >addl t en{" | i neNunber s", FALSE,
&WCGonponent : : t oggl eLi neNunber sCal | back(),
(XtPointer) this);
/...
}

Check Box Component

MyComponent:toggleLineNumbersCallback(), which must be declared as a static
member function of the class MyComponent, is registered as a callback function for this
toggle, and the this pointer is used as the client data. The definition of
toggleLineNumbersCallback() could look like this:

voi d M/Conponent : : t oggl eLi neNunber sCal | back(Wdget ,
Xt Poi nter clientData,
Xt Pointer callData)

M/Conponent *obj = (M/Conponent) cli ent Dat a;
XnToggl eBut t onCal | backStruct *cb =
(XnmToggl eBut t onCal | backStruct) cal | Dat a;

/1 Call MyGonponent: :toggl eLi neNunbers(), a regul ar nenber function to either
/1 display or hide |ine nunbers based on the val ue of the toggle.

obj - >t oggl eLi neNunber s(cb->set) ;

Using ViewKit Callbacks to Handle Changes in Check Box Toggle Values

The second method of determining when the user changes a toggle value is to use a
ViewKit callback. The VkCheckBox component provides the VkCheckBox::itemChanged
callback. Any ViewKit component can register a member function to be called when the
user changes a check box toggle. The VkCheckBox object provides the integer index of
the toggle as client data to the callback functions.

Note: The itemChanged callback is activated whenever the user changes any of the
toggles; you cannot register a ViewKit callback for an individual toggle.

For example, the following line registers the member function
MyComponent::parameterChanged() as a ViewKit callback function to be called
whenever the user changes a toggle in the parametersBox check box:

M/Conponent : : M/Conponent (const char *nanme, Wdget parent) : VkConponent (nane)
{
...
par anet er sBox- >addCal | back(VkCheckBox: : i t enChanged, this,
(WKCal | backMet hod) &W/CGonponent : : par anet er Changed) ;
/...

}

Note that in this example, no client data is provided.

367

Chapter 14: Miscellaneous ViewKit Data Input Classes

368

The definition of parameterChanged() could look like this:

voi d M/Conponent : : par anet er Changed(VkConponent *obj, void *,
void *cal | Data)

{
VkCheckBox *checkBox = (VkCheckBox) obj ;
int index = (int) callData;
swi tch (index) {
...
/1 Assure that the constant LINE NUMBER INDEX is set to the index of
/1 the "l'ineNunber” toggle. If the "lineNunber" toggle val ue changed,
/1 Call M/Gonponent::toggl eLi neNunbers(), a regul ar nenber function to
/1 either display or hide line nunbers based on the val ue of the toggl e
case LI NE_NUMBER | NDEX
t oggl eLi neNunber s(checkBox- >get Val ue(i ndex));
...
}
}

Using Subclassing to Handle Changes in Check Box Toggle Values

The third method of determining when the user changes a toggle value is to create a
subclass of VkCheckBox. Whenever the user changes a toggle, VkCheckBox calls the
virtual function VkCheckBox::valueChanged():

virtual void val ueChanged(i nt index, Bool ean newValue)

index is the index of the item that changed and newValue is the current (new) value of that
item. By default, valueChanged() is empty. You can override its definition in a subclass
and perform whatever processing you need.

Radio Check Box Component

Derived classes have access to the following protected data members of the VkCheckBox
class:

* Aninstance of the ViewKit WidgetList(3x) class that contains all toggle buttons
added to the check box:

VKW dget Li st * _widgetList

¢ The RowColumn widget that contains the toggle buttons:
W dget _rc

® The label widget for the check box:
W dget _label

Radio Check Box Component

The VkRadioBox class provides a simple method for creating radio check boxes (that is,
check boxes in which only one toggle at a time can be selected). VkRadioBox is a subclass
of VkCheckBox. The only difference between the two classes is that VkRadioBox
enforces radio behavior on the toggles it contains.

VkRadioBox provides all of the same functions and data members as VkCheckBox
does. You use the VkRadioBox class in the same way that you do the VkCheckBox class.

For example, consider a simple window that contains only a check box with four toggles
as shown in Figure 14-3.

Select one: ——|

< First choice
<» Second choice
<» Third choice
<» Fourth choice

Figure 14-3 Sample Radio Box

369

Chapter 14: Miscellaneous ViewKit Data Input Classes

Example 14-2 contains the code used to create this check box.

Example 14-2 Code to Create Sample Radio Box

#i ncl ude <Vk/ VKApp. h>
#i ncl ude <Vk/ VKSi nmpl eW ndow. h>
#i ncl ude <Vk/ VkRadi oBox. h>

cl ass Radi oBoxW ndow. public VKSi npl eW ndow {

protected:
virtual Wdget setUplnterface (Wdget parent);
static String _defaul t Resources[];

public:
Radi oBoxW ndow (const char *name) : VkSi npl eWndow (name) { }
~Radi oBoxW ndow() ;
virtual const char* cl assNane();
b
Radi oBoxW ndow: : ~Radi oBoxW ndow()
{1}

const char* Radi oBoxW ndow: : cl assNane() { return "Radi oBoxW ndow"; }

String Radi oBoxW ndow: : _def aul t Resources[] = {
"*radi o*l abel .| abel String: Select one:",
"*radi o*one*| abel String: First choice",
"*radi o*two*| abel String: Second choice",
"*radi o*t hree*l abel String: Third choice",
"*radi o*four*| abel String: Fourth choice",

NULL

b

W dget Radi oBoxW ndow. : set Upl nterface (Wdget parent)
{

set Def aul t Resour ces(parent, _defaul t Resources);

VkRadi oBox *rb = new VkRadi oBox("radio", parent);
rb->addl ten("one");

rb->addl ten("two");

rb->addl tem("t hree");

370

Tab Panel Component

rb->addl ten("four");
rb->show();

return rb->baseWdget ();
}

void main (int argc, char **argv)

{
VKkApp *rbApp = new VKApp("radi oBoxApp", &argc, argv);
Radi oBoxW ndow *rbW n = new Radi oBoxW ndow " r adi obox") ;

r bW n- >show() ;
r bApp->run();

Tab Panel Component

The VkTabPanel class, derived from VkComponent, displays a row or column of
overlaid tabs. A tab can contain text, a pixmap, or both. The user can click a tab with the
left mouse button to select it. One tab is always selected, and appears on top of all the
others. When the user selects a tab, VkTabPanel activates a ViewKit member function
callback indicating which tab the user selected. You can register callback functions to
perform actions based on the tabs selected.

Figure 14-4 shows an example of a horizontal VkTabPanel component.

First Second Third Fourth Fifth

Figure 14-4 Horizontal VkTabPanel Component

371

Chapter 14: Miscellaneous ViewKit Data Input Classes

372

Figure 14-5 shows an example of a vertical VkTabPanel component.

Second

Figure 14-5 Vertical VkTabPanel Component
When the tabs do not fit within the provided space, the VkTabPanel object “collapses”

tabs on the left and right ends of the component (or top and bottom if the VkTabPanel
object is vertical). Figure 14-6 shows these collapsed tabs.

E First Second Third

Figure 14-6 Collapsed Tabs in a VkTabPanel Component

Tab Panel Component

The user can click the collapsed tabs with either the left or right mouse button to display
a popup menu listing all the tabs, as shown in Figure 14-7. The user can then select a tab
by choosing the corresponding menu item.

First
Second
E -=-§ tabWin Third
= \ First >\ Second }\ Third / Fourth
Fifth

Figure 14-7 Using the Popup Menu to Select a Collapsed Tab in a VkTabPanel Component

The VkTabPanel class also provides work areas implemented as Motif Form widgets to
the left and right of the tab display (or top and bottom if the VkTabPanel object is
vertical). By default, these work areas are empty. You can access these work area widgets
and implement additional displays or controls if you desire. “Tab Panel Access
Functions” on page 378 describes the work area access functions.

Tab Panel Constructor

The VkTabPanel constructor initializes the tab panel and allocates all resources required
by the component:

VkTabPanel (char* name, W dget parent,
Bool ean horizOrientation = TRUE, int tabHeight = 0)

name and parent are the standard component name and parent widget arguments.
The optional horizOrientation argument determines the orientation of the tab panel. If

horizOrientation is TRUE, the tab panel is horizontal; if it is FALSE, the tab panel is
vertical.

373

Chapter 14: Miscellaneous ViewKit Data Input Classes

374

The optional tabHeight argument determines the height of the tab display area. The
default value, 0, indicates that tab height is determined by the default label height. If you
plan to include pixmaps in your tabs, you should specify a height sufficient to contain
your largest pixmap. You can also set the tab height by setting the value of the
VkTabPanel object’s tabHeight resource. For example, to set the tab height of the
VkTabPanel object tabs to 30, you could include the following line in an app-default file:

*t abs*t abHei ght : 30

Note: In most cases when you display a vertical tab panel, you must explicitly set the
height of the tab display area. As described above, the default tab display area height is
determined by the tab label’s font height rather than the width of the label. As a result,
the tabs might not be large enough to display all of the label text.

Adding Tabs to a Tab Panel

Once you have created a tab panel, you can add a tab to it using VkTabPanel::addTab():
int addTab(char *label, voi d *clientData, Bool ean sorted = FALSE)

label specifies the label displayed by the tab. You should use a distinct label for each tab.
addTab() first treats this argument as a resource name which is looked up relative to the
tab panel’s name. If the resource exists, its value is used as the tab label. If no resource is
found, or if the string contains spaces or newline characters, the string itself is used as the
tab label.

When the user selects this tab, the VkTabPanel object activates either
VkTabPanel::tabSelectCallback or VkTabPanel::tabPopupCallback (depending on how the
user selected the tab). If you provide a pointer to some data as the clientData argument to
addTab(), the tab panel includes that data as part of the VkTabCallbackStruct returned as
call data by the callbacks. “Responding to Tab Selection” on page 377 describes in depth
these callbacks and how to use them.

The sorted flag determines where the new tab is added in relation to existing tabs. If sorted
is FALSE, addTab() adds the tab after all existing tabs; if sorted is TRUE, addTab() inserts
the tab before the first tab whose label alphabetically succeeds the new tab’s label.

Note: addTab() compares the labels actually displayed in the tabs, so if you use resources
to specify tab labels, addTab() correctly uses the labels specified by the resource values.

Tab Panel Component

The return value of addTab() is the position of the newly added tab in the tab panel. Tabs
are numbered sequentially, with 0 representing the leftmost tab in a horizontal tab panel
or the topmost tab in a vertical tab panel.

New tabs initially have a NULL pixmap. If you want to add a pixmap to a label, see
“Adding a Pixmap to a Tab” on page 376.

If the new tab is the first tab in the group, addTab() automatically selects the tab by
calling VkTabPanel::selectTab(). Note that selectTab() activates
VkTabPanel::tabSelectCallback, so if you register a callback function before adding a tab,
you activate that callback function when you add your first tab. See “Responding to Tab
Selection” on page 377 for more information on selectTab() and
VkTabPanel::tabSelectCallback.

You can add more than one tab at a time using VkTabPanel::addTabs():

voi d addTabs(char **labels, voi d **clientDatas, int numTabs,
Bool ean sorted = FALSE)

labels is an array of tab label strings. As with addTab(), these label strings are first treated
as resource names that are looked up relative to the tab panel’s name. If the resources
exist, their values are used as the tab labels. If a particular resource name is not found, or
if the string contains spaces or newline characters, the label string itself is used as the tab
label. clientDatas is an array of client data; the data for a particular tab is included as part
of the VkTabCallbackStruct returned as call data by the selection callbacks. numLabels
specifies the number of tabs to be added by addTabs(). sorted determines whether or not
the tabs are sorted as addTabs() adds them.

Removing a Tab From a Tab Panel

You can remove a tab from a tab panel using VkTabPanel::removeTab():

Bool ean renoveTab(int index)
Bool ean renoveTab(char *label)

You can specify the tab to remove using either its position index or its label. If
removeTab() successfully removes the tab, it returns TRUE; otherwise, if the position
index was out of range or it couldn’t find a tab with the label string you specified, it
returns FALSE.

375

Chapter 14: Miscellaneous ViewKit Data Input Classes

376

Note: If you use the same label for two or more tabs and provide a label string to
removeTab(), it removes the first tab (that is, the one with the lowest index) that matches
the label string. In general, you should avoid using duplicate label strings.

Adding a Pixmap to a Tab

You can set or change the pixmap associated with a tab using
VkTabPanel::setTabPixmap():

Bool ean set TabPi xmap(i nt index, Pixmap pixmap)
Bool ean set TabPi xmap(char *label, Pi xmap pixmap)

You can specify the tab using either its position index or its label. If setTabPixmap()
successfully sets the tab, it redraws the tabs and returns TRUE; otherwise, if the position
index was out of range or it couldn’t find a tab with the label string you specified, it
returns FALSE.

The pixmap can be either a bitmap (pixmap of depth 1) or a full-color pixmap.

Note: If you use the same label for two or more tabs and provide a label string to
setTabPixmap(), it sets the pixmap for the first tab (that is, the one with the lowest index)
that matches the label string. In general, you should avoid using duplicate label strings.

To remove an existing pixmap from a tab, call setTabPixmap() with a NULL pixmap.

You can retrieve the pixmap currently installed in a tab using VkTabPanel::tabPixmap():

Bool ean t abPi xmap(int index, Pixmap *pixmap_return)
Bool ean t abPi xmap(char *label, Pixmap *pixmap_return)

You can specify the tab using either its position index or its label. If tabPixmap() is
successful, the function returns TRUE and the value of the pixmap_return argument is set
to point to the tab’s pixmap; otherwise, if the position index was out of range or the
function couldn’t find a tab with the label string you specified, tabPixmap() returns
FALSE.

Tab Panel Component

Responding to Tab Selection

The user can select a tab either by clicking a tab with the left mouse button, or by clicking
a group of collapsed tabs with the left or right mouse button and choosing a menu item
corresponding to a tab. When the user selects a tab by either method, the VkTabPanel
object activates its VkTabPanel::tabSelectCallback. You can register callback functions to
perform actions based on the tabs selected.

When activated, tabSelectCallback provides a pointer to a VkTabCallbackStruct as call
data. The format of VkTabCallbackStruct is as follows:

typedef struct {
char *I abel;
void *clientData;
int tabl ndex;
XEvent *event;

} VkTabCal | backSt ruct

label is the label displayed by the tab. Note that if you set the label by specifying a
resource name when you added this tab, the value of label is the value of the resource you
specified.

clientData is the client data you provided when you added this tab to the tab panel.

tabIndex is the position index of the tab. Tabs are numbered sequentially, with 0
representing the leftmost tab in a horizontal tab panel or the topmost tab in a vertical tab
panel.

If the user selected the tab directly (that is, not through the popup menu), event is the
ButtonPress event that triggered the selection. Otherwise, event is NULL.

In your callback function, you should cast the call data to (VkTabCallbackStruct *),
determine which tab the user selected, and perform whatever action is appropriate.

The VkTabPanel object also detects when the user clicks the right mouse button on one
of the tabs. Doing so does not select the tab, but it does cause VkTabPanel to activate its
VkTabPanel::tabPopupCallback. When activated, tabPopupCallback provides a pointer to a
VkTabCallbackStruct as call data. You can register callback functions to handle this event
and perform any actions that you want.

377

Chapter 14: Miscellaneous ViewKit Data Input Classes

378

You can programmatically select a tab using VkTabPanel::selectTab():

Bool ean sel ect Tab(int index, XEvent *event = NULL);
Bool ean sel ect Tab(char *label, XEvent *event = NULL);

You can specify the tab to select using either its position index or its label. If selectTab()
successfully selects the tab, it returns TRUE; otherwise, if the position index is out of
range or it can’t find a tab with the label string you specified, it returns FALSE.

Note: If you use the same label for two or more tabs and provide a label string to
selectTab(), it selects the first tab (that is, the one with the lowest index) that matches the
label string. In general, you should avoid using duplicate label strings.

You can optionally provide an event argument that selectTab() places in a
VkTabCallbackStruct structure, which is then passed as call data to tabSelectCallback.

You can also determine the currently selected tab with VkTabPanel::selectedTab():
int selectedTab()

selectedTab() returns the index of the currently selected tab. Tabs are numbered
sequentially, with 0 representing the leftmost tab in a horizontal tab panel or the topmost
tab in a vertical tab panel.

Tab Panel Access Functions

VkTabPanel provides several functions for accessing information about a tab panel and
its tabs:

* VkTabPanel::getTab() retrieves information about a specific tab. Specify the
position index of the tab with the index argument. getTab() sets the value of the
label_return argument to point to the tab’s label. Note that if you set the label by
specifying a resource name when you added this tab, the value of label_return is the
value of the resource you specified. getTab() sets the value of the clientData_return
argument to point to the client data you provided when you added the tab.

getTab() returns TRUE if it is successful, and FALSE if the position index was out of
range.

Bool ean get Tab(i nt index, char **label_return,
voi d **clientData_return)

Tab Panel Component

VkTabPanel::horiz() returns TRUE if the tab component is horizontally oriented,
and FALSE if it is vertically oriented:

Bool ean hori z()

VkTabPanel::size() returns the number of tabs in the tab panel:

int size()

VkTabPanel::tabHeight() returns the height of the tab display area:
int tabHeight ()

This is the maximum display height for pixmaps. Larger pixmaps are truncated,
and smaller pixmaps are centered. The height of the tab display area is determined
by any of these four values:

1. The value you specify in the VkTabPanel constructor.

2. The value of the VkTabPanel component’s tabHeight resource.

3. The value of the height resource of the tabLabel widget created by VkTabPanel.
4

The height of the tab label’s font as specified by the fontList resource of the
tabLabel widget created by VkTabPanel.

If you attempt to set the tab height through multiple methods, the method 1 has the
highest precedence and method 4 has the lowest.

Note: In most cases when you display a vertical tab panel, you must explicitly set
the height of the tab display area. As described above, the default tab display area
height is determined by the tab label’s font height rather than the width of the label.
As a result, the tabs might not be large enough to display all of the label text.

The height of a tab, including decoration, is the total of these three measurements:
® The height of the tab display area as returned by tabHeight().

® The tab’s top and bottom margin, determined by the value of the marginHeight
resource of the tabLabel widget created by VkTabPanel.

® The value of the VkTabPanel component’s additionalMarginHeight resource.

The total height of the VkTabPanel component (or width, if the tab panel is
horizontal) is the total height of the tab as described above, plus the value of the
VkTabPanel component’s margin resource.

379

Chapter 14: Miscellaneous ViewKit Data Input Classes

380

VkTabPanel::uniformTabs() returns TRUE if the tabs have a uniform width (or
height, if the tab panel is vertical):

Bool ean uni f or nTabs()

By default, tabs take on the width necessary to display their label and pixmap. You
can force all tabs to take the width of the largest tab in the group by setting the
VkTabPanel component’s uniformTabs resource to TRUE.

The total width of a tab, including decoration, is the total of these three
measurements:

— The width of the tab label.

— If the tab has a pixmap installed, the width of the pixmap plus the pixmap
spacing, determined by the value of the VkTabPanel component’s
pixmapSpacing resource.

— The tab’s left and right margin, determined by the value of the marginWidth
resource of the tabLabel widget created by VkTabPanel plus the value of the
VkTabPanel component’s additionalMarginWidth resource.

VkTabPanel::lineThickness() returns the line thickness used when drawing the tab
edges:

int |ineThickness()

The line thickness defaults to 1. You can set this value through the lineThickness
resource of the VkTabPanel component, but a line thickness other than 1 might not
render properly.

VkTabPanel:tabBg() returns the color used for the background area around the
tabs:

Pi xel tabBg()
This color is set by the background resource of the VkTabPanel component.

VkTabPanel::labelFg() returns the color used for tab foregrounds (that is, the tab
lettering and the foreground bits if the pixmap you supply is a bitmap):
Pi xel | abel Fg()

This color is set by the foreground resource for the tabLabel widget created by
VkTabPanel.

Tab Panel Component

* VkTabPanel:labelBg() returns the color used for tab backgrounds:
Pi xel | abel Bg()

This color is set by the background resource for the tabLabel widget created by
VkTabPanel. When a bitmap is supplied as the pixmap, this color is used for the
background bits.

¢ VkTabPanel::gc() returns the X graphics context used for drawing the tabs:
&C ge()

This might be useful if you create pixmaps and want to use the same foreground
and background colors as the tabs.

e VkTabPanel::areal() returns the work area widget to the left of the tab display (or
top if the tab panel is vertical), and VkTabPanel::area2() returns the work area
widget to the right of the tab display (or bottom if the tab panel is vertical):

W dget areal()
W dget area2()

Both work areas are implemented as Motif Form widgets. By default, these work
areas are empty. You can access these work area widgets and implement additional
displays or controls if you desire.

X Resources Associated With the Tab Panel Component

The VkTabPanel class provides several X resources that determine display
characteristics of the component:

additionalMarginHeight
Additional height, expressed in pixels, added to the margin between the
top and bottom of the tab border and the tab display area (default
value 2).

additionalMarginWidth
Additional width, expressed in pixels, added to the margin between the
sides of the tab border and the tab display area (default value 4).

background The background color of the VkTabPanel component, shown in the
space around the tabs.

endMultiplier The number of overlapped tab symbols displayed as an “end indicator”
when there are more tabs in the panel than can be displayed at one time
(default value 3).

381

Chapter 14: Miscellaneous ViewKit Data Input Classes

382

endSpacing

lineThickness

margin
marginl

margin2

pixmapSpacing

The space, expressed in pixels, between overlapped tab symbols in the
“end indicator” (default value 9).

The line thickness used when drawing the tab edges. The default value
is 1. You can provide another value, but line thickness other than 1 might
not render properly.

The margin, expressed in pixels, between the tab edges and the
component edge (default value 5).

The margin, expressed in pixels, between the left or top work area
widget and the tabs (default value 5).

The margin, expressed in pixels, between the right or bottom work area
widget and the tabs (default value 5).

If the tab contains a pixmap, the space, expressed in pixels, between the
tab label and the pixmap (default value 3).

selectedTabBackground

sideOffset
tabHeight

uniformTabs

The background color of the selected tab.
The amount of tab overlap, expressed in pixels (default value 17).

The height of the tab display area is determined by one of the following
four values:

1. The value you specify in the VkTabPanel constructor.
2. The value of the VkTabPanel component’s tabHeight resource.

3. The value of the height resource of the tabLabel widget created by
VkTabPanel.

4. The height of the tab label’s font as specified by the fontList
resource of the tabLabel widget created by VkTabPanel.

If you attempt to set the tab height through multiple methods, the
method 1 has the highest precedence and method 4 has the lowest
precedence. The default value of tabHeight is 0.

Determines whether all tabs have the same width. The default value,
FALSE, allows tabs to be wide enough to display their label and pixmap.
You can force all tabs to take the width of the largest tab in the group by
setting this resource to TRUE.

Tab Panel Component

The VkTabPanel class creates a widget called tabLabel to manage the tabs in a tab panel.
VkTabPanel provides several X resources that determine display characteristics of the
tabLabel widget:

tabLabel .background
The color used for tab backgrounds. When a bitmap is supplied as the
pixmap, this color is used for the background bits.

tabLabel.fontList
The font used for tab labels. If the values of the tabLabel.height and
tabHeight resources are 0, and you do not specify a tab height in the
VkTabPanel constructor, the height of the font is also used as the height
of the tab display area.

tabLabel.foreground
The color used for tab foregrounds (that is, the tab lettering and the
foreground bits if the pixmap you supply is a bitmap).

tabLabel.height
The height of the tab display area is determined by one of these four
values:

1. The value you specify in the VkTabPanel constructor.
2. The value of the VkTabPanel component’s tabHeight resource.

3. The value of the height resource of the tabLabel widget created by
VkTabPanel.

4. The height of the tab label’s font as specified by the fontList
resource of the tabLabel widget created by VkTabPanel.

If you attempt to set the tab height through multiple methods, method
1 has the highest precedence and method 4 has the lowest precedence.
The default value of tabLabel.height is 0.

tabLabel.marginHeight
The margin, expressed in pixels, between the top and bottom of the tab
border and the tab display area.

tabLabel. marginWidth
The margin, expressed in pixels, between the sides of the tab border and
the tab display area.

383

Chapter 14: Miscellaneous ViewKit Data Input Classes

Text Completion Field Component

384

The VkCompletionField class, derived from VkComponent, provides a text input field
component that supports name expansion. While typing in the field, if the user types a
space, then the component attempts to complete the current contents of the field based
on a list of possible expansions provided by the application. For example, in a field where
the user is expected to enter a filename, the application could provide a list of all files in
the current working directory.

Text Completion Field Constructor and Destructor

The VkCompletionField constructor accepts the standard ViewKit component name
and parent widget arguments:

VkConpl eti onFi el d(const char *name, W dget parent)

The constructor creates an Motif TextField widget as the component’s base widget. You
can access this widget using the baseWidget() function provided by VkComponent.

The VkCompletionField destructor destroys the component’s widget and associated
data, including the VkNameList object that stores the list of possible expansions. You
should be aware of this in case you provide an existing VkNameList object as an
argument to the VkCompletionField::clear() function, described in “Setting and
Clearing the Text Completion Field Expansion List.” Consult the VkNameList(3x)
reference page for more information on that class.

Setting and Clearing the Text Completion Field Expansion List

You can add individual strings to the completion list by passing them as arguments to
the VkCompletionField::add() function:

voi d add(char *name)

You can clear the completion list by calling the VkCompletionField::clear() function:

voi d cl ear (VkNaneLi st *nanmeLi st = NULL)

If you provide a VkNameList object, clear() deletes the current completion list and uses
the VkNamelList object that you provide as the new completion list for the completion
field. Consult the VkNameList(3x) reference page for more information on that class.

Text Completion Field Component

Retrieving the Text Completion Field Contents

The VkCompletionField::getText() function duplicates the contents of the text field and
then returns a pointer to the duplicate string:

char *get Text ()

Note: Because getText() creates a copy of the text field’s contents, you can safely change
or delete the returned string.

For example, the following line retrieves the contents of a VkCompletionField object
called fileName and assigns the string to the variable openFile:

openFil e = fil eNane->get Text ();

Responding to Text Completion Field Activation

The VkCompletionField class supplies a ViewKit member function callback named
VkCompletionField::enterCallback. This callback is activated whenever the user presses
Enter while typing in the text field. The callback does not pass any call data. If you want
to notify a ViewKit component whenever the user presses Enter while typing in a
VkCompletionField object, register a member function of that component as an
enterCallback function.

Deriving Text Completion Field Subclasses
The VkCompletionField class should be sufficient for most applications; however, if you
want to have more control over the expansion process you can create a subclass of

VkCompletionField.

The protected member function VkCompletionField::expand() is called whenever the
user types in the text field:

virtual void expand(struct XnmTextVerifyCallbackStruct *cb)

385

Chapter 14: Miscellaneous ViewKit Data Input Classes

By default, expand() checks whether the user has typed a space, and if so, tries to expand
the current contents of the text field; if the user types any other character, expand ()
simply adds that character to the text field. At any point after an expansion, the
VkNamelList object pointed to by the protected data member _currentMatchList contains
a list of all possible expansions:

VKNaneLi st *_currentMatchList

You can override the expand() function to install your own expansion algorithm. You
have access to the VkNamelList object pointed to by the protected data member
_nameList, which contains all possible expansions registered with the component:

VkNaneLi st *_nameList

You can also override the protected member function VkCompletionField::activate(),
which is called whenever the user presses Enter while typing in the text field:

virtual void activate(struct XnlextVerifyCall backStruct *cb)

activate() is called after expanding the current contents of the text field and after
invoking all member functions registered with the enterCallback callback. By default, this
function is empty.

Repeating Button Component

386

The VkRepeatButton class, derived from VkComponent, provides an auto-repeating
pushbutton. A regular pushbutton activates only once when the user clicks it and
releases it. A VkRepeatButton behaves more like a scrollbar button: it activates when the
user clicks it; after a given delay it begins repeating at a given interval; and it stops
activating when the user releases it.

Repeating Button Constructor

The VkRepeatButton constructor takes three arguments:

VkRepeat But t on(char *name, W dget parent,
VkRepeat But t onType type)

Repeating Button Component

name is a character string specifying the component name. parent is the parent widget of
the component. type is a VkRepeatButtonType enumerated value specifying the type of
button to create. This value can be any of RB_pushButton, RB_pushButtonGadget,
RB_arrowButton, or RB_arrowButtonGadget. These create PushButton,
PushButtonGadget, ArrowButton, and ArrowButtonGadget widgets, respectively.

Responding to Repeat Button Activation

A VkRepeatButton object triggers a VkRepeatButton::buttonCallback ViewKit callback
whenever the button activates. Any ViewKit object can register a member function with
the callback to be invoked when the button activates.

The callback provides an XmAnyCallbackStruct pointer as call data; the
XmAnyCallbackStruct.reason contains the reason for the callback, and the
XmAnyCallbackStruct.event field contains the event that triggered the callback.

Repeating Button Utility and Access Functions

The VkRepeatButton::setParameters() function changes the delay parameters for the
button:

voi d set Paramnet ers(| ong initial, | ong repeat)

initial controls how long, in milliseconds, the user has to hold the button down before it
begins to repeat. repeat controls the interval between auto-repeat activations, in
milliseconds.

If you need to determine the type of a VkRepeatButton after creation, you can call the
VkRepeatButton::type() function:

VkRepeat But t onType type()

The return value is a VkRepeatButtonType enumerated value specifying the type of
button. This value can be any of RB_pushButton, RB_pushButtonGadget,
RB_arrowButton, or RB_arrowButtonGadget, which indicates PushButton,
PushButtonGadget, ArrowButton, and ArrowButtonGadget widgets, respectively.

387

Chapter 14: Miscellaneous ViewKit Data Input Classes

X Resources Associated With the Repeating Button Component
The VkRepeatButton class provides the following X resources that determine operating
characteristics of the component:

initialDelay The initial delay in milliseconds before auto-repeat begins (default
value 1000).

repeatDelay ~ The auto-repeat interval in milliseconds (default value 200).

Management Classes for Controlling Component and Widget Operation

388

ViewKit provides some management classes that control the operation of components
and widgets. These classes function as attachments: you attach them to one or more
existing widgets or components. Then, you can use the management class to control
some aspect of operation of the widgets and components to which the class is attached.

Supporting “Ganged” Scrollbar Operation

The VkGangedGroup class provides support for “ganging” together Motif ScrollBar or
Scale widgets so that all of them move together; when the value of one of the ScrollBar
or Scale widgets changes, all other widgets in the group are updated with that value.
VkGangedGroup is derived from the convenience class VkWidgetList. Consult the
VkWidgetList(3x) reference page for more information on that class.

To use the VkGangedGroup class, you create a VkGangedGroup object and add
widgets or components to the group. Thereafter, the VkGangedGroup object
automatically updates all of the scales and scrollbars in the group whenever the value of
one of them changes.

Ganged Scrollbar Group Constructor and Destructor

The VkGangedGroup constructor does not take any arguments:
VkGangedG oup()

VkGangedGroup objects do not require names because they are not components;
ViewKit uses names to uniquely identify the widget trees of components, and the
VkGangedGroup class does not create any widgets.

Management Classes for Controlling Component and Widget Operation

The VkGangedGroup destructor destroys only the VkGangedGroup object. If you have
widgets or components managed by the object, they are unaffected by the
VkGangedGroup destructor.

Adding Scales and Scrollbars to a Ganged Group

Use the VkGangedGroup::add() function to add widgets or components to a
VkGangedGroup object:

virtual void add(Wdget w)
virtual void add(VkConponent *obyj)

If you provide a widget, add() adds that widget to the alignment group. If you provide
a pointer to a component, add() adds the component’s base widget to the alignment

group.

Note: If you add a component to a VkGangedGroup object, the base widget of that
component must be an Motif ScrollBar or Scale widget.

Removing Scales and Scrollbars From a Ganged Group

You can remove widgets or components from a VkGangedGroup object with the
remove() function inherited from VkWidgetList:

virtual void renove(Wdget w)
virtual void remove(VkConmponent *obj)

Provide the widget ID or component pointer that you used to add the widget or
component to the ganged group.

You can also use the removeFirst() and removeLast() functions inherited from
VkWidgetList to remove the first or last item respectively in the ganged group:

virtual void renoveFirst()
virtual void renpvelast ()

389

Chapter 14: Miscellaneous ViewKit Data Input Classes

390

Enforcing Radio-Style Behavior on Toggle Buttons

Motif supports collections of toggle buttons that exhibit one-of-many or “radio-style”
behavior by placing all related buttons in a RadioBox widget. This is adequate in many
cases, but in some cases it is useful to enforce radio-style behavior on a collection of
buttons dispersed throughout an application.

The VkRadioGroup class provides support for enforcing radio-style behavior on an
arbitrary group of toggle buttons, no matter where they appear in your application’s
widget hierarchy. The VkRadioGroup class supports both Motif ToggleButton and
ToggleButtonGadget widgets. Furthermore, you can add Motif PushButton and
PushButtonGadget widgets to a VkRadioGroup object; the VkRadioGroup object
simulates radio-style behavior on these buttons by displaying them as armed when the
user selects them (using the XmNarmColor color resource as the button’s background
color and displaying the XmNarmPixmap if the button contains a pixmap).

VkRadioGroup is derived from the convenience class VkWidgetList. Consult the
VkWidgetList(3x) reference page for more information on that class.

To use the VkRadioGroup class, create a VkRadioGroup object and add widgets or
components to the group. Thereafter, the VkRadioGroup object automatically updates
all buttons contained in the group whenever the user selects one of the buttons.

Note: Membership in a VkRadioGroup object is not exclusive; a widget can potentially
belong to multiple groups at once.

Radio Group Constructor and Destructor

The VkRadioGroup constructor does not take any arguments:
VkGangedG oup()

VkRadioGroup objects do not require names because they are not components; ViewKit
uses names to uniquely identify the widget trees of components, and the VkRadioGroup
class does not create any widgets.

The VkRadioGroup destructor destroys only the VkRadioGroup object. If you have
widgets or components managed by the object, they are unaffected by the
VkRadioGroup destructor.

Management Classes for Controlling Component and Widget Operation

Adding Toggles and Buttons to a Radio Group

Use the VkRadioGroup::add() function to add widgets or components to a
VkRadioGroup object:

virtual void add(Wdget w)
virtual void add(VkConmponent *obj)

If you provide a widget, add() adds that widget to the radio group. If you provide a
pointer to a component, add() adds the component’s base widget to the alignment group.

Note: If you add a component to a VkRadioGroup object, the base widget of that
component must be an Motif ToggleButton, ToggleButtonGadget, PushButton, or
PushButtonGadget widget.

Removing Toggles and Buttons From a Radio Group

You can remove widgets or components from a VkRadioGroup object with the remove()
function inherited from VkWidgetList:

virtual void renove(Wdget w)
virtual void remove(VkConponent *obj)

Provide the widget ID or component pointer that you used to add the widget or
component to the radio group.

You can also use the removeFirst() and removeLast() functions inherited from
VkWidgetList to remove the first or last item, respectively, in the radio group:

virtual void renoveFirst()
virtual void renopvelast ()

Deriving Radio Group Subclasses

If you use a direct instantiation of VkRadioGroup, you must rely on Xt callback
functions registered directly with the toggle buttons to detect and handle state changes
in the group. Another approach is to derive a subclass of VkRadioGroup and override
the protected VkRadioGroup::valueChanged() function:

virtual void val ueChanged (Wdget w, XtPointer callData)

391

Chapter 14: Miscellaneous ViewKit Data Input Classes

392

valueChanged() is called whenever any member of the radio group changes state. The
first argument is the selected widget. The second argument is the call data from the
XmNvalueChangedCallback (in the case of a ToggleButton or ToggleButtonGadget
widget) or the XmNactivateCallback (in the case of a PushButton or PushButtonGadget
widget).

You can override valueChanged() to receive notification of state changes and perform
any actions you want. If you override valueChanged(), you should call
VkRadioGroup::valueChanged() to update the states of all members of the radio group
before performing any other actions.

Modified Text Attachment

The VkModified Attachment class provides support for tracking the previous and
current values in an Motif Text or TextField widget. The VkModified Attachment class
automatically displays a dogear (a “folded corner”) in the upper-right corner of the text
widget when the user changes the text value. Figure 14-8 shows a text widget with a
VkModified Attachment dogear.

Figure 14-8 VkModified Attachment Dogear

The user can “flip” between the previous and current text values by clicking the dogear.
Figure 14-9 demonstrates the results of flipping to a previous text value by clicking the
dogear.

Figure 14-9 “Flipping” to a Previous Text Widget Value Using a VkModified Attachment
Dogear

Management Classes for Controlling Component and Widget Operation

When the user presses Enter in the text field, the text displayed becomes the current
value of the text field and the previously displayed text becomes the previous value. If
the current and previous values are the same, the VkModified Attachment object does
not display the dogear; the VkModified Attachment object redisplays the dogear when
the current and previous values are different.

Note: If the user clicks the dogear before pressing the Enter key, any changes the user
made are discarded.

To use the VkModified Attachment class, you must follow these steps:
1. Create an Motif Text or TextField widget.

2. Create a VkModified Attachment object.

3. Attach the VkModified Attachment object to the widget.

4. Display the VkModified Attachment object (to display its dogear).

The VkModified Attachment class also provides several functions for retrieving the
previous and current values of the text field, setting the value of the text field, and
managing the display of the object.

Note: Because the VkModified Attachment class adds callback functions to handle the
changes in value of the text widget, you should not register your own
XmNactivateCallback or XmNvalueChangedCallback functions with the text widget.
Instead, you should use the VkModified Attachment::modifiedCallback ViewKit callback to
determine when the text widget changes its value, and use the VkModified Attachment
access functions to obtain the current or previous value of the text widget.

VkModified Attachment is derived from the VkModified base class, which tracks
previous and current text values not necessarily associated with a text widget. In most
cases, you will use the VkModified Attachment class; therefore, this section describes the
functions inherited from VkModified along with the functions implemented by
VkModified Attachment. For more information on the VkModified class, consult the
VkModified(3x) reference page.

Note: The VkModified and VkModified Attachment classes are both declared in the
<Vk/VkModified.h> header file.

393

Chapter 14: Miscellaneous ViewKit Data Input Classes

394

The Modified Text Attachment Constructor and Destructor

The VkModified Attachment constructor accepts three Boolean values:

VkModi fi edAtt achnent (Bool ean blanklsValue = FALSE,
Bool ean autoAdjust = TRUE,
Bool ean incrementalChange = FALSE)

blanklsValue determines whether the VkModified Attachment object accepts a null string
(ablank) as a valid previous value when displaying the dogear. If blankIsValue is FALSE,
the VkModified Attachment object does not display the dogear if the previous value is
blank.

autoAdjust determines whether the VkModified Attachment object automatically
watches its attached text widget for geometry changes and adjusts its own area
accordingly. If you set this value to FALSE, you must explicitly call

VkModified Attachment::adjustGeometry() after changing the geometry of the text
widget.

If incrementalChange is TRUE, each incremental change to the text value updates the
current and previous values. In this mode, activation of the text widget’s
XmNvalueChangedCallback callback is considered an incremental change. Examples of
incremental changes are: each character added or deleted, each deletion of selected
characters, and each text insertion by pasting selected text. If incrementalChange is FALSE,
the VkModified Attachment object updates the current and previous values only when
the user presses Enter in the text field.

The VkModified Attachment destructor destroys only the VkModified Attachment
object. If you have a widget attached to the object, it is unaffected by the
VkModified Attachment destructor.

Attaching and Detaching the Modified Text Attachment to and From a Widget

Once you have created a VkModified Attachment object, use the
VkModified Attachment::attach() function to attach it to an existing widget:

voi d attach(W dget w)

Management Classes for Controlling Component and Widget Operation

If the VkModified Attachment object is already attached to a widget, it detaches from the
old widget before attaching to the new widget. You can use the

VkModified Attachment::detach() function to detach a VkModified Attachment object
from a widget without immediately attaching it to another widget:

voi d detach()

Displaying and Hiding the Modified Text Attachment

Once you have attached a VkModified Attachment object to a text widget, you must call
VkModified Attachment::show() to display the attachment:

voi d show()

You can hide a VkModified Attachment object by calling
VkModified Attachment::hide():

voi d hide()

When a VkModified Attachment object is hidden, it still tracks the current and previous
values of the text widget to which it is attached; the user simply cannot toggle between
the values. You can still use the VkModified Attachment class’s access functions to
retrieve the previous and current values of the text field.

VkModified Attachment::expose() forces a redraw of the attachment’s dogear:

voi d expose()

expose() is called whenever the dogear widget receives an Expose event. Normally, you
should not need to call this function.

Retrieving the Current and Previous Values of the Text Widget

You can retrieve the current and previous values of the text widget with value() and
previousValue() respectively:

char *val ue()
char *previ ousVal ue()

Note: Do not change or delete the character strings returned by value() and
previousValue().

395

Chapter 14: Miscellaneous ViewKit Data Input Classes

396

Detecting Changes in the Text Widget

The VkModified Attachment class provides a ViewKit member function callback named
VkModified Attachment::modified Callback:

static const char *const nodifiedCall back

The VkModified Attachment object activates this callback whenever the text widget
triggers its XmNactivateCallback or XmNvalueChangedCallback callback. The
modifiedCallback provides a pointer to a VkModifiedCallback structure as call data.
VkModifiedCallback has the following structure:

t ypedef struct {
VkMbdi f i edReason reasorn;
class VkModified *obj;
XEvent *event,

} VkModi fi edCal | back

The VkModifiedCallback fields are listed below:

reason The reason for the callback. It can take one of two values: VM_activate,
if the text widget triggered its XmNactivateCallback callback; or
VM_valueChanged, if the text widget triggered its
XmNvalueChangedCallback callback.

obj A pointer to the VkModified Attachment object.
event A pointer to the event that triggered the callback.

Typically, your callback function should test the reason for the callback and perform an
action if appropriate. For example, you can use one of the access functions to obtain the
current or previous value of the text widget.

Note: Because the VkModifiedAttachment class adds callback functions to handle the
changes in value of the text widget, you should not register your own
XmNactivateCallback or XmNvalueChangedCallback callback functions with the text
widget. Instead, always use the modifiedCallback ViewKit callback to determine when the
text widget changes its value.

Controlling the Contents of the Text Widget

You can programmatically set the new current value of a VkModified Attachment object
with VkModified Attachment::setValue():

virtual void setVal ue(const char *uvalue)

Management Classes for Controlling Component and Widget Operation

setValue() sets the object’s new current value; the old current value becomes the previous
value. VkModified Attachment forces the text widget to display the new current value.

VkModified Attachment::toggleDisplay() programmatically toggles the text widget
display between the current value and the previous value:

virtual void toggl eDi splay()

To determine which value the text widget is displaying, call
VkModified Attachment::latestDisplay():

Bool ean | at est Di spl ay()

latestDisplay() returns TRUE if the text widget is displaying the current value or FALSE
if the text widget is displaying the previous value.

Finally, you can reset the contents of the text widget with
VkModified Attachment::displayValue():

voi d di spl ayVal ue()

displayValue() discards any changes the user may have made and updates the text
widget with the current value (if the user has the current view selected) or the previous
value (if the user has the previous view selected).

Adjusting the Modified Text Attachment’s Geometry

By default, the VkModified Attachment object automatically watches its attached text
widget for geometry changes and adjusts its own area accordingly. If you set the
autoAdjust argument in the VkModified Attachment constructor to FALSE, you must
explicitly call VkModified Attachment::adjustGeometry() after changing the geometry
of the text widget to adjust the attachment’s geometry:

voi d adj ust Geonetry()
You can also control the size of the VkModified Attachment dogear. By default, the

dogear is 10 pixels wide by 10 pixels tall. You can set the width and height to different
values with the VkModified Attachment::setParameters() function:

virtual void setParaneters(Di nension width, Di nension height)

To retrieve the current width and height of the dogear, call
VkModified Attachment::getParameters():

voi d get Par anet er s(Di nensi on *width, Di mension *height)

397

Chapter 14: Miscellaneous ViewKit Data Input Classes

398

Other Modified Text Attachment Utility and Access Functions

The VkModified Attachment class provides several additional utility and access
functions:

* VkModified Attachment::fixPreviousValue() allows you to specify a fixed value to
use as the attachment’s previous value:

virtual void fixPreviousVal ue(char *fixedValue,
Bool ean setValueAlso = TRUE)

After setting a fixed previous value, the attachment does not update the previous
value; this provides a “default” value that the user can always toggle to and use.

If setValueAlso is TRUE, fixPreviousValue() also updates the attachment’s current
value to fixedValue; however, this does not permanently fix the current value.

* VkModifiedAttachment::widget() returns the text widget to which the
VkModified Attachment object is currently attached:

W dget wi dget ()

¢ VkModifiedAttachment::modified() returns TRUE if the current value and the
previous value are equal and FALSE if they are not equal:

Bool ean nodi fied()

* VkModified Attachment::setModified() forces the value of the object’s modified
flag:
virtual void setMdified(Bool ean value)

If you set the value to TRUE, the VkModified Attachment object displays its
dogear; otherwise, it hides its dogear.

X Resources Associated With the Modified Text Attachment

You can set the value of an XmNdisplayModified resource for a text widget to determine
whether or not the attached VkModified Attachment object should display its dogear. If
you set the text widget’s XmNdisplayModified resource to TRUE or if you do not
provide a value for the text widget’s XmNdisplayModified resource, the attached
VkModified Attachment object displays its dogear. This is the default behavior.

If you set the text widget’s XmNdisplayModified resource to FALSE, the attached
VkModified Attachment object does not display its dogear, but it does continue to track
the text widget’s current and previous values. You can still use the functions and
callbacks provided by VkModified Attachment to manipulate the values and manage
the text widget.

Chapter 15

ViewKit Process Control Classes

Viewkit provides several process control classes: the VkRunOnce and VkRunOnce2
classes allow applications to specify that only a single instance of the application can be
run on a system at any one time; the VkBackground class provides a simple C++
interface for handling background tasks based on Xt work procedures; and the
VkPeriodic class provides a simple, convenient interface to the Xt time-out mechanism.
Figure 15-1 shows the inheritance graph for these classes.

___________________ — VkPeriodic

— VKRunOnce

— VKRunOnce2

Figure 15-1 Inheritance Graph for the ViewKit Process Control Classes

VKkRunOnce and VKRunOnce?2

VKkRunOnce and VkRunOnce2 can be useful when implementing applications that are
meant to provide a system-wide service for multiple applications. For example, an audio
control program that controls the volume and other parameters on a system would not
normally need to have multiple instantiations. However, various programs or scripts
might wish to launch the application, but have no way to check whether it is already
running.

399

Chapter 15: ViewKit Process Control Classes

400

Using VkRunOnce and VkRunOnce2, such applications can be launched as many times
as necessary. Only the first instance actually displays the program. Subsequent attempts
notify the running instance, possibly passing some arguments. The running instance
raises itself and responds to any arguments provided. The second instance of the
application simply exits.

The two main differences between VkRunOnce2 and VkRunOnce are that
VkRunOnce2 is more flexible and can be invoked before instantiating VkApp. This can
prove more efficient, because an application can attempt to notify the currently running
process before it starts the possibly time-consuming initialization process. If this is the
first instance of the application to be launched, however, VkRunOnce2 is less efficient,
since it opens the X display twice.

VKRunOnce Constructor and Destructor

The VkRunOnce constructor initializes a VkRunOnce object:

VKRunOnce(VkNaneLi st *args, Bool ean per_host = FALSE,
const char *name = NULL, Bool ean auto_Raise = TRUE)

If there is no other instance of the application running on this system, the VkRunOnce
constructor establishes the new instance as the sole runable instance for that particular
application. Normally, “running on this system” is defined to mean an application whose
X DISPLAY is set to the current display device. If per_host is TRUE, multiple instances are
allowed on any given display, so long as each instance is running on a different host. If
autoRaise is TRUE, the running application is raised when another instance is started.
name is the name of the application.

When another instance of the application is started, the VkRunOnce constructor makes
contact with the running instance, passing it any arguments supplied in the args
parameter. The constructor then causes the second instance of the application to exit by
calling VkApp:terminate().

The VKRunOnce destructor is as follows:
~VKRunOnce()

If the running application deletes its VkRunOnce object, and another instance of the
application is launched, the new instance will be allowed to run.

VkRunOnce and VKRunOnce2

Access Functions
e arg(
char *arg(int index)
Returns the string at the position indicated by index in the VkNameList.

e className()

virtual const char* cl assNane()
Returns the class name. The class name of this class is “VkKkRunOnce.”

* numArgs()
int numArgs()

Returns the number of arguments in the VkNameList.

Using VKRunOnce

The program in Example 15-1 displays a string in a window. After the first instance,
subsequent instances of the program pass the first command-line argument to the
running instance, to be displayed as a string in the application’s window. This program
can also be found in /usr/share/src/ViewKit/Utilities.

Example 15-1 Using VkRunOnce

#i ncl ude <VK/ VKApp. h>

#i ncl ude <Vk/ VKRunOnce. h>

#i ncl ude <Vk/ VkNanelLi st. h>

#i ncl ude <Vk/ VKSi nmpl eW ndow. h>

#i ncl ude <Xnm Label . h>

/1 Define a top-level w ndow class

cl ass RunOnceW ndow : public VKSi npl eW ndow {
W dget _| abel;
public:

RunOnceW ndow (const char *nane);
~RunOnceW ndow() ;

401

Chapter 15: ViewKit Process Control Classes

voi d updat e(VkConponent *conp, XtPointer, XtPointer);

virtual const char* cl assNane();

s
RunOnceW ndow. : RunOnceW ndow (const char *name) : VkSi npl eW ndow (
name)
{
_label = XnCreatelLabel (mai nWndowW dget (), “hello”, NULL, 0);
addVi ew(_| abel) ;
}
RunOnceW ndow: : ~RunOnceW ndow()
{
/1 Enpty
}

const char* RunOnceW ndow: : cl assNane() { return “RunOnceW ndow’; }

voi d RunOnceW ndow: : updat e(VkConponent *conp, Xt Pointer, XtPointer)

{
/1 Just retrieve the argunents, Use the first string as a new | abel
/1 for the widget and the second as a color.
VKRunOnce *obj = (VKRunOnce*) conp;
i f(obj->numArgs() > 0)
{
XnString xnmstr = XnBtringCreatelLocal i zed(obj->arg(0));
Xt VaSet Val ues(_I abel , XmN abel String, xmstr, NULL);
}
i f(obj->nunArgs() > 1)
{
Xt VaSet Val ues(_I abel , Xt VaTypedArg, XnNforeground, XnRString,
obj->arg(1l), strlen(obj->arg(1l)) + 1, NULL);
}
}

402

VkRunOnce and VKRunOnce2

/1 Main driver. Instantiate a VkKApp and a top-level w ndow, “show
/1 the window and then “run” the application. The VKkRunOnce obj ect
/1 prevents nultiple instances of the application.

void main (int argc, char **argv)
{
VKApp *app = new VKApp(“Hello”, &argc, argv);

/1 Construct a VkNameLi st object to pass argunents
/1 And load all left-over command |ine argunents

VkNaneLi st *args = new VkNaneLi st ();

for(int i =1; i < argc; i++)
args->add(argv[i]);

VKkRunOnce *runOnce = new VKkRunOnce(args);
/'l Create a wi ndow
RunOnceW ndow *wi n = new RunOnceW ndow(“hel | 0”);

/'l Register a callback for running applications to recieve if
/1 anyone attenpts to run this application again.

VKkAddCal | backMet hod(VkRunOnce: : i nvokedCal | back, runOnce,
Wi n, RunOnceW ndow: : updat e, NULL);

Wi n->show() ;
app->run();

VKRunOnce2 Constructor and Destructor

The overloaded versions of VKRunOnce2 constructor are as follows:
® VKRunOnce2(Bool ean autoRaise = FALSE)

* VKkRunOnce2(VkNaneLi st *args, Bool ean per_host = FALSE,
const char *name = NULL, Bool ean autoRaise = TRUE)

* VKRunOnce2(char **args, int numArgs, Bool ean per_host = FALSE,
const char *name = NULL, Bool ean autoRaise = TRUE)

403

Chapter 15: ViewKit Process Control Classes

404

If there is no other instance of the application running on this system, the VkRunOnce2
constructor establishes the new instance as the sole runable instance for that particular
application. Normally, “running on this system” is defined to mean an application whose
X DISPLAY is set to the current display device. If per_host is TRUE, multiple instances are
allowed on any given display, so long as each instance is running on a different host. If
autoRaise is TRUE, the running application is raised when another instance is started.
Arguments may be passed as either a character array, or a VkNameList object.

When a second instance of the application is started, the VkRunOnce2 constructor
makes contact with the running instance, passing it any arguments supplied in the args
parameter. The constructor then causes the second instance of the application to exit by
calling VkApp::terminate().

Note: If you use the first form of the VkRunOnce2 constructor, you must call the
member functions notifyOthers() and takeCharge() in order to initiate the process of
contacting running instances and establishing this instance as the sole runable process. If
you use the second or third forms of the VkRunOnce2 constructor, you will not have to
make any explicit calls.

The VKRunOnce2 destructor is as follows:
~VKRunOnce2()

If the running application deletes its VkRunOnce2 object, and another instance of the
application is launched, the new instance will be allowed to run.

Access Functions
e arg()
char *arg(int index)
Returns the string at the position indicated by index in the VkNameList.

e className()
virtual const char* cl assName()

Returns the class name; in this case, the name of the class is “VkRunOnce2.”

VkRunOnce and VKRunOnce2

¢ notifyOthers()

— void notifyQ hers(VkNaneLi st *args,
Bool ean per_host = FALSE,
const char *name = NULL)

— void notifyQ hers(char **args,
int numArgs,
Bool ean per_host = FALSE,
const char *name = NULL)

Notifies any currently running instance of this application that a new instance
has been launched. Any arguments supplied in the parameter args are passed to
the currently running instance.

If there is already a running instance of the application, this function never
returns; it exits after notifying the running instance. If this is the first instance,
the function returns and the application should call takeCharge().

* numArgs()

int numlrgs()

Returns the number of arguments in the VkNameList.
e takeCharge()

voi d takeCharge()

Establishes the calling application as the sole runable instance. You would typically
call this function after calling notifyOthers().

Using VKRunOnce2

The program in Example 15-2, like Example 15-1, displays a string in a window. After the
first instance, subsequent instances of the program will raise the original instance and
then exit. This program illustrates the use of the first form of the VkRunOnce2
constructor described on page 403. This program can also be found in
Jusr/share/src/ViewKit/Utilities.

405

Chapter 15: ViewKit Process Control Classes

Example 15-2 Using VkRunOnce2

#i ncl ude <Vk/ VKApp. h>

#i ncl ude <VK/ VKRunOnce2. h>

#i ncl ude <Vk/ VkNaneLi st . h>

#i ncl ude <VK/ VKSi npl eW ndow. h>

#i ncl ude <Xni Label . h>

/1 Define a top-level w ndow class

cl ass RunOnceW ndow : public VKSi npl eW ndow {

W dget _|abel;

public:

RunOnceW ndow (const char *nane);
~RunOnceW ndow() ;

voi d updat e(VkConponent *conp, XtPointer, XtPointer);

virtual const char* cl assNane();

b

RunOnceW ndow. : RunOnceW ndow (const char *nane) : VKSi npl eW ndow (name)

{ _label = XnCreatelLabel (mai nWndowW dget(), “hello”, NULL, O);
addVi ew(_| abel);

}

RunOnceW ndow: : ~RunOnceW ndow()

{ /1 Enpty

}

const char* RunOnceW ndow. : cl assNane() { return “RunOnceW ndow’; }

voi d RunOnceW ndow: : updat e(VkConrponent *, Xt Poi nter, Xt Pointer)
{

}

/1 Enpty

406

VkBackground

VkBackground

/1 Main driver. Instantiate a VkKApp and a top-level w ndow, “show
/1 the window and then “run” the application. The VKkRunOnce2 obj ect
/1 prevents nultiple instances of the application.

void main (int argc, char **argv)

{
VKRunOnce2 *ro = new VKRunOnce2(TRUE) ;
ro->noti fyQthers(argv, argc);
VkApp *app = new VKApp(“Hello”, &argc, argv);
r o- >t akeChar ge() ;
/'l Create a w ndow
RunOnceW ndow *w n = new RunOnceW ndow(“hell 0”);
/1 Register a callback for running applications to recieve if
/1 anyone attenpts to run this application again.
VkAddCal | backMet hod(VKRunOnce2: : i nvokedCal | back, ro,
wi n, RunOnceW ndow: : updat e, NULL);
Wi n->show() ;
app->run();
}

VkBackground is an abstract base class that provides a simple C++ interface for
handling background tasks based on Xt work procedures (functions that are called
whenever there are no events pending in the application’s event queue). VkBackground
handles the details of registering a work procedure and provides a convenient way to
maintain state between calls to the work procedure.

Derived classes must override the timeSlice() member function, which behaves just like
an Xt work procedure. This member function is called whenever no events are pending
in the application’s event queue. It is expected to perform a small amount of work and
return quickly. The function must return TRUE if the operation is done, or FALSE if the
function should be called again.

407

Chapter 15: ViewKit Process Control Classes

408

The primary reason for using this class instead of using a work procedure directly is the
ability to store state in your subclass’s data members between calls to the timeSlice()
function.

VkBackground Constructor and Destructor

The VkBackground constructor and destructor are as follows:

VkBackground()
Initializes a VkBackground object but does not start the work
procedure.

~VkBackground()
Frees all storage associated with a VkBackground object. If this object’s
work procedure is currently active, the destructor removes it.

Member Functions
e start()
void start(void)
Enables the work procedure.
e stop()
voi d stop(void)
Disables the work procedure.
e timeSlice()
virtual Bool ean tineSlice(void)

Called whenever it is enabled and no events are pending in the application’s event
queue. This function must return quickly and return a value of TRUE if the function
should not be called again, or FALSE if it should be called again at the next possible
time.

VkPeriodic

VkPeriodic

The VkPeriodic class provides a simple, convenient interface to the Xt time-out
mechanism. For many applications, it is sufficient to call XtAppAddTimeOut() directly.
However, VkPeriodic provides the ability to encapsulate in a C++ class the use of
XtAppAddTimeOut() as a cyclic timer.

One way to use VkPeriodic is to derive a new class that overrides the tick() virtual
member function. The tick() function acts just like work procedure that is called for each
cycle of the periodic time-out. It should perform a small amount of work and return
quickly. This approach has the advantage that any data being used in connection with the
time-out can be declared and maintained as data member(s) of the derived class.

The VkPeriodic class also supports a ViewKit callback that allows other C++ classes to
register member functions to be called with each periodic time-out. This approach is
more convenient when a simple timer is needed to drive some other class.

These two methods are not mutually exclusive and may be used together.

VkPeriodic Constructor and Destructor

The VkPeriodic() constructor and destructor are as follows:

VkPeriodic() Initializes a VkPeriodic object, creating a timer to be called every interval
milliseconds:

VkPeri odi c(int interval)

The interval is approximate because it relies on the underlying Xt
mechanism.

~VkPeriodic() Cleans up all memory allocated by a VkPeriodic object and removes
any pending timer.

409

Chapter 15: ViewKit Process Control Classes

Member Functions
e start()

void start(void)

Starts the timer. You must call this function to start the periodic time-outs.

e stop()
voi d stop(void)
Stops the timer.

e tick(

virtual void tick(void)

This is an empty function. It can be overridden by derived classes to allow them to
be notified when each time-out occurs.

Callbacks

The VkPeriodic class provides a callback list that allows other C++ classes derived from
VkCallbackObject to register member functions to be called at periodic intervals:

static const char *const tinmerCall back

410

Appendix A
Contributed ViewKit Classes

This appendix gives you an idea of how you can expand ViewKit by describing some
ViewKit classes that users have contributed. These classes are not supported by Silicon
Graphics, and their interfaces might change in future ViewKit releases.

ViewKit Meter Component

The VkMeter class supports simple compound bar charts, displayed in either vertical or
horizontal mode. If you display multiple values, the data is presented in layers, with the
bar representing the second value starting where the first value ends.

Meter Constructor and Destructor

The VkMeter accepts the standard ViewKit component constructor arguments: a
component name and a parent widget:

VkMet er (const char *name, W dget parent)
You should rarely need to create subclasses of VkMeter.

The VkMeter destructor frees all space associated with the meter:
~VkMet er ()

Resetting the Meter

Before adding any items for display to a VkMeter object, you must call VkMeter::reset()
to reset the meter:

void reset(int peak = -1)

411

Appendix A: Contributed ViewKit Classes

412

The first value, peak, sets the initial peak value displayed by the meter. All items displayed
by the meter are scaled relative to the peak value. For example, if the peak value is 200
and one of your items is 40 units long, that item will be scaled to take 20% of the meter’s
total length. The default peak size is 100 units.

Note: To change meter values or otherwise update a meter object, you must call reset()
and then add the items to the meter again.

Adding Items to a Meter

You add items for a VkMeter object to display with VkMeter:add():

voi d add(int wvalue, char *color)
voi d add(int wvalue, Pixel pixel)
voi d add(int wvalue, int width, char *color)
voi d add(int wvalue, int width, Pixel pixel)

The value argument is the item’s value. When displayed, the VkMeter class scales this
value relative to the peak value set by reset(). For example, if the peak value is 500 and
one of your items is 80 units long, that item will be scaled to take 16% of the meter’s total
length.

When you use these forms of the add() function, the VkMeter object displays the items
sequentially. For example, if you have set the peak value to 100 and you add three items
with values of 20, 10, and 30 in that order, the meter displays three bars: the first ranging
from 0 to 20, the second from 20 to 30, and the third from 30 to 60.

All data items must have an associated color. You can specify the color as a Pixel value,
pixel, or as a string, color. If you provide a string, add() first treats the string as the name
of a resource that add() looks up relative to the component and converts to the desired
color. If add() finds no such resource, it uses the string itself as the name of a color. For
example, the following adds an item with the color “red”:

add(10, "red");

The following adds an item with the color specified by the resource name “criticalColor”:
add(20, "critical Color");

You can specify the width of an item by providing a width argument, expressed in pixels.
If you do not provide a width, the width of the item is the same as the width of the meter.

ViewKit Meter Component

Two more complex forms of add() allow you to precisely control the position of bars in a
meter, and even display bars side by side:

voi d add(int start, int size, int sideValue, int width, char *color)
voi d add(int start, int size, int sideValue, int width,
Pi xel color)

In these forms of add(), the first value, start, specifies the starting position of the bar, and
the second value, size, specifies the size (length) of the bar. VkMeter scales these values
relative to the peak value set by reset(). The third argument, sideValue, and the fourth
argument, width, specify values in the opposite dimension. VkMeter does not scale these
values relative to the meter’s peak value.

For example, consider a meter with a peak value of 100. The following lines add four bars
to the meter:

add(0, 20, 0, 10, "red");
add(0, 20, 10, 10, "blue");
add(0, 20, 20, 10, "green");
add(20, 20, 0, 30, "yellow');

If you display this meter vertically, it shows three vertical bars ranging from 0 to 20 side
by side in red, blue, and green. Above them is a yellow bar spanning all of them and
ranging from 20 to 40.

Updating the Meter Display

After adding all items to a meter, call the VkMeter::update() function to update the
meter’s display:

voi d updat e()

Note: Remember that if you want to change the meter display, you must first call reset()
and then add each item in the new display.

Setting the Meter’s Resize Policy

The meter you create can have a fixed size or it can attempt to resize itself dynamically
as it requires more or less room to display the items it contains. You can specify the
meter’s resize policy with VkMeter::setResizePolicy():

voi d set Resi zePol i cy(unsigned char policy)

413

Appendix A: Contributed ViewKit Classes

414

You can provide any of the following values:

XmRESIZE_NONE
The meter never attempts to resize itself. The application, or managing
widget, is in complete control of the meter’s size.

XmRESIZE_GROW
The meter calls XtSetValues() on the widget used to display the meter to
attempt to grow as needed. The success of the call to XtSetValues()
depends on the parent widget’s geometry management policy.

XmRESIZE_ANY
The meter calls XtSetValues() on the widget used to display the meter to
attempt to grow or shrink as needed. The success of the call to
XtSetValues() depends on the parent widget’s geometry management

policy.

Determining the Desired Dimensions of the Meter

You can determine the dimensions that a meter needs to display itself completely by
calling VkMeter::neededWidth() and VkMeter::neededHeight():

Di mensi on neededW dt h()
Di mensi on neededHei ght ()

X Resources Associated With the Meter Component

The following X resources are associated with the VkMeter class:

XmNorientation
Determines the orientation of the meter. The default value is
XmVERTICAL, which specifies a vertical meter. Set the value of the
resource to XmHORIZONTAL for a horizontal meter.

ViewKit Pie Chart Component

XmNresizePolicy
Determines the resize policy of the meter, as described in “Setting the
Meter’s Resize Policy” on page 413. The default value is
XmRESIZE_NONE.

XmNdrawBorder
Determines whether bars are drawn with borders. The default value is
FALSE, in which case bars do not have borders. If you set the value to
TRUE, bars have borders drawn in the color specified by the
XmNborderColor resource.

ViewKit Pie Chart Component

The VkPie class is derived from VkMeter and displays data in the same way as that
class. However, rather than displaying the values as a bar chart, the VkPie class displays
the data as a pie chart. See “ViewKit Meter Component” on page 411 for a description of
VkMeter.

ViewKit Outline Component

The VkOutline component, derived from VkComponent, displays a textual outline.
VkOutline automatically indents items according to their depth in the outline.
Figure A-1 shows an example of a VkOutline component containing three top-level
items, each with several subitems.

Note: VkOutline utilizes VkList and SgList which are undocumented and unsupported
for external use.

415

Appendix A: Contributed ViewKit Classes

Figure A-1 VkOutline Component

If there is not sufficient space to display the entire outline, the VkOutline component
automatically displays a scrollbar, as shown in Figure A-2.

416

ViewKit Outline Component

Figure A-2 VkOutline Component With the Scrollbar Visible

The VkOutline component displays a control icon to the left of each outline item that
contains subitems. The control icon denotes whether the sub-tree under the item is
displayed (open) or not (closed). The user can click the left mouse button on the control
icon to toggle between the open and closed states. Figure A-3 shows the results of closing
the item “Subheading 2B,” shown in the previous figure.

417

Appendix A: Contributed ViewKit Classes

418

Figure A-3 Closing a Heading in a VkOutline Component

Constructing an Outline Component

The VkOutline constructor accepts the standard ViewKit component constructor
arguments: a component name and a parent widget:

VkQutline (const char *name, W dget parent)

Adding Items to an Outline

You can add items to the outline in a simple parent-child relation with VkOutline::add():

voi d add(char* parentName, char* childName)

ViewKit Outline Component

The actions performed by add() depend on whether either or both of the items already
exist in the outline:

¢ If both items already exist in the outline, add() does nothing.

e If neither exists, add() creates parentName as a top-level item in the outline and then
creates childName as a subitem of parentName.

o If parentName already exists but childName does not, add() creates childName as a
subitem of parentName.

o If childName exists and parentName does not, and childName is a top-level item, add()
“reparents” childName by adding parentName as a top-level item and moving
childName in the outline so that it is a subitem of parentName.

o If childName exists and parentName does not, but childName is not a top-level item,
add() does nothing.

parentName and childName are used both as item names and as the text displayed in the
outline. Note that you must use unique names for each item in the outline.

You can add multiple subitems to an existing item using VkOutline::addChildren():
voi d addChi | dren(char** parentPath, char** childNames)

voi d addChi |l dren(char** parentPath, char** childLabels,
char ** childNames, voi d** childData)

The character string array parentPath specifies the complete path of the parent item
through the outline. The first element of the parentPath array is the name of the topmost
item of the outline containing the specified item, the second element is the name of the
second-highest item, and so on, with the name of the item itself appearing last. You must
NULL-terminate the array.

The character string array childNames contains the names of the subitems to add to the
specified parent item. Note that you must use unique names for each item in the outline.

In the second form of addChildren(), you can provide childLabels, an array of character

strings that provide display labels for the subitem you add. VkOutline displays these
labels for the items instead of the item names.

419

Appendix A: Contributed ViewKit Classes

420

In the second form of addChildren(), you can also provide childData, an array of pointers
to arbitrary data. You can retrieve a pointer to the data associated with an item using
VkOutline::getHookAt(), described in “Outline Utility and Access Functions” on

page 423. Usually you need to use this data only if you create a subclass of VkOutline.
In a subclass, you can add callbacks so that when the user selects an outline item, you can
retrieve the data associated with that item and perform some action.

VkOutline::createPath() creates or extends a path in the outline:

voi d createPath(char** itemLabels, char** itemNames)

The character string array itemNames specifies a path through the outline. The first
element of the itemNames array is the name of the topmost item of the outline containing
the specified item, the second element is the name of the second-highest item, and so on,
with the name of the item itself appearing last. You must NULL-terminate the array.

If path does not exist, then createPath() creates a new set of items with the first element
in the path as the top-level item, the second element a subitem of the first, and so on. If
createPath() finds a partial match in the existing outline, where the first element of
itemNames matches the name of an existing top-level item and one or more lower-level
items match succeeding elements of itemNames, createPath() adds those items needed to
fully extend the path.

For those items that createPath() adds, it uses the corresponding elements from the
itemLabels character string array as the display labels for those items. VkOutline displays
these labels for the items instead of the item names.

Note: createPath() does not alter the labels for any existing items. createPath() uses the
labels only when adding new items.

Whenever you add items to the outline, no matter which function you use to add them,
you must call VkOutline::displayAll() to update the outline display:

voi d di splayAll ()

ViewKit Outline Component

Setting Display Attributes for Outline Items

VkOutline allows you to designate items as “keywords” and display them in a different
foreground or background color, and/or font. You can also define up to four custom item
highlights, each with its own foreground and background colors, and font attributes.

Use VkOutline::setKeywordAttributes() to define the keyword display attributes:
voi d set Keywor dAttri but es(Pi xel fg, Pixel bg, XnFontList font)

fg is the foreground color for the item’s text. bg is the background color for the item. font
is the font used to display the item’s text.

Use VkOutline:displayAsKeyword() to display an item with the keyword display
attributes:

voi d di spl ayAsKeywor d(char ** path)

You specify the complete path of the item through the outline as an array of character

strings. The first element of the path array is the name of the topmost item of the outline
containing the specified item, the second element is the name of the second-highest item,
and so on, with the name of the item itself appearing last. You must NULL-terminate the
array. Note that displayAsKeyword() requires the item names, not their display labels.

Use VkOutline::setHighlightAttributes() to define the display attributes of a custom
highlight:

int setH ghlightAttributes(Pixel fg, Pixel bg, XnFontlList font)

fg is the foreground color for the item’s text. bg is the background color for the item. font
is the font used to display the item’s text. setHighlightAttributes() returns an integer
identifier for the highlight. You use this identifier to apply the highlight to outline items
with the highlight() function described below. If setHighlightAttributes() could not
allocate a custom highlight, it returns 0.

Use VkOutline::highlight() to display one or more items with display attributes of a
custom highlight:

voi d hi ghlight(int itemPos, int attribID)
voi d highlight(char** items, int attribID)

421

Appendix A: Contributed ViewKit Classes

422

In the first form of highlight(), you specify the position index in the outline of the item
you want to highlight. Items are numbered sequentially from the top of the outline
starting with zero. attribID is the attribute identifier returned by
setHighlightAttributes() of the custom highlight that you want to assign to the items.

In the second form of highlight(), items is an array of strings specifying the names of the
items to highlight. Note that highlight() requires the item names, not their display labels.
Again, attribID is the attribute identifier (returned by setHighlightAttributes()) of the
custom highlight that you want to assign to the items.

You cannot remove a custom highlight from individual items; you can only remove the
highlight from all items to which you have applied it. VkOutline::unhighlight()
removes a custom highlight:

voi d unhi ghlight (int attribID)

attribID is the attribute identifier (returned by setHighlightAttributes()) of the custom
highlight that you want to assign to the items.

Closing and Opening Outline Topics

You can programmatically toggle an outline item open or closed with
VkOutline::toggleChildren():

virtual void toggleChildren(int position)

position is the item’s position in the SgList widget. Items are numbered sequentially from
the top of the outline starting with zero.

You can determine the effects of the last toggle operation, whether a result of user
interaction or a call to toggleChildren(), by calling VkOutline::effectOfLastToggle():

int effect Last Toggl e(int& from, inté& count)

If the last toggle operation opened an item (and therefore inserted items into the SgList
widget), effectOfLastToggle() returns 1, sets the value of from to the position of the
toggled item in the list, and sets the value of count to the number of items displayed by
opening the item. If the last toggle operation closed an item (deleting items from the
SgList widget), effectOfLastToggle() returns 0, sets the value of from to the position of
the toggled item in the list, and sets the value of count to the number of items deleted
from the list by closing the item.

ViewKit Outline Component

You can determine whether a given item is closed with VkOutline::isPathClosed():

int isPathd osed(char** path)

The character string array path specifies the complete path of the item through the
outline. The first element of the path array is the name of the top-most item of the outline
containing the specified item, the second element is the name of the second-highest item,
and so on, with the name of the item itself appearing last. You must NULL-terminate the
array.

isPathClosed() returns 1 if the item is closed, 0 if the item is open, and -1 if the item has
no subitems.

Outline Utility and Access Functions

VkOutline provides the following utility and access functions:

voi d setlndentati onWdth(int width)

VkOutline::setIndentationWidth() sets indentation width for future displays. The
indentation width is the number of pixels to the right that the outline offsets a child item
from its parent item:

void printTree()

VkOutline::printTree() prints the outline on the application’s standard output:

voi d reset()

VkOutline::reset() re-initializes the outline, deleting all items. reset() retains any display
attributes you created:

W dget |istWdget()
VkOutline::listWidget() returns the widget ID of the SgList widget that the VkOutline
uses to display the outline:

voi d sel ect (i nt position)

VkOutline::select() selects the string displayed at the given position of the SgList
widget:
voi d get HookAt (i nt position)

423

Appendix A: Contributed ViewKit Classes

VkOutlineASB

424

VkOutline::getHookAt() retrieves the pointer to the data associated with an item given
the item’s position in the SgList widget. This is the data that you provided as the
childData argument to addChildren() (see “Adding Items to an Outline” on page 418).

Usually, you need to use this data only if you create a subclass of VkOutline. In a
subclass, you can add callbacks to the SgList widget so that when the user selects an
outline item, you can retrieve the data associated with that item and perform some
action.

The VkOutlineASB class, a subclass of VkOutline, provides the same functionality as
VkOutline except that it uses an annotated scrollbar. With VkOutlineASB, you can
display colored bars in the scrollbar to indicate the positions of highlighted items in the
outline.

All functions that VkOutlineASB inherits from VkOutline operate identically.
VkOutlineASB provides one additional function, VkOutlineASB::setAnnotation():

voi d set Annot ation(i nt attribID, Bool ean state)

setAnnotation() determines whether or not the scrollbar displays annotations for a given
display highlight. attribID is the attribute identifier returned by setHighlightAttributes()
of a particular custom highlight. If state is TRUE, the scrollbar displays annotations for
the given display highlight; if state is FALSE, the scrollbar does not display annotations
for the given display highlight.

Appendix B

Changes and Additions in ViewKit 2.1

This chapter contains the following sections which discuss the new features and changes
in ViewKit 2.1:

¢ “Overview Of ViewKit 2.1” on page 425

* “Porting to ViewKit 2.1” on page 430

e “ViewKit 2.1 Inheritance Graph” on page 436

* “Required Packages (ViewKit 2.1 Addendum)” on page 435

Overview Of ViewKit 2.1

This section provides an overview of the new features in ViewKit 2.1 from a
programmer’s perspective.

Note: The default development environment is still ViewKit 1.5.3 and Motif 1.2. If you
wish to use the features in ViewKit 2.1 you must change the default environment to Motif
2.1 by entering (as root) the following command:

fusr/Mtif-2.1/1ib/nksym inks

To return the default environment to 1.2, enter:
Jusr/Mtif-1.2/1ib/nksym inks

See the Motif 2.1 Porting Guide for more information about build environments and
Motif 2.1.

425

Appendix B: Changes and Additions in ViewKit 2.1

426

New Features

With the release of ViewKit 2.1, it is now possible for a ViewKit application to create and
manage windows and dialogs on multiple screens as well as multiple displays. There are
several new foundation classes in ViewKit, the most important being VkDisplay and
VKkScreen, to support the development of multi-screen applications. In addition, the
following existing ViewKit classes have been extended in order to support this new
feature:

VkApp VkFatalErrorDialog VkPromptDialog
VkBusyDialog VkFileSelectionDialog VkQuestionDialog
VkCallbackObject VkiInfoDialog VkSimpleWindow
VkColorChooserDialog VkInterruptDialog VkSubProcess
VkColormap VkMenu VkTabPanel
VkComponent VkPipe VkVisual
VkCutPaste VkProgram VkWarningDialog
VkDialogManager VkProgressingDialog VkWindow
VkErrorDialog VkQuestionDialog

Multiple Displays and Screens within ViewKit 2.1

ViewKit 2.1 is a major enhancement to the standard ViewKit 1.5.3 framework. The
primary motivation for the development of ViewKit 2.1 was to provide support for
multiple displays and screens within the ViewKit framework. This enhancement
required significant changes in the foundation classes of ViewKit. While every attempt
was made to try to maintain source code compatibility with previous versions of
ViewKit, there are a few exceptions to this in ViewKit 2.1. These exceptions are
documented in the “Porting to ViewKit 2.1” on page 430.

ViewKit 2.1 adds two new foundation classes in order to support developing
applications which access multiple screens and potentially multiple displays:
¢ VkDisplay

® VkScreen

Overview Of ViewKit 2.1

In the new ViewKit 2.1 programming model, there is still a single instance of VkApp
(accessed via the theApplication global variable). In addition, a VkApp instance now
contains a list of VkDisplay instances and each VkDisplay instance contains a list of
VkScreen instances. The VkScreen class provides most of the core functionality in the
new programming model, similar to what VkApp provided in the old model. Most of
the VkApp methods defer their execution to either VkDisplay or VkScreen methods.
VkDisplay essentially functions as a pass-through, because its primary purpose is to act
as the glue between VkApp and the real information being managed within VkScreen.
VKkScreen manages a list of windows (see the VkDisplay(3x) and VkScreen(3x) man
pages for more information).

A simple ViewKit 2.1 application will by default have a single instance of VkApp, which
contains a single instance of VkDisplay, which in turn contains a single instance of
VKkScreen. The default instances of VkDisplay and VkScreen are created by the VkApp
constructor. VkApp has methods for creating new displays and screens (see VkApp.h):

VKDi spl ay *VkApp::newDi splay (char *displ ay,
char *nane,
int *arg_c,
char *arg_v,
Xt Poi nter data);

VkScreen *VKApp: : newScreen (char *nane,
VkDi spl ay *dpy,
int *arg_c,
char *arg_v,
voi d (*preRealizeFunction)(Wdget w),
Xt Poi nter data);

These virtual methods provide a mechanism that allows applications to use custom
subclasses of VkDisplay and VkScreen that are unique to those applications. The last
argument in both of these methods is an XtPointer named data. This argument is not used
in the default implementation of newDisplay() and newScreen(), but is provided as an
additional mechanism to allow custom data to be passed into a subclass implementation
of these methods. This should make the API for these methods flexible enough to satisfy
most custom application requirements. The methods are used by the VkApp constructor
to create the initial instances of VkDisplay and VkScreen (or their subclasses) which are
required by every ViewKit 2.1 application.

427

Appendix B: Changes and Additions in ViewKit 2.1

428

Note: See “Porting to ViewKit 2.1” on page 430 for a list of VkApp methods which are
only applicable to a single screen application. If you are writing new applications, you
should try to avoid these methods if you have any plans to support multi-screen
applications in the future. This is especially true for people developing new components
for ViewKit 2.1.

In addition to the standard VkApp API which was used in ViewKit 1.5.2, there are
several new methods which can be used in multi-screen applications. The first is
displayList(), which returns a pointer to the VkComponentList which contains the
instances of VkDisplay that have been created in the current instance of VkApp. This
allows custom applications to iterate over all the instances of VkDisplay in the
application, should that be necessary.

Caution: Itis very important that you do not add or remove items from this list directly.
It should only be used to iterate across the list of VkDisplay instances in an application.

As mentioned earlier, most of the existing APIs in VkApp actually defer their execution
to the instances of VkDisplay in this list. For example, calling busy() on VkApp results
in busy() being called for every instance of VkDisplay contained in the list returned by
displayList().

You must cast the values in the displayList() to the appropriate class pointer before
accessing its methods. For example:

VKM App: : busy2()

{ VkConponent Li st *dpyLi st = displayList();
for (int i=0; i < dpyList->size(); i++)
((VkKM/Di splay *) dpyList[i])->busy2();
} }

This sample code shows an implementation of a new method called “busy2” for a
custom application which is build around custom subclasses for VkApp and VkDisplay
(named “VkMyApp” and “VkMyDisplay”). In reality, this application would also
probably require a custom subclass of VkScreen (“VkMyScreen”) if the new
VkMyDisplay::busy2() implementation also defers its execution to the VkScreen class
or subclass.

Overview Of ViewKit 2.1

In order to make it easier for application programmers to access the data that is typically
needed for the new multi-screen APIs on VkDisplay and VkScreen, VkApp provides
the following methods (see VkApp.h):

e VkMenuBar *VKApp::get MenuBar (VkConponent *conp);

e VkMenuBar *VKApp::get MenuBar (W dget widget);

* VKSi npl eW ndow *VkApp: : get W ndow (VkConponent *conp);
® VKSi npl eW ndow *VkApp: : get Wndow (W dget w dget);

e VKD splay *VKkApp::getDisplay (VkConponent *conp);

e VKD splay *VkApp::getDi splay (Wdget widget);

e VkScreen *VKApp::get Screen (VkConponent *conp);

e \VKkScreen *VKApp::getScreen (W dget w dget);

These methods are provided in two versions, one using VkComponent pointers and the
other using Widget pointers. In general, it is easier to use the Widget pointer methods
inside Motif callback functions (or methods) and the VkComponent methods in
standard ViewKit methods. In reality, the VkComponent pointer methods call the
Widget pointer methods after determining the baseWidget of the component. With these
methods in VkApp it is easy, given either a component or a widget, to determine the
VkScreens, VkDisplays, VkSimpleWindows, or VkMenuBars which are associated with
the item in question.

Note: ViewKit programmers writing multi-screen applications need to be careful about
caching information at the VkApp level because most of this data will tend to be screen
specific.

Multi-screen applications should not call the special macros for global dialogs (such as
“theBusyDialog”) because these macros will only return the dialog associated with the
default screen. Instead, applications should call the global dialog functions, such as
getTheBusyDialog (VkComponent *comp), and pass a component from the current
screen as the argument. This will ensure that the correct global dialog is returned (that is,
the one which is valid for the current screen). See the header files for the various dialogs
for more information.

429

Appendix B: Changes and Additions in ViewKit 2.1

New APIs for VkCallbackObject

In previous versions of ViewKit (1.5.3 or older), the identifier used for
VkCallbackObjects was a char*. In ViewKit 2.1, we have extended the options for
identifiers (or keys) to include the following:

char *name
Xr mQuar k quar k
| ong i ndex

This change extends all of the APIs (constructors and methods) for VkCallbackObject to
support these three types of identifiers. You can now choose which identifier type is most
convenient your application. For example, applications that need to manage large
numbers of VkCallbackObjects can now use either the “quark” or “index” APIs in order
to improve the performance of VkCallbackObject. See VkCallbackObject.h for more
information about these changes.

Note: Any given instance of VkCallbackObject will only have one type of identifier,
which will be determined by the constructor used to create it.

Porting to ViewKit 2.1

430

This section highlights the features of ViewKit 2.1 that require program changes in
existing ViewKit applications or components.

Source Code Incompatibilities

The development of ViewKit 2.1 required us to break source code compatibility with
ViewKit 1.5.3 in the following areas:

e VkColormap

e VkCutPaste::export()

Porting to ViewKit 2.1

VkColormap Changes

The ViewKit 1.5.3 implementation of VkColormap was heavily dependent on static data
and class methods which ran counter to the requirements of ViewKit 2.1 when it came to
supporting multiple displays and screens. In order to eliminate dependency on global
data (and methods), VkColormap was re-implemented. The new implementation tries
to adhere to the existing APIs whereever possible. However, the constructors for
VkColormap have changed completely. The only valid constructor is the following:

VkCol or map(VkScreen *screen);

Also, all of the previous class methods (that is, static methods) have been changed to
instance methods.

You will need to review the usage of VkColormap when porting existing ViewKit
applications and custom components to ViewKit 2.1 (for more information, see
fusr/Motif-2.1/include/Vk/VkColormap.h and the VkColormap(3x) man page).

VkCutPaste Changes

There is a new reserved keyword in the latest C++ language specifications called
“export.” In order to ensure compatibility with future C++ compilers that implement this
keyword, the old VkCutPaste method, export(), has been renamed exportData() in
ViewKit 2.1:

vi rtual Bool ean exportData (Atom sel ection, Tine time=CurrentTi ne);

Any existing ViewKit code will need to be modified to call the new method (see
fusr/Motif-2.1/include/Vk/VkCutPaste.h).

Note: It may be useful to review your code for other application-specific uses of “export”
in order to prevent future problems.

431

Appendix B: Changes and Additions in ViewKit 2.1

432

New Multi-display and Multi-screen support

The primary motivation for the development of ViewKit 2.1 was the addition of support
for multiple displays and screens within the ViewKit framework. This feature required a
significant modification to the foundation classes within ViewKit. The new
programming model is similar to the old in that there is a single instance of VkApp in
any given ViewKit application. In addition however, a VkApp contains a list of
VkDisplay instances, each of which in turn contains a list of VkScreen instances. The
VKkScreen is in many ways similar in its usage to that of VkApp in the previous ViewKit
programming model. For instance, VkScreen contains a list of window instances and all
the APIs which were typically associated with VkApp (see the VkDisplay(3x) and
VkScreen(3x) man pages for more information).

Note: For more information on the VkApp/VkDisplay/VkScreen programming
model, see “Overview Of ViewKit 2.1” on page 425.

While it is true that existing ViewKit applications will compile and run on ViewKit 2.1
with minimal changes (see “Source Code Incompatibilities” on page 430), any
application or custom component which needs to utilize the multiple display or multiple
screen features of ViewKit 2.1 will require more significant changes.

The primary change required for supporting multiple displays and screens is to convert
from VkApp method calls to VkScreen method calls. Typically this means finding the
calls to theApplication (a global variable) and writing code which gets the current
VKkScreen instance and calls its methods instead. The following VkApp methods should
not be used in an application or component which needs to be multi-display or
multi-screen aware:

e addW ndow(VkSi npl eW ndow * newW ndow)

® baseW dget ()

e husyCursor ()

e display()

* mai nW ndow()

e normal Cursor()

e renoveW ndow VkSi npl eW ndow *ol dW ndow)
e setBusyCursor(const Cursor c)

e set BusyCursor (VkCursorlList *c)

e setBusyDi al og(VkBusyDi al og *d)

Porting to ViewKit 2.1

e set Normal Cursor(const Cursor c)
e shell Geonetry()

e showCursor(const Cursor c)

Calls to these methods via the theApplication global variable should be modified to call
the appropriate VkDisplay or VkScreen method. The following are two examples
illustrating these modifications (where obj is an instance of a subclass of VkComponent):
Example 1

old: t heAppl i cati on->di spl ay();

new: t heAppl i cati on->get Di spl ay(obj) ->di spl ay();

or: obj - >get Di spl ay() - >di spl ay();

Example 2

old: t heAppl i cati on- >baseW dget () ;

new: t heAppl i cati on- >get Scr een(obj) - >baseW dget () ;

or: obj - >get Scr een() - >baseW dget () ;

In general, ViewKit components should make calls to VkScreen methods and should

limit the usage of the theApplication global variable. Some of the new methods in VkApp
which are handy for use with theApplication include:

e VKD splay *get D spl ay(VkConponent *conp)
e \kDisplay *get D spl ay(Wdget w dget)

e \VkScreen *get Screen(VkConponent *conp)

e \KkScreen *get Screen(W dget wi dget)

® \KSi nmpl eW ndow *get W ndow(VkConponent *conp)
¢ VKSi npl eW ndow *get W ndow W dget wi dget)

433

Appendix B: Changes and Additions in ViewKit 2.1

434

ViewKit 2.1 provides two versions for most of these methods in order to make it easier
to use these calls in both callbacks (the widget methods) and application code (the
component methods). Given either a widget or an instance of a subclass of
VkComponent, you can call any of these methods using the theApplication global
variable in order to get a pointer to the instance of VkDisplay, VkScreen or
VkSimpleWindow which is associated with the item in question (for more information,
see /usr/Motif-2.1/include/Vk/VkApp.h, /usr/Motif-2.1/include/Vk/VkDisplay.h, and
fusr/Motif-2.1/include/Vk/VkScreen.h).

Writing code which supports both ViewKit 1.5.3 and 2.1

For those who are trying to maintain code which needs to run on both ViewKit 2.1 and
ViewKit 1.5.3, the easiest way to manage this is to ifdef the ViewKit 2.1 specific code in
the same style that we have in the ViewKit code base. For example, here’s a fragment of
code from the VkBusyCursors.h:

public:

VkBusyCursors();
#ifdef _VK_ MAJOR > 1

VkBusyCursors(VkScreen *scr);
#endi f

This enables the new constructor for VkBusyCursors when compiled for ViewKit 2.1
(where _VK_MAJOR is 2) and disables it for ViewKit 1.5.3 (where _'VK_MAJOR s 1). The
value of _VK_MAJOR is defined in the VkCommonDefs.h file that can be found at the
following locations:

e Jusr/Motif-1.2/include/Vk/VkCommonDefs.h for ViewKit 1.5.3
o Jusr/Motif-2.1/include/Vk/VkCommonDefs.h for ViewKit 2.1

Required Packages (ViewKit 2.1 Addendum)

Required Packages (ViewKit 2.1 Addendum)

In addition to the required packages listed in “Required Packages” in Chapter 1,
ViewKit 2.1 also requires the following packages:

ViewKit21 dev.sw.base
You are required to install this subsystem, which contains the
optimized, unshared C++ ViewKit 2.1 libraries and include files (the
shared ViewKit 2.1 libraries are included in the IRIX system
software as the ViewKit_eoe.sw.base subsystem).

ViewKit21_dev.sw.debug
This subsystem contains the debug version of the optimized
ViewKit 2.1 libraries. You can optionally install this subsystem in
addition to the ViewKit21_dev.sw.base subsystem. Use this library for
program debugging only.

ViewKit21 dev.man.relnotes
This is the online version of the ViewKit 2.1 Release Notes. This
subsystem is optional, but recommended.

435

Appendix B: Changes and Additions in ViewKit 2.1

ViewKit 2.1 Inheritance Graph

Figure B-1 shows the new inheritance structure in ViewKit 2.1. This is only a partial chart,
showing changes and additions. The shaded classes indicate classes that are new in
ViewKit 2.1. The rest of the inheritance structure can be seen in Appendix C, “ViewKit

436

Class Graph.”
VkBase
L VkCallbackObject — VkCursorList
I— VkComponent I— VkBusyCursors
— VKAppProto — VKkListSearch
VkScreen — VkNameList
VKApp — VkWidgetList
VKkMsgApp VKAlignmentGroup
I— VKkSoMsgApp VkGangedGroup
VKSoApp VkRadioGroup
— VkDisplay VkMsgClient
— VkSimpleWindow VkMsgFacility
I— VkWindow VkMsgService
— VkComponentList VkContextData
Figure B-1 Inheritance Graph for ViewKit 2.1 Additions and Changes

Appendix C

ViewKit Class Graph

Figure C-1 and Figure C-2 show the ViewKit class graph.

437

Appendix C: ViewKit Class Graph

VkCallbackObject

I

VkComponent
|—| VkDialogManager | I—l VkMenultem | VkPrefltem |
—| VkBusyDialog | —| VkMenu | —| VkPrefCustom
|—| VkinterruptDialog —| VkMenuBar | |—| VkPrefEmpty
l—l VkProgressDialog | —| VkOptionMenu | —| VkPrefGroup
—| VkColorChooserDialog | —| VkPopupMenu | VkPrefList
—| VKErrorDialog | —| VkSubMenu | VkPrefRadio
|—| VkFatalErrorDialog VkHelpPane —| VkPrefLabel
— VkFileSelectionDialog | VkRadioSubMenu = VkPrefOption
—| VkGenericDialog | —| VkMenuAction | —| VkPrefSeparator
|—| VkPrefDialog —| VkMenuActionWidget | —| VkPrefText
—| VkinfoDialog | —| VkMenuConfirmFirstAction | —| VkPrefToggle
—| VkPromptDialog | —| VkMenuToggle |
—| VkQuestionDialog | —| VkMenuUndoManager |
—| VkWarningDialog | —| VkMenuLabel |
|—| VkMenuSeparator |
Figure C-1 ViewKit Class Graph, Part 1

438

VkCallbackObject

I

VkComponent |

—| VKApp —| VkCheckBox —| VkBackground |

VkMsgApp |—| VkRadioBox — VkPeriodic |

|—| VkSoMsgApp —| VkCompletionField —| VkPipe |

VkSoApp —| VkDeck —| VkProgram |

—| VkSimpleWindow —| VkDoubleBuffer —| VKRunOnce |

|—| VkWindow VkMeter — VKRunONce2 |

—| VkComponentList |—| VkPie —| VkTextlO |
| VKkCursorList VkTabPanel VkForklO |

|—| VkBusyCursors —| VklconButton —| VkCutPaste |

| VKListSearch —| VkRepeatButton —| VklInput |

| VkNameList —| VkScroll —| VkModel |

| VkWidgetList - VKkTabbedDeck — VkModified |
VkAlignmentGroup —| VkTickMarks VkModifiedAttachment |

VkGangedGroup —| VkVuMeter —| VkQuickHelp |

VkRadioGroup —| VkGraph —| VkResizer |

| VkMsgClient —| VkNode | VKAction |

| VkMsgFacility] VkOutline | Vkvisual |

I—| VkMsgService

Figure C-2

|—| VkOutlineASB

ViewKit Class Graph, Part 2

439

Glossary

animated busy cursor

A cursor that is a sequence of pixmaps you can cycle through while in a busy state, giving
the appearance of animation.

attachments
Management classes that control the operation of components and widgets.

base widget

The root of a widget subtree.

busy states
When you lock out user input during an operation.

butterfly node
The central node of a butterfly graph.

butterfly graphs
Tree graphs that display only a central node and its immediate parent and child nodes.

command classes

Classes that allow you to implement actions as objects.

components

A component encapsulates a collection of widgets, but also defines the behavior of the
overall component.

fixed busy cursor

A cursor that retains the same appearance throughout a busy state.

homogenous group
A group that contains only one type of preference item.

441

Glossary

442

main window
The first window created in every application is by default treated as the main window.

non-homogenous group
A group that contains more than one type of preference item.

peak value
The initial value in a meter object.

preference dialogs
A dialog box that allows the user to customize the behavior of an application.

view
A widget or ViewKit component that you use as your work area for the XmMainWindow
widget.

ViewKit callbacks

A mechanism that allows a component to define conditions or events, the names of
which are exported as public static string constants encapsulated by that component.

Index

Symbols

[] (subscript) operator (in VkMenu), 155
_allowMultipleDialogs (in VkGenericDialog), 224
_baseWidget (in VkComponent), 14, 18
_baseWidget (in VkSimpleWindow), 94

_canvas (in VkDoubleBuffer), 348

_clientData() (in VkMenuActionObject), 186
_currentMatchList (in VkCompletionField), 386
_cursorList (in VkCursorList), 69

_height (in VkDoubleBuffer), 349

_iconState (in VkSimpleWindow), 111

_label (in VkCheckBox), 369

_label (in VkNode), 332

_mainWindowWidget (in VkSimpleWindow), 113
_minimizeMultipleDialogs (in VkGenericDialog), 224
_name (in VkComponent), 14, 17

_nameList (in VkCompletionField), 386

_rc (in VkCheckBox), 369

_showApply (in VkGenericDialog), 224
_showCancel (in VkGenericDialog), 224
_showOK (in VkGenericDialog), 223
_stackingState (in VkSimpleWindow), 111
_visibleState (in VkSimpleWindow), 111
_widgetList (in VkCheckBox), 369

_width (in VkDoubleBuffer), 349

_winList (in VkApp), 84

A

aboutDialog() (in VkApp), 81
activate() (in VkCompletionField), 386
activate() (in VkMenultem), 127
activate() (in VkPrefItem), 238
activateltem() (in VkMenu), 150

activating
command classes, 187
menu items, 127, 150
preference items, 238

add((in VkAlignmentGroup), 353-354
add() (in VkCompletionField), 384
add() (in VkGangedGroup), 389
add() (in VkGraph), 333-334
add() (in VkMenu), 146
add() (in VkMenuUndoManager), 176-177
add() (in VkMeter), 412-413
add() (in VkNamelList), 53
add() (in VkRadioGroup), 391
addAction() (in VkMenu), 143-144
addCallback() (in VkCallbackObject), 35-37
addConfirmFirstAction() (in VkMenu), 144
addDesktopMenultems() (in VkGraph), 346
adding

buttons to radio group, 391

items to meter component, 412-413

nodes to graphs, 332-334

pixmaps to tabs, 376

scrollbars to a ganged group, 389

443

Index

adding (continued)
tabs to tab panel, 374-375
toggles to check box, 362
widgets to alignment group, 353-354

addItem() (in VkCheckBox), 362

addItem() (in VkPrefGroup), 254-255
addLabel() (in VkMenu), 145

addLabel() (in VkTickMarks), 351
addMenultems() (in VkGraph), 345
addMenuPane() (in VkWindow), 109
addRadioMenuPane() (in VkWindow), 109
addRadioSubmenu() (in VkMenu), 146
addSeparator() (in VkMenu), 145
addSubmenu() (in VkMenu), 145

addTab() (in VkTabPanel), 374-375

addTabs() (in VkTabPanel), 375

addToggle() (in VkMenu), 144

addView() (in VkSimpleWindow), 94
adjustGeometry() (in VkModified Attachment), 397
Admin menu (in graph overview window), 325
afterRealizeHook() (in VkApp), 84
afterRealizeHook() (in VkComponent), 20
afterRealizeHook()

(in VkSimpleWindow), 108, 112
alignBottom() (in VkAlignmentGroup), 354
alignHeight() (in VkAlignmentGroup), 354
aligning

nodes in graphs, 325, 338-339
widgets, 353-355

See also VkAlignmentGroup class
alignLeft() (in VkAlignmentGroup), 354
alignment groups, 353-355

See also VkAlignmentGroup class
adding widgets, 353-354
aligning widgets, 354-355
removing widgets, 354
alignRight() (in VkAlignmentGroup), 354
alignTop() (in VkAlignmentGroup), 354

444

alignWidth() (in VkAlignmentGroup), 354
appContext() (in VkApp), 82
applicationClassName() (in VkApp), 82
applications
See also VkApp class
busy states, 75-80, 210
See also VkBusyDialog class;
VklInterruptDialog class
busy dialog, 75, 79-80
entering, 75
example, 76-77
exiting, 75
nested, 75
class name, 60, 82
command-line options, parsing, 60-61, 83
example, 84-86
cursors, 67-74
busy, animated, 68, 68-74, 78
busy, fixed, 68
default, 67, 68
normal, 67-68
temporary, 74
Display structure, 82
event handling, 62-64
customizing, 64
during postAndWait(), 195-196
during wasInterrupted(), 211
pending events, 63
raw events, 62-63,112-113
in non-default visuals, 61
in overlay planes, 86-87
name, 60, 82
pointer, 60
product information, 80-81
quitting, 20-21, 65-66, 93, 107, 110-111, 209
running, 62
shell, 60, 83, 89-90
geometry, 82
version information, 80
windows, managing, 66-67, 103-104
XtAppContext structure, 82

Index

apply() (in VkDialogManager), 224-225
Apply button, dialogs, 194
arcCreatedCallback (in VkGraph), 344
arcDestroyedCallback (in VkGraph), 344
arcs (in graphs)

attributes, 333-334
areal() (in VkTabPanel), 381
area2() (in VkTabPanel), 381
arg() (in VkRunOnce), 401
arg() (in VkRunOnce2), 404
argc() (in VkApp), 82
argc (in main()), 60, 82
argCnt() (in VkVisual), 273
argList() (in VkVisual), 273
argv() (in VkApp), 83
argu (in main()), 60, 83
attach() (in VkModified Attachment), 394-395
attach() (in VkPopupMenu), 168
attach() (in VkResizer), 358-359

attachments, 353-360, 388-398
alignment groups, 353-355
ganged scrollbars, 388-389
modified text, 392-398
radio-style toggles, 390-392
resizers, 356-360

attributes
arcs in graphs, 333-334

B

background processes, 407-408
balloon help, 314-316
baseHeight() (in VkPrefltem), 238

base widget
See also baseWidget()
applications, 83

components, 12, 14, 16, 18
deletion, handling, 24
preference items, 235, 238
realization, detecting, 20
windows, 94
baseWidget() (in VkApp), 83
baseWidget() (in VkComponent), 18
baseWidget() (in VkSubMenu), 158
BlackPixel macro, 267
blocking, modal dialogs, 193
build() (in VkNode), 331
build() (in VkPopupMenu), 168
buildCmdPanel() (in VkGraph), 345
buildZoomMenu() (in VkGraph), 345
busy() (in VkApp), 75-77
note, 75
busyCursor() (in VkApp), 68, 74
busy dialog, 75, 210
See also VkBusyDialog class;
VkDialogManager class
installing, 79-80
busy states, 75-80, 210
busy dialog, 75
installing, 79-80
entering, 75
example, 76-77
exiting, 75
nested, 75
butterfly graphs, 340
butterfly node, 340
buttonCallback (in VkRepeatButton), 387

buttons
radio-style. See radio-style toggles;
VkRadioGroup class
repeating. See repeating buttons;
VkRepeatButton class

445

Index

C

callbacks. See ViewKit callbacks; Xt callbacks
callCallbacks() (in VkCallbackObject), 39-40
cancel() (in VkDialogManager), 224-225
Cancel button, dialogs, 194
centering algorithm, dialogs, 204-205
centerOnScreen() (in VkDialogManager), 204-205
changed() (in VkPrefGroup), 255
changed() (in VkPrefItem), 237
check box component, 362-369
See also components; VkCheckBox class
example, 363-365
setting labels, 363-365
toggles
adding, 362
detecting value changes, 366-369
getting values, 366
setting values, 365
child() (in VkNode), 330
classes
dependencies, 3
management, 353-360, 388-398
alignment groups, 353-355
ganged scrollbars, 388-389
modified text, 392-398
radio-style toggles, 390-392
resizers, 356-360
process control, 399-410
class hints, 108
class name
See also className()
application, 60, 82
components, 18, 26
className() (in VkApp), 82
className() (in VkComponent), 18, 26
className() (in VkRunOnce), 401
className() (in VKkRunOnce2), 404

446

className() (in VkVisual), 274
clear() (in VkCompletionField), 384
clear() (in VkCutPaste), 281
clearAll() (in VkGraph), 335

clearing

completion field expansion list, 384

undo stack, 178
“Click for Help” selection (in Help menu), 311
client data, Xt callbacks

components, 21-22

static menu descriptions, 138-139
clipboardAtom() (in VkCutPaste), 304
CLIPBOARD transfer model, 280
“Close” selection (in Admin menu), 325
“Collapse Selected Nodes” (in Selected Nodes

menu), 327

“Collapse Subgraph” selection (in Node menu), 326
color chooser dialog, 220-223

See also VkDialogManager class;

VkColorChooserDialog class

colormap() (in VkVisual), 274
colormapCreated() (in VkVisual), 274
colormaps, 267-268
command classes, 184-188

See also VkAction class;

VkMenuA ctionObject class

activating, 187

constructors, 186

executing, 187

menu items, 187

overview, 184-185

setting labels, 187-188
command-line options, parsing, 60-61, 83

example, 84-86
compiling ViewKit programs, 5-7

example, 7
completeName() (in VkNameList), 55

completion fields, 384-386
See also components; VkCompletionField class
activation, responding, 385
clearing expansion list, 384
replacing expansion list, 384
retrieving contents, 385
setting expansion list, 384
components, 11-52
See also VkComponent class
base widget, 12, 14, 16, 18
See also baseWidget()
deletion, handling, 24
realization, detecting, 20
callbacks. See components: ViewKit callbacks;
components: Xt callbacks
characteristics, 12-13
class name, 18, 26
See also className()
constructor, 13-16
definition, 11-12
destructor, 16-17
displaying, 19-20
hiding, 19-20
managing widgets, 13, 14
multiple pointers to, 40-41
name, 12-14,17
overview, 11-12
parent widget, 12, 14
resource support, 26-34
data members, initializing, 28-30
default values, setting, 30-32
global values, setting, 31
requirements, 26
resource values, setting, 27
values, retrieving, 32-34
static member functions and Xt callbacks, 13, 21-24
example, 22-24
naming convention, 22
this pointer, 21-22
subclassing, 41-52
constructor, 14-16

examples, 43-52
summary, 41-42
testing for valid, 21
ViewKit callbacks, 34-41
creating, 39
defining, 39
invoking, 39-40
overview, 34
registering callback functions, 35-37
removing callback functions, 38
triggering, 39-40
unregistering callback functions, 38
widget destruction, 13, 14, 16, 24-25
widgets, 12,14
Xt callbacks, 13, 21-24
example, 22-24
naming convention, 22
this pointer, 21-22
concepts
suggested reading, xxix
constructing menus
dynamically, 143-149
example, 147-149
static description, from, 133-143
example, 139-143
VkMenuDesc structure, 134-137
Xt callback client data, 138-139
constructors
See individual class names

context-sensitive help, 313
conventions, xxxi-xxxii
inheritance graphs, xxxii
reference pages, xxxi
typographical, xxxi
converting data types, 295-298
copy and paste, 281-285
createCursor() (in VkCursorList), 69
createDialog() (in VkGenericDialog), 223

Index

creating
ViewKit callbacks, 39
window interfaces, 93-103
See also windows: views

cursors, 67-74

busy, animated, 68, 68-74
animating, 78
example, 69-74

busy, fixed, 68

default, 67, 68

normal, 67-68

temporary, 74

custom dialog, 223-225
See also VkDialogManager class;
VkGenericDialog class

customizing event handling, 64

D

data members, initializing with X resources, 28-30

data transfer
See also VkCutPaste class, 279-306

data types

converting, 295-298

registering, 292-295
deactivate() (in VkMenu), 150
deactivate() (in VkMenultem), 127
deactivate() (in VkPrefltem), 238

deactivating
menu items, 127, 150
preference items, 238

debug libraries, ViewKit, 6

defining ViewKit callbacks, 39
deleteCallback (in VkComponent), 16, 40-41
deleteChildren() (in VkPrefGroup), 255
demonstration programs, 10

448

dependencies
classes, 3
VkApp, 3,60
depth() (in VkVisual), 274

deriving subclasses. See components: subclassing
See also specific classes

deselecting
nodes in graphs, 327
detach() (in VkModified Attachment), 395
detach() (in VkResizer), 359
dialogs, 189-225
See also VkDialogManager class;
specific dialog classes
Apply button, 194
busy, 75,210
See also VkBusyDialog class
installing, 79-80
button labels, setting, 203-204
Cancel button, 194
centering algorithm, 204-205
color chooser, 220-223
See also VkColorChooserDialog class
custom, 223-225
See also VkGenericDialog class
error, 209
See also VkErrorDialog class
event handling
during postAndWait(), 195-196
during wasInterrupted(), 211
fatal error, 209
See also VkFatalErrorDialog class
file selection, 217-220
See also VkFileSelectionDialog class
caution, 220
generic, 223-225
See also VkGenericDialog class
Help button, 194, 313
information, 206-208
See also VkInfoDialog class
in overlay planes, 225

Index

dialogs (continued)
interruptible busy, 210-212
See also VkInterruptDialog class
checking for interruptions, 210-211
installing, 79-80, 211-212
message, 194
OK button, 194
overview, 190-192
parent widget, 194
pointers, 192
posting, 193-199
examples, 196-199
methods, 193-196
preference. See preference dialogs;
VkPrefDialog class
preposting, 200
Product Information, 81, 311
progress, 212-214
See also VkProgressDialog class
installing, 79, 213-214
prompt, 215-217
See also VkPromptDialog class
caution, 217
question, 215
See also VkQuestionDialog class
VkMenuConfirmFirstAction use, 131
title, setting, 201-203
unposting, 201
warning, 208
See also VkWarningDialog class

disabling multi-level undo support, 178
display() (in VkApp), 82
display() (in VkGraph), 335
displayAll() (in VkGraph), 335
displayButterfly() (in VkGraph), 340
displaylIf() (in VkGraph), 337-338
displaying

components, 19-20

graph overview window, 324, 341
menu items, 126

modified text attachment dogear, 395
nodes in graphs, 326, 327, 335-338, 342
resizer geometry controls, 359
windows, 67,103

displayParentsAndChildren() (in VkGraph), 337
Display structure, 82
displayValue() (in VkModified Attachment), 397
displayWithAllChildren() (in VkGraph), 336
displayWithAllParents() (in VkGraph), 337
displayWithChildren() (in VkGraph), 336
displayWithParents() (in VkGraph), 337
distributeHorizontal() (in VkAlignmentGroup),
355

distributeVertical() (in VkAlignmentGroup), 355
doit() (in VkAction), 186
doit() (in VkMenuActionObject), 186
doLayout() (in VkGraph), 338
doSparseLayout() (in VkGraph), 339
doSubtreeLayout() (in VkGraph), 339
double-buffer component, 347-349

See also components; VkDoubleBuffer class

drawing, 348

resizing, 349

switching buffers, 349
drag and drop, 285-292
dragAwayCopy() (in VkCutPaste), 285
dragAwayCopyExtended() (in VkCutPaste), 286
draw() (in VkDoubleBuffer), 348

drawing, double-buffered, 348
See also VkDoubleBuffer class

E

enableCancelButton() (in VkDialogManager), 205
enterCallback (in VkCompletionField), 385

449

Index

error dialog, 209
See also VkDialogManager class;
VkErrorDialog class

error dialog, fatal, 209
See also VkDialogManager class;
VKkFatalErrorDialog class

establishing connections
nodes in graphs, 328, 333-334

event handling, 62-64
customizing, 64
during postAndWait(), 195-196
during wasInterrupted(), 211
pending events, 63
raw events, 62-63,112-113

examining undo stack, 179

executing command classes, 187

exists() (in VkNamelList), 55

exiting applications. See quitting applications
expand() (in VkCompletionField), 385-386
expandNode() (in VkGraph), 336

“Expand Selected Nodes” (in Selected
Nodes menu), 327

expandSubgraph() (in VkGraph), 336
export() (in VkCutPaste), 282

expose() (in VkModified Attachment), 395
external help library, linking to, 310

F

<F1> key (Help), 313
fatal error dialog, 209
See also VkDialogManager class;
VkFatalErrorDialog class

fileName() (in VkFileSelectionDialog), 219-220

file selection dialog, 217-220
See also VkDialogManager class;
VkFileSelectionDialog class
caution, 220

450

find() (in VkGraph), 342
findChild() (in VkNode), 330
finding

menu items, 149

nodes (in graphs), 330, 342
findNamedItem() (in VkMenu), 149
findParent() (in VkNode), 330

fixPreviousValue()
(in VkModified Attachment), 398

forAllNodesDo() (in VkGraph), 342
forceWidth() (in VkOptionMenu), 165

freeFilenamesFromSGI_ICON()
(in VkCutPaste), 291

freeXmStringTable() (in VkNamelList), 56

G

ganged scrollbars, 388-389
See also VkGangedGroup class
adding scrollbars, 389
removing scrollbars, 389

gc() (in VkTabPanel), 381

generic dialog, 223-225
See also VkDialogManager class;
VkGenericDialog class

getButton() (in VkPrefOption), 246
getColor() (in VkColorChooserDialog), 222
getDataTypelnfo() (in VkCutPaste), 295

getFilenamesFromSGI_ICON()
(in VkCutPaste), 291

getIndex() (in VkNameList), 53
getIndex() (in VkOptionMenu), 164
getltem() (in VkOptionMenu), 164
getltemPosition() (in VkMenu), 155
getLabel() (in VkMenultem), 128
getLabel() (in VkPrefOption), 246
getLocalReference() (in VkCutPaste), 305

Index

getLocalTypeReference() (in VkCutPaste), 306
getMenu() (in VkWindow), 104
getParameters() (in VkModified Attachment), 397
getResources() (in VkComponent), 28
getState() (in VkMenuToggle), 132
getString() (in VkNamelList), 55
getStringTable() (in VkNamelList), 55
getSubStrings() (in VkNamelList), 55
getTab() (in VkTabPanel), 378
getText() (in VkCompletionField), 385
getting

check box toggle values, 366

preference item values, 237

getTitle() (in VkSimpleWindow), 106
getValue() (in VkCheckBox), 366

getValue() (in VkPrefltem), 237

getValue() (in VkPrefOption), 247
getValue() (in VkPrefText), 240

getValue() (in VkPrefToggle), 243-244
getVersion() (in VkCutPaste), 304
getVisualState() (in VkSimpleWindow), 105
getWidget() (in VkCutPaste), 304
getWindow() (in VkSimpleWindow), 105
getXColor() (in VkColorChooserDialog), 222
getXmStringTable() (in VkNamelList), 56
getXServerTime() (in VkCutPaste), 304

Graph Overview button (in VkGraph
control panel), 324
graphs, 317-346
See also components; nodes; VkGraph class;
VkNode class
arc attributes, 333-334
butterfly, 340
control panel, 322-323
edit mode, 319, 326-327
example, 319-322
graph widget, 318-319

multiple arcs, 325

Node menu, 326

nodes
See also VkNode class
adding, 332-334
aligning, 325, 338-339
arc attributes, 333-334
deselecting, 327
displaying, 326, 327, 335-338, 342
establishing connections, 328, 333-334
hiding, 326, 327, 335-338
laying out, 325, 338-339
moving, 327
performing action, 342
removing, 334
selecting, 326-327
sorting, 341

orientation, 325

overview, 317-327

overview window, 324-325, 341
Admin menu, 325

read-only mode, 319

reusing, 343-344

saving, 342

Selected Nodes menu, 327

widgets, 343

X resources, 344

zooming, 323-324, 341

graphWidget() (in VkGraph), 343

H

handlePendingEvents() (in VkApp), 63, 64

handleRawEvent() (in VkApp), 63
note, 63

handleRawEvent() (in VkSimpleWindow), 112-113

handleWmDeleteMessage() (in
VkSimpleWindow), 107

handleWmQuitMessage()
(in VkSimpleWindow), 107

451

Index

hasUndo() (in VkMenuAction), 130
header files

Motif, 6

required, 6

X, 6
height() (in VkAlignmentGroup), 355
help

balloon, 314-316

external help library, linking to, 310

message line, 314-316

popup, 314-316

QuickHelp, 314-316

SGIHelp, 309

ViewKit, 308-309

determining help tokens, 310

“helpAuthorMode” resource, 310
Help button, dialogs, 194, 313
help library interface functions, 307-310
Help menu, 81, 310-313

See also menus; submenus; VkHelpPane class

resources, 312-313
helpPane() (in VkMenuBar), 157

help system, 307-316
context-sensitive help, 313
<F1> key (Help), 313
Help button, dialogs, 194, 313
Help menu, 310-313

resources, 312-313
interface functions, 307-310

help tokens
determining, 310

hide() (in VkApp), 67

hide() (in VkComponent), 19

hide() (in VkMenultem), 127

hide() (in VkModified Attachment), 395
hide() (in VkResizer), 359

hide() (in VkSimpleWindow), 103
hideAllChildren() (in VkGraph), 336

452

hideNode() (in VkGraph), 335

“Hide Node” selection (in Node menu), 326
hideOverview() (in VkGraph), 341
hideParents() (in VkGraph), 337
hideParentsAndChildren() (in VkGraph), 337

“Hide Selected Nodes” (in Selected
Nodes menu), 327
hideWithAllChildren() (in VkGraph), 336
hiding
components, 19-20
graph overview window, 341
menu items, 127
modified text attachment dogear, 395
nodes in graphs, 326, 327, 335-338
resizer geometry controls, 359
windows, 67, 103

historyList() (in VkMenuUndoManager), 179
horiz() (in VkTabPanel), 379

iconic() (in VkSimpleWindow), 104
iconify() (in VkApp), 67
iconify() (in VkSimpleWindow), 103
iconifying windows, 67,103

at startup, 67, 83
icon titles, 106
import() (in VkCutPaste), 284
importImmediate() (in VkCutPaste), 283
include files. See header files
“Index” selection (in Help menu), 311
indexString() (in VkVisual), 276

information dialog, 206-208
See also VkDialogManager class;
VkInfoDialog class

Index

inheritance graphs
See also specific class names
conventions, xxxii
initializing
data members with X resources, 28-30
Xt Intrinsics, 60
installDestroyHandler() (in VkComponent), 14, 25

interapplication data transfer
See also VkCutPaste class, 279-306

interfaces, window. See windows: views
interruptedCallback (in VkInterruptDialog), 211
interruptible busy dialog, 210-212
See also VkDialogManager class;
VkInterruptDialog class
checking for interruptions, 210-211
installing, 79-80, 211-212
invoking ViewKit callbacks, 39-40

IRIX Interactive Desktop,
suggested reading, xxix

isComponent() (in VkComponent), 21
isContainer() (in VkMenultem), 130
isContainer() (in VkPrefItem), 239
isOwnedByLocalHost() (in VkCutPaste), 305
isOwnedByMe() (in VkCutPaste), 305

item() (in VkPrefDialog), 257

item() (in VkPrefGroup), 255

itemChanged (in VkCheckBox), 367-368

K

“Keys & Shortcuts” selection (in Help menu), 311

L

label() (in VkNode), 330
labelBg() (in VkTabPanel), 381

labelFg() (in VkTabPanel), 380
labelHeight() (in VkPrefltem), 238
“labelString” resource (in VkAction), 187-188
labelWidget() (in VkPrefItem), 238
label widget, preference items, 235, 238
lastPosted() (in VkDialogManager), 205
latestDisplay() (in VkModified Attachment), 397
laying out nodes in graph, 325, 338-339
libraries

required, 6-7

ViewKit, 6-7
lineThickness() (in VkTabPanel), 380
lower() (in VkApp), 67
lower() (in VkSimpleWindow), 104
lowering windows, 67, 104

M

main(), 9
maintaining string lists, 53-58
main window, 92
determining, 66
during quitting, 65
specifying, 66
mainWindow() (in VkApp), 66
mainWindowWidget()

(in VkSimpleWindow), 94, 104
makeNodeVisible() (in VkGraph), 342
makeNormal() (in VkAlignmentGroup), 354
management classes, 353-360, 388-398

alignment groups, 353-355
ganged scrollbars, 388-389
modified text, 392-398
radio-style toggles, 390-392
resizers, 356-360

manipulating string lists, 53-58

453

Index

man pages. See reference pages

maxLevel() (in VkVisual), 274

member function callbacks. See ViewKit callbacks
menu() (in VkWindow), 109

menu bars, 156-157
See also menus; windows; VkMenuBar class
VkWindow destructor, and, 93
VkWindow support, 108-109

menu items, 126-132
See also menus; VkMenultem class; specific menu
item classes
actions, 130-131
See also VkMenuAction class
activating, 127, 150
adding to menus, 143-146
command classes, 187
confirmable actions, 131
See also VkMenuConfirmFirstAction class
deactivating, 127, 150
determining position in menu, 155
displaying, 126
finding, 149
hiding, 127
labels, 128, 132
See also VkMenuLabel class
overview, 124
position, 128-129
removing, 127, 150-151
replacing, 151
separators, 132
See also VkMenuSeparator class
toggles, 131-132
See also VkMenuToggle class
type, 129-130
“Undo” selection, 174
adding, 175
setting label, 179
undo support, 134, 144, 175-176
menus, 123-313
See also menu items; VkMenu class

454

activating items, 127, 150
adding items, 143-146
constructing dynamically, 143-149
example, 147-149
constructing from static description, 133-143
example, 139-143
VkMenuDesc structure, 134-137
Xt callback client data, 138-139
constructing with work procedures, 133
deactivating items, 127, 150
determining item position, 155
displaying items, 126
finding menu items, 149
Help menu, 81, 310-313
See also submenus; VkHelpPane class
resources, 312-313
hiding items, 127
in overlay planes, 171-172
menu bars, 156-157
See also windows; VkMenuBar class
VkWindow destructor, and, 93
VkWindow support, 108-109
option menus, 162-167
See also VkOptionMenu class
example, 165-167
item width, setting, 165
menu label, setting, 163-164
selected item, setting, 164, 164
overview, 124-125
popup menus, 167-171
See also VkPopupMenu class
attaching to widget, 168
example, 169-171
popping up, 168-169
radio submenus, 159-162
See also VkRadioSubMenu class
removing items, 127, 150-151
replacing items, 151
setting item labels, 128
setting item positions, 128-129
submenus, 157-158

Index

menus (continued)
See also VkSubMenu class
tear-off behavior, 158
“Undo” selection, 174
adding, 175
setting label, 179
VkMenuDesc structure, 134-137
VkMenultemType type, 134-135
XtDisplay() caution, 124
XtScreen() caution, 124
XtWindow() caution, 124
menuType() (in VkMenultem), 129-130
message, dialogs, 194
message line help, 314-316
meter component, 411-415
See also components; VkMeter class
adding items, 412-413
desired dimensions, 414
resetting, 411-412
resize policy, 413-414
updating display, 413
X resource, 414-415
minLevel() (in VkVisual), 274
modified() (in VkModified Attachment), 398
modifiedCallback (in VkModified Attachment), 396

modified text attachment, 392-398
See also VkModified Attachment class
adjusting geometry, 397
attaching widgets, 394-395
controlling contents, 396-397, 398
detaching widgets, 395
detecting changes, 396
displaying dogear, 395
hiding dogear, 395
overview, 392-393
retrieving values, 395
mostCommonString() (in VkNamelList), 55

Motif
header files, 6

suggested reading, xxix
ViewKit, and, 3-4
moving
nodes in graphs, 327
widgets, 356-360
See also VKResizer class
multiLevel() (in VkMenuUndoManager), 178
multi-level undo support, 174
disabling, 178
undo stack
clearing, 178
examining, 179

Multiple Arcs button (in VkGraph control panel), 325

multiple displays, 426-429, 432-434
multiple pointers to a component, 40-41
multiple screens, 426-429, 432-434

N

name() (in VkApp), 82
name() (in VkComponent), 17
nChildren() (in VkNode), 330
neededHeight() (in VkMeter), 414
neededWidth() (in VkMeter), 414
newDisplay() (in VkDisplay), 427-429
newScreen() (in VkScreen), 427-429
Node menu (in VkGraph), 326
nodes (in graphs), 327-332

See also components; graphs; VkGraph class;

VkNode class

adding to graph, 332-334

aligning, 325, 338-339

arc attributes, 333-334

butterfly node, 340

child nodes, 330

deselecting, 327

displaying, 326, 327, 335-338, 342

455

Index

nodes (in graphs) (continued)
establishing connections, 328, 333-334
finding, 330, 342
hiding, 326, 327, 335-338
label, 328, 330, 332
laying out, 325, 338-339
moving, 327
parent nodes, 330
performing action, 342
removing from graph, 334
selecting, 326-327
sorting, 329, 341
subclassing, 331-332

non-blocking, modal dialogs, 193
non-blocking, non-modal dialogs, 193
normalCursor() (in VkApp), 68
notBusy() (in VkApp), 75-77
notifyOthers() (in VkRunOnce2), 405

“noUndoQuestion” resource (in
VkMenuConfirmFirstAction), 131

nParents() (in VkNode), 330
numArgs() (in VkRunOnce), 401
numArgs() (in VkRunOnce2), 405
numColors() (in VkVisual), 274
numltems() (in VkMenu), 155
numNodes() (in VkGraph), 342

O

ok() (in VkDialogManager), 224-225

OK button, dialogs, 194

0okToQuit() (in VkComponent), 20-21

okToQuit() (in VkSimpleWindow), 65,107, 110-111
open() (in VkApp), 67

open() (in VkSimpleWindow), 103

opening windows, 67, 103

operator=() (in VkNamelList), 54

456

operator==() (in VkNamelList), 55

option menus, 162-167
See also menus; VkOptionMenu class
example, 165-167
item width, setting, 165
menu label, setting, 163-164
selected item
determining, 164
setting, 164

outline component, 415-424

overlay planes

applications in, 86-87

dialogs in, 225

menus in, 171-172
“Overview” selection (in Help menu), 311
overviewWindow() (in VkGraph), 341

overview window, graphs, 324-325, 341

P

packages, required, 5-6
parent() (in VkNode), 330
parent widget
components, 12, 14
dialogs, 194
windows, 92
parseCommandLine() (in VkApp), 83
parsing command-line options, 60-61, 83
example, 84-86
pending events, 63
periodic processes, 409-410

pie chart component, 415
See also components; meter component;
VkPie class

planesString() (in VkVisual), 276
popup help, 314-316
popupMenu() (in VkGraph), 345

Index

popup menus, 167-171
See also menus; VkPopupMenu class
attaching to widget, 168
example, 169-171
popping up, 168-169
post() (in VkDialogManager), 193-195
postAndWait() (in VkDialogManager), 193, 195-196
postBlocked() (in VkDialogManager), 193-195
posting dialogs, 193-199
examples, 196-199
methods, 193-196
postModal() (in VkDialogManager), 193-195
prefCallback (in VkPrefDialog), 258-259
preference dialogs, 227-262
See also dialogs; VkPrefDialog class
adding items, 257, 257
creating, 256-257
example, 231-234
overview, 228-234
posting, 257-258
See also dialogs: posting
retrieving values, 260
subclassing, 261-262
unposting, 258
See also dialogs: unposting
user interaction, responding, 258-259
preference items, 235-256
See also VkPrefltem class; individual preference
item classes
activating, 238
base widget, 235, 238
deactivating, 238
empty space, 249
See also VkPrefEmpty class
groups, 249-256
See also VkPrefGroup class; VkPrefList class;
VkPrefRadio class
adding items, 254-255
changes in item values, 255
comparison of group classes, 250-253

creating, 253-254
deleting items, 255
labels, 256
labels, setting, 256
label items, 247-248
See also VkPrefLabel class
setting labels, 248
labels, 235-236
groups, 256
label items, 248
option menus, 245-246
toggles, 241-243
label widget, 235, 238
option menus, 244-247
See also VkPrefOption class
labels, setting, 245-246
number of options, setting, 246
overview, 228-229, 229-230
separators, 249
See also VkPrefSeparator class
text fields, 239-240
See also VkPrefText class
toggles, 240-244
See also VkPrefToggle class
setting labels, 241-243
values, 237

prepost() (in VkDialogManager), 200
prepostCallback (in VkDialogManager), 200
preposting dialogs, 200

previousValue() (in VkModified Attachment), 395
primaryAtom() (in VkCutPaste), 304
PRIMARY transfer model, 280

print() (in VkVisual), 276

printAll() (in VkVisual), 276

process control classes, 399-410

product information, 80-81

Product Information dialog, 81,311

“Product Information” selection
(in Help menu), 81,311

457

Index

programs
compiling and linking, 5-7
example, 7
demonstration, 10
progress dialog, 212-214
See also VkDialogManager class;
VKkProgressDialog class
installing, 79, 213-214
progressing() (in VkApp), 78
prompt dialog, 215-217
See also VkDialogManager class;
VkPromptDialog class
caution, 217

pulldown() (in VkSubMenu), 158
putCopy() (in VkCutPaste), 281
putReference() (in VkCutPaste), 306

Q

question dialog, 215
See also VkDialogManager class;
VkQuestionDialog class
VkMenuConfirmFirstAction use, 131
QuickHelp, 314-316
balloon, 314-316
message line, 314-316
popup, 314-316
timers, 314-315
quitting applications, 20-21, 65-66, 93, 107,
110-111, 209
quitYourself() (in VkApp), 20, 65, 107
note, 66

R

radio check box component, 369-371
See also check box component; VkRadioBox class
example, 369-371

458

radio-style toggles, 390-392
adding buttons, 391
removing buttons, 391
See also VkRadioGroup class

radio submenus, 159-162
See also menus; VkRadioSubMenu class;
VkSubMenu class
adding to menus, 146

raise() (in VkApp), 67

raise() (in VkSimpleWindow), 104

raising windows, 67, 104

raw events, 62-63, 112-113

Realign button (in VkGraph control panel), 325

reference pages
conventions, Xxxi

registerConverter() (in VkCutPaste), 295
registerDataType() (in VkCutPaste), 293
registerDropSite() (in VkCutPaste), 288
registerDropSiteExtended() (in VkCutPaste), 288
registering data types, 292-295

registering functions, ViewKit callbacks, 35-37
caution, 35
example, 35-36
function format, 36, 37

registerLoseSelection() (in VkCutPaste), 282
relayButton() (in VkGraph), 343

remove() (in VkAlignmentGroup), 354
remove() (in VkCutPaste), 306

remove() (in VkGangedGroup), 389

remove() (in VkGraph), 334

remove() (in VkMenultem), 127

remove() (in VkNamelList), 54

remove() (in VkRadioGroup), 391
removeAllCallbacks() (in VkCallbackObject), 38
removeCallback() (in VkCallbackObject), 38
removeDestroyHandler() (in VkComponent), 25
removeDuplicates() (in VkNamelList), 54

Index

removeFirst() (in VkGangedGroup), 389
removeFirst() (in VkRadioGroup), 391
removeltem() (in VkMenu), 150-151
removeLast() (in VkGangedGroup), 389
removeLast() (in VkRadioGroup), 391
removeTab() (in VkTabPanel), 375-376
removing

buttons from radio group, 391

functions, ViewKit callbacks, 38

menu items, 127, 150-151

nodes from graphs, 334

pixmaps from tabs, 376

scrollbars from a ganged group, 389

tabs to tab panel, 375-376

widgets from alignment group, 354
reorientButton() (in VkGraph), 343
repeat buttons

activation, responding, 387
repeating buttons, 386-388

See also components; VkRepeatButton class

X resources, 388
replace() (in VkMenu), 151
replacing

completion field expansion list, 384

menu items, 151
requirements

header files, 6

libraries, 6-7

packages, 5-6
reset() (in VkMenuUndoManager), 178
reset() (in VkMeter), 411-412
resize() (in VkDoubleBuffer), 349
resizers, 356-360

See also VkResizer class

attaching widgets, 358-359

detaching widgets, 359

displaying geometry controls, 359

geometry changes
detecting, 359-360
restricting, 359
hiding geometry controls, 359
overview, 356-358
resizing
double-buffer component, 349
widgets, 356-360
See also VKResizer class
resource support
components, 26-34
data members, initializing, 28-30
default values, setting, 30-32
global values, setting, 31
requirements, 26
resource values, setting, 27
retrieving values, 32-34
example, 33-34
note, 33
reverse() (in VkNamelList), 54

Rotate Graph button (in VkGraph control panel), 325

run() (in VkApp), 62-64
run_first() (in VkApp), 62

S

“safe quit” mechanism, 20-21, 65-66, 110-111
saveToFile() (in VkGraph), 342
saving
graphs, 342
“Scale to Fit” selection (in Admin menu), 325

schemes
menu bars, and, 156
options menus, and, 163
scrollbars, “ganging” See ganged scrollbars;
VkGangedGroup class
ScrolledWindow widget and windows, 94

459

Index

secondary event loops
during handlePendingEvents(), 63
during postAndWait(), 195-196
during wasInterrupted(), 211

Selected Nodes menu (in VkGraph), 327
selectedTab() (in VkTabPanel), 378

selecting
nodes in graphs, 326-327

selectTab() (in VkTabPanel), 375, 378

set() (in VkOptionMenu), 164

setAboutDialog() (in VkApp), 81

setArgs() (in VkDialogManager), 205
setBaseHeight() (in VkPrefltem), 238
setBusyCursor() (in VkApp), 68, 74
setBusyDialog() (in VkApp), 79
setButtonLabels() (in VkDialogManager), 203-204
setClassHint() (in VkSimpleWindow), 108
setColor() (in VkColorChooserDialog), 222
setColormap() (in VkVisual), 271
setCurrentColor() (in VkColorChooserDialog), 222

setCurrentXColor()
(in VkColorChooserDialog), 222

setDefaultResources() (in VkComponent), 30-31
setDirectory() (in VkFileSelectionDialog), 218
setFallbacks() (in VkApp), 82

setFilterPattern()
(in VKFileSelectionDialog), 218-219

setlconName() (in VkSimpleWindow), 106
setIncrements() (in VkResizer), 359
setItem() (in VkPrefDialog), 257
setLabel() (in VkMenultem), 128
setLabel() (in VkPrefOption), 245-246
setLabelHeight() (in VkPrefItem), 238
setLayoutStyle() (in VkGraph), 340
setMainWindow() (in VkApp), 66
setMargin() (in VkTickMarks), 352

460

setMenuBar() (in VkWindow), 109

setModified() (in VkModified Attachment), 398
setNormalCursor() (in VkApp), 67-68
setParameters() (in VkModified Attachment), 397
setParameters() (in VkRepeatButton), 387
setPercentDone() (in VkProgressDialog), 213
setPosition() (in VkMenultem), 129
setResizePolicy() (in VkMeter), 413-414
setScale() (in VkTickMarks), 350-351
setSelection() (in VkFileSelectionDialog), 219
setSize() (in VkGraph), 342

setSize() (in VkPrefOption), 246
setSortFunction() (in VkNode), 329
setStateAndNotify() (in VkMenuToggle), 132
setStoredColor() (in VkColorChooserDialog), 223
setStoredXColor() (in VkColorChooserDialog), 223
setTabPixmap() (in VkTabPanel), 376

setting, 179
check box labels, 363-365
check box toggle values, 365
command class labels, 187-188
completion field expansion list, 384
default resource values, 30-32
example, 31-32
note, 31
dialog button labels, 203-204
dialog titles, 201-203
global resource values, 31
preference items
labels, 235-236
labels, group, 256
labels, label items, 248
labels, option menus, 245-246
labels, toggles, 241-243
values, 237
tick marks scale, 350-351
visual information, 271
VkAction class label for “Undo” selection, 187-188

Index

setTitle() (in VkDialogManager), 201-202
setTitle() (in VkSimpleWindow), 105
setTransactionsTimeout() (in VkCutPaste), 305
setUpInterface() (in VkSimpleWindow), 100

setUpWindowProperties()
(in VkSimpleWindow), 108

setValue() (in VkCheckBox), 365
setValue() (in VkModified Attachment), 396-397
setValue() (in VkPrefItem), 237
setValue() (in VkPrefOption), 247
setValue() (in VkPrefText), 240
setValue() (in VkPrefToggle), 244
setValues() (in VkCheckBox), 365
setVersionString() (in VkApp), 80
setVisual() (in VkDialogManager), 205
setVisual() (in VkVisual), 272
setVisualState() (in VkMenuToggle), 132
setXColor() (in VkColorChooserDialog), 222
setZoomOption() (in VkGraph), 341
SgGraph widget, 318-319
SGIHelp, 309
SGIHelpIndexMsg(), 308-310
SGIHelplInit(), 307
SGIHelpMsg(), 308
shell, application, 60, 83, 89-90

geometry, 82

shell geometry
main window, 92, 107

shellGeometry() (in VkApp), 82

shell resources, 92, 107

show() (in VkApp), 67

show() (in VkComponent), 19

show() (in VkMenultem), 126

show() (in VkModified Attachment), 395
show() (in VkPopupMenu), 169

show() (in VkResizer), 359

show() (in VkSimpleWindow), 100, 103
“Show Arcs” selection (in Admin menu), 325
showCursor() (in VkApp), 74
showHelpPane() (in VkMenuBar), 157

“Show Immediate Children” selection
(in Node menu), 326

shown() (in VkResizer), 359
showOverview() (in VkGraph), 341
“Show Parents” selection (in Node menu), 326
showTearOff() (in VkSubMenu), 158
size() (in VkNamelList), 54
size() (in VkPrefGroup), 255
size() (in VkPrefOption), 246
size() (in VkTabPanel), 379
sort() (in VkNamelList), 54
sortAll() (in VkGraph), 341
sortChildren() (in VkNode), 329
start() (in VkBackground), 408
start() (in VkPeriodic), 410
startuplconified() (in VkApp), 67, 83
stateChanged() (in VkSimpleWindow), 112
stateChangedCallback (in VkResizer), 359-360
static member functions
Xt callbacks, 13,21-24
example, 22-24
naming convention, 22
static menu descriptions, 138-139
this pointer, 21-22
statusString() (in VkVisual), 277
stop() (in VkBackground), 408
stop() (in VkPeriodic), 410
string lists, 53-58
subclassing. See components: subclassing
See also specific classes

461

Index

submenus, 157-158
See also menus; VkSubMenu class
adding to menus, 145
radio-style, 159-162
tear-off behavior, 158
[] (subscript) operator (in VkMenu), 155
subsystems, ViewKit, 5-6
suggested reading, xxix-xxx

T

tabBg() (in VkTabPanel), 380
tabHeight() (in VkTabPanel), 379
tab panel component, 371-383
See also components; VkTabPanel class
overview, 371-373
tabs
adding, 374-375
adding pixmaps, 376
removing, 375-376
removing pixmaps, 376
selection, responding to, 377-378
X resources, 381-383
tabPixmap() (in VkTabPanel), 376
tabPopupCallback (in VkTabPanel), 377
tabSelectCallback (in VkTabPanel), 377
takeCharge() (in VkRunOnce2), 405
tearDownGraph() (in VkGraph), 344
tear-off menus, 158
terminate() (in VkApp), 65-66, 93, 209
note, 66
Terre Haute, Indiana, 328
text() (in VkPromptDialog), 216-217
text fields
completion. See completion fields;
VkCompletionField class
modified attachment. See modified text

attachment; VkModified Attachment class

462

theApplication (in VkApp), 60

theBusyDialog (in VkBusyDialog), 210
installing as busy dialog, 79

theColorChooserDialog
(in VkColorChooserDialog), 220-223

theErrorDialog (in VkErrorDialog), 209
theFatalErrorDialog (in VkFatalErrorDialog), 209

theFileSelectionDialog
(in VKFileSelectionDialog), 217-220
caution, 220

thelnfoDialog (in VkInfoDialog), 206-208

thelnterruptDialog (in VkInterruptDialog), 210-212
checking for interruptions, 210-211
installing as busy dialog, 79-80, 211-212

theProgressDialog (in VkProgressDialog)
installing as busy dialog, 79

thePromptDialog (in VkPromptDialog), 215-217
caution, 217
theQuestionDialog (in VkQuestionDialog), 215
thelUndoManager (in VkMenuUndoManager), 175
theWarningDialog (in VkWarningDialog), 208
tick() (in VkPeriodic), 410
tick marks component, 349-352
See also components; VkTickMarks class
labels, 350, 351
scale, setting, 350-351
X resources, 352

timerCallback() (in VkPeriodic), 410
timeSlice() (in VkBackground), 407, 408
toggleDisplay() (in VkModified Attachment), 397

toggles, radio-style. See radio-style toggles;
VkRadioGroup class

transfer models
CLIPBOARD, 280
PRIMARY, 280

transparencyString() (in VkVisual), 277
triggering ViewKit callbacks, 39-40

Index

twinsButton() (in VkGraph), 343
twinsVisibleHook() (in VkGraph), 346
type((in VkPrefltem), 238

type((in VkRepeatButton), 387
typographical conventions, xxxi

U

undisplay() (in VkGraph), 335

undo() (in VkMenuAction), 130-131
undoit() (in VkAction), 186

undoit() (in VkMenuActionObject), 186
“Undo” menu selection label, 179

undo stack
clearing, 178
examining, 179
undo support, 173-184
adding “Undo” selection to menu, 175
command class objects, 178
example, 180-184
menu items, 134, 144, 175-176
multi-level, 178
non-menu item actions, 176-178
overview, 173-174
setting label, “Undo” selection, 179
undo() (in VkMenuAction), 130-131
undo stack
clearing, 178
examining, 179
user interface, 174
VkAction class, 178
VkMenuActionObject class, 178

uniformTabs() (in VkTabPanel), 380
unpost() (in VkDialogManager), 201
unpostAll() (in VkDialogManager), 201
unposting dialogs, 201

unrecoverable errors, 209

unregisterDropSite() (in VkCutPaste), 289
unregistering functions, ViewKit callbacks, 38
update() (in VkDoubleBuffer), 349

update() (in VkMeter), 413

useOverlayApps() (in VkApp), 86
useOverlayDialogs() (in VkDialogManager), 225
useOverlayMenus() (in VkMenu), 171
useWorkProcs() (in VkMenu), 133

\Y

value() (in VkModified Attachment), 395
valueChanged() (in VkCheckBox), 368
valueChanged() (in VkRadioGroup), 391-392
version information, 80
versionString() (in VkApp), 80
ViewKit
benefits, 1
callbacks. See ViewKit callbacks; Xt callbacks
compiling programs, 5-7
example, 7
debug libraries, 6
header files, 6
help, 308-309
libraries, 6-7
libraries, debug, 6
major elements, 2-3
overview, 1-10
subsystems, 5-6
visual inheritance, 266-267
X and Motif, and, 3-4
ViewKit 2.1
inheritance graph, 436
multiple displays, 426-429, 432-434
multiple screens, 426-429, 432-434
source code incompatibilities, 430
VKkApp, 427-429, 432
VkCallbackObject, 430

463

Index

ViewKit 2.1 (continued)
VkColormap, 431
VkCutPaste, 431
VkDisplay, 426-429, 432-434
VKkScreen, 426-429, 432-434
ViewKit callbacks, 34-41
See also VkCallbackObject class
callback functions
format, 36, 37
registering, 35-37
removing, 38
unregistering, 38
creating, 39
defining, 39
invoking, 39-40
overview, 34
predefined
arcCreatedCallback (in VkGraph), 344
arcDestroyedCallback (in VkGraph), 344
buttonCallback (in VkRepeatButton), 387
deleteCallback (in VkComponent), 16, 40-41
enterCallback (in VkCompletionField), 385
interruptedCallback (in VkInterruptDialog), 211
itemChanged (in VkCheckBox), 367-368
modifiedCallback (in VkModified Attachment),
396
prefCallback (in VkPrefDialog), 258-259
prepostCallback, 200
stateChangedCallback (in VkResizer), 359-360
tabPopupCallback (in VkTabPanel), 377
tabSelectCallback (in VkTabPanel), 377
triggering, 39-40
ViewKit help, 308-309
determining help tokens, 310
ViewKit libraries, 6-7
ViewKitMajorRelease (in VkApp), 80
ViewKitMinorRelease (in VkApp), 80

ViewKitReleaseString (in VkApp), 80

464

views, windows, 90, 93-103, 104

direct instantiation, adding to, 102-103

replacing, 103

setUpInterface(), creating in, 100-102

window constructor, creating in, 93-99
viewWidget() (in VkSimpleWindow), 104
visible() (in VkSimpleWindow), 104
visual() (in VkVisual), 274
visualClassString() (in VkVisual), 277
visualID() (in VkVisual), 274
visualParent() (in VkVisual), 277
visualParentArgs() (in VkVisual), 277

visuals
inheritance, 266-267
maintaining consistency, 267
overview, 263-268
X11 visuals, 264-265
X visuals, 264-267

VkAction class, 185-188
See also command classes;
VkMenuActionObject class
activating, 187
executing, 187
inheritance graph, 173
member functions
constructor, 186
doit(), 186
undoit(), 186
VkAction(), 186
overview, 185
setting label for “Undo” selection, 187-188
VkAlignmentGroup class, 353-355
See also alignment groups
adding widgets, 353-354
aligning widgets, 354-355
inheritance graph, 347

Index

VkAlignmentGroup class (continued)
member functions

~VkAlignmentGroup(), 353
add(), 353-354
alignBottom(), 354
alignHeight(), 354
alignLeft(), 354
alignRight(), 354
alignTop(), 354
alignWidth(), 354
constructor, 353
destructor, 353
distributeHorizontal(), 355
distribute Vertical(), 355
height(), 355
makeNormal(), 354
remove(), 354
VkAlignmentGroup(), 353
width(), 355

default, 67, 68
normal, 67-68
temporary, 74
data members
_winList, 84
theApplication, 60
ViewKitMajorRelease, 80
ViewKitMinorRelease, 80
ViewKitReleaseString, 80
Display structure, 82
event handling, 62-64
customizing, 64
during postAndWait(), 195-196
during wasInterrupted(), 211
pending events, 63
raw events, 62-63,112-113
inheritance graph, 59
member functions
aboutDialog(), 81

x(), 355 afterRealizeHook(), 84
y(), 355 appContext(), 82
removing widgets, 354 applicationClassName(), 82
VKkApp class, 59-86 argce(), 82
See also applications; VkComponent class argv(), 83
application name, 60, 82 baseWidget(), 83
application pointer, 60 busy(), 75-77

busyCursor(), 68, 74
className(), 82
constructors, 60-61

busy states, 75-80, 210
See also VkBusyDialog class;
VklInterruptDialog class

busy dialog, 75, 79-80 display(), 82
entering, 75 handlePendingEvents(), 63, 64
example, 76-77 handleRawEvent(), 63
exiting, 75 hide(), 67
nested, 75 iconify(), 67
class name, 60, 82 loner(),. 67
command-line options, parsing, 60-61, 83 mainWindow(), 66
example, 84-86 name(), 82
component name, 60, 82 normalCursor(), 68
cursors, 67-74 notBusy(), 75-77
busy, animated, 68, 68-74, 78 open(), 67
busy, fixed, 68 parseCommandLine(), 83

465

Index

VkApp class

member functions (continued)
progmember functionsressing(), 78
quitYourself(), 20, 65, 107
raise(), 67
run(), 62-64
run_first(), 62
setAboutDialog(), 81
setBusyCursor(), 68, 74
setBusyDialog(), 79
setFallbacks(), 82
setMainWindow(), 66
setNormalCursor(), 67-68
setVersionString(), 80
shellGeometry(), 82
show(), 67
showCursor(), 74
startuplIconified(), 67, 83
terminate(), 65-66, 93, 209
useOverlayApps(), 86
versionString(), 80
VkApp(), 60-61

overview, 59

product information, 80-81

quitting applications, 20-21, 65-66, 93, 107,

110-111, 209

running applications, 62

shell, application, 60, 83, 89-90
geometry, 82

subclassing, 83-86
example, 84-86

typical use, 62

version information, 80

ViewKit callbacks
See also VkCallbackObject class

windows, managing, 66-67, 103-104

XtAppContext structure, 82

VKApp class (in ViewKit 2.1), 427-429, 432

VkBackground class, 407-408
constructor, 408
destructor, 408

466

inheritance graph, 399
member functions
~VkBackground(), 408
start(), 408
stop(), 408
timeSlice(), 407, 408
VkBackground(), 408

VkBusyDialog class, 210
See also busy dialog; VkDialogManager class
inheritance graph, 189
installing as busy dialog, 79
theBusyDialog, 210

VkCallbackFunction type, 37
VkCallbackMethod type, 36

VkCallbackObject class, 34-40

See also ViewKit callbacks; VkComponent class

inheritance graph, 11

member functions
addCallback(), 35-37
callCallbacks(), 39-40
removeAllCallbacks(), 38
removeCallback(), 38

VkCallbackObject class (in ViewKit 2.1), 430

VkCheckBox class, 362-369
See also check box component; VkComponent
class; VkRadioBox class
data members
_label, 369
_rc, 369
_widgetList, 369
example, 363-365
inheritance graph, 361
member functions
addItem(), 362
constructor, 362
getValue(), 366
setValue(), 365
setValues(), 365
valueChanged(), 368
VkCheckBox(), 362

Index

VkCheckBox class (continued)
setting labels, 363-365
subclassing, 368-369
toggles

adding, 362
detecting value changes, 366-369
getting values, 366
setting values, 365
ViewKit callbacks
itemChanged, 367-368

VkColorChooserDialog class, 220-223
See also color chooser dialog;
VkDialogManager class
inheritance graph, 189
member functions
getColor(), 222
getXColor(), 222
setColor(), 222
setCurrentColor(), 222
setCurrentXColor(), 222
setStoredColor(), 223
setStoredXColor(), 223
setXColor(), 222
theColorChooserDialog, 221

VkColormap class (in ViewKit 2.1), 431

VkCompletionField class, 384-386
See also completion field; VkComponent
activation, responding, 385
clearing expansion list, 384
data members

_currentMatchList, 386
_nameList, 386
inheritance graph, 361
member functions
~VkCompletionField(), 384
activate(), 386
add(), 384
clear(), 384
constructor, 384
destructor, 384

expand(), 385-386
getText(), 385
VkCompletionField(), 384
replacing expansion list, 384
retrieving contents, 385
setting expansion list, 384
subclassing, 385-386
ViewKit callbacks
enterCallback, 385

VkComponent, 11
VkComponent class, 12-52

See also components; VkCallbackObject class
base widget, 12, 14, 16, 18
deletion, handling, 24
realization, detecting, 20
callbacks. See VkCallbackObject class;
VkComponent class: Xt callbacks
class name, 18, 26
data members
_baseWidget, 14, 18
_name, 14,17
displaying, 19-20
hiding, 19-20
inheritance graph, 11
managing widgets, 13, 14
member functions
~VkComponent(), 16-17
afterRealizeHook(), 20
baseWidget(), 18
className(), 18, 26
constructor, 13-16
destructor, 16-17
getResources(), 28
hide(), 19
installDestroyHandler(), 14, 25
isComponent(), 21
name(), 17
okToQuit(), 20-21
removeDestroyHandler(), 25
setDefaultResources(), 30-31
show(), 19

467

Index

VkComponent class createCursor(), 69

member functions (continued) VkCursorList(), 68-69
VkComponent(), 13-16 VkCutPaste class, 279-306
widgetDestroyedCallback(), 24-25 accepting drops, 287-290

multiple pointers to component, 40-41 accepting drops from the IM Desktop, 291-292

name, 12-14,17 constructor, 280

operators converting data types, 295-298
Widget, 19 copying data, 281-282

overview, 12-13 demonstration programs, 279

parent widget, 12, 14 destructor, 281

resource support, 26-34 dragging data, 285-287
data members, initializing, 28-30 file and data ownership, 298-303
default values, setting, 30-32 examples, 298-303
global values, setting, 31 member functions

requirements, 26
resource values, setting, 27
values, retrieving, 32-34

static member functions and Xt callbacks, 13, 21-24

example, 22-24
naming convention, 22
this pointer, 21-22
subclassing, 41-52
constructor, 14-16
examples, 43-52
summary, 41-42
VkComponent(), 14-16
testing for valid component, 21
ViewKit callbacks
deleteCallback, 16, 40-41
widget destruction, 13, 14, 16, 24-25
widgets, 12,14
Xt callbacks, 13, 21-24
example, 22-24
naming convention, 22
this pointer, 21-22
VkCursorList class, 68-74
data members
_cursorList, 69
inheritance graph, 59
member functions
constructor, 68-69

468

~VkCutPaste(), 281

clear(), 281

clipboardAtom(), 304
dragAwayCopy(), 285
dragAwayCopyExtended(), 286
export(), 282
freeFilenamesFromSGI_ICON(), 291
getDataTypelnfo(), 295
getFilenamesFromSGI_ICON(), 291
getLocalReference(), 305
getLocalTypeReference(), 306
getVersion(), 304

getWidget(), 304
getXServerTime(), 304

import(), 284
importImmediate(), 283
isOwnedByLocalHost(), 305
isOwnedByMe(), 305
primaryAtom(), 304

putCopy(), 281

putReference(), 306
registerConverter(), 295
registerDataType(), 293
registerDropSite(), 288
registerDropSiteExtended(), 288
registerLoseSelection(), 282
remove(), 306

Index

VkCutPaste class

member functions (continued)
setTransactionsTimeout(), 305
unregisterDropSite(), 289
VkCutPaste(), 280

overview, 279

pasting data, 283-285

registering data types, 292-295

VkCutPaste class (in ViewKit 2.1), 431
VkDialogManager class, 192-206

See also dialogs; VkComponent class; individual

dialog classes
Apply button, 194
button labels, setting, 203-204
Cancel button, 194
centering algorithm, 204-205
Help button, 194, 313
inheritance graph, 189
member functions
apply(), 224-225
cancel(), 224-225
centerOnScreen(), 204-205
enableCancelButton(), 205
lastPosted(), 205
ok(), 224-225
post(), 193-195
postAndWait(), 193, 195-196
postBlocked(), 193-195
postModal(), 193-195
prepost(), 200
setArgs(), 205
setButtonLabels(), 203-204
setTitle(), 201-202
setVisual(), 205
unpost(), 201
unpostAll(), 201
useOverlayDialogs(), 225
message, 194
OK button, 194

parent widget, 194
posting, 193-199
examples, 196-199
methods, 193-196
preposting, 200
title, setting, 201-203
unposting, 201
ViewKit callbacks
prepostCallback, 200

VkDisplay class, 427, 432-434
newDisplay(), 427-429

VkDoubleBuffer class, 347-349
See also double-buffer component;
VkComponent class
data members
_canvas, 348
_height, 349
_width, 349
drawing, 348
inheritance graph, 347
member functions
~VkDoubleBuffer(), 348
constructor, 348
destructor, 348
draw(), 348
resize(), 349
update(), 349
VkDoubleBuffer(), 348
resizing, 349
switching buffers, 349
VkErrorDialog class, 209
See also error dialog; VkDialogManager class
inheritance graph, 189
theErrorDialog, 209

VkFatalErrorDialog class, 209
See also fatal error dialog; VkDialogManager class
inheritance graph, 189
theFatalErrorDialog, 209

469

Index

VKkFileSelectionDialog class, 217-220
See also file selection dialog;
VkDialogManager class

caution, 220

inheritance graph, 189

member functions
fileName(), 219-220
setDirectory(), 218
setFilterPattern(), 218-219
setSelection(), 219

theFileSelectionDialog, 217

VkGangedGroup class, 388-389
See also ganged scrollbars
adding scrollbars, 389
inheritance graph, 361
member functions

~VkGangedGroup(), 389
add(), 389
constructor, 388
destructor, 389
remove(), 389
removeFirst(), 389
removeLast(), 389
VkGangedGroup(), 388
removing scrollbars, 389

VkGenericDialog class, 223-225
See also generic dialog; VkDialogManager class
data members

_allowMultipleDialogs, 224
_minimizeMultipleDialogs, 224
_showApply, 224
_showCancel, 224
_showOK, 223
inheritance graph, 189
member functions
createDialog(), 223

VkGetResource(), 32-34
See also resource support
example, 33-34
note, 33

470

VkGraph class, 317-327, 332-346
See also graphs; nodes; VkComponent class;
VkNode class

arc attributes, 333-334

butterfly graphs, 340

control panel, 322-323

edit mode, 319, 326-327

example, 319-322

finding, 342

graph widget, 318-319

inheritance graph, 317

member functions
~VkGraph(), 332
add(), 333-334
addDesktopMenultems(), 346
addMenultems(), 345
buildCmdPanel(), 345
buildZoomMenu(), 345
clearAll(), 335
constructor, 332
destructor, 332
display(), 335
displayAll(), 335
displayButterfly(), 340
displayIf(), 337-338
displayParentsAndChildren(), 337
displayWithAllChildren(), 336
displayWithAllParents(), 337
displayWithChildren(), 336
displayWithParents(), 337
doLayout(), 338
doSparseLayout(), 339
doSubtreeLayout(), 339
expandNode(), 336
expandSubgraph(), 336
find(), 342
forAllNodesDo(), 342
graphWidget(), 343
hideAllChildren(), 336
hideNode(), 335
hideOverview(), 341

Index

VkGraph class

member functions (continued)
hideParents(), 337
hideParentsAndChildren(), 337
hideWithAllChildren(), 336
makeNodeVisible(), 342
numNodes(), 342
overviewWindow(), 341
popupMenu(), 345
relayButton(), 343
remove(), 334
reorientButton(), 343
saveToFile(), 342
setLayoutStyle(), 340
setSize(), 342
setZoomOption(), 341
showOverview(), 341
sortAll(), 341
tearDownGraph(), 344
twinsButton(), 343
twinsVisibleHook(), 346
undisplay(), 335
VkGraph(), 332
workArea(), 343

multiple arcs, 325

Node menu, 326

nodes
adding, 332-334
aligning, 325, 338-339
deselecting, 327
displaying, 326, 327, 335-338, 342
establishing connections, 328, 333-334
hiding, 326, 327, 335-338
laying out, 325, 338-339
moving, 327
performing action, 342
removing, 334
selecting, 326-327
sorting, 341

orientation, 325

overview, 317-327

overview window, 324-325, 341
Admin menu, 325
read-only mode, 319
reusing, 343-344
saving, 342
Selected Nodes menu, 327
subclassing, 345-346
ViewKit callbacks
arcCreatedCallback, 344
arcDestroyedCallback, 344
widget, 343
X resource, 344
zooming, 323-324, 341
VkGraphFilterProc type, 337
VkGraphNodeProc type, 342

VkHelpPane class, 310-313
See also Help menu; VkSubMenu class
inheritance graph, 123
resources, 312-313

VkiInfoDialog class, 206-208
See also information dialog;

VkDialogManager class

inheritance graph, 189
thelnfoDialog, 206

VklInterruptDialog class, 210-212
See also interruptible busy dialog;
VkDialogManager class
checking for interruptions, 210-211

inheritance graph, 189
installing as busy dialog, 79-80, 211-212
member functions
waslInterrupted(), 210-211
thelnterruptDialog, 210
ViewKit callbacks
interruptedCallback, 211
VkMenuAction class, 130-131
See also VkMenultem class
adding to menus, 143-144
inheritance graph, 123

471

Index

VkMenuAction class (continued)
member functions
hasUndo(), 130-130
undo(), 130-131

VkMenuActionObject class, 178-187
See also command classes; VkAction class;
VkMenultem class
activating, 187
data members
_clientData(), 186
executing, 187
inheritance graph, 173
member functions
constructor, 186
doit(), 186
undoit(), 186
VkMenuActionObject(), 186
overview, 185

VkMenuBar class, 156-157
See also menu bars; VkMenu class;
VkWindow class
inheritance graph, 123
member functions
constructor, 156-157
helpPane(), 157
showHelpPane(), 157
VkMenuBar(), 156-157
VkWindow destructor, and, 93
VkWindow support, 108-109
VkMenu class, 133-155
See also menus; VkMenultem class; specific
menu classes
activating menu items, 150
constructing dynamically, 143-149
example, 147-149

constructing from static description, 133-143

example, 139-143

VkMenuDesc structure, 134-137

Xt callback client data, 138-139
deactivating menu items, 150

472

determining menu item position, 155

finding menu items, 149

inheritance graph, 123

member functions
activateItem(), 150
add(), 146
addAction(), 143-144
addConfirmFirstAction(), 144
addLabel(), 145
addRadioSubmenu(), 146
addSeparator(), 145
addSubmenu(), 145
addToggle(), 144
deactivate(), 150
findNamedItem(), 149
getltemPosition(), 155
numltems(), 155
removeltem(), 150-151
replace(), 151
useOverlayMenus(), 171
useWorkProcs(), 133

operators
[] (subscript), 155

overview, 124

removing menu items, 150-151

replacing menu items, 151

VkMenultemType type, 134-135

XtDisplay() caution, 124

XtScreen() caution, 124

XtWindow() caution, 124

VkMenuConfirmFirstAction class, 131

See also VkMenuAction class
adding to menus, 144
inheritance graph, 123

VkMenuDesc structure, 134-137

VkMenultem class, 130-155
See also menu items; VkComponent class; specific

menu items classes
activating menu items, 127, 150
deactivating menu items, 127, 150

Index

VkMenultem class (continued)
determining position in menu, 155
displaying menu items, 126
finding menu items, 149
hiding menu items, 127
inheritance graph, 123
labels, 128
member functions

activate(), 127
deactivate(), 127
getLabel(), 128
hide(), 127
isContainer(), 130
menuType(), 129-130
remove(), 127
setLabel(), 128
setPosition(), 129
show(), 126
overview, 124
position, 128-129
removing menu items, 127, 150-151
replacing menu items, 151
type, 129-130
XtDisplay() caution, 124
XtScreen() caution, 124
XtWindow() caution, 124

VkMenultemType type, 129-130, 134-135

VkMenulLabel class, 132
See also VkMenultem class
adding to menus, 145
inheritance graph, 123

VkMenuSeparator class, 132
See also VkMenultem class
adding to menus, 145
inheritance graph, 123

VkMenuToggle class, 131-132
See also VkMenuAction class
adding to menus, 144
inheritance graph, 123
member functions

getState(), 132
setStateAndNotify(), 132
setVisualState(), 132

VkMenuUndoManager class, 174-184
See also undo support; VkMenultem class
adding “Undo” selection to menu, 175

example, 180-184
inheritance graph, 173
instantiating, 175
member functions
add(), 176-177
historyList(), 179
multiLevel(), 178
reset(), 178
multi-level undo support, 178
setting “Undo” selection label, 179
thellndoManager, 175
undoing
command class objects, 178
menu item actions, 175-176
non-menu item actions, 176-178
undo stack
clearing, 178
examining, 179
VkAction class, 178
VkMenuActionObject class, 178

VkMeter class, 411-415

See also meter component; VkComponent class

adding items, 412-413

desired dimensions, 414

member functions
~VkMeter(), 411
add(), 412-413
constructor, 411
destructor, 411
neededHeight(), 414
neededWidth(), 414
reset(), 411-412
setResizePolicy(), 413-414
update(), 413
VkMeter(), 411

473

Index

VkMeter class (continued)
resetting, 411-412
resize policy, 413-414
updating display, 413
X resources, 414-415
VkModified Attachment class, 392-398
See also modified text attachment;
VkCallbackObiject class
adjusting geometry, 397
attaching widgets, 394-395
controlling contents, 396-397, 398
detaching widgets, 395
detecting changes, 396
displaying dogear, 395
hiding dogear, 395
inheritance graph, 361
member functions
~VkModified Attachment(), 394
adjustGeometry(), 397
attach(), 394-395
constructor, 394
destructor, 394
detach(), 395
displayValue(), 397
expose(), 395
fixPreviousValue(), 398
getParameters(), 397
hide(), 395
latestDisplay(), 397
modified(), 398
previousValue(), 395
setModified(), 398
setParameters(), 397
setValue(), 396-397
show(), 395
toggleDisplay(), 397
value(), 395
VkModified Attachment(), 394
widget(), 398
overview, 392-393
retrieving values, 395

474

ViewKit callbacks
modifiedCallback, 396
X resource, 398

VkModifiedCallback structure, 396

VkModified class
inheritance graph, 361

VkModifiedReason type, 396

VkNamelList class, 53-58
constructor, 53
destructor, 53
example, 56-58
member functions

~VkNamelList(), 53
add(), 53
completeName(), 55
exists(), 55
freeXmStringTable(), 56
getIndex(), 53
getString(), 55
getStringTable(), 55
getSubStrings(), 55
getXmStringTable(), 56
mostCommonString(), 55
operator=(), 54
operator==(), 55
remove(), 54
removeDuplicates(), 54
reverse(), 54
size(), 54
sort(), 54
VkNamelList(), 53
XmStringTables, 56

VkNode class, 327-332
See also graphs; nodes (in graphs); VkComponent
class; VkGraph class
arc attributes, 333-334
child nodes, 330
data members
_label, 332
finding, 330, 342

Index

VkNode class (continued)
inheritance graph, 317
label, 328, 330, 332
member functions
~VkNode(), 328
build(), 331
child(), 330
constructor, 328
destructor, 328
findChild(), 330
findParent(), 330
label(), 330
nChildren(), 330
nParents(), 330
parent(), 330
setSortFunction(), 329
sortChildren(), 329
VkNode(), 328
parent nodes, 330
performing action, 342
sorting, 329,341
subclassing, 331-332
VkNodeSortFunction type, 329
VkOptionMenu class, 162-167
See also option menus; VkMenu class
example, 165-167
inheritance graph, 123
item width, setting, 165
member functions
constructor, 162-163
forceWidth(), 165
getIndex(), 164
getltem(), 164
set(), 164
VkOptionMenu(), 162-163
menu label, setting, 163-164
selected item
setting, 164
selected item, setting, 164
VkOutlineASB class, 424

VkOutline class, 415-424

VkPeriodic class, 409-410
constructor, 409
destructor, 409
inheritance graph, 399
member functions

~VkPeriodic(), 409
start(), 410

stop(), 410

tick(), 410
VkPeriodic(), 409

VkPie class, 415
See also VkComponent class; VkMeter class
VkPopupMenu class, 167-171
See also popup menus; VkMenu class
attaching to widget, 168
example, 169-171
inheritance graph, 123
member functions
attach(), 168
build(), 168
constructor, 167-168
show(), 169
VkPopupMenu(), 167-168
popping up, 168-169
VkPrefCustom class
inheritance graph, 227

VkPrefDialog class, 228-262
See also preference dialogs; VkDialogManager
class; VkGenericDialog class
adding preference items, 257, 257
example, 231-234
inheritance graph, 227
member functions
constructor, 256-257
item(), 257
setltem(), 257
VkPrefDialog(), 256-257
overview, 228-229
posting, 257-258
See also VkDialogManager class: posting
retrieving values, 260

Index

VkPrefDialog class (continued)
subclassing, 261-262
unposting, 258
See also VkDialogManager class: unposting
user interaction, responding, 258-259
ViewKit callbacks
prefCallback, 258-259

VkPrefEmpty class, 249
See also preference items: empty space;
VkPrefltem class
inheritance graph, 227
member functions
constructor, 249
VkPrefEmpty(), 249

VkPrefGroup class, 250-251
See also preference items: groups; VkPrefltem class
inheritance graph, 227
labels, setting, 256
member functions

addItem(), 254-255
changed(), 255
constructor, 253-254
deleteChildren(), 255
item(), 255
size(), 255
VkPrefGroup(), 253-254
toggle item labels, 241-243

VkPrefItem class, 235-239
See also preference items; VkComponent class
activating, 238
base widget, 235, 238
deactivating, 238
inheritance graph, 227
labels, 235-236

groups, 256
label items, 248
option menus, 245-246
toggles, 241-243
label widget, 235, 238
member functions

476

activate(), 238
baseHeight(), 238
changed(), 237
deactivate(), 238
getValue(), 237
isContainer(), 239
labelHeight(), 238
labelWidget(), 238
setBaseHeight(), 238
setLabelHeight(), 238
setValue(), 237
type(), 238
overview, 229-230
values, 237

VkPrefltemType type, 238

VkPrefLabel class, 247-248
See also preference items: label items;
VkPrefltem class
inheritance graph, 227
member functions
constructor, 248
VkPrefLabel(), 248
setting labels, 248
VkPrefList class, 251-252
See also preference items: groups; VkPrefGroup
class; VkPrefItem class
inheritance graph, 227
member functions
addItem(), 254-255
changed(), 255
constructor, 254
deleteChildren(), 255
item(), 255
size(), 255
VkPrefList(), 254
VkPrefOption class, 244-247
See also preference items: option menus;
VkPrefltem class
inheritance graph, 227
labels, setting, 245-246

Index

VKkPrefOption class (continued)
member functions
constructor, 244-245
getButton(), 246
getLabel(), 246
getValue(), 247
setLabel(), 245-246
setSize(), 246
setValue(), 247
size(), 246
VkPrefOption(), 244-245
number of options, setting, 246
VkPrefRadio class, 252-253
See also preference items: groups; VkPrefGroup
class; VkPrefItem class
inheritance graph, 227
labels, setting, 256
member functions
addItem(), 254-255
changed(), 255
constructor, 254
deleteChildren(), 255
item(), 255
size(), 255
VkPrefRadio(), 254
toggle item labels, 241-243

VkPrefSeparator class, 249
See also preference items: separators;
VkPrefltem class
inheritance graph, 227
member functions
constructor, 249
VkPrefSeparator(), 249

VkPrefText class, 239-240
See also preference items: text fields;
VkPrefltem class
inheritance graph, 227
member functions
constructor, 239-240
getValue(), 240

setValue(), 240
VkPrefText(), 239-240

VkPrefToggle class, 240-244
See also preference items: toggles; VkPrefltem class
inheritance graph, 227
member functions
constructor, 241
getValue(), 243-244
setValue(), 244
VkPrefToggle(), 241
setting labels, 241-243

VkProgressDialog class, 212-214
See also progress dialog; VkDialogManager class
inheritance graph, 189
installing as busy dialog, 79
member functions
setPercentDone(), 213
theProgressDialog, 212
VkPromptDialog class, 215-217
See also prompt dialog; VkDialogManager class
caution, 217
inheritance graph, 189
member functions
text(), 216-217
thePromptDialog, 215
VkQuestionDialog class, 215
See also question dialog; VkDialogManager class
inheritance graph, 189
theQuestionDialog, 215
VkMenuConfirmFirstAction use, 131
VkRadioBox class, 369-371
See also radio check box component; VkCheckBox
class; VkRadioBox class
example, 369-371
inheritance graph, 361
VkRadioGroup class, 390-392
See also radio-style toggles
adding buttons, 391
inheritance graph, 361

477

Index

VkRadioGroup class

member functions (continued)
~VkRadioGroup(), 390
add(), 391
constructor, 390
destructor, 390
remove(), 391
removeFirst(), 391
removeLast(), 391
valueChanged(), 391-392
VkRadioGroup(), 390

removing buttons, 391

subclassing, 391-392

VkRadioSubMenu class, 159-162

See also radio submenus; VkSubMenu class

adding to menus, 146

inheritance graph, 123

member functions
constructor, 159
VkRadioSubMenu(), 159

VkRepeatButton class, 386-388

See also repeating buttons; VkComponent class

activation, responding, 387

inheritance graph, 361

member functions
constructor, 386-387
setParameters(), 387
type(), 387
VkRepeatButton(), 386-387

ViewKit callbacks
buttonCallback, 387

X resources, 388

VkRepeatButtonType type, 387
VkResizer class, 356-360

See also resizers; VkComponent class

attaching widgets, 358-359
detaching widgets, 359
displaying geometry controls, 359

478

geometry changes
detecting, 359-360
restricting, 359
hiding geometry controls, 359
inheritance graph, 347
member functions
~VkResizer(), 358
attach(), 358-359
constructor, 358
destructor, 358
detach(), 359
hide(), 359
setIncrements(), 359
show(), 359
shown(), 359
VkResizer(), 358
overview, 356-358
ViewKit callbacks
stateChangedCallback, 359-360

VkRunOnce?2 class, 399-400, 403-407

constructor, 403
destructor, 404
example, 405
inheritance graph, 399
member functions
~VkRunOnce2(), 404
arg(), 404
className(), 404
notifyOthers(), 405
numArgs(), 405
takeCharge(), 405
VkRunOnce2(), 403

VkRunOnce class, 399-403

constructor, 400
destructor, 400
example, 401
inheritance graph, 399

Index

VKRunOnce class (continued)
member functions
~VkRunOnce(), 400
arg(), 401
className(), 401
numArgs(), 401
VkRunOnce(), 400

VKkScreen class, 427, 432-434
newScreen(), 427-429

VkSimpleWindow class, 8§9-121
See also VkWindow class
base widget, 94
class hints, 108
data members

_baseWidget, 94
_iconState, 111
_mainWindowWidget, 113
_stackingState, 111
_wvisibleState, 111
displaying windows, 67, 103
hiding windows, 67, 103
iconifying windows, 67, 103
icon titles, 106
inheritance graph, 89
lowering windows, 67, 104
main window, 92
managing widgets, 93
member functions
~VkSimpleWindow(), 93
addView(), 94

afterRealizeHook(), 108, 112

constructor, 92

destructor, 93

getTitle(), 106
getVisualState(), 105
getWindow(), 105
handleRawEvent(), 112-113

handleWmDeleteMessage(), 107
handleWmQuitMessage(), 107

hide(), 103
iconic(), 104

iconify(), 103
lower(), 104

mainWindowWidget(), 94, 104

okToQuit(), 65,107, 110-111
open(), 103

raise(), 104

setClassHint(), 108
setlconName(), 106
setTitle(), 105
setUplInterface(), 100

setUpWindowProperties(), 108

show(), 100, 103
stateChanged(), 112
viewWidget(), 104
visible(), 104
VkSimpleWindow(), 92
opening windows, 67, 103
overview, 90-91
parent widget, 92
raising windows, 67, 104
ScrolledWindow widget, 94
subclassing, 110-121
example, 115-121
summary, 113-114
views, 90, 93-103, 104
constructor, creating in, 93-99

direct instantiation, adding to, 102-103

replacing, 103

setUpInterface(), creating in, 100-102

widgets, 93-94, 104

window manager interaction, 92, 105-108

window properties, 107-108

window shell resources, 92, 107

window titles, 105-106

work areas, 90, 93-103, 104
constructor, creating in, 93-99

direct instantiation, adding to, 102-103

replacing, 103

setUpInterface(), creating in, 100-102

479

Index

VkSubMenu class, 157-158

See also submenus; VkMenu class

adding to menus, 145

inheritance graph, 123

member functions
baseWidget(), 158
constructor, 158
pulldown(), 158
showTearOff(), 158
VkSubMenu(), 158

VkTabCallbackStruct structure, 377
VkTabPanel class, 371-383

See also tab panel component; VkComponent class

inheritance graph, 361
member functions
addTab(), 374-375
addTabs(), 375
areal(), 381
area2(), 381
constructor, 373-374
gc(), 381
getTab(), 378
horiz(), 379
labelBg(), 381
labelFg(), 380
lineThickness(), 380
removeTab(), 375-376
selectedTab(), 378
selectTab(), 375, 378
setTabPixmap(), 376
size(), 379
tabBg(), 380
tabHeight(), 379
tabPixmap(), 376
uniformTabs(), 380
VkTabPanel(), 373-374
overview, 371-373
tabs
adding, 374-375
adding pixmaps, 376
removing, 375-376

480

removing pixmaps, 376
selection, responding to, 377-378
ViewKit callbacks
tabPopupCallback, 377
tabSelectCallback, 377
X resources, 381-383

VkTickMarks class, 349-352

See also tick marks component;
VkComponent class

inheritance graph, 347

labels, 350, 351

member functions
addLabel(), 351
constructor, 350
setMargin(), 352
setScale(), 350-351
VkTickMarks(), 350

scale, setting, 350-351

X resources, 352

VkVisual class, 263-278

colormaps, 267-268
constructor, 270
demonstration programs, 263
destructor, 271
enumerated data types, 269-270
examples, 278
member functions
~VkVisual(), 271
argCnt(), 273
argList(), 273
className(), 274
colormap(), 274
colormapCreated(), 274
depth(), 274
indexString(), 276
maxLevel(), 274
minLevel(), 274
numColors(), 274
planesString(), 276
print(), 276
printAll(), 276

Index

VkVisual class

member functions (continued)
setColormap(), 271
setVisual(), 272
statusString(), 277
transparencyString(), 277
visual(), 274
visualClassString(), 277
visualID(), 274
visualParent(), 277
visualParentArgs(), 277
VkVisual(), 270
vkVisualinfo(), 275
window(), 276

setting visual information, 271-273

X11 visuals, 264-265

Xt visuals, 265-266

X visuals, 264-267

vkVisuallnfo() (in VkVisual), 275

VkWarningDialog class, 208
See also warning dialog; VkDialogManager class
inheritance graph, 189
theWarningDialog, 208
VkWindow class, 89-121
See also VkSimpleWindow class
base widget, 94
class hints, 108
data members
_iconState, 111
_mainWindowWidget, 113
_stackingState, 111
_visibleState, 111
displaying windows, 67, 103
hiding windows, 67, 103
iconifying windows, 67,103
icon titles, 106
inheritance graph, 89
lowering windows, 67, 104
main window, 92
managing widgets, 93

member functions
~VkWindow(), 93
addMenuPane(), 109
addRadioMenuPane(), 109
addView(), 94
afterRealizeHook(), 108, 112
constructor, 92
destructor, 93
getMenu(), 104
getTitle(), 106
getVisualState(), 105
getWindow(), 105
handleRawEvent(), 112-113
handleWmDeleteMessage(), 107
handleWmQuitMessage(), 107
hide(), 103
iconic(), 104
iconify(), 103
lower(), 104
mainWindowWidget(), 94, 104
menu(), 109
okToQuit(), 107, 110-111
open(), 103
raise(), 104
setClassHint(), 108
setlconName(), 106
setMenuBar(), 109
setTitle(), 105
setUpInterface(), 100
setUpWindowProperties(), 108
show(), 100, 103
stateChanged(), 112
viewWidget(), 104
visible(), 104
VkWindow(), 92

menu bars, 108-109, 156-157
See also VkMenuBar class

opening windows, 67, 103

overview, 90-91

parent widget, 92

raising windows, 67, 104

481

Index

VkWindow class (continued)
ScrolledWindow widget, 94
subclassing, 110-121

example, 115-121
summary, 113-114
views, 90, 93-103, 104
constructor, creating in, 93-99
direct instantiation, adding to, 102-103
replacing, 103
setUpInterface(), creating in, 100-102
widgets, 93-94, 104
window manager interaction, 92, 105-108
window properties, 107-108
window shell resources, 92, 107
window titles, 105-106
work areas, 90, 93-103, 104
constructor, creating in, 93-99
direct instantiation, adding to, 102-103
replacing, 103
setUpInterface(), creating in, 100-102

W

warning dialog, 208
See also VkDialogManager class;
VkWarningDialog class
waslInterrupted() (in VkInterruptDialog), 210-211
WhitePixel macro, 267
widget() (in VkModified Attachment), 398
widgetDestroyedCallback() (in VkComponent),
24-25
Widget operator (in VkComponent), 19
widgets
aligning, 353-355
See also VkAlignmentGroup class
attachments, 353-360, 388-398
alignment groups, 353-355
ganged scrollbars, 388-389
modified text, 392-398

482

radio-style toggles, 390-392
resizers, 356-360
base widget of component, 12, 14, 16, 18
See also baseWidget()
deletion, handling, 24
realization, detecting, 20
base widget of preference item, 235, 238
base widget of window, 94
components, and, 12, 14
destruction in components, 13, 14, 16, 24-25
label widget of preference item, 235, 238
management classes, 353-360, 388-398
alignment groups, 353-355
ganged scrollbars, 388-389
modified text, 392-398
radio-style toggles, 390-392
resizers, 356-360
managing
components, in, 13, 14
windows, in, 93
moving, 356-360
See also VkResizer class
parent widget of component, 12, 14
windows, 92
parent widget of dialogs, 194
popup menus, attaching, 168
resizing, 356-360
See also VkResizer class
scrollbars, “ganging” See ganged scrollbars;
VkGangedGroup class
SgGraph, 318-319
VkGraph class, 343
windows, and, 93-94, 104
ScrolledWindow widget, 94

width() (in VkAlignmentGroup), 355
window() (in VkVisual), 276
window interfaces. See windows: views

window manager interaction, 92, 105-108
icon titles, 106
window properties, 107-108
window titles, 105-106

Index

windows, 89-121
See also VkSimpleWindow class; VkWindow class
base widget, 94
class hints, 108
displaying, 67,103
hiding, 67,103
iconifying, 67, 103
icon titles, 106
lowering, 67, 104
main window, 92
determining, 66
during quitting, 65
specifying, 66
managing, 66-67, 103-104
managing widgets, 93
menu bars, 108-109, 156-157
See also VkMenuBar class
opening, 67,103
overview, 89-91
parent widget, 92
properties, 107-108
raising, 67,104
ScrolledWindow widget, 94
shell resources, 92, 107
subclassing, 110-121
example, 115-121
summary, 113-114
titles, 105-106
views, 90, 93-103, 104
direct instantiation, adding to, 102-103
replacing, 103
setUpInterface(), creating in, 100-102
window constructor, creating in, 93-99
widgets, 93-94, 104
window manager interaction, 92, 105-108
work areas, 90, 93-103, 104
direct instantiation, adding to, 102-103
replacing, 103
setUpInterface(), creating in, 100-102
window constructor, creating in, 93-99

WM_DELETE_WINDOW message, 92, 107

WM_QUIT_APP message, 92,107

workArea() (in VkGraph), 343

work areas, windows, 90, 93-103, 104
direct instantiation, adding to, 102-103
replacing, 103
setUplInterface(), creating in, 100-102
window constructor, creating in, 93-99

X

X
header files, 6
suggested reading, xxx
ViewKit, and, 3-4

x() (in VkAlignmentGroup), 355

X11 visuals
overview, 264-265

XA_WM_CLASS property, 108
XmGRAPH (graph layout style), 340
XmNargc resource, 92,107
XmNargv resource, 92, 107

XmNlabelString resource
menu item labels, 128
option menu labels, 163
preference item labels, 235-236
“Undo” menu selection, 179

XmNtearOffModel resource, 158
XmStringTables, 56

X resources
See also resource support
arc attributes (in graph), 334
graphs, 344
Help menu, 312-313
menu item labels, 128
meter component, 414-415
modified text attachment, 398
option menu labels, 163-164
preference item labels, 235-236

483

Index

X resources (continued)
repeating buttons, 388
tab panels, 381, 383
tear-off menus, 158
tick marks, 352
“Undo” selection label, 179
XSelectInput(), 63, 113
XtAppContext structure, 82
XtApplnitialize(), note, 62
XtAppMainLoop(), note, 62
Xt callbacks
components, 13, 21-24
example, 22-24
naming convention, 22
this pointer, 21-22
static menu descriptions, 138-139
XtDispatchEvent(), note, 63
XtDisplay() caution, 124
Xt Intrinsics, initializing, 60

484

XtNextEvent(), note, 63
XtScreen() caution, 124

Xt visuals
overview, 265-266

XtWindow() caution, 124
X visuals

overview, 264-267
Y

y0 (in VkAlignmentGroup), 355

z

Zoom In button (in VkGraph control panel), 324
zooming graphs, 323-324, 341

Zoom menu (in VkGraph control panel), 323-324
Zoom Out button (in VkGraph control panel), 324

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

* General impression of the document

® Omission of material that you expected to find

® Technical errors

® Relevance of the material to the job you had to do

¢ Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-2124-006.

Thank you!

Three Ways to Reach Us
* To send your comments by electronic mail, use either of these addresses:
— On the Internet: techpubs@sgi.com
— For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

¢ To fax your comments (or annotated copies of manual pages), use this
fax number: 650-932-0801

* To send your comments by traditional mail, use this address:

Technical Publications

Silicon Graphics, Inc.

2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

