
Getting Started With XFS™ Filesystems

Document Number 007-2549-001

Getting Started With XFS™ Filesystems
Document Number 007-2549-001

CONTRIBUTORS

Written by Susan Ellis and John Raithel
Illustrated by Gloria Ackley
Production by Gloria Ackley
Engineering contributions by Doug Doucette, Wei Hu, Tom Phelan, and Chuck Bullis
Cover design and illustration by Rob Aguilar, Rikk Carey, Dean Hodgkinson,

Erik Lindholm, and Kay Maitz

© Copyright 1994, Silicon Graphics, Inc.— All Rights Reserved
This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics, the Silicon Graphics logo, and IRIS are registered trademarks, and
IRIX, XFS, Extent File System, Indy, CHALLENGE, IRIS InSight, and REACT are
trademarks of Silicon Graphics, Inc. UNIX is a registered trademark in the United
States and other countries, licensed exclusively through X/Open Company, Ltd.
Network License System and NetLS is trademarks of Apollo Computer, Inc., a
subsidiary of Hewlett-Packard Company. NFS is a registered trademark of Sun
Microsystems. Legato NetWorker is a registered trademark of Legato Systems, Inc.
EXABYTE is a trademark of EXABYTE Corporation.

iii

Contents

List of Examples ix

List of Figures xi

List of Tables xiii

About This Guide xv
Audience xvi
How to Use This Guide xvi
Hardware Requirements xvii
Conventions xvii
Product Support xviii
For More Information xviii

1. Introduction to XFS, XLV, and GRIO 1
XFS Features 1
XLV Features 3
GRIO Features 4

2. XFS Filesystem Administration 5
Planning for XFS Filesystems 5

Don’t Use XFS When ... 5
Prerequisite Software 6
Choosing Block Sizes 7
Choosing the Log Type and Size 8
Checking for Adequate Free Disk Space 10
Disk Partitioning 12

Why Should Disks Be Repartitioned? 12
How Should Disks Be Repartitioned? 12

Dump and Restore Requirements 13

iv

Contents

Making an XFS Filesystem on a Disk Partition 14
Making an XFS Filesystem on an XLV Logical Volume 16
Converting Filesystems on the System Disk From EFS to XFS 18
Converting a Filesystem on an Option Disk from EFS to XFS 25
Checking Filesystem Consistency 27

3. Dumping and Restoring XFS Filesystems 29
About the xfsdump and xfsrestore Utilities 30

Features of xfsdump and xfsrestore 30
Flexibility 30
Integration 31
User Interface 31

Media Layout 32
Terminology 32
Possible Dump Layouts 33

Using xfsdump 37
Specifying Media 37

Backing Up to a Local Tape Drive 37
Backing Up to a Remote Tape Drive 39
Backing Up to a File 40

Reusing Tapes 40
Erasing Used Tapes 41

Incremental and Resumed Dumps 42
Incremental Dump Example 42
Resumed Dump Example 43

Viewing the Dump Inventory 44

Contents

v

Using xfsrestore 47
xfsrestore Operations 47
Simple Restores 48

Restoring Individual Files 50
Network Restores 50
Interactive Restores 51

Cumulative Restores 52
Restoring Interrupted Dumps 53

Interrupted Restores 55
The housekeeping and orphanage Directories 56

Dump and Restore With STDIN/STDOUT 56
Other Backup Utilities and XFS 57

tar 57
cpio 57
bru 57
System Recovery 58

4. XLV Logical Volumes 59
XLV Overview 60

Composition of Logical Volumes 60
Volumes 62
Subvolumes 63
Plexes 64
Volume Elements 66

Logical Volume Naming 68
XLV Daemons 69
XLV Error Policy 70

Planning a Logical Volume 70
Don’t Use XLV When ... 70
Deciding Which Subvolumes to Use 71
Choosing Subvolume Sizes 71
Plexing 72
Striping 72
Concatenating Disk Partitions 73

vi

Contents

Using xlv_make to Create Volume Objects 73
Example 1: Simple Logical Volume 73
Example 2: Striped, Plexed Logical Volume 75

Preparing a Logical Volume for Use 76
Converting lv Logical Volumes to XLV 77
Using xlv_admin to Administer Logical Volumes 79

Displaying Logical Volume Objects 80
Growing a Logical Volume 81
Adding a Plex to a Logical Volume 82
Detaching a Plex from a Volume 86
Deleting an XLV Object 88

Using the Real-Time Subvolume 89
Files on the Real-Time Subvolume and Utilities 89
Creating Files on the Real-time Subvolume 89
Guaranteed-Rate I/O and the Real-Time Subvolume 90

5. Guaranteed-Rate I/O 91
Guaranteed-Rate I/O Overview 92
GRIO Guarantee Types 93

Hard Guarantees 93
Soft Guarantees 94
VOD Guarantees 94
Example: Comparing VOD and Non-VOD 95

GRIO System Components 96
Hardware Configuration Requirements for GRIO 97
Disabling Disk Error Recovery 98
Configuring the ggd Daemon 101
Example: Setting Up an XLV Logical Volume for GRIO 102
GRIO File Formats 106

/etc/grio_config File Format 106
/etc/grio_disks File Format 108
/etc/config/ggd.options File Format 109

Contents

vii

A. Error Messages 111
Error Messages While Converting From EFS to XFS 111
General Error Messages 113
Error Messages from xlv_make 113
Error Messages from xfs_check 113

B. Reference Pages 115
XFS, XLV, and GRIO Reference Pages 115
Reference Pages in This Guide 116

Index 187

ix

List of Examples

Example 2-1 mkfs Command for an XFS Filesystem With an Internal
Log 15

Example 2-2 mkfs Command for an XFS Filesystem With an External
Log 16

Example 2-3 mkfs Command for an XFS Filesystem With a Real-Time
Subvolume 17

Example 2-4 Example mkfs Command and Output for the Root
Filesystem 23

Example 5-1 Configuration File for a Volume Used for GRIO 104

xi

List of Figures

Figure 3-1 Single Dump on Single Media Object 33
Figure 3-2 Single Dump on Multiple Media Objects 34
Figure 3-3 Multiple Dumps on Single Media Object 35
Figure 3-4 Multiple Dumps on Multiple Media Objects 36
Figure 4-1 Logical Volume Example 61
Figure 4-2 Volume Composition 62
Figure 4-3 Subvolume Composition 63
Figure 4-4 Plex Composition 65
Figure 4-5 Single Partition Volume Element Composition 66
Figure 4-6 Striped Volume Element Composition 67
Figure 4-7 Multipartition Volume Element Composition 68

xiii

List of Tables

Table 2-1 Log Size Guidelines 9
Table 2-2 Disk Partition 13
Table 2-3 dump Arguments for Filesystem Backup 21
Table 3-1 Filesystems and Dump Utilities 29
Table 3-2 Filesystems and Restore Utilities 29
Table 5-1 Disk Drive Parameters for GRIO 98
Table 5-2 Examples of Values of Variables Used in Constructing an

XLV Logical Volume Used for GRIO 103
Table B-1 Related Reference Pages 115

xv

About This Guide

Getting Started With XFS Filesystems describes the XFS filesystem and XLV
Volume Manager. Developed at Silicon Graphics®, these IRIX™ features
provide high-performance alternatives to the Extent File System™ (EFS) and
logical volume managers previously available with IRIX. This guide was
prepared in conjunction with the initial release of XFS, called IRIX 5.3 with
XFS.

The features described in this guide are included in IRIX system software
releases beginning with the IRIX 5.3 with XFS release. However, to use
several features, you must obtain NetLS™ licenses by purchasing separate
software options. The features that require NetLS licenses are:

• The plexing feature of the XLV Volume Manager, which provides
mirroring of disks up to four copies. This feature is provided by the
Disk Plexing Option software option.

• Guaranteed-rate I/O (GRIO), a feature that enables an application to
request a fixed I/O rate and, if granted, be assured of receiving that
rate. By default, the system allows four GRIO streams. To obtain up to
40 streams, you must purchase the High Performance Guaranteed-Rate
I/O—5-40 Streams software option. An unlimited number of streams is
provided by the High Performance Guaranteed-Rate I/O—Unlimited
Streams software option.

This guide covers only system administration of XFS filesystems and XLV
logical volumes (including volumes used for GRIO). See the section “For
More Information” later in this chapter for information about the
programmatic interface to XFS, which is provided with the IRIS®

Development Option (IDO) software option.

xvi

About This Guide

Audience

This guide is written for system administrators and other knowledgeable
IRIX users who want to use XFS filesystems and/or XLV logical volumes.
Because many of the procedures in this guide can result in loss of files on the
system if the procedures are not performed correctly, this guide and its
procedures should be used only by people who are

• familiar with UNIX® filesystem administration procedures

• experienced in disk repartitioning using fx(1M)

• comfortable performing administration tasks from the shell in the
miniroot environment provided by inst(1M)

• familiar with filesystem backup concepts and procedures, particularly
using dump(1M)

How to Use This Guide

This guide provides five chapters of basic information about the design and
system administration of the XFS filesystem and XLV volume manager:

• Chapter 1, “Introduction to XFS, XLV, and GRIO,” provides an
overview of the features of the XFS filesystem, XLV volume manager,
and guaranteed-rate I/O system.

• Chapter 2, “XFS Filesystem Administration,” describes filesystem
administration tasks such as creating XFS filesystems on new disks and
converting filesystems from EFS to XFS.

• Chapter 3, “Dumping and Restoring XFS Filesystems,” explains how to
perform filesystem backups with xfsdump(1M) and how to restore
filesystems and files using xfsrestore(1M).

• Chapter 4, “XLV Logical Volumes,” describes the structure and features
of XLV logical volumes and explains how to create and manage logical
volumes.

• Chapter 5, “Guaranteed-Rate I/O,”explains how to configure and
create real-time XFS filesystems on XLV volumes so that applications
can use the guaranteed-rate I/O (GRIO) feature of XFS to ensure
high-performance I/O.

Hardware Requirements

xvii

Two appendixes provide reference information for XFS and XLV:

• Appendix A, “Error Messages,” lists error messages that can occur
during the creation and administration of XFS filesystems and XLV
logical volumes, their possible causes, and advice on how to proceed.

• Appendix B, “Reference Pages,” contains the key reference pages for
XFS and XLV administration and lists other reference pages that
contain related XFS, XLV, and disk management information.

Hardware Requirements

At least 32 MB of memory is recommended for systems with XFS
filesystems.

XFS filesystems and XLV logical volumes are not supported on systems with
IP4 or IP6 CPUs.

Using XLV logical volumes is not recommended on systems with a single
disk.

Some uses of guaranteed-rate I/O, described in Chapter 5,
“Guaranteed-Rate I/O,” have special disk configuration requirements.
These requirements are explained in the section “Hardware Configuration
Requirements for GRIO” in Chapter 5.

Conventions

This guide uses these font conventions:

italics Italics are used for command names, reference page names,
file names, variables, and the names of inst(1M) subsystems.

fixed-width type

Fixed-width type is used for examples of command output
that is displayed in windows on your monitor.

bold fixed-width type

Bold fixed-width type is used for commands and text that
you are to type literally.

xviii

About This Guide

<Enter> When you see <Enter> , press the Enter key on the
keyboard; do not type in the letters.

Product Support

Silicon Graphics offers a comprehensive product support and maintenance
program for its products. For information about using support services for
this product, refer to the Release Notes that accompany it.

For More Information

For more information about disk management on IRIX, see these sources:

• The IRIX Advanced Site and Server Administration Guide, provides
detailed information on system administration of Silicon Graphics
systems. Although it has not yet been updated to include information
on XFS and XLV, it provides background information and procedures
on disk management, logical volumes, filesystem administration, and
system backups that remain applicable for systems using XFS and XLV.

The IRIX Advanced Site and Server Administration Guide is available for
online viewing with the IRIS InSight™ viewer, insight(1). It is also
available in printed form.

• Online reference pages (man pages) on various disk information and
management utilities are included in the standard system software and
can be viewed online using the man(1) and xman(1) commands or the
“Man Pages” item on the Help menu of the System Toolchest.
Appendix B provides a complete list of these reference pages.

• The guide Selected IRIX Site Administration Reference Pages provides
printed reference pages for many of the utilities used in the procedures
in this guide.

For More Information

xix

For more information on developing applications that access XFS
filesystems, see these sources:

• Online reference pages for system calls and library routines relevant to
XFS and GRIO are provided in the IRIS Developer’s Option (IDO)
software product. Appendix B provides a complete list of these
reference pages.

• The REACT/Pro™ Programmer’s Guide provides information about
developing applications that use GRIO.

For instructions for loading the miniroot, see the Software Installation
Administrator’s Guide.

For information on acquiring and installing NetLS licenses that enable the
High Performance Guaranteed-Rate I/O software options, see the Network
License System™ Administration Guide.

For addition information on the software releases that include the new
features documented in this guide, see the Release Notes for these products:

• IRIX

• eoe

• xfs

• plexing

• grio

• nfs

• dev

1

Chapter 1

1. Introduction to XFS, XLV, and GRIO

This guide provides the information you need to get started using the new
Silicon Graphics filesystem technology:

• XFS is the next-generation Silicon Graphics filesystem. Systems can use
XFS filesystems exclusively or have a mixture of XFS and EFS
filesystems.

• The XLV volume manager provides an alternative to Silicon Graphics’
existing lv volume manager and to the IRIS Volume Manager software
option. Both XFS and EFS filesystems can be built on XLV logical
volumes.

• The guaranteed-rate I/O system (GRIO) allows applications to reserve
specific I/O performance to and from the filesystem. It requires the use
of an XLV logical volume and XFS filesystem.

This chapter highlights the major features of XFS, XLV, and GRIO.

XFS Features

XFS is designed for use on most Silicon Graphics systems—from desktop
systems to supercomputer systems. Its major features include

• full 64-bit file capabilities (files larger than 2 GB)

• rapid and reliable recovery after system crashes because of the use of
journaling technology

• efficient support of large, sparse files (files with “holes”)

• integrated, full-function volume manager, the XLV Volume Manager

• extremely high I/O performance that scales well on multiprocessing
systems

2

Chapter 1: Introduction to XFS, XLV, and GRIO

• guaranteed-rate I/O for multimedia and data acquisition uses

• compatible with existing applications and with NFS®

• user-specified block sizes ranging from 512 bytes up to 64 KB

Currently, XFS supports files and filesystems that grow to 240-1 or
1,099,511,627,775 bytes (one terabyte). Support for filesystems up to 263-1
bytes is planned for a future release. You can use the filesystem interfaces
supplied with the IRIS Development Option (IDO) software option to write
32-bit programs that can track 64-bit position and file size. Many programs
work without modification because sequential reads succeed even on files
larger than 2 GB. NFS Release 5.3 and later allows you to export 64-bit XFS
filesystems to other systems.

XFS uses database journaling technology to provide high reliability and
rapid recovery. Recovery after a system crash is completed within a few
seconds, without the use of a filesystem checker such as fsck(1M). Recovery
time is independent of filesystem size.

XFS is designed to be a very high performance filesystem. Under certain
conditions, throughput is expected to exceed 100 MB per second. Its
performance scales to complement the CHALLENGE™ MP architecture.
While traditional files, directories, and filesystems suffer from reduced
performance as they grow in size, with XFS there is no performance penalty.

You can create filesystems with block sizes ranging from 512 bytes to 64 KB.
For real-time data, the maximum extent size is 1 GB. Filesystem extents,
which provide contiguous data within a file, are configurable at file creation
time using fcntl(2) and are multiples of the filesystem block size.

Most filesystem utilities, such as du(1), dvhtool(1M), ls(1), mount(1M),
prtvtoc(1M), and umount(1M), work with XFS filesystems as well as EFS
filesystems with no user-visible changes. A few utilities, such as df(1), fx(1M)
and mkfs(1M) have additional features for XFS. The filesystem utilities
clri(1M), fsck(1M), findblk(1M), and ncheck(1M) are not used with XFS
filesystems.

XLV Features

3

For backup and restore, the standard IRIX utilities Backup(1), bru(1), cpio(1),
Restore(1), and tar(1) and the optional software product NetWorker® for IRIX
can be used for files less than 2 GB in size. To dump XFS filesystems, the new
utility xfsdump(1M) must be used instead of dump(1M). Restoring from these
dumps is done using xfsrestore(1M). See Table 3-1 and Table 3-2 in Chapter 3,
“Dumping and Restoring XFS Filesystems,” for more information about the
relationships between xfsdump, xfsrestore, dump, and restore on XFS and EFS
filesystems.

XLV Features

The new XLV Volume Manager provides these advantages when XLV logical
volumes are used as raw devices, when XFS filesystems are created on them,
and when EFS filesystems are created on them:

• support for very large logical volumes—up to one terabyte.

• support for disk striping for higher I/O performance

• plexing (mirroring) for higher system and data reliability

• online volume reconfigurations, such as increasing the size of a volume,
for less system downtime

With XFS filesystems, XLV provides these additional advantages:

• filesystem journal records on a separate partition, which can be on a
separate disk, for maximum performance

• access to real-time data

When XFS filesystems are used on XLV volumes, each logical volume can
contain up to three subvolumes: data (required), log, and real-time. The data
subvolume normally contains user files and filesystem metadata (inodes,
indirect blocks, directories, and free space blocks). The log subvolume is
used for filesystem journal records. If there is no log subvolume, journal
records are placed in the data subvolume. Data with special I/O bandwidth
requirements, such as video, can be placed on the real-time subvolume.

XLV increases system reliability and availability by enabling you to add or
remove a plex, increase the size of (grow) a volume, and replace failed
elements of a plexed volume without taking the volume out of service.

4

Chapter 1: Introduction to XFS, XLV, and GRIO

Converting from lv logical volumes to XLV logical volumes is easy. Using the
programs lv_to_xlv(1M) and xlv_make(1M), you can convert lv logical
volumes to XLV without having to dump and restore your data. Converting
from IRIS Volume Manager volumes to XLV is beyond the scope of this
guide.

Note: The plexing feature of XLV is available only when you purchase the
Disk Plexing Option software option. See the plexing Release Notes for
information on purchasing this software option and obtaining the required
NetLS license.

GRIO Features

The guaranteed-rate I/O system (GRIO) allows applications to reserve
specific I/O bandwidth to and from the filesystem. Applications request
guarantees by providing a file descriptor, data rate, duration, and start time.
The filesystem calculates the performance available and, if the request is
granted, guarantees that the requested level of performance can be met for a
given time. This frees programmers from having to predict the performance
and is critical for media delivery systems such as video-on-demand.

Guarantees can be hard or soft, a way of expressing the trade-off between
reliability and performance. Hard guarantees deliver the requested
performance, but with some possibility of error in the data (due to the
requirements for turning off disk drive self-diagnostics and error-correction
firmware). Soft guarantees allow the disk drive to retry operations in the
event of an error, but this can possibly result in missing the rate guarantee.
Hard guarantees place greater restrictions on the system hardware
configuration.

Note: By default, IRIX supports four GRIO streams (concurrent uses of
GRIO). To increase the number of streams to 40, you can purchase the High
Performance Guaranteed-Rate I/O—5-40 Streams software option. For more
streams, you can purchase the High Performance Guaranteed-Rate I/O—
Unlimited Streams software option. See the grio Release Notes for information
on purchasing these software options and obtaining the required NetLS
licenses.

5

Chapter 2

2. XFS Filesystem Administration

This chapter explains the procedures for creating XFS filesystems,
converting EFS filesystems to XFS, and performing filesystem
administration tasks that require programs specific to XFS.

The main sections in this chapter are:

• “Planning for XFS Filesystems” on page 5

• “Making an XFS Filesystem on a Disk Partition” on page 14

• “Making an XFS Filesystem on an XLV Logical Volume” on page 16

• “Converting Filesystems on the System Disk From EFS to XFS” on
page 18

• “Converting a Filesystem on an Option Disk from EFS to XFS” on
page 25

• “Checking Filesystem Consistency” on page 27

Planning for XFS Filesystems

The following subsections discuss choices you must make and preparation
for creating an XFS filesystem. Each time you plan to make an XFS filesystem
or convert a filesystem from EFS to XFS, you should review each section and
make any necessary preparations.

Don’t Use XFS When ...

Do not use an XFS filesystem if any of the following is true:

• There is insufficient free disk space (see the section “Checking for
Adequate Free Disk Space” in this chapter).

6

Chapter 2: XFS Filesystem Administration

• The system doesn’t meet the hardware configuration requirements
listed in the section “Hardware Requirements” in “About This Guide.”

• The filesystem is the root filesystem and you intend to increase its size
later. In this case, delay the conversion until you are ready to increase
the size of the filesystem.

• The filesystems are the root and, if present, usr filesystems and you
want to continue using the System Recovery procedure (item 4,
Recover System, on the System Maintenance Menu). System Recovery
doesn’t work with XFS filesystems because of the limitations of
bru(1M), which is used by System Recovery. However, xfsdump(1M) can
be used to create backups that can be used to recover the system, if
necessary.

Prerequisite Software

Using XFS filesystems and XLV logical volumes requires at least IRIX 5.3
with XFS or a later system software release. The procedures in this chapter
assume that the proper software has been installed and the system rebooted
prior to beginning the procedure.

Some important subsystems in the IRIX 5.3 with XFS and later releases are:

eoe1.sw.unix The minimum release level is IRIX 5.3 with XFS.

eoe2.sw.efs This subsystem is required.

eoe2.sw.lv This subsystem needs to be installed only if lv logical
volumes are in use on the system.

eoe2.sw.xfs This subsystem is required.

eoe2.sw.xlv Install this subsystem if you intend to use the XLV volume
manager.

eoe2.sw.xlvplex Install this subsystem if you have purchased the Disk
Plexing Option software option.

In addition to the subsystems listed above, software patches may be
required to use all of the features documented in this guide. See the xfs, IRIX,
eoe, nfs, and dev Release Notes for more information.

Planning for XFS Filesystems

7

If you are converting the root and usr filesystems, you must have software
distribution CDs or access to a remote distribution directory for IRIX Release
5.3 with XFS or a later system software release. Instructions on loading the
miniroot from these CDs is provided in Chapter 3 of the Software Installation
Administrator’s Guide.

Choosing Block Sizes

XFS allows you to choose two types of block sizes for each filesystem. (EFS
has a fixed block size of 512 bytes.) One is the filesystem block size, used for
user files, and the other is the extent size, used for the real-time subvolume
on an XLV logical volume, if present. The extent size is the amount of space
that will be allocated to the file every time more space needs to be allocated
to it.

For XFS filesystems on disk partitions and for the data subvolume of
filesystems on XLV volumes, the block size guidelines for user files are:

• The minimum block size is 512 bytes.

• The maximum block size is 65536 bytes (64K). However, in general
block sizes shouldn’t be larger than 4096 bytes.

• The default block size is 4096 bytes (4K).

• For root filesystems on systems with separate root and usr filesystems,
the recommended block size is 512 bytes. (Root filesystems in this
configuration usually don’t have much extra disk space and large block
sizes compound the problem.)

• For news servers, the recommended block size is 2048 bytes.

• In general, the recommended block size for filesystems under 100 MB is
512 bytes. For larger filesystems 4096 bytes is recommended.

Block sizes are specified in bytes in decimal (default), octal (prefixed by 0),
or hexadecimal (prefixed by 0x or 0X). If the number has the suffix “k”, it is
multiplied by 1024. If the number has the suffix “m”, it is multiplied by
1048576 (1024 * 1024).

8

Chapter 2: XFS Filesystem Administration

For real-time subvolumes of XLV logical volumes, the block size is the same
as the block size of the data subvolume. The guidelines for the extent size
are:

• The extent size must be a multiple of the block size of the data
subvolume.

• The minimum extent size is 64 KB.

• The maximum extent size is 1 GB.

• The default extent size is 64 KB.

• The extent size should be matched to the application and the stripe unit
of the volume elements used in the real-time subvolume.

Choosing the Log Type and Size

Each XFS filesystem has a log that contains filesystem journaling records.
This log requires dedicated disk space. This disk space doesn’t show up in
df(1) listings, nor can you access it with a filename.

The location of the disk space depends on the type of log you choose. The
two types of logs are:

external When an XFS filesystem is created on an XLV logical
volume and log records are put into a log subvolume, the
log is called an external log. The log subvolume is one or
more disk partitions dedicated to the log exclusively.

internal When an XFS filesystem is created on a disk partition, or
when it is created on an XLV logical volume that doesn’t
have a log subvolume, log records are put into a dedicated
portion of the disk partition (or data subvolume) that
contains user files. This type of log is called an internal log.

The guidelines for choosing the log type are:

• If you want the log and the data subvolume to be on different partitions
or to use different subvolume configurations for them, use an external
log.

• If you are making the XFS filesystem on a disk partition (rather than on
an XLV logical volume), you must use an internal log.

Planning for XFS Filesystems

9

• If you are making the XFS filesystem on an XLV logical volume that has
no log subvolume, you must use an internal log.

• If you are making the XFS filesystem on an XLV logical volume that has
a log subvolume, you must use an external log.

For more information about XLV and log subvolumes, see Chapter 4, “XLV
Logical Volumes.”

The amount of disk space needed for the log is a function of how the
filesystem is used. The amount of disk space required for log records is
proportional to the transaction rate and the size of transactions on the
filesystem, not the size of the filesystem. Larger block sizes result in larger
transactions. Transactions from directory updates (for example, mkdir(1),
rmdir(1), create(2), and unlink(2)) cause more log data to be generated. You
must choose the amount of disk space to dedicate to the log (called the log
size).

The minimum log size is 512 blocks. Some guidelines for log sizes are shown
in Table 2-1.

For external logs, the size of the log is the same as the size of the log
subvolume. The log subvolume is one or more disk partitions. You may find
that you need to re-partition a disk to create a properly sized log subvolume
(see the section “Disk Partitioning” in this chapter). For external logs, the
size of the log is set when you create the log subvolume with xlv_make(1M).

For internal logs, the size of the log is specified when you create the
filesystem with mkfs(1M).

Table 2-1 Log Size Guidelines

Log Size Blocks Transaction Activity

Small 512 blocks Low update activity or small filesystem (less than
100 MB)

Medium 2000 blocks Average

Large 4000 blocks Very high

10

Chapter 2: XFS Filesystem Administration

The log size is specified in bytes or as a multiple of the filesystem block size.
Decimal numbers are the default, but they can be specified in octal (prefixed
by 0) or hexadecimal (prefixed by 0x or 0X). Numbers with no suffixes are
bytes. If the number has the suffix “k”, it is multiplied by 1024 bytes. If the
number has the suffix “m”, it is multiplied by 1048576 (1024 * 1024) bytes or
one megabyte. If the number has the suffix “b”, it is multiplied by the
filesystem block size.

Checking for Adequate Free Disk Space

XFS filesystems may require more disk space than EFS filesystems for the
same files. This extra disk space is required to accommodate the XFS log and
as a result of block sizes larger than EFS’s 512 bytes. However, XFS
represents free space more compactly, on average, and the inodes are
allocated dynamically by XFS, which can result in less disk space usage.

This procedure can be used to get a rough idea of the amount of free disk
space that will remain after a filesystem is converted to XFS:

1. Get the size in kilobytes of the filesystem to be converted and round the
result to the next megabyte. For example:

df -k
Filesystem Type kbytes use avail %use Mounted on
/dev/root efs 969857 648451 321406 67% /

This filesystem is 969857 KB, which rounds up to 970 MB.

2. If you plan to use an internal log (see the section “Choosing the Log
Type and Size” in this chapter), give this command to get an estimate of
the disk space required for the files in the filesystem after conversion:

xfs_estimate -i logsize -b blocksize mountpoint

logsize is the size of the log. blocksize is the block size you chose for user
files in the section “Choosing Block Sizes” in this chapter. mountpoint is
the directory that is the mount point for the filesystem.

The output of this command tells you how much disk space the files in
the filesystem and an internal log of size logsize will take after
conversion to XFS.

Planning for XFS Filesystems

11

3. If you plan to use an external log, give this command to get an estimate
of the disk space required for the files in the filesystem after conversion:

xfs_estimate -e 0 -b blocksize mountpoint

blocksize is the block size you chose for user files in the section
“Choosing Block Sizes” in this chapter. mountpoint is the directory that
is the mount point for the filesystem.

The first line of output from xfs_estimate tells you how much disk space
the files in the filesystem will take after conversion to XFS. In addition
to this, you will need disk space on a different disk partition for the
external log. You should ignore the second line of output.

4. Compare the size of the filesystem from step 1 with the size of the files
from step 2 or step 3. For example,

970 MB - 739 MB = 231 MB free disk space
739 MB / 970 MB = 76.2% full

Use this information to decide if there will be an adequate amount of
free disk space if this filesystem is converted to XFS.

If the amount of free disk space after conversion is not adequate, some
options to consider are:

• Implement the usual solutions for inadequate disk space: remove
unnecessary files, archive files to tape, move files to another filesystem,
add another disk, and so on.

• Repartition the disk to increase size of the disk partition for the
filesystem.

• If there isn’t sufficient disk space in the root filesystem and you have
separate root and usr filesystems, switch to combined root and usr
filesystems on a single disk partition.

• If the filesystem is on an lv logical volume or an XLV logical volume,
increase the size of the volume.

• Create an XLV logical volume with a log subvolume elsewhere, so that
all of the disk space can be used for user files.

12

Chapter 2: XFS Filesystem Administration

Disk Partitioning

Many system administrators may find that they want or need to repartition
disks when they switch to XFS filesystems and/or XLV logical volumes. The
next two subsections explain why you might want to repartition and give
some tips on partition sizes and types.

Why Should Disks Be Repartitioned?

Some of the reasons to consider repartitioning are:

• If the system disk has separate partitions for root and usr, the root
partition may be running out of space. Repartitioning is a way to
increase the space in root (at the expense of the size of usr) or to solve
the problem by combining root and usr into a single partition.

• System administration is a little easier on systems with combined root
and usr filesystems.

• If you plan to use XLV logical volumes, you may want to put the XFS
log into a small subvolume. This requires disk repartitioning to create a
small partition for the log subvolume.

• If you plan to use XLV logical volumes, you may want to repartition to
create disk partitions of equal size that can be striped or plexed.

How Should Disks Be Repartitioned?

Explaining the details of using fx to repartition a disk is beyond the scope of
this guide (see the fx(1M) reference page for details). However, the list below
provides useful information about new features of fx and about partitioning
details that are specific to XFS and XLV.

• If you are repartitioning the system disk, you must use the standalone
version of fx. Otherwise, you can use the IRIX version of fx. Using the
expert mode of fx (the –x option) shouldn’t be necessary.

• If you repartition a system disk, remember that the swap space should
never be less than 40 MB. A smaller swap space impacts system
performance and makes it impossible to install software using the
miniroot.

Planning for XFS Filesystems

13

• New partition types have been added to fx. Table 2-2 lists and describes
all partition types.

• The repartition/usrroot and repartition/option menu items have been
changed. If you select these menu items, you are asked what type of
data partition you want. If you enter xfs , you are asked if you want a
log partition. If you answer yes , fx makes partition 15 into a 4 MB
xfslog partition, which can be used for an XLV log subvolume.

Dump and Restore Requirements

The filesystem conversion procedures in the sections “Converting
Filesystems on the System Disk From EFS to XFS” and “Converting a
Filesystem on an Option Disk from EFS to XFS” in this chapter require that
you dump the filesystems you plan to convert to tape or to another disk with
sufficient free disk space to contain the dump image.

When you convert a system disk, you must use dump(1M) and restore(1M).
When you convert a filesystem on an option disk, you can any backup and
restore programs. The reference pages for dump and restore are included in
Appendix B, “Reference Pages.”

Table 2-2 Disk Partition

Type Description

efs Used for an EFS filesystem

lvol Part of an lv logical volume

raw Used for data

xfs Used for an XFS filesystem

xfslog Used for an XFS filesystem log

xlv Part of an XLV logical volume

volhdr Volume header

volume Entire volume

14

Chapter 2: XFS Filesystem Administration

If you dump to a tape drive, follow these guidelines:

• Have sufficient tapes available for dumping the filesystems to be
converted.

• If you are converting filesystems on a system disk, the tape drive must
be local.

• If you are converting filesystems on option disks, the tape drive can be
local or remote.

The requirements for dumping to a different filesystem are:

• The filesystem being converted must have 2 GB or less in use (the
maximum size of the dump image file on an EFS filesystem).

• The filesystem that will contain the dump must have sufficient disk
space available to hold the filesystems to be converted.

• If you are converting filesystems on a system disk, the filesystem where
you place the dump must be local to the system.

• If you are converting filesystems on option disks, the filesystem you
dump to can be local or remote.

Dumping to disk takes about 10 minutes per gigabyte. Dumping to tape
takes about 12 minutes per 100 megabytes.

Making an XFS Filesystem on a Disk Partition

This section explains how to create an XFS filesystem on an empty disk
partition. This procedure applies to two cases:

• The disk partition is not part of an XLV logical volume.

• The disk partition is part of an XLV logical volume that doesn’t have a
log subvolume (the log is internal).

See the section “Making an XFS Filesystem on an XLV Logical Volume” in
this chapter for instructions on creating an XFS filesystem on an XLV logical
volume that has a log subvolume (an external log).

You must be superuser to perform this procedure.

Making an XFS Filesystem on a Disk Partition

15

1. Review the subsections within the section “Planning for XFS
Filesystems” in this chapter to verify that you are ready to begin this
procedure.

2. Identify the device name of the partition, partition, where you plan to
create the filesystem. For example, if you plan to use partition 7 (the
entire disk) of a SCSI option disk on controller 0, unit 2, partition is
/dev/dsk/dks0d2s7. For more information on determining partition
(also known as a special file), see dks(7M) for SCSI disks and ipi(7M) for
Xylogics IPI disks.

3. If the disk partition is already mounted, unmount it:

umount partition

Any data that is on the disk partition will be destroyed (to convert the
data rather than destroy it, use the procedure in the section
“Converting a Filesystem on an Option Disk from EFS to XFS” in this
chapter instead).

4. Use the mkfs(1M) command to create the new XFS filesystem:

mkfs -d name= partition -b size= blocksize -l internal,size= logsize

blocksize is the filesystem block size (see the section “Choosing Block
Sizes” in this chapter) and logsize is the size of the area dedicated to log
records (see the section “Choosing the Log Type and Size” in this
chapter).

Example 2-1 shows the command line used to create an XFS filesystem
and the system output. The filesystem has a 10 MB internal log and a
block size of 1K bytes and is on the partition /dev/dsk/dks0d2s7.

Example 2-1 mkfs Command for an XFS Filesystem With an Internal
Log

mkfs -d name=/dev/dsk/dks0d2s7 -b size=1k -l internal,size=10m
meta-data=/dev/dsk/dks0d2s7 isize=256 agcount=8, agsize=128615 blks
data = bsize=1024 blocks=1028916
log =internal log bsize=1024 blocks=10240
realtime =none bsize=65536 blocks=0, rtextents=0

5. If it doesn’t already exist, create a mount point directory, mountdir, for
the filesystem:

mkdir mountdir

16

Chapter 2: XFS Filesystem Administration

6. To mount the filesystem immediately, give this command:

mount partition mountdir

7. To configure the system so that the new filesystem is automatically
mounted when the system is booted, add this line to the file /etc/fstab:

partition mountdir xfs rw,raw= rawpartition 0 0

where rawpartition is the raw version of partition. For example, if
partition is /dev/dsk/dks0d2s7, rawpartition is /dev/rdsk/dks0d2s7.

Making an XFS Filesystem on an XLV Logical Volume

This section describes how to make an XFS filesystem on an empty XLV
volume that has an external log subvolume and a data subvolume. (Creating
XLV volumes is explained in the section “Using xlv_make to Create Volume
Objects” in Chapter 4.)

1. Review the subsections within the section “Planning for XFS
Filesystems” in this chapter to verify that you are ready to begin this
procedure.

2. Use the mkfs(1M) command to make the new XFS filesystem:

mkfs -b size= blocksize volume

blocksize is the block size for filesystem (see “Choosing Block Sizes” in
this chapter), and volume is the device name for the volume.

Example 2-2 shows the command line used to create an XFS filesystem
on a logical volume /dev/dsk/xlv/a and a block size of 1K bytes and the
system output.

Example 2-2 mkfs Command for an XFS Filesystem With an External
Log

mkfs -b size=1k /dev/dsk/xlv/a
meta-data=/dev/dsk/xlv/a isize=256 agcount=8, agsize=245530 blks
data = bsize=1024 blocks=1964240
log =volume log bsize=1024 blocks=25326
realtime =none bsize=65536 blocks=0, rtextents=0

Making an XFS Filesystem on an XLV Logical Volume

17

Example 2-3 shows the command line used to create an XFS filesystem
on a logical volume /dev/dsk/xlv/xlv_data1 and the system output. The
default block size of 4096 bytes is used and the real-time extent size is
set to 128K bytes.

Example 2-3 mkfs Command for an XFS Filesystem With a Real-Time
Subvolume

mkfs_xfs -r extsize=128k /dev/rdsk/xlv/xlv_data1
meta-data=/dev/rdsk/xlv/xlv_data1 isize=256 agcount=8, agsize=4300 blks
data = bsize=4096 blocks=34400
log =volume log bsize=4096 blocks=34400
realtime =volume rt bsize=131072 blocks=2560, rtextents=80

3. If it doesn’t already exist, create a mount point directory, mountdir, for
the filesystem:

mkdir mountdir

4. To mount the filesystem immediately, give this command:

mount volume mountdir

5. To configure the system so the new filesystem is automatically mounted
when the system is booted, add this line to the file /etc/fstab:

volume mountdir xfs rw,raw= rawvolume 0 0

where rawvolume is the raw version of volume. For example, if volume is
/dev/dsk/xlv/a, rawvolume is /dev/rdsk/xlv/a and the /etc/fstab
entry is:

/dev/dsk/xlv/a /a xfs rw,raw=/dev/rdsk/xlv/a 0 0

18

Chapter 2: XFS Filesystem Administration

Converting Filesystems on the System Disk From EFS to XFS

This section explains the procedure for converting filesystems on the system
disk from EFS to XFS. Some systems have two filesystems on the system
disk, the root filesystem (mounted at /) and the usr filesystem (mounted at
/usr). Other systems have a single, combined root and usr filesystem
mounted at /. This procedure covers both cases but assumes that neither lv
nor XLV logical volumes are in use on the system disk. The basic procedure
for converting a system disk is:

• Load the IRIX 5.3 with XFS miniroot.

• Do a complete dump of filesystems on the system disk.

• Repartition the system disk if necessary.

• Create one or two new, empty XFS filesystems.

• Restore the files from the filesystem dumps.

• Reboot the system.

During this procedure, you can repartition the system disk if needed. For
example, you can convert from separate root and usr filesystems to a single,
combined filesystem, or you can resize partitions to make the root partition
larger and the usr partition smaller. See the section “Disk Partitioning” in
this chapter for more information.

The early steps of this procedure ask you to identify the values of various
variables, which are used later in the procedure. You may find it helpful to
make a list of the variables and values for later reference. Be sure to perform
only the steps that apply to your situation. Perform all steps as superuser.

Note: It is very important to follow this procedure as documented without
giving additional inst or shell commands. Unfortunately, deviations from
this procedure, even changing to a different directory or going from the inst
shell to an inst menu when not directed to, can have very severe
consequences from which recovery is difficult.

1. Review the subsections within the section “Planning for XFS
Filesystems” in this chapter to verify that you are ready to begin this
procedure. In particular, be sure that the software listed in the section
“Prerequisite Software” has been installed and the system has been
rebooted.

Converting Filesystems on the System Disk From EFS to XFS

19

2. Verify that your backups are up to date. Because this procedure
temporarily removes all files from your system disk, it is important that
you have a complete set of backups that have been prepared using your
normal backup procedures. You will make a complete dump of the
system disk in step 11, but you should have your usual backups in
addition to the backup made during this procedure.

3. Use prtvtoc(1M) to get the device name of the root disk partition,
rootpartition. For example:

prtvtoc
Printing label for root disk

* /dev/rdsk/dks0d1s0 (bootfile "/unix")
...

The bootfile line contains the raw device name of the root disk
partition, which is /dev/rdsk/dks0d1s0 in this example. rootpartition is
the non-raw device name, which is /dev/dsk/dks0d1s0 in this
example.

4. If the system disk has separate root and usr filesystems, use the output
of prtvtoc in the previous step to figure out the device name of the usr
partition, usrpartition. Look for the line that shows a mount directory of
/usr:

Partition Type Fs Start: sec (cyl) Size: sec (cyl) Mount Directory
...
6 efs yes 116725 (203) 727950 (1266) /usr

The usr partition number is shown in the first column of this line; it is 6
in this example. To determine the value of usrpartition, replace the final
digit in rootpartition with the usr partition number. For this example,
usrpartition is /dev/dsk/dks0d1s6.

5. If you are using a tape drive as the backup device, use hinv(1M) to get
the controller and unit numbers (<tapecntlr> and <tapeunit>) of the tape
drive. For example:

hinv -c tape
Tape drive: unit 2 on SCSI controller 0: DAT

In this example, <tapecntlr> is 0 and <tapeunit> is 2.

20

Chapter 2: XFS Filesystem Administration

6. If you are using a disk drive as your backup device, use df(1) to get the
device name, backupdevice, and mount point, backupfs, of the partition
that contains the filesystem where you plan to put the backup. For
example:

df
Filesystem Type blocks use avail %use Mounted on
/dev/root efs 1992630 538378 1454252 27% /
/dev/dsk/dks0d3s7 efs 3826812 1559740 2267072 41% /d3
/dev/dsk/dks0d2s7 efs 2004550 23 2004527 0% /d2

The filesystem mounted at /d2 has plenty of disk space for a backup of
the system disk (/ uses 538,378 blocks and /d2 has 2,004,527 blocks
available). The backupdevice for /d2 is /dev/dsk/dks0d2s7 and the
backupfs is /d2.

7. Create a temporary copy of /etc/fstab called /etc/fstab.xfs and edit it with
your favorite editor. For example:

cp /etc/fstab /etc/fstab.xfs
vi /etc/fstab.xfs

Make these changes in /etc/fstab.xfs:

• Replace efs with xfs in the line for the root filesystem, /, if there
is a line for root.

• If root and usr are separate filesystems and will remain so, replace
efs with xfs in the line for the usr filesystem.

• If root and usr have been separate filesystems, but the disk will be
repartitioned during the conversion procedure so that they are
combined, remove the line for the usr filesystem.

8. Shut down your workstation using shutdown(1M) or the “System
Shutdown” item on the System toolchest. Answer prompts as
appropriate to get to the five-item System Maintenance menu.

9. Bring up the miniroot from system software CDs or a software
distribution directory that contains the release IRIX 5.3 with XFS or a
later release of IRIX. See the section “Prerequisite Software” in this
chapter for more information.

10. Switch to the shell prompt in inst:

Inst> sh

Converting Filesystems on the System Disk From EFS to XFS

21

11. Create a full backup of the root filesystem by giving this command:

dump 0uCf tapesize dumpdevice rootpartition

tapesize is the tape capacity (it’s used for backup to disks, too) and
dumpdevice is the appropriate device name for the tape drive or the
name of the file that will contain the dump image. Table 2-3 gives the
values of tapesize and dumpdevice for different tape drives and disk. The
dump(1M) reference page is included in Appendix B.

12. If usr is a separate filesystem, insert a new tape (if you are using tape)
and create a full backup of the usr filesystem by giving this command:

dump tapesize dumpdevice usrpartition

Use the same values of tapesize and dumpdevice as in step 11.

13. If you do not need to repartition the system disk, skip to step 18.

Table 2-3 dump Arguments for Filesystem Backup

Backup Device tapesize dumpdevice

Disk 2m use /root/backupfs/root.dump for the root
filesystem and /root/backupfs/usr.dump for
the usr filesystem

DAT tape 2m /dev/rmt/tps<tapecntlr>d<tapeunit>nsv

DLT tape 10m /dev/rmt/tps<tapecntlr>d<tapeunit>nsv

EXABYTE™ 8mm
model 8200 tape

2m /dev/rmt/tps<tapecntlr>d<tapeunit>nsv

EXABYTE 8mm
model 8500 tape

4m /dev/rmt/tps<tapecntlr>d<tapeunit>nsv

QIC cartridge tape 150k /dev/rmt/tps<tapecntlr>d<tapeunit>ns

22

Chapter 2: XFS Filesystem Administration

14. To repartition the system disk, use the standalone version of fx(1M).
This version of fx is invoked from the Command Monitor, so you must
bring up the Command Monitor. To do this, quit out of inst, reboot the
system, shut down the system, then request the Command Monitor. An
example of this procedure is:

exit
...
Inst> quit
...
Ready to restart the system. Restart? { (y)es, (n)o, (sh)ell, (h)elp }: yes
...
login: root
halt
...
System Maintenance Menu
...
Option? 5
Command Monitor. Type "exit" to return to the menu.
>>

On systems with a graphical System Maintenance menu, choose the last
option, Enter Command Monitor , instead of choosing option 5.

15. Boot fx(1M) and repartition the system disk so that it meets your needs.
The example below shows how to use fx to switch from separate root
and usr partitions to a single root partition.

>> boot stand/fx
84032+11488+3024+331696+26176d+4088+6240 entry: 0x89f97610
114208+29264+19536+2817088+60880d+7192+11056 entry: 0x89cd31c0
Currently in safe read-only mode.
Do you require extended mode with all options available? (no) <Enter>
SGI Version 5.3 ARCS Dec 14, 1994
fx: "device-name" = (dksc) <Enter>
fx: ctlr# = (0) <Enter>
fx: drive# = (1) <Enter>
...opening dksc(0,1,0)
...controller test...OK
Scsi drive type == SGI SEAGATE ST31200N8640

----- please choose one (? for help, .. to quit this menu)-----
[exi]t [d]ebug/ [l]abel/ [a]uto
[b]adblock/ [exe]rcise/ [r]epartition/ [f]ormat
fx> repartition/rootdrive

Converting Filesystems on the System Disk From EFS to XFS

23

fx/repartition/rootdrive: type of data partition = (xfs) <Enter>
Warning: you will need to re-install all software and restore user data
from backups after changing the partition layout. Changing partitions
will cause all data on the drive to be lost. Be sure you have the drive
backed up if it contains any user data. Continue? yes

----- please choose one (? for help, .. to quit this menu)-----
[exi]t [d]ebug/ [l]abel/ [a]uto
[b]adblock/ [exe]rcise/ [r]epartition/ [f]ormat
fx> exit

16. Load the miniroot again, using the same procedure you used in step 9.

17. Switch to the shell prompt in inst:

Inst> sh

18. Unmount all filesystems except the miniroot:

umount -b /,/proc

19. Make an XFS filesystem for root:

mkfs -d name= rootpartition -b size= blocksize -l internal,size= logsize

blocksize is the filesystem block size (see the section “Choosing Block
Sizes” in this chapter) and logsize is the size of the area dedicated to log
records (see the section “Choosing the Log Type and Size” in this
chapter).

Example 2-4 shows an example of this command for a root filesystem
and the command output. The filesystem is made on /dev/dsk/dks0d1s0
with a block size of 512 bytes and a log size of 500 KB (1000 blocks * 512
bytes/block).

Example 2-4 Example mkfs Command and Output for the Root
Filesystem

mkfs -d name=/dev/dsk/dks0d1s0 -b size=512 -l internal,size=1000b
meta-data=/dev/dsk/dks0d1s0 isize=256 agcount=1, agsize=51054 blks
data = bsize=512 blocks=51054
log =internal log bsize=512 blocks=1000
realtime =none bsize=65536 blocks=0, rtextents=0

24

Chapter 2: XFS Filesystem Administration

20. If you have a separate usr filesystem, give this command to make it an
XFS filesystem:

mkfs -d name= usrpartition -b size= usrblocksize -l internal,size= usrlogsize

usrblocksize and usrlogsize are the block size and log size you’ve chosen
for the usr filesystem.

21. Mount the root filesystem with this command:

mount rootpartition /root

22. If you have a separate usr filesystem, create the /usr mount point
directory and mount the filesystem with these commands:

mkdir /root/usr
mount usrpartition /root/usr

23. If you made the backup on disk, create a mount point for the filesystem
that contains the backup and mount it:

mkdir / backupfs
mount backupdevice / backupfs

24. If you made the backup on tape, restore all files on the root filesystem
from the backup you made in step 11 by putting the correct tape in the
tape drive and giving these commands:

cd /root
mt -t /dev/rmt/tps <tapecntlr>d<tapeunit> rewind
restore rf dumpdevice

You may need to be patient while the restore is taking place; it normally
doesn’t generate any output and it can take a while. The restore(1M)
reference page is included in Appendix B.

25. If you made the backup on disk, restore all files on the root filesystem
from the backup you made in step 11 by giving these commands:

cd /root
restore rf / backupfs/root.dump

26. If you made a backup of the usr filesystem in step 12 on tape, restore all
files in the backup by putting the correct tape in the tape drive and
giving these commands:

cd /root/usr
mt -t /dev/rmt/tps <tapecntlr>d<tapeunit> rewind
restore rf dumpdevice

Converting a Filesystem on an Option Disk from EFS to XFS

25

27. If you made a backup of the usr filesystem in step 12 on disk, restore all
files in the backup by giving these commands:

cd /root/usr
restore rf / backupfs/usr.dump

28. Move the new version of /etc/fstab that you created in step 7 into place:

mv /root/etc/fstab.xfs /root/etc/fstab

29. Exit from the shell and inst and restart the system:

exit
#
Calculating sizes .. 100% Done.

Inst> quit
...
Ready to restart the system. Restart? { (y)es, (n)o, (sh)ell, (h)elp }: yes
Preparing to restart system ...

The system is being restarted.

Converting a Filesystem on an Option Disk from EFS to XFS

This section explains how to convert an EFS filesystem on an option disk (a
disk other than the system disk) to XFS. It assumes that neither lv nor XLV
logical volumes are used. You must be superuser to perform this procedure.

1. Review the subsections within the section “Planning for XFS
Filesystems” in this chapter to verify that you are ready to begin this
procedure.

2. Verify that your backups are up to date. Because this procedure
temporarily removes all files from the filesystem you convert, it is
important that you have a complete set of backups that have been
prepared using your normal backup procedures. You will make a
complete dump of the system disk in step 4, but you should have your
usual backups in addition to the backup made during this procedure.

26

Chapter 2: XFS Filesystem Administration

3. Identify the device name of the partition, partition, where you plan to
create the filesystem. For example, if you plan to use partition 7 (the
entire disk) of a SCSI option disk on controller 0, unit 2, partition is
/dev/dsk/dks0d2s7. For more information on determining partition
(also known as a special file), see dks(7M) for SCSI disks and ipi(7M) for
Xylogics IPI disks.

4. Back up all files on the disk partition to tape or disk because they will
be destroyed by the conversion process. You can use any backup utility
(Backup, bru, cpio, tar, and so on) and backup to a local or remote tape
drive or a local or remote disk. For example, the command for dump for
local tape is:

dump 0uCf tapesize dumpdevice partition

tapesize is the tape capacity (it’s used for backup to disks, too) and
dumpdevice is the device name for the tape drive. Table 2-3 gives the
values of tapesize and dumpdevice for different local tape drives and disk.
You can get the values of <tapecntlr> and <tapeunit> used in the table
from the command hinv –c tape. The dump(1M) reference page is
included in Appendix B.

5. Unmount the partition:

umount partition

6. Use the mkfs(1M) command to create the new XFS filesystem:

mkfs -d name= partition -b size= blocksize -l internal,size= logsize

blocksize is the filesystem block size (see the section “Choosing Block
Sizes” in this chapter) and logsize is the size of the area dedicated to log
records (see the section “Choosing the Log Type and Size” in this
chapter). Example 2-1 shows an example of this command line and its
output.

7. Mount the new filesystem with this command:

mount partition mountdir

Checking Filesystem Consistency

27

8. In the file /etc/fstab, in the entry for partition, replace efs with xfs . For
example:

partition mountdir xfs rw,raw= rawpartition 0 0

where rawpartition is the raw version of partition.

9. Restore the files to the filesystem from the backup you made in step 4.
For example, if you gave the dump command in step 4, the commands
to restore the files from tape are:

cd mountdir
mt -t device rewind
restore rf dumpdevice

The value of device is the same as dumpdevice without nsv or other
letters at the end. The restore(1M) reference page is included in
Appendix B.

You may need to be patient while the restore is taking place; it doesn’t
generate any output and it can take a while.

Checking Filesystem Consistency

The filesystem consistency checking program for XFS filesystems is
xfs_check(1M). (fsck(1M) is used only for EFS filesystems.) Unlike fsck,
xfs_check is not invoked automatically on system startup; xfs_check should be
used only if you suspect a filesystem consistency problem. Before running
xfs_check, the filesystem to be checked should be unmounted.

The command line used for xfs_check depends upon the underlying device:

• If the filesystem is on an XLV logical volume, the xfs_check command
line is:

xfs_check xlvvolume

xlvvolume is the device file for the logical volume, for example
/dev/dsk/xlv/xlv0.

28

Chapter 2: XFS Filesystem Administration

• If the filesystem is on a disk partition, the xfs_check command line is:

xfs_check -d partition

partition is the device name for the partition, for example
/dev/dsk/dks0d2s7.

• If the filesystem is on an lv logical volume, the xfs_check command line
is:

xfs_check -d lvvolume

lvvolume is the device file for the logical volume, for example
/dev/dsk/lv0.

Unlike fsck, xfs_check does not repair any reported filesystem consistency
problems; it only reports them. If xfs_check reports a filesystem consistency
problem:

• If possible, contact the Silicon Graphics Technical Assistance Center for
assistance (see the Release Notes for this product for more information).

• To attempt to recover from the problem, follow this procedure:

1. Mount the filesystem, but be very careful not to write to it.

2. Make a filesystem backup with xfsdump.

3. Use mkfs to a make new filesystem on the same disk partition or
XLV logical volume.

4. Restore the files from the backup.

29

Chapter 3

3. Dumping and Restoring XFS Filesystems

This chapter describes how the xfsdump and xfsrestore utilities work and how
to use them to back up and recover data on XFS filesystems. (The
xfsdump(1M) and xfsrestore(1M) reference pages provide online information
on these utilities.) A short section at the end of this chapter, “Other Backup
Utilities,” discusses XFS-related issues of other utilities that can be used to
perform backups.

This chapter contains the following sections:

• About the xfsdump and xfsrestore Utilities

• Using xfsdump

• Using xfsrestore

• Dump and Restore with STDIN/STOUT

• Other Backup Utilities and XFS

Table 3-1 and Table 3-2 summarize when to use xfsdump and xfsrestore and
when their EFS counterparts, dump(1M) and restore(1M), must be used.

Table 3-1 Filesystems and Dump Utilities

For a Filesystem of Type Dump It Using

EFS dump

XFS xfsdump

Table 3-2 Filesystems and Restore Utilities

For a Dump Made Using Restore It Using On a Filesystem of Type

dump restore EFS or XFS

xfsdump xfsrestore EFS or XFS

30

Chapter 3: Dumping and Restoring XFS Filesystems

Note than you can restore data in either EFS or XFS filesystems, but must use
the restore utility that corresponds with the dump utility used to make the
backup. The xfsdump and xfsrestore utilities are only available with the XFS
filesystem.

About the xfsdump and xfsrestore Utilities

This section provides an overview of the features of the xfsdump and
xfsrestore utilities and describes the data format on storage media that
supports this functionality.

Features of xfsdump and xfsrestore

This section summarizes the features of xfsdump and xfsrestore. Flexibility of
operation, integration with system software, ease of use, and record keeping
abilities are discussed.

Flexibility

• With xfsdump and xfsrestore, you can back up and restore data using
local or remote drives. Multiple dumps can be placed on a single media
object.

• xfsdump and xfsrestore support incremental dumps. Also, you can back
up filesystems, directories, and/or individual files, and then restore
filesystems, directories, and files independent of how they were backed
up.

• With xfsdump and xfsrestore, you can recover from intentional or
accidental interruptions.

• With xfsrestore, you can restore xfsdump data onto EFS filesystems.
(xfsdump backs up mounted XFS filesystems only.)

About the xfsdump and xfsrestore Utilities

31

Integration

• xfsdump and xfsrestore support XFS features including 64-bit inode
numbers, file lengths, holes, and user-selectable extent sizes.

• xfsdump and xfsrestore support multiple media types, all
IRIX-supported file types (regular, directory, symbolic link, block and
character special, FIFO, and socket), and retain hard links.

• xfsdump does not affect the state of the filesystem being dumped (for
example, access times are retained), and xfsrestore restores files as close
to the original as possible.

• xfsrestore detects and bypasses media errors and recovers rapidly after
encountering them.

• xfsdump does not cross mount points, local or remote.

User Interface

• xfsdump optionally prompts for additional media when the end of the
current media is reached. Operator estimates of media capacity are not
required. xfsdump also supports automated backups.

• xfsdump maintains an extensive online inventory of all dumps
performed. Inventory contents can be viewed through various filters to
quickly locate specific dump information.

• xfsrestore supports interactive operation, allowing selection of
individual files or directories for recovery. It also permits selection from
among backups performed at different times when multiple dumps are
available.

• Dump contents may also be viewed noninteractively.

32

Chapter 3: Dumping and Restoring XFS Filesystems

Media Layout

The following section introduces some terminology and then describes the
way xfsdump formats data on the storage media for use by xfsrestore.

Terminology

This section introduces terminology used in the rest of this chapter.

While xfsdump and xfsrestore are often used with tape media, the utilities
actually support multiple kinds of media, so in the following discussions,
the term media object is used to refer to the media in a generic fashion. The
term dump refers to the result of a single use of the xfsdump command to
output data files to the selected media object(s). An instance of the use of
xfsdump is referred to as a dump session.

The dump session sends a single dump stream to the media object(s). The
dump stream may contain as little as a single file or as much as an entire
filesystem. The dump stream is composed of dump objects, which are:

• one or more data segments

• an optional dump inventory

• a stream terminator

The data segment(s) contains the actual data, the dump inventory contains
a list of the dump objects in the dump, and the stream terminator marks the
end of the dump stream. When a dump stream is composed of multiple
dump objects, each object is contained in a media file. Some output devices,
for example standard output, do not support the concept of media files—the
dump stream is only the data.

About the xfsdump and xfsrestore Utilities

33

Possible Dump Layouts

The simplest dump, for example the dump of a small amount of data to a
single tape, produces a data segment and a stream terminator as the only
dump objects. If the optional inventory object is added, you have a dump
such as that illustrated in Figure 3-1. (In the data layout diagrams in this
section, the optional inventory object is always included.)

Figure 3-1 Single Dump on Single Media Object

Terminator

Data

Inventory

Media files

34

Chapter 3: Dumping and Restoring XFS Filesystems

You can also dump data streams that are larger than a single media object.
The data stream can be broken between any two media files including data
segment boundaries. (The inventory is never broken into segments.) The
xfsdump utility prompts for a new media object when the end of the current
media object is reached. Figure 3-2 illustrates the data layout of a single
dump session that requires two media objects.

Figure 3-2 Single Dump on Multiple Media Objects

Data
segment

Data
segment

Data
segment

Inventory

Data
segment

Terminator

Media object 1

Media object 2

About the xfsdump and xfsrestore Utilities

35

The xfsdump utility also accommodates multiple dumps on a single media
object. When dumping to tape, for example, the tape is automatically
advanced past the existing dump session(s) and the existing stream
terminator is erased. The new dump data is then written, followed by the
new stream terminator1. Figure 3-3 illustrates the layout of media files for
two dumps on a single media object.

Figure 3-3 Multiple Dumps on Single Media Object

1 For drives that do not permit termination to operate in this way, other means are used
to achieve the same effective result.

Data
segment

Terminator

Inventory

Data
segment

Data
segment

Inventory

Data
segment

First dump

Second dump

Terminator

36

Chapter 3: Dumping and Restoring XFS Filesystems

Figure 3-4 illustrates a case in which multiple dumps use multiple media
objects. If media files already exist on the additional media object(s), the
xfsdump utility finds the existing stream terminator, erases it, and begins
writing the new dump data stream.

Figure 3-4 Multiple Dumps on Multiple Media Objects

Data
segment

Inventory

Data
segment

Data
segment

Data
segment

First dump

Second dump

Terminator

Data
segment

Terminator

Media object 2

Data
segment

Inventory

Media object 1

Using xfsdump

37

Using xfsdump

This section discusses how to use the xfsdump command to backup data to
local and remote devices. You can get a summary of xfsdump syntax with the
–h option:

xfsdump -h
xfsdump: version X.X
xfsdump: usage: xfsdump [-f <destination>]
 [-h (help)]
 [-l <level>]
 [-s <subtree> ...]
 [-v <verbosity {silent, verbose, trace}>]
 [-F (don’t prompt)]
 [-I (display dump inventory)]
 [-J (inhibit inventory update)]
 [-L <session label>]
 [-M <media label>]
 [-R (resume)]
 [- (stdout)]
 <source (mntpnt|device)>

You must be the superuser to use xfsdump. Refer to the xfsdump(1M)
reference page for details.

Specifying Media

You can use xfsdump to back up data to various media. For example, you can
dump data to a tape or hard disk. The drive containing the media object may
be connected to the local system or accessible over the network.

Backing Up to a Local Tape Drive

Following is an example of a level 0 dump to a local tape drive. Note that
dump level does not need to be specified for a level 0 dump. (Refer to
“Incremental and Resumed Dumps” on page 42 for a discussion of dump
levels.)

38

Chapter 3: Dumping and Restoring XFS Filesystems

xfsdump -f /dev/tape -L testers_11_21_94 -M test_1 /usr
xfsdump: version 1.0 - type ̂ C for status and control
xfsdump: level 0 dump of magnolia.wpd.sgi.com:/usr
xfsdump: dump date: Thu Dec 15 10:15:56 1994
xfsdump: session id: d23b2d9e-b21d-1001-887f-080069068eeb
xfsdump: session label: "testers_11_21_94"
xfsdump: preparing tape drive
xfsdump: no previous dumps on tape
xfsdump: ino map phase 1: skipping (no subtrees specified)
xfsdump: ino map phase 2: constructing initial dump list
xfsdump: ino map phase 3: skipping (no pruning necessary)
xfsdump: ino map phase 4: estimating dump size
xfsdump: ino map phase 5: skipping (only one dump stream)
xfsdump: ino map construction complete
xfsdump: beginning media file
xfsdump: media file 0 (media 0, file 0)
xfsdump: dumping ino map
xfsdump: dumping directories
xfsdump: dumping non-directory files
xfsdump: ending media file
xfsdump: media file size 16871936 bytes
xfsdump: dumping session inventory
xfsdump: beginning inventory media file
xfsdump: media file 1 (media 0, file 1)
xfsdump: ending inventory media file
xfsdump: inventory media file size 2102812 bytes
xfsdump: dump complete: 207 seconds elapsed

In this case, a session label (–L option) and a media label (–M option) are
supplied, and the entire filesystem is dumped. Since no verbosity option is
supplied, the default of verbose is used, resulting in the detailed screen
output. The dump inventory is updated with the record of this backup
because the -J option is not specified.

Following is an example of a backup of a subdirectory of a filesystem. In this
example, the verbosity is set to silent, and the dump inventory is not updated
(–J option):

xfsdump -f /dev/tape -v silent -J -s people/fred /usr

Using xfsdump

39

Note that the subdirectory backed up (/usr/people/fred) was specified relative
to the filesystem, so the specification did not include the name of the
filesystem (in this case, /usr). Since /usr may be a very large filesystem and
the -v silent option was used, this could take a long time during which
there would be no screen output.

Backing Up to a Remote Tape Drive

To back up data to a remote tape drive, use the standard remote system
syntax, specifying the system (by hostname if supported by a nameserver or
IP address if not) followed by a colon (:), then the pathname of the special
file.

Note: For remote backups, use the variable block size tape device if the
device supports variable block size operation, otherwise use the fixed block
size device (see intro(7)).

The following example shows a subtree backup with no inventory to a
remote tape device:

xfsdump -f theduke:/dev/rmt/tps0d2v -J -s people/fred /usr
xfsdump: version X.X - type ̂ C for status and control
xfsdump: dump date: Mon Nov 21 13:56:01 1994
xfsdump: level 0 dump
xfsdump: preparing tape drive
xfsdump: end of data found
xfsdump: ino map phase 1: parsing subtree selections
xfsdump: ino map phase 2: constructing initial dump list
xfsdump: ino map phase 3: pruning unneeded subtrees
xfsdump: ino map phase 4: estimating dump size
xfsdump: ino map phase 5: skipping (only one dump stream)
xfsdump: ino map construction complete
xfsdump: beginning media file
xfsdump: dumping ino map
xfsdump: dumping directories
xfsdump: dumping non-dir files
xfsdump: ending media file
xfsdump: media file size 15190208 bytes

In this case, /usr/people/fred is backed up to the variable block size tape device
on the remote system theduke.

40

Chapter 3: Dumping and Restoring XFS Filesystems

Note: The superuser account on the local system must be able to rsh to the
remote system without a password. For more information, see hosts.equiv(4).

Backing Up to a File

You can back up data to a file instead of a device. In the following example,
a file (Makefile) and a directory (Source) are backed up to a dump file
(monday_backup) in /usr/tmp on the local system:

xfsdump -f /usr/tmp/monday_backup -v silent -J -s \
people/fred/Makefile -s people/fred/Source /usr

You may also dump to a file on a remote system, but note that the file must
be in the remote system’s /dev directory. For example, the following
command backs up the /usr/people/fred subdirectory on the local system to
the regular file /dev/fred_mon_12-2 on the remote system theduke:

xfsdump -f theduke:/dev/fred_mon_12-2 -s people/fred /usr

Alternatively, you could dump to any remote file if that file is on an
NFS-mounted filesystem. In any case, permission settings on the remote
system must allow to write to the file.

Refer to the section “Dump and Restore With STDIN/STDOUT” on page 56
for information on using the standard input and standard output
capabilities of xfsdump and xfsrestore to pipe data between filesystems or
across the network.

Reusing Tapes

When you use a new tape as the media object of a dump session, xfsdump
begins writing dump data at the beginning of the tape without prompting.
If the tape already has dump data on it, xfsdump begins writing data after the
last dump stream, again without prompting.

Using xfsdump

41

If, however, the tape contains data that is not from a dump session, xfsdump
prompts you before continuing:

xfsdump -f /dev/tape /test
xfsdump: version X.X - type ̂ C for status and control
xfsdump: dump date: Fri Dec 2 11:25:19 1994
xfsdump: level 0 dump
xfsdump: session id: d23cc072-b21d-1001-8f97-080069068eeb
xfsdump: preparing tape drive
xfsdump: this tape contains data that is not part of an XFS dump
xfsdump: do you want to overwrite this tape?
type y to overwrite, n to change tapes or abort (y/n):

You must answer y if you want to continue with the dump session, or n to
quit. If you answer y, the dump session resumes and the tape is overwritten.
If you do not respond to the prompt, the session will eventually timeout.
Note that this means that an automatic backup, for example one initiated by
a crontab entry, will not succeed—unless you specified the -F option with the
xfsdump command, which forces it to overwrite the tape rather than prompt
for approval.

Erasing Used Tapes

Erase pre-existing data on tapes with the mt erase command. Make sure the
tape is not write-protected.

For example, to prepare a used tape in the local default tape drive, enter:

mt -f /dev/tape erase

Caution: This erases all data on the tape, including any dump sessions.

The tape can now used by xfsdump without prompting for approval.

42

Chapter 3: Dumping and Restoring XFS Filesystems

Incremental and Resumed Dumps

Incremental dumps are a way of backing up less data at a time but still
preserving current versions of all your backed-up files, directories, and so
on. Incremental backups are organized numerically by levels from 0 through
9. A level 0 dump always backs up the complete filesystem. A dump level of
any other number backs up all files that have changed since a dump with a
lower dump level number.

For example, if you perform a level 2 backup on a filesystem one day and
your next dump is a level 3 backup, only those files that have changed since
the level 2 backup are dumped with the level 3 backup. In this case, the level
2 backup is called the base dump for the level 3 backup. The base dump is the
most recent backup of that filesystem with a lower dump level number.

Resumed dumps work in much the same way. When a dump is resumed
after it has been interrupted, the remaining files that had been scheduled to
be backed up during the interrupted dump session are backed up, and any
files that changed during the interruption are also backed up. Note that you
must restore an interrupted dump as if it is an incremental dump (see
“Cumulative Restores” on page 52).

Incremental Dump Example

In the following example, a new tape is used and the level 0 dump is the first
dump written to it:

xfsdump -f /dev/tape -l 0 -M Jun_94 -L week_1 -v silent /usr

A week later, a level 1 dump of the filesystem is performed on the same tape:

xfsdump -f /dev/tape -l 1 -L week_2 /usr

The tape is forwarded past the existing dump data and the new data from
the level 1 dump is written after it. (Note that it is not necessary to specify
the media label for each successive dump on a media object.)

Using xfsdump

43

A week later, a level 2 dump is taken:

xfsdump -f /dev/tape -l 2 -L week_3 /usr

and so on, for the four weeks of a month in this example, the fourth week
being a level 3 dump (up to nine dump levels are supported). Refer to
“Cumulative Restores” on page 52 for information on the proper procedure
for restoring incremental dumps.

Resumed Dump Example

You can interrupt a dump session and resume it later. To interrupt a dump
session, type the interrupt character (typically CTRL-C). You receive a list of
options which allow you to interrupt the session, change verbosity level, or
resume the session.

In the following example, xfsdump is interrupted after dumping
approximately 20% of a filesystem:

xfsdump -f /dev/tape -L 210994u -v silent /usr
xfsdump: this tape contains data that is not part of an XFS dump
xfsdump: do you want to overwrite this tape?
type y to overwrite, n to change tapes or abort (y/n): y
overwriting
Ĉ

status: 91/168 files dumped, 20.48 percent complete, 70 seconds elapsed
0: interrupt this session
1: change verbosity
2: continue
 -> 0
session interrupt initiated
xfsdump: dump interrupted prior to ino 11615 offset 0

You can later continue the dump by including the –R option and a different
session label:

xfsdump -f /dev/tape -R -L 2nd210994u -v silent /usr

Any files that were not backed up before the interruption, and any file
changes that were made during the interruption, are backed up after the
dump is resumed.

44

Chapter 3: Dumping and Restoring XFS Filesystems

Note: Use of the –R option requires that the dump was made with a dump
inventory taken, that is, the –J option was not used with xfsdump.

Viewing the Dump Inventory

The dump inventory is maintained in the directory /var/xfsdump created by
xfsdump. You can view the dump inventory at any time with the xfsdump –I

command. With no other arguments, xfsdump –I displays the entire dump
inventory. (The xfsdump -I command does not require root privileges.)

The following output presents a section of a dump inventory.

xfsdump -I | more
file system 0:
 fs id: d23cb450-b21d-1001-8f97-080069068eeb
 session 0:
 mount point: magnolia.wpd.xyz.com:/test
 device: magnolia.wpd.xyz.com:/dev/rdsk/dks0d3s2
 time: Mon Nov 28 11:44:04 1994
 session label: ""
 session id: d23cbf44-b21d-1001-8f97-080069068eeb
 level: 0
 resumed: NO
 subtree: NO
 streams: 1
 stream 0:
 pathname: /dev/tape
 start: ino 4121 offset 0
 end: ino 0 offset 0
 interrupted: YES
 media files: 2
 media file 0:
 mfile index: 0
---more---

Notice that the dump inventory records are presented sequentially and are
indented to illustrate the hierarchical order of the dump information.

Using xfsdump

45

You can view a subset of the dump inventory by specifying the level of depth
(1, 2, or 3) that you want to view. For example, specifying depth=2 filters out
a lot of the specific dump information as you can see by comparing the
previous output with this:

xfsdump -I depth=2
file system 0:
 fs id: d23cb450-b21d-1001-8f97-080069068eeb
 session 0:
 mount point: magnolia.wpd.xyz.com:/test
 device: magnolia.wpd.xyz.com:/dev/rdsk/dks0d3s2
 time: Mon Nov 28 11:44:04 1994
 session label: ""
 session id: d23cbf44-b21d-1001-8f97-080069068eeb
 level: 0
 resumed: NO
 subtree: NO
 streams: 1
 session 1:
 mount point: magnolia.wpd.xyz.com:/test
 device: magnolia.wpd.xyz.com:/dev/rdsk/dks0d3s2
 .
 .
 .

You can also view a filesystem-specific inventory by specifying the
filesystem mount point with the mnt option. The following output shows an
example of a dump inventory display in which the depth is set to 1, and only
a single filesystem is displayed:

xfsdump -I depth=1,mnt=magnolia.wpd.xyz.com:/test
file system 0:
 fs id: d23cb450-b21d-1001-8f97-080069068eeb

46

Chapter 3: Dumping and Restoring XFS Filesystems

Note that you can also look at a list of contents on the dump media itself by
using the –t option with xfsrestore. (The xfsrestore utility is discussed in detail
in the following section.) For example, to list the contents of the dump tape
currently in the local tape drive:

xfsrestore -f /dev/tape -t -v silent | more
xfsrestore: dump session found
xfsrestore: session label: "week_1"
xfsrestore: session id: d23cbcb4-b21d-1001-8f97-080069068eeb
xfsrestore: no media label
xfsrestore: media id: d23cbcb5-b21d-1001-8f97-080069068eeb
do you want to select this dump? (y/n): y
selected
one
A/five
people/fred/TOC
people/fred/ch3.doc
people/fred/ch3TOC.doc
people/fred/questions
A/four
people/fred/script_0
people/fred/script_1
people/fred/script_2
people/fred/script_3
people/fred/sub1/TOC
people/fred/sub1/ch3.doc
people/fred/sub1/ch3TOC.doc
people/fred/sub1/questions
people/fred/sub1/script_0
people/fred/sub1/script_1
people/fred/sub1/script_2
people/fred/sub1/script_3
people/fred/sub1/xdump1.doc
people/fred/sub1/xdump1.doc.backup
people/fred/sub1/xfsdump.doc
people/fred/sub1/xfsdump.doc.auto
people/fred/sub1/sub2/TOC
---more---

Using xfsrestore

47

Using xfsrestore

This section discusses the xfsrestore command, which you must use to view
and extract data from the dump data created by xfsdump. You can get a
summary of xfsrestore syntax with the –h option:

xfsrestore -h
xfsrestore: version X.X
xfsrestore: usage: xfsrestore [-a <alt. workspace dir>]
 [-e (don’t overwrite existing files)]
 [-f <source>]
 [-h (help)]
 [-i (interactive)]
 [-n <file> (restore only if newer than)]
 [-r (cumulative restore)]
 [-s <subtree> ...]
 [-t (contents only)]
 [-v <verbosity {silent, verbose, trace}>]
 [-E (don’t overwrite if changed)]
 [-I (display dump inventory)]
 [-L <session label>]
 [-R (resume)]
 [-S <session id>]
 [- (stdin)]
 [<destination>]

You must be the superuser to use xfsrestore. Refer to the xfsrestore(1M)
reference page for additional information.

xfsrestore Operations

Use xfsrestore to restore data backed up with xfsdump. You can restore files,
subdirectories, and filesystems—regardless of the way they were backed up.
For example, if you back up an entire filesystem in a single dump, you can
select individual files and subdirectories from within that filesystem to
restore.

48

Chapter 3: Dumping and Restoring XFS Filesystems

You can use xfsrestore interactively or noninteractively. With interactive
mode, you can peruse the filesystem or files backed up, selecting those you
want to restore. In noninteractive operation, a single command line can
restore selected files and subdirectories, or an entire filesystem. You can
restore data to its original filesystem location or any other location in an EFS
or XFS filesystem.

By using successive invocations of xfsrestore, you can restore incremental
dumps on a base dump. This restores data in the same sequence it was
dumped.

Simple Restores

A simple restore is a non-cumulative restore (for information on restoring
incremental dumps, refer to “Cumulative Restores” on page 52). An
example of a simple, noninteractive use of xfsrestore is:

xfsrestore -f /dev/tape /usr
xfsrestore: version X.X - type ̂ C for status and control
xfsrestore: preparing tape drive
xfsrestore: dump session found
xfsrestore: no session label
xfsrestore: session id: d23cbbbe-b21d-1001-8f97-080069068eeb
xfsrestore: no media label
xfsrestore: media id: d23cbbbf-b21d-1001-8f97-080069068eeb
do you want to restore this dump? (y/n): y
beginning restore
xfsrestore: restore of level 0 dump of magnolia.wpd.xyz.com:/usr created Tue
Nov 22 15:47:54 1994
xfsrestore: beginning media file
xfsrestore: reading ino map
xfsrestore: initializing the map tree
xfsrestore: reading the directory hierarchy
xfsrestore: restoring non-directory files
xfsrestore: ending media file
xfsrestore: restoring directory attributes
xfsrestore: restore complete: 115 seconds elapsed

In this case, xfsrestore went to the first dump on the tape and asked if this was
the dump to restore. If you had answered n, xfsrestore would have proceeded
to the next dump on the tape (if there was one) and asked if this was the
dump you wanted to restore.

Using xfsrestore

49

You can request a specific dump if you used xfsdump with a session label. For
example:

xfsrestore -f /dev/tape -L Wed_11_23 /usr
xfsrestore: version X.X - type ̂ C for status and control
xfsrestore: preparing tape drive
xfsrestore: dump session found
xfsrestore: advancing tape to next media file
xfsrestore: dump session found
xfsrestore: restore of level 0 dump of magnolia.wpd.xyz.com:/usr created Wed
Nov 23 11:17:54 1994
xfsrestore: beginning media file
xfsrestore: reading ino map
xfsrestore: initializing the map tree
xfsrestore: reading the directory hierarchy
xfsrestore: restoring non-directory files
xfsrestore: ending media file
xfsrestore: restoring directory attributes
xfsrestore: restore complete: 200 seconds elapsed

In this way you recover a dump with a single command line and do not have
to answer y or n to the prompt(s) asking you if the dump session found is the
correct one. To be even more exact, use the -S option and specify the unique
session ID of the particular dump session:

xfsrestore -f /dev/tape -S \
d23cbf47-b21d-1001-8f97-080069068eeb /usr2/tmp
xfsrestore: version X.X - type ̂ C for status and control
xfsrestore: preparing tape drive
xfsrestore: dump session found
xfsrestore: advancing tape to next media file
xfsrestore: advancing tape to next media file
xfsrestore: dump session found
xfsrestore: restore of level 0 dump of magnolia.wpd.xyz.com:/test resumed Mon
Nov 28 11:50:41 1994
xfsrestore: beginning media file
xfsrestore: media file 0 (media 0, file 2)
xfsrestore: reading ino map
xfsrestore: initializing the map tree
xfsrestore: reading the directory hierarchy
xfsrestore: restoring non-directory files
xfsrestore: ending media file
xfsrestore: restoring directory attributes
xfsrestore: restore complete: 229 seconds elapsed

50

Chapter 3: Dumping and Restoring XFS Filesystems

You can find the session ID by viewing the dump inventory (see “Viewing
the Dump Inventory” on page 44). Session labels might be duplicated, but
session IDs never are.

Restoring Individual Files

On the xfsrestore command line, you can specify an individual file or
subdirectory to restore. In this example, the file people/fred/notes is restored
and placed in the /usr/tmp directory (that is, the file is restored in
/usr/tmp/people/fred/notes):

xfsrestore -f /dev/tape -L week_1 -s people/fred/notes \
/usr/tmp

You can also restore a file “in place” that is, restore it directly to where it
came from in the original backup. Note, however, that if you do not use a -e ,
-E , or -n option, you overwrite any existing file(s) of the same name.

In the following example, the subdirectory people/fred is restored in the
destination /usr - this would overwrite any files and subdirectories in
/usr/people/fred with the data on the dump tape:

xfsrestore -f /dev/tape -L week_1 -s people/fred /usr

Network Restores

You can use standard network references to specify devices and files on the
network. For example, to use the tape drive on a network host named
magnolia as the source for a restore, you can use the command:

xfsrestore -f magnolia:/dev/tape -L 120694u2 /usr2
xfsrestore: version X.X - type ̂ C for status and control
xfsrestore: preparing tape drive
xfsrestore: dump session found
xfsrestore: advancing tape to next media file
xfsrestore: dump session found
xfsrestore: restore of level 0 dump of magnolia.wpd.xyz.com:/usr2 created Tue
Dec 6 10:55:17 1994
xfsrestore: beginning media file
xfsrestore: media file 0 (media 0, file 1)
xfsrestore: reading ino map
xfsrestore: initializing the map tree
xfsrestore: reading the directory hierarchy

Using xfsrestore

51

xfsrestore: restoring non-directory files
xfsrestore: ending media file
xfsrestore: restoring directory attributes
xfsrestore: restore complete: 203 seconds elapsed

In this case, the dump data is extracted from the tape on magnolia and the
destination is the directory /usr2 on the local system. Refer to the section
“Dump and Restore With STDIN/STDOUT” on page 56 for an example of
using the standard input option of xfsrestore.

Interactive Restores

Use the –i option of xfsrestore to perform interactive file restoration. With
interactive restoration, you can use the commands ls, pwd, and cd to peruse
the filesystem, and the add and delete commands to create a list of files and
subdirectories you want to restore. Then you can enter the extract command
to restore the files, or quit to exit the interactive restore session without
restoring files. (The use of “wildcards” is not allowed with these
commands.)

The following screen output shows an example of a simple interactive
restoration.

xfsrestore -f /dev/tape -i -v silent .
xfsrestore: dump session found
xfsrestore: no session label
xfsrestore: session id: d23cbeda-b21d-1001-8f97-080069068eeb
xfsrestore: no media label
xfsrestore: media id: d23cbedb-b21d-1001-8f97-080069068eeb
do you want to select this dump? (y/n): y
selected

 --- interactive subtree selection dialog ---

the following commands are available:
 pwd
 ls [{ <name>, ".." }]
 cd [{ <name>, ".." }]
 add [<name>]
 delete [<name>]
 extract
 quit
 help

52

Chapter 3: Dumping and Restoring XFS Filesystems

 -> ls
 4122 people/
 4130 two
 4126 A/
 4121 one
 -> add two
 -> cd people
 -> ls
 4124 fred/
 -> add fred
 -> ls
 * 4124 fred/
 -> extract

 ---------------- end dialog ----------------

In the interactive restore session above, the subdirectory people/fred and the
file two were restored relative to the current working directory (“.”). Note
that an asterisk (*) in your ls output indicates your selections.

Cumulative Restores

Cumulative restores sequentially restore incremental dumps to recreate
filesystems and are also used to restore interrupted dumps. To perform a
cumulative restore of a filesystem, begin with the media object that contains
the base level dump and recover it first, then recover the incremental dump
with the next higher dump level number, then the next, and so on. Use the
–r option to inform xfsrestore that you are performing a cumulative recovery.

In the following example, the level 0 base dump and succeeding higher level
dumps are on /dev/tape. First the level 0 dump is restored, then each higher
level dump in succession:

xfsrestore -f /dev/tape -r -v silent .
xfsrestore: dump session found
xfsrestore: session label: "week_1"
xfsrestore: session id: d23cbcb4-b21d-1001-8f97-080069068eeb
xfsrestore: no media label
xfsrestore: media id: d23cbcb5-b21d-1001-8f97-080069068eeb
do you want to select this dump? (y/n): y
selected

Using xfsrestore

53

Next, enter the same command again, but when prompted if you want to
restore the first dump (which you’ve already restored), type n. Then type y

in response to the continue searching question. When you come to the next
dump, restore it:

xfsrestore -f /dev/tape -r -v silent .
xfsrestore: dump session found
xfsrestore: session label: "week_1"
xfsrestore: session id: d23cbcb4-b21d-1001-8f97-080069068eeb
xfsrestore: no media label
xfsrestore: media id: d23cbcb5-b21d-1001-8f97-080069068eeb
do you want to select this dump? (y/n): n
not selected
do you want to continue searching? (y/n): y
continuing search
xfsrestore: dump session found
xfsrestore: session label: "week_2"
xfsrestore: session id: d23cbcb8-b21d-1001-8f97-080069068eeb
xfsrestore: no media label
xfsrestore: media id: d23cbcb5-b21d-1001-8f97-080069068eeb
do you want to select this dump? (y/n): y
selected
.
.
.

You then repeat this process, only now skipping the first two dumps and
restoring the third, and so on, until you have recovered the entire sequence
of incremental dumps. The full and latest copy of the filesystem will then
have been restored. In this case, it is restored relative to “.”, that is, in the
directory you are in when the sequence of xfsrestore commands is issued.

Restoring Interrupted Dumps

Restore an interrupted dump just as if it were an incremental dump. Use the
-r option to inform xfsrestore that you are performing an incremental restore,
and answer y and n appropriately to select the proper “increments” to
restore (see “Cumulative Restores” on page 52).

Note that if you try to restore an interrupted dump as if it were a
non-interrupted, non-incremental dump, the portion of the dump that
occurred before the interruption is restored, but not the remainder of the

54

Chapter 3: Dumping and Restoring XFS Filesystems

dump. You can determine if a dump is an interrupted dump by looking in
the online inventory.

Here is an example of a dump inventory showing an interrupted dump
session (the crucial fields are in bold type):

xfsdump -I depth=3,mobjlabel=AugTape,mnt=indy4.xyz.com:/usr
file system 0:
 fs id: d23cb450-b21d-1001-8f97-080069068eeb
 session 0:
 mount point: indy4.xyz.com.com:/usr
 device: indy4.xyz.com.com:/dev/rdsk/dks0d3s2
 time: Tue Dec 6 15:01:26 1994
 session label: "180894usr"
 session id: d23cc0c3-b21d-1001-8f97-080069068eeb
 level: 0
 resumed: NO
 subtree: NO
 streams: 1
 stream 0:
 pathname: /dev/tape
 start: ino 4121 offset 0
 end: ino 0 offset 0

interrupted: YES
 media files: 2
 session 1:
 mount point: indy4.xyz.com.com:/usr
 device: indy4.xyz.com.com:/dev/rdsk/dks0d3s2
 time: Tue Dec 6 15:48:37 1994
 session label: "Resumed180894usr"
 session id: d23cc0cc-b21d-1001-8f97-080069068eeb
 level: 0

resumed: YES
 subtree: NO
 streams: 1
 stream 0:
 pathname: /dev/tape
 start: ino 4121 offset 0
 end: ino 0 offset 0

interrupted: NO
 media files: 2
.
.
.

Using xfsrestore

55

From this it can be determined that session 0 was interrupted and then
resumed and completed in session 1.

To restore the interrupted dump session in the example above, use the
following sequence of commands:

xfsrestore -f /dev/tape -r -L 180894usr .
xfsrestore -f /dev/tape -r -L Resumed180894usr .

This restores the entire /usr backup relative to the current directory. (You
should remove the housekeeping directory from the destination directory
when you are finished.)

Interrupted Restores

In a manner similar to xfsdump interruptions, you can interrupt an xfsrestore
session. This allows you to interrupt a restore session and then resume it
later. To interrupt a restore session, type the interrupt character (typically
CTRL-C). You receive a list of options which allow you to interrupt the
session, change the verbosity level, or resume the session.

xfsrestore -f /dev/tape -v silent /usr
xfsrestore: dump session found
xfsrestore: no session label
xfsrestore: session id: d23cbf44-b21d-1001-8f97-080069068eeb
xfsrestore: no media label
xfsrestore: media id: d23cbf45-b21d-1001-8f97-080069068eeb
do you want to select this dump? (y/n): y
selected
status: 92/168 files restored, 41.03 percent complete, 135 seconds elapsed
0: interrupt this session
1: change verbosity
2: continue
 -> 0
session interrupt initiated

Resume the xfsrestore session with the –R option:

xfsrestore -f /dev/tape -R -v silent /usr

Data recovery continues from the point of the interruption.

56

Chapter 3: Dumping and Restoring XFS Filesystems

The housekeeping and orphanage Directories

The xfsrestore utility can create two subdirectories in the destination called
the housekeeping and orphanage directories.

The housekeeping directory is a temporary directory used during cumulative
recovery to pass information from one invocation of xfsrestore to the next. It
must not be removed during the process of performing the cumulative
recovery but should be removed after the cumulative recovery is completed.

The orphanage directory is created if a file or subdirectory is restored that is
not referenced in the filesystem structure of the dump. For example, if you
dump a very active filesystem, it is possible for new files to be in the
non-directory portion of the dump, yet none of the directories dumped
reference that file. A WARNING message will be displayed, and the file is
placed in the orphanage directory, named with its original inode number.

Dump and Restore With STDIN/STDOUT

You can use xfsdump and xfsrestore to pipe data across filesystems or across
the network with a single command line. By piping xfsdump standard output
to xfsrestore standard input you create an exact copy of a filesystem.

For example, to make a copy of /usr/people/fred in the /usr2 directory, enter:

xfsdump -J -s people/fred - /usr | xfsrestore - /usr2

To copy /usr/people/fred to the network host magnolia’s /usr/tmp directory:

xfsdump -J -s people/fred - /usr | rsh magnolia \
xfsrestore - /usr/tmp

This creates the directory /usr/tmp/people/fred on magnolia.

Note: The superuser account on the local system must be able to rsh to the
remote system without a password. For more information, see hosts.equiv(4).

Other Backup Utilities and XFS

57

Other Backup Utilities and XFS

You can also use the standard IRIX utilities cpio(1), tar(1), and bru(1), to
backup and restore data. This section discusses XFS-related issues in using
these utilities.

tar

The -K option has been added to the tar(1) command for use with files larger
than 2GB. If the -K option is not used, tar skips any files larger than 2GB and
issues a warning. Note that use of this option can create tar archives that are
not usable on non-XFS systems . The -K option cannot be used in
combination with the -O option, which creates tar archives formatted in an
older, pre-POSIX format.

cpio

The -K option has been added to the cpio(1) command for use with files
larger than 2GB. If the -K option is not used, cpio skips any files larger than
2GB and issues a warning. Note that use of this option can create cpio
archives that are not usable on non-XFS systems. The -K option can only be
used in combination with the -o (output) option. The -K option cannot be
used in combination with the -c option (which creates cpio archives with
ASCII headers), nor with the -H option (used to specify various header
formats).

bru

The -K option has been added to the bru(1) command for use with files larger
than 2GB. If the -K option is not used, bru skips any files that it cannot
compress to less than 2GB and issues a warning. Note that use of this option
can create bru archives that are not usable on non-XFS systems. The -K

option can only be used in combination with the -Z (use 12-bit LZW file
compression) option.

58

Chapter 3: Dumping and Restoring XFS Filesystems

System Recovery

The PROM Monitor’s System Recovery option does not work correctly for
XFS filesystems.

59

Chapter 4

4. XLV Logical Volumes

This chapter provides an overview of the XLV Volume Manager and
explains how to create and administer XLV logical volumes. The use of
logical volumes enables the creation of filesystems or raw devices that span
more than one disk partition. Logical volumes behave like regular disk
partitions. Filesystems can be created, mounted, and used in the normal
way, or they can be used as raw devices.

This chapter contains these main sections:

• “XLV Overview” on page 60

• “Planning a Logical Volume” on page 70

• “Using xlv_make to Create Volume Objects” on page 73

• “Preparing a Logical Volume for Use” on page 76

• “Converting lv Logical Volumes to XLV” on page 77

• “Using xlv_admin to Administer Logical Volumes” on page 79

• “Using the Real-Time Subvolume” on page 89

Note: One feature of the XLV Volume Manager described in this chapter,
plexing (mirroring), is available only when you purchase the Disk Plexing
Option software option. See the plexing Release Notes for information on
purchasing this software option and obtaining the required NetLS license.

60

Chapter 4: XLV Logical Volumes

XLV Overview

Traditionally, UNIX systems represent disk partitions as block and character
devices. These “devices” are actually kernel-based interfaces that allow
applications to access the partitions on either a character or block basis. The
actual disk interactions are performed by disk device drivers.

Some applications, such as high-performance databases, access these
partition devices directly for maximum performance. However, most
applications simplify their disk access by interfacing with filesystems.
Filesystems isolate applications from the concerns of disk management by
providing the familiar file and directory model for disk access.

XLV interposes another layer into this model by building logical volumes (also
known as volumes) on top of the partition devices. Volumes appear as block
and character devices in the /dev directory. Filesystems, databases, and other
applications access the volumes rather than the partitions. Logical volumes
provide services such as disk plexing (also known as mirroring) and striping
transparently to the applications that access the volumes. A logical volume
might include partitions from several physical disk drives and, thus, be
larger than any of the physical disks. EFS or XFS filesystems can be made on
XLV logical volumes.

Composition of Logical Volumes

Logical volumes are composed of a hierarchy of logical storage objects:
volumes are composed of subvolumes, subvolumes are composed of plexes,
and plexes are composed of volume elements. Volume elements are
composed of disk partitions. This hierarchy of storage units is shown in
Figure 4-1, an example of a relatively complex logical volume.

XLV Overview

61

Figure 4-1 Logical Volume Example

Partition 7 Partition 7 Partition 7 Partition 7

Data
subvolume

Partition 7

Volume
element

Volume
element

Volume
element

Volume
element

Partition 6

Partition 1
Partition 0

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5 Disk 6

Real−time
subvolume

Log
subvolume

Plex PlexPlex Plex

Striped
volume
element

Logical

Physical

Logical
volume

62

Chapter 4: XLV Logical Volumes

Figure 4-1 illustrates the relationships between volumes, subvolumes,
plexes, and volume elements. In this example, six physical disk drives
contain eight disk partitions. The logical volume has a log subvolume, a data
subvolume, and a real-time subvolume. The log subvolume has two plexes
(copies of the data) for higher reliability and the data and real-time
subvolumes are not plexed (meaning that they each consist of a single plex).
The log plexes each consist of a volume element which is a disk partition on
disk 1. The plex of the data subvolume consists of two volume elements, a
partition that is the remainder of disk 1 and a partition that is all of disk 2.
The plex used for the real-time subvolume is striped for increased
performance. The striped volume element is constructed from four disk
partitions, each of which is an entire disk.

The subsections below describe these logical storage objects in more detail.

Volumes

Volumes are composed of subvolumes. For EFS filesystems, a volume
consists of just one subvolume. For XFS filesystems, a volume consists of a
data subvolume, an optional log subvolume, and an optional real-time
subvolume. The breakdown of a volume into subvolumes is shown in
Figure 4-2.

Figure 4-2 Volume Composition

Subvolume SubvolumeSubvolume

Volume

(Optional) (Optional)

Real−timeLogData

XLV Overview

63

Each volume can be used as a single filesystem or as a raw partition. Volume
information used by the system during system startup is stored in disk labels
on each disk used by the volume. At system startup, volumes won’t come up
if any of their subvolumes cannot be brought online. You can create volumes,
delete them, and move them to another system.

Subvolumes

As explained in the section“Volumes,” each logical volume is composed of
one to three subvolumes, as shown in Figure 4-3. A subvolume is made up
of one to four plexes.

Figure 4-3 Subvolume Composition

Each subvolume is a distinct address space and a distinct type. The types of
subvolumes are:

Data subvolume
The data subvolume is required in all logical volumes. It is
the only subvolume present in EFS filesystems.

Log subvolume The log subvolume contains XFS journaling information. It
is a log of filesystem transactions and is used to expedite
system recovery after a crash. Log information is sometimes
put in the data subvolume rather than in a log subvolume
(see the section “Choosing the Log Type and Size” in
Chapter 2 and the mkfs_xfs(1M) reference page and its
discussion of the –l option for more information).

Subvolume

Plex

(Optional)(Optional)

Plex Plex

(Optional)

Plex

64

Chapter 4: XLV Logical Volumes

Real-time subvolume
Real-time subvolumes are generally used for data
applications such as video, where guaranteed response time
is more important than data integrity. The section “Using
the Real-Time Subvolume” in this chapter and Chapter 5,
“Guaranteed-Rate I/O,” explain how applications access
data on real-time subvolumes.

Subvolumes enforce separation among data types. For example, user data
cannot overwrite filesystem log data. Subvolumes also enable filesystem
data and user data to be configured to meet goals for performance and
reliability. For example, performance can be improved by putting
subvolumes on different disk drives.

Each subvolume can be organized independently. For example, the log
subvolume can be plexed for fault tolerance and the real-time subvolume
can be striped across a large number of disks to give maximum throughput
for video playback.

Volume elements that are part of a real-time subvolume should not be on the
same disk as volume elements used for data or log subvolumes. This is a
recommendation for all files on real-time subvolumes and required for files
used for guaranteed-rate I/O with hard guarantees. (See “Hardware
Configuration Requirements for GRIO” in Chapter 5 for more information.)

You can create subvolumes, but you cannot detach them from their volumes
or delete them. A subvolume is automatically deleted when the volume is
deleted.

Plexes

A subvolume can contain from one to four plexes (sometimes called mirrors).
Each plex contains a portion or all of the subvolume’s data. By creating a
volume with multiple plexes, system reliability is increased.

If there is just one plex in a subvolume, that plex spans the entire address
space of the subvolume. However, when there are multiple plexes,
individual plexes can have holes in their address spaces as long as the union
of all plexes spans the entire address space.

XLV Overview

65

Normally, data is written to all plexes. However, when necessary (for
example when an additional plex is added to a subvolume), a full plex copy,
called a plex revive, is done automatically by the system. See the
xlv_assemble(1M) and xlv_plexd(1M) reference pages for more information.

A plex is composed of one or more volume elements, as shown in Figure 4-4,
up to a maximum of 128 volume elements. Each volume element represents
a range of addresses within the subvolume.

Figure 4-4 Plex Composition

Volume element

.

.

.

Volume element

Plex

(Up to 128 volume elements)

66

Chapter 4: XLV Logical Volumes

When a plex is composed of two or more volume elements, it is said to have
concatenated volume elements. With concatenation, data written sequentially
to the plex is also written sequentially to the volume elements; the first
volume element is filled, then the second, and so on. Concatenation is useful
for creating a filesystem that is larger than the size of a single disk.

You can add plexes to subvolumes, detach them from subvolumes that have
multiple plexes (and possibly attach them elsewhere), and delete them from
subvolumes that have multiple plexes.

Note: To have multiple plexes, you must purchase the Disk Plexing Option
software option and obtain and install a NetLS license.

Volume Elements

The simplest type of volume element is a single disk partition. The two other
types of volume elements, striped volume elements and multipartition
volume elements, are composed of several disk partitions. Figure 4-5 shows
a single partition volume element.

Figure 4-5 Single Partition Volume Element Composition

Disk
partition

Single−partition volume element

XLV Overview

67

Figure 4-6 shows a striped volume element. Striped volume elements consist
of two or more disk partitions, organized so that an amount of data called
the stripe unit is written to each disk partition before writing the next stripe
unit-worth of data to the next partition.

Figure 4-6 Striped Volume Element Composition

Striping can be used to alternate sections of data among multiple disks. This
provides a performance advantage by allowing parallel I/O activity.

Figure 4-7 shows a multipartition volume element in which the volume
element is composed of more than one disk partition. In this configuration,
the disk partitions are addressed sequentially.

Striped volume element

Disk
partition

Disk
partition

Disk
partition

...

Stripe unit

(Optional)

68

Chapter 4: XLV Logical Volumes

Figure 4-7 Multipartition Volume Element Composition

Any mixture of the three types of volume elements (single partition, striped,
and multipartition) can be concatenated in a plex.

Logical Volume Naming

Volumes appear as block and character devices in the /dev directory. The
device names for logical volumes are /dev/dsk/xlv/<volume_name> and
/dev/rdsk/xlv/<volume_name>, where <volume_name> is a volume name
specified when the volume is created using xlv_make(1M).

Multipartition volume element

(Optional)

(Optional)

Disk
partition

Disk
partition

.

.

.

Disk
partition

XLV Overview

69

When a volume is created on one system and moved (by moving the disks)
to another system, the new volume name is the same as the original volume
name with the hostname of the original system prepended. For example, if a
volume called xlv0 is moved from a system called engrlab1 to a system
called engrlab2, the device name of the volume on the new system is
/dev/dsk/xlv/engrlab1.xlv0 (the old system name engrlab1 has been prepended
to the volume name xlv0).

XLV Daemons

The XLV daemons are:

xlv_labd xlv_labd(1M) writes disk labels. It is started automatically at
system startup if it is installed and there are active XLV
logical volumes.

xlvd xlvd(1M) handles I/O to plexes and performs plex error
recovery. It is created automatically during system startup
if plexing software is installed and there are active XLV
logical volumes.

xlv_plexd xlv_plexd(1M) is responsible for making all plexes within a
subvolume have the same data. It is started automatically at
system startup if there are active XLV logical volumes.

XLV does not require an explicit configuration file, nor is it turned on and off
with chkconfig(1M). XLV is able to assemble logical volumes based solely
upon information written in the disk labels. During initialization, the system
performs a hardware inventory, reads all the disk labels, and automatically
assembles the available disks into volumes.

If some disks are missing, XLV checks to see if there are enough volume
elements among the available plexes to map the entire address space. If the
whole address space is available, XLV brings the volume online even if some
of the plexes are incomplete.

70

Chapter 4: XLV Logical Volumes

XLV Error Policy

For read failures on log and data subvolumes, XLV rereads from a different
plex (when available) and attempts to fix the failed plex by rewriting the
results. XLV does not retry on failures for real-time data.

For log and data subvolumes, XLV assumes that the write errors it receives
are hard errors (the disk driver and controllers handle soft errors). If the
volume element with a hard error is plexed, XLV marks the volume element
bad and ignores it. If the volume element is not plexed, the volume element
remains associated with the volume and an error is returned.

XLV doesn’t handle write errors on real-time subvolumes. Incorrect data is
returned without error messages.

Planning a Logical Volume

The following subsections discuss topics to consider when planning a logical
volume.

Don’t Use XLV When ...

There are some situations where logical volumes cannot be used or are not
recommended:

• Swap space cannot be a logical volume.

• Logical volumes aren’t recommended on systems with a single disk.

• Striped or concatenated volumes cannot be used for the root filesystem.

Planning a Logical Volume

71

Deciding Which Subvolumes to Use

The basic guidelines for choosing which subvolumes to use with EFS
filesystems are:

• Only data subvolumes can be used.

• The maximum useful size of a data subvolume (and therefore the
volume) on EFS is 8 GB.

The basic guidelines for choosing which subvolumes to use with XFS
filesystems are:

• Data subvolumes are required.

• Log subvolumes are optional. If they are not used, log information is
put into an internal log in the data subvolume (by giving the –l internal
option to mkfs).

• Real-time subvolumes are optional.

Choosing Subvolume Sizes

The basic guidelines for choosing subvolume sizes are:

• The maximum size of a subvolume is one terabyte.

• When real-time subvolumes are used, make a small log subvolume and
a small data subvolume. Don’t put much (if any) user data in the
filesystem, just real-time data.

• Choosing the size of the log (and therefore the size of the log
subvolume) is discussed in the section “Choosing the Log Type and
Size” in Chapter 2. Note that if you do not intend to repartition a disk to
create an optimal-size log partition, your choice of an available disk
partition may determine the size of the log.

72

Chapter 4: XLV Logical Volumes

Plexing

The basic guidelines for plexing are:

• Use plexing when high reliability and high availability of data are
required.

• Plexes can have “holes” in them, portions of the address range not
contained by a volume element, as long as at least one of the plexes in
the subvolume has a volume element with the address range of the
hole.

• The volume elements in each plex of a subvolume must be identical in
size with their counterparts in other plexes (volume elements with the
same address range). The structure within a volume element (single
partition, striped, or multipartition) does not have to match the
structure within its counterparts.

• To make volume elements identical in size, you may have to use
dvhtool(1M). fx(1M) partitions in units of cylinders and rounds sizes to
megabytes, which may not result in exactly the same number of bytes
in two partitions of the “same size” on different types of disks. See the
dvhtool(1M) reference page for more information.

Striping

The basic guidelines for striping are:

• The root filesystem cannot be striped.

• Striped volume elements must be made of disk partitions that are
exactly the same size.

Using xlv_make to Create Volume Objects

73

Concatenating Disk Partitions

The basic guidelines for the concatenation of disk partitions are:

• The root filesystem cannot have concatenated disk partitions.

• It is better to concatenate single-partition volume elements into a plex
rather than create a single multipartition volume element. This is not
for performance reasons, but for reliability. When one disk partition
goes bad in a multipartition volume, all disks that contain partitions
used in that volume element are taken offline.

Using xlv_make to Create Volume Objects

xlv_make(1M) is used to create volumes, subvolumes, plexes, and volume
elements from unused disk partitions. It writes only the disk labels; data on
the disk partitions is untouched.

After you create a volume, you must make a filesystem on it if necessary and
mount the filesystem so that you can use the logical volume. See the section
“Preparing a Logical Volume for Use” in this chapter for instructions.

xlv_make can be run interactively or it can take commands from an input file.
The remainder of this section gives two examples of using xlv_make; the first
one is interactive and the second is noninteractive.

Example 1: Simple Logical Volume

This example shows a simple logical volume composed of a data subvolume
created from two entire option disks. The disks are on controller 0, units 2
and 3 (use the hinv(1M) command, for example hinv –c disk, to obtain this
information). Partition 7 of each disk is normally the entire disk (use the
prtvtoc(1M) command, for example prtvtoc /dev/rdsk/dks0d2vh and prtvtoc
/dev/rdsk/dks0d3vh, to obtain this information).

74

Chapter 4: XLV Logical Volumes

1. Unmount the disks that will be used in the volume if they are mounted.
For example:

df
Filesystem Type blocks use avail %use Mounted on
/dev/root efs 1939714 430115 1509599 22% /
/dev/dsk/dks0d2s7 efs 2004550 22 2004528 0% /d2
/dev/dsk/dks0d3s7 efs 3826812 22 3826790 0% /d3
umount /d2
umount /d3

2. Start xlv_make:

xlv_make
xlv_make>

3. Start creating the volume by specifying its name, for example
xlv_volume:

xlv_make> vol xlv0
xlv0

4. Begin creating the data subvolume:

xlv_make> data
xlv0.data

xlv_make echoes the name of each object (volume, subvolume, plex, or
volume element) you create.

5. Continue to move down through the hierarchy of the volume by
specifying the plex:

xlv_make> plex
xlv0.data.0

6. Specify the volume elements (disk partitions) to be included in the
volume, for example /dev/dsk/dks0d2s7 and /dev/dsk/dks0d3s7:

xlv_make> ve dks0d2s7
xlv0.data.0.0
xlv_make> ve dks0d3s7
xlv0.data.0.1

You can specify the last portion of the disk partition pathname (as
shown) or the full pathname. xlv_make accepts disk partitions that are of
types “xlv”, “xfs”, and “efs”. You can use other partition types, for
example “lvol”, by giving the –force option, for example, ve –force
dks0d2s7. xlv_make automatically changes the partition type to “xlv”.

Using xlv_make to Create Volume Objects

75

7. Tell xlv_make that you are finished specifying the objects:

xlv_make> end
Object specification completed

8. Review the objects that you’ve specified:

xlv_make> show

 Completed Objects
(1) vol xlv0
ve xlv0.data.0.0 [empty]
 start=0, end=226799, (cat)grp_size=1
 /dev/dsk/dks0d2s2 (226800 blks)
ve xlv0.data.0.1 [empty]
 start=226800, end=453599, (cat)grp_size=1
 /dev/dsk/dks0d2s3 (226800 blks)

9. Write the volume information to the disk labels by exiting xlv_make:

xlv_make> exit
Newly created objects will be written to disk.
Is this what you want?(yes) yes
Invoking xlv_assemble

Example 2: Striped, Plexed Logical Volume

This example shows the noninteractive creation of a logical volume from
four equal-sized option disks (controller 0, units 2 through 5). Two plexes
will be created with the data striped across the two disks in each plex. The
stripe unit will be 128 KB.

1. As in the previous example, unmount the disks to be used if necessary.

2. Create a file, called xlv0.specs for example, that contains input for
xlv_make. For this example and a volume named xlv0, the file contains:

vol xlv0
data
plex
ve -stripe -stripe_unit 256 dks0d2s7 dks0d3s7
plex
ve -stripe -stripe_unit 256 dks0d4s7 dks0d5s7
end
show
exit

76

Chapter 4: XLV Logical Volumes

This script specifies the volume hierarchically: volume, subvolume
(data), first plex with a striped volume element, then second plex with a
striped volume element. The ve commands have a stripe unit argument
of 256. This argument is the number of 512-byte blocks (sectors), so
128K/512 = 256. The end command signifies that the specification is
complete and the (optional) show command causes the specification to
be displayed. The disk label is created by the exit command.

3. Run xlv_make to create the volume. For example:

xlv_make xlv0.specs

Preparing a Logical Volume for Use

Once you create a logical volume with xlv_make, follow these steps to
prepare it for use:

1. If there is no filesystem on the logical volume (and you want one) or
you want to switch from EFS to XFS, you must create a filesystem with
mkfs(1M). See Chapter 2, “XFS Filesystem Administration.”

2. Mount the logical volume, for example:

mkdir /vol1
mount /dev/dsk/xlv/xlv0 /vol1

3. To have the logical volume mounted automatically at system startup,
you must add an entry for the volume to /etc/fstab, for example:

/dev/dsk/xlv/xlv0 /vol1 xfs rw,raw=/dev/rdsk/xlv/xlv0 0 0

See the fstab(4) reference page for more information.

Converting lv Logical Volumes to XLV

77

Converting lv Logical Volumes to XLV

This section explains the procedure for converting lv(7M) logical volumes to
XLV logical volumes. The files on the logical volumes are not modified or
dumped during the conversion. You must be superuser to perform this
procedure.

1. Choose new names for the logical volumes, if desired. XLV, unlike lv,
only requires names to be valid filenames, so you can choose more
meaningful names. For example, you can make the volume names the
same as the mount points you use. If you mount logical volumes at /a,
/b, and /c, you can name the XLV volumes a, b, and c.

2. Unmount all lv logical volumes that you plan to convert to XLV logical
volumes. For example:

umount /a

3. Create an input script for xlv_make by using lv_to_xlv(1M):

lv_to_xlv -o scriptfile

scriptfile is the name of a temporary file that lv_to_xlv creates, for
example /usr/tmp/xlv.script. It contains a series of xlv_make
commands that can be used to create XLV volumes that are equivalent
to the lv logical volumes listed in /etc/lvtab.

4. If you want to change the volume names, edit scriptfile and replace the
names on the lines that begin with vol with the new names. For
example, change:

vol lv0

to:

vol a

The volume name can be any name that is a valid filename.

5. By default, all lv logical volumes on the system are converted to XLV. If
you do not want all lv logical volumes converted to XLV, edit scriptfile
and remove the xlv_make commands for the volumes that you do not
want to change. See the section “Using xlv_make to Create Volume
Objects” in this chapter and the xlv_make(1M) reference page for more
information.

78

Chapter 4: XLV Logical Volumes

6. Create the XLV volumes by running xlv_make with scriptfile as input:

xlv_make scriptfile

7. If you converted all lv logical volumes to XLV, remove /etc/lvtab:

rm /etc/lvtab

8. If you converted just some of the lv logical volumes to XLV, edit
/etc/lvtab and remove the entries for the logical volumes you converted.

vi /etc/lvtab

9. Edit /etc/fstab so that it automatically mounts the XLV logical volumes at
startup. These changes to /etc/fstab are required for each XLV logical
volume:

• In the first field, insert the subdirectory xlv after /dev/dsk .

• If you changed the name of the volume, for example from lv0 to a,
make the change in the first field.

• Insert the subdirectory xlv into the raw device name.

• If you changed the name of the volume, for example from lv0 to a,
make the change in the raw device.

For example, if an original line is:

/dev/dsk/lv0 /a efs rw,raw=/dev/rdsk/lv0 0 0

The changed line, including the name change, is:

/dev/dsk/xlv/a /a xfs rw,raw=/dev/rdsk/xlv/a 0 0

10. Mount the XLV logical volume, for example:

mount /a

Using xlv_admin to Administer Logical Volumes

79

Using xlv_admin to Administer Logical Volumes

The xlv_admin(1M) command is used to modify logical volume objects and
their disk labels after they have been created by xlv_make. xlv_admin is an
interactive command with this menu:

**************** XLV Administration Menu **********
................ Add Existing Selections...........
1. Add a ve to an existing plex.
2. Add a ve at the END of an existing plex.
3. Add a plex to an existing volume.
................ Detach Selections................
11. Detach a ve from an existing plex.
12. Detach a plex from an existing volume.
................ Remove Selections................
21. Remove a ve from an existing plex.
22. Remove a plex from an existing volume.
................ Delete Selections................
31. Delete an object.
32. Delete all XLV disk labels.
................ Show Selections................
41. Show object by name and type, only.
42. Show information for an object.
................ Exit
99. Exit

Note: The full menu is shown above; if you do not have a valid license for
the Disk Plexing Option software option, several of the plex-related menu
selections do not appear.

The following subsections explain how to use xlv_admin to perform common
operations.

80

Chapter 4: XLV Logical Volumes

Displaying Logical Volume Objects

To get a list of the highest-level volume objects on a system, use selection 41
of the xlv_admin menu, for example:

xlv_admin> 41

==================== Listing Objects =============
Volume Element: ’spare_ve’
Volume: ’xlv0’

In this example, there are two high-level volume objects, a volume element
named spare_ve and a logical volume named xlv0. The volume element is a
high-level volume object because it is not part of any plex or subvolume.

To display the complete hierarchy of a high-level volume object, use
selection 42 of the xlv_admin menu, for example:

xlv_admin> 42
Please enter name of object to be operated on.
xlv_admin> xlv0

============= Displaying Requested Object ==========
vol xlv0
ve xlv0.data.0.0 [active]
 start=0, end=226799, (cat)grp_size=1
 /dev/dsk/dks0d2s7 (226800 blks)
ve xlv0.data.0.1 [active]
 start=226800, end=453599, (cat)grp_size=1
 /dev/dsk/dks0d3s7 (226800 blks)
ve xlv0.data.0.2 [active]
 start=453600, end=680399, (cat)grp_size=1
 /dev/dsk/dks0d4s7 (226800 blks)

This output shows that xlv0 contains only a data subvolume. The data
subvolume has one plex that has three volume elements.

Using xlv_admin to Administer Logical Volumes

81

Growing a Logical Volume

Growing a logical volume (increasing its size) can be done in two ways by
adding one or more volume elements to the end of one or more of its plexes.

1. If any of the volume elements you plan to add to the volume don’t exist
yet, create them with xlv_make. For example, follow this procedure to
create a volume element out of a new disk, /dev/dsk/dks0d4s7:

xlv_make
xlv_make> ve new_ve dks0d4s7
new_ve
xlv_make> end
Object specification completed
xlv_make> exit
Newly created objects will be written to disk.
Is this what you want?(yes) yes
Invoking xlv_assemble

The ve command includes a volume element name, new_ve. This is
required because the volume element is not part of a larger hierarchy; it
is the root object in this case.

2. Use selection 2 of the xlv_admin command to add each volume element.
For example, to add the volume element from step 1 to plex 0 of the
data subvolume of the volume xlv0, use this procedure:

xlv_admin
xlv_admin> 2
Please enter name of object to be operated on.
xlv_admin> xlv0.data.0
 Please enter the object you wish to add to the target.
xlv_admin> new_ve
 Please select choice...
xlv_admin> 99

3. If you are growing an XFS filesystem, mount the filesystem if it isn’t
already mounted:

mount volume mountpoint

volume is the device name of the logical volume, for example
/dev/dsk/xlv/xlv0, and mountpoint is the mount point directory for
the logical volume.

82

Chapter 4: XLV Logical Volumes

4. If you are growing an XFS filesystem, use xfs_growfs(1M) to grow the
filesystem:

xfs_growfs -d mountpoint

mountpoint is the mount point directory for the logical volume.

5. If you are growing an EFS filesystem, unmount the filesystem if it is
mounted:

umount mountpoint

mountpoint is the mount point directory for the filesystem.

6. If you are growing an EFS filesystem, use growfs(1M) to grow the
filesystem:

growfs volume

volume is the device name of the logical volume, for example
/dev/dsk/lv0.

Adding a Plex to a Logical Volume

If you have purchased the Disk Plexing Option software option and have
installed a NetLS license for it, you can add a plex to an existing subvolume
for improved reliability in case of disk failures. The procedure to add a plex
to a subvolume is described below. To add more than one plex to a
subvolume or to add a plex to each of the subvolumes in a volume, repeat
the procedure as necessary.

1. If the plex that you want to add to the subvolume doesn’t exist yet,
create it with xlv_make. For example, to create a plex called plex1 to add
to the data subvolume of a volume called root_vol, give these
commands:

xlv_make
xlv_make> show

 Completed Objects
(1) vol root_vol
ve root_vol.data.0.0 [active]
 start=0, end=1992629, (cat)grp_size=1
 /dev/dsk/dks0d1s0 (1992630 blks)

xlv_make> plex plex1

Using xlv_admin to Administer Logical Volumes

83

plex1
xlv_make> ve /dev/dsk/dks0d2s0
plex1.0
xlv_make> end
Object specification completed
xlv_make> exit
Newly created objects will be written to disk.
Is this what you want?(yes) yes
Invoking xlv_assemble

2. Use the xlv_admin command menu to add the plex to the volume. For
example, to add the standalone plex plex1 to root_vol, use this
procedure:

xlv_admin
**************** XLV Administration Menu **********
...
3. Add a plex to an existing volume.
...
42. Show information for an object.
...
99. Exit
...
xlv_admin> 42
Please enter name of object to be operated on.
xlv_admin> root_vol

============= Displaying Requested Object ==========
vol root_vol
ve root_vol.data.0.0 [active]
 start=0, end=1992629, (cat)grp_size=1
 /dev/dsk/dks0d1s0 (1992630 blks)

 Please select choice...
xlv_admin> 42
Please enter name of object to be operated on.
xlv_admin> plex1

============= Displaying Requested Object ==========
plex plex1
ve plex1.0 [empty]
 start=0, end=1992629, (cat)grp_size=1
 /dev/dsk/dks0d2s0 (1992630 blks)

84

Chapter 4: XLV Logical Volumes

 Please select choice...
xlv_admin> 3
Please enter name of object to be operated on.
xlv_admin> root_vol
 Please enter the object you wish to add to the target.
xlv_admin> plex1
 Please select choice...

3. You can confirm that root_vol now has two plexes by using selection 42
of the xlv_admin command menu:

xlv_admin> 42
Please enter name of object to be operated on.
xlv_admin> root_vol

============= Displaying Requested Object ==========
vol root_vol
ve root_vol.data.0.0 [active]
 start=0, end=1992629, (cat)grp_size=1
 /dev/dsk/dks0d1s0 (1992630 blks)
ve root_vol.data.1.0 [empty]
 start=0, end=1992629, (cat)grp_size=1
 /dev/dsk/dks0d2s0 (1992630 blks)

 Please select choice...

The newly added plex, root_vol.data.1, is in the [empty] state. This is
because it is newly created. When a plex is added, xlv_admin
automatically initiates a plex revive operation to copy the contents of
the original plex, root_vol.data.0, to the newly added plex.

4. Exit xlv_admin:

xlv_admin> 99
#

Using xlv_admin to Administer Logical Volumes

85

The plex revive completes and the new plex switches to [active] state
automatically, but if you want to check its progress and verify that the plex
has become active, follow this procedure:

1. List the XLV daemons running, for example:

ps -ef | grep xlv
 root 27 1 0 10:49:27 ? 0:00 /sbin/xlv_plexd -m 4
 root 35 1 0 10:49:28 ? 0:00 /sbin/xlv_labd
 root 31 1 0 10:49:27 ? 0:00 xlvd
 root 407 27 1 11:01:01 ? 0:00 xlv_plexd -v 2 -n root_vol.data
-d 50331648 -b 128 -w 0 0 1992629
 root 410 397 2 11:01:11 pts/0 0:00 grep xlv

One instance of xlv_plexd is currently reviving root_vol.data. This
daemon exits when the plex has been fully revived.

2. Later, check the XLV daemons again, for example:

ps -ef | grep xlv
ps -ef | grep xlv
 root 27 1 0 10:49:27 ? 0:00 /sbin/xlv_plexd -m 4
 root 35 1 0 10:49:28 ? 0:00 /sbin/xlv_labd
 root 31 1 0 10:49:27 ? 0:03 xlvd

The instance of xlv_plexd that was reviving root_vol.data is no longer
running; it has completed the plex revive.

3. Check the state of the plex using xlv_admin:

xlv_admin
...
xlv_admin> 42
Please enter name of object to be operated on.
xlv_admin> root_vol

============= Displaying Requested Object ==========
vol root_vol
ve root_vol.data.0.0 [active]
 start=0, end=1992629, (cat)grp_size=1
 /dev/dsk/dks0d1s0 (1992630 blks)
ve root_vol.data.1.0 [active]
 start=0, end=1992629, (cat)grp_size=1
 /dev/dsk/dks0d2s0 (1992630 blks)

 Please select choice...

86

Chapter 4: XLV Logical Volumes

Both plexes are now in the [active] state.

4. Exit xlv_admin:

xlv_admin> 99
#

Detaching a Plex from a Volume

Detaching a plex from a volume, perhaps because you want to swap disk
drives, can be done while the volume is active. However, the entire address
range of the subvolume must still covered by active volume elements in the
remaining plex or plexes. xlv_admin does not allow you to remove the only
active plex in a volume if the other plexes are not yet active. The procedure
to detach a plex is:

1. Start xlv_admin and display the volume that has the plex that you plan
to detach, for example, root_vol:

xlv_admin
...
1. Add a ve to an existing plex.
...
12. Detach a plex from an existing volume.
...
42. Show information for an object.
................ Exit
99. Exit
 Please select choice...
xlv_admin> 42
Please enter name of object to be operated on.
xlv_admin> root_vol

============= Displaying Requested Object ==========
vol root_vol
ve root_vol.data.0.0 [active]
 start=0, end=1992629, (cat)grp_size=1
 /dev/dsk/dks0d1s0 (1992630 blks)
ve root_vol.data.1.0 [active]
 start=0, end=1992629, (cat)grp_size=1
 /dev/dsk/dks0d2s0 (1992630 blks)

Using xlv_admin to Administer Logical Volumes

87

2. Detach plex 1 and give it the name plex1 by giving these commands:

xlv_admin> 12
Please enter name of object to be operated on.
xlv_admin> root_vol
 Please select plex number (0-3).
xlv_admin> 1
Please enter name of new object.
xlv_admin> plex1
 Please select choice...

3. To examine the volume and the detached plex, give these commands:

xlv_admin> 42
Please enter name of object to be operated on.
xlv_admin> plex1

============= Displaying Requested Object ==========
plex plex1
ve plex1.0 [empty]
 start=0, end=1992629, (cat)grp_size=1
 /dev/dsk/dks0d2s0 (1992630 blks)

 Please select choice...
xlv_admin> 42
Please enter name of object to be operated on.
xlv_admin> root_vol

============= Displaying Requested Object ==========
vol root_vol
ve root_vol.data.0.0 [active]
 start=0, end=1992629, (cat)grp_size=1
 /dev/dsk/dks0d1s0 (1992630 blks)

4. Exit xlv_admin:

xlv_admin> 99
#

88

Chapter 4: XLV Logical Volumes

Deleting an XLV Object

You can delete a volume or any other XLV object by using selection 31 of the
xlv_admin command menu. The procedure is:

1. If you are deleting a volume, you must unmount it first. For example:

umount /vol1

2. Start xlv_admin and list the root of each object hierarchy on the system:

xlv_admin
...
31. Delete an object.
...
41. Show object by name and type, only.
...
99. Exit
 Please select choice...
xlv_admin> 41

==================== Listing Objects =============
Volume: ‘root_vol’
Plex: ‘plex1’

3. Delete the object, for example the plex plex1:

xlv_admin> 31
Please enter name of object to be operated on.
xlv_admin> plex1

4. Confirm that the object is gone:

xlv_admin> 41

==================== Listing Objects =============
Volume: ‘root_vol’

5. Exit xlv_admin:

xlv_admin> 99
#

Using the Real-Time Subvolume

89

Using the Real-Time Subvolume

Files created on the real-time subvolume of an XLV logical volume are
known as real-time files. The next three sections describe the special
characteristics of these files.

Files on the Real-Time Subvolume and Utilities

Real-time files have some special characteristics that cause standard IRIX
utilities to operate in ways that you might not expect. In particular:

• You cannot create real-time files using any standard utilities. Only
specially-written programs can create real-time files. The next section,
“Creating Files on the Real-time Subvolume,” explains how.

• Real-time files are displayed by ls(1), just as any other file. However,
there is no way to tell from the ls output whether a particular file is on a
data subvolume or is a real-time file on a real-time subvolume. Only a
specially-written program can determine the type of a file. The
F_FSGETXATTR fcntl(2) system call is used to determine if a file is a
real-time or a standard data file. If the file is a real-time file, the
fsx_xflags field of the fsxattr structure has the XFS_XFLAG_REALTIME
bit set.

• The df(1) utility displays the disk space in the data subvolume by
default. When the –r option is given, the real-time subvolume’s disk
space and usage is added. df can report that there is free disk space in
the filesystem when the real-time subvolume is full, and df –r can report
that there is free disk space when the data subvolume is full.

Creating Files on the Real-time Subvolume

To create a real-time file, use the F_FSSETXATTR fcntl(2) system call with the
XFS_XFLAG_REALTIME bit set in the fsx_xflags field of the fsxattr
structure. This must be done after the file has first been created/opened for
writing, but before any data has been written to the file. Once data has been
written to a file, it cannot be changed from a standard data file to a real-time
file, nor can files created as real-time files be changed to standard data files.

90

Chapter 4: XLV Logical Volumes

Real-time files can only be read or written using direct I/O. Therefore,
read(2) and write(2) operations to a real-time file must meet the requirements
specified by the F_DIOINFO fcntl(2) call. See the open(2) reference page for a
discussion of the O_DIRECT option to the open() system call.

Guaranteed-Rate I/O and the Real-Time Subvolume

The real-time subvolume is used by applications for files that require fixed
I/O rates. This feature, called guaranteed-rate I/O, is described in
Chapter 5, “Guaranteed-Rate I/O.”

91

Chapter 5

5. Guaranteed-Rate I/O

Guaranteed-rate I/O, or GRIO for short, is a mechanism that enables a user
application to reserve part of a system’s I/O resources for its exclusive use.
For example, it can be used to enable “real-time” retrieval and storage of
data streams. It manages the system resources among competing
applications, so the actions of new processes do not affect the performance
of existing ones. GRIO can read and write only files on a real-time
subvolume of an XFS filesystem.

This chapter explains important guaranteed-rate I/O concepts, describes
how to configure a system for GRIO, and provides instructions for creating
an XLV logical volume for use with applications that use GRIO. The main
sections in this chapter are:

• “Guaranteed-Rate I/O Overview” on page 92

• “GRIO Guarantee Types” on page 93

• “GRIO System Components” on page 96

• “Hardware Configuration Requirements for GRIO” on page 97

• “Disabling Disk Error Recovery” on page 98

• “Configuring the ggd Daemon” on page 101

• “Example: Setting Up an XLV Logical Volume for GRIO” on page 102

• “GRIO File Formats” on page 106

Note: By default, IRIX supports four GRIO streams (concurrent uses of
GRIO). To increase the number of streams to 40, you can purchase the High
Performance Guaranteed-Rate I/O—5-40 Streams software option. For more
streams, you can purchase the High Performance Guaranteed-Rate I/O—
Unlimited Streams software option. See the grio Release Notes for information
on purchasing these software options and obtaining the required NetLS
licenses.

92

Chapter 5: Guaranteed-Rate I/O

Guaranteed-Rate I/O Overview

The GRIO mechanism is designed for use in an environment where many
different processes attempt to access scarce I/O resources simultaneously.
GRIO provides a way for applications to determine that resources are
already fully utilized and attempts to make further use would have a
negative performance impact.

If the system is running a single application that needs access to all the
system resources, the GRIO mechanism does not need to be used. Since there
is no competition, the application gains nothing by reserving the resources
before accessing them.

Applications negotiate with the system to make a GRIO reservation, an
agreement by the system to provide a portion of the bandwidth of a system
resource for a period of time. The only resources supported by GRIO are files
residing within a real-time subvolume of an XFS filesystem.

A GRIO reservation is described as the number of bytes per second the
application will receive from or transmit to the resource starting at a specific
time and continuing for a specific period. The application issues a
reservation request to the system, which either accepts or rejects the request.
If the reservation is accepted, the application can begin accessing the
resource at the reserved time, and it can expect that it will receive the
reserved number of bytes per second throughout the time of the reservation.
If the system rejects the reservation, it returns the maximum amount of
bandwidth that can be reserved for the resource at the specified time. The
application can determine if the available bandwidth is sufficient for its
needs and issue another reservation request for the lower bandwidth, or it
can schedule the reservation for a different time. The GRIO reservation
continues until it expires, the file is closed, or an explicit
grio_remove_request() library call is made (for more information, see the
grio_remove_request(3X) reference page).

If a process has a rate guarantee on a file, any reference by that process to that
file uses the rate guarantee, even if a different file descriptor is used.
However, any other process that accesses the same file does so without a
guarantee or must obtain its own guarantee. This is true even when the
second process has inherited the file descriptor from the process that
obtained the guarantee.

GRIO Guarantee Types

93

Sharing file descriptors between processes in a process group is supported
for files used for GRIO, but the processes do not share the guarantee. If a
process inherits an open file descriptor from a parent process and wants to
have a rate guarantee on the file, the file must be closed and reopened before
grio_request(3X) is called. If the sproc(2) system call is used with the
PR_SFDS attribute to keep the open file table synchronized, the automatic
removal of rate guarantees on last close of a file is not supported. The rate
guarantee is removed when the reservation time expires or the process
explicitly calls grio_remove_request(3X).

GRIO Guarantee Types

In addition to specifying the amount and duration of the reservation, the
application must specify the type of guarantee desired. Each guarantee is a
hard guarantee or a soft guarantee. Each guarantee is also a Video on
Demand (VOD) guarantee or a non-VOD guarantee. The next few sections
describe these types of guarantees and give an example that illustrates the
differences between VOD and non-VOD guarantees.

Hard Guarantees

A hard guarantee means the system will do everything possible to make sure
the application receives the amount of data that has been reserved during
each second of the reservation duration.

Hard guarantees are possible only when the disks that are used for the
real-time subvolume meet the requirements listed in the section “Hardware
Configuration Requirements for GRIO” in this chapter.

Because of these disk configuration requirements, incorrect data can be
returned to the application without an error notification, but the I/O
requests return within the guaranteed time. If an application requests a hard
guarantee and some part of the system configuration makes the granting of
a hard guarantee impossible, the reservation is rejected. The application can
then issue a reservation request with a soft guarantee.

94

Chapter 5: Guaranteed-Rate I/O

Soft Guarantees

A soft guarantee means the system tries to achieve the desired rate, but there
may be circumstances beyond its control that cause it to fail. For example, if
a non-real-time disk is on the same SCSI bus as real-time disks and there is a
disk data error on the non-real-time disk, the driver retries the request to
recover the data. This could cause the rate guarantee on the real-time disk to
be missed.

VOD Guarantees

VOD (Video On Demand) is a special type of rate guarantee applied to either
hard or soft guarantees. It allows more streams to be supported per disk
drive, but requires that the application provide careful control of when and
where I/O requests are issued.

VOD guarantees are supported only when using a striped volume. The
application must time multiplex the I/O requests to different drives at
different times. A process stream can only access a single disk during any
one second. Therefore, the stripe unit must be set to the number of kilobytes
of data that the application needs to access per second per stream of data.
(The stripe unit is set using xlv_make(1M) when volume elements are
created.) If the process tries to access data on a different disk during a time
period, it is suspended until the appropriate time period.

With VOD reservations, if the application does not read the file sequentially,
but rather skips around in the file, it will have a performance impact. For
example, if disks are four-way striped, it could take as long as four seconds
(the size of the volume stripe) for the first I/O request after a seek to
complete.

GRIO Guarantee Types

95

Example: Comparing VOD and Non-VOD

Assume the system has eight disks each supporting twenty-three 64 KB
operations per second. For non-VOD GRIO, if an application needs 512 KB
of data each second, the eight disks would be arranged in a eight-way stripe.
The stripe unit would be 64 KB. Each application read/write operation
would be 512 KB and cause concurrent read/write operations on each disk
in the stripe. The application could access any part of the file at any time,
provided that the read/write operation always started at a stripe boundary.
This would provide 23 process streams with 512 KB of data each second.

With a VOD guarantee, the eight drives would be given an optimal I/O size
of 512 KB. Each drive can support seven such operations each second. The
higher rate (7 x 512 KB versus 23 x 64 KB) is achievable because the larger
transfer size does less seeking. Again the drives would be arranged in an
eight-way stripe but with a stripe unit of 512 KB. Each drive can support
seven 512K streams per second for a total of 8 * 7 = 56 streams. Each of the 56
streams is given a time period. There are eight different time periods with
seven different processes in each period. Therefore, 8 * 7 = 56 processes are
accessing data in a given time unit. At any given second, the processes in a
single time period are only allowed to access a single disk.

Using a VOD guarantee more than doubles the number of streams that can
be supported with the same number of disks. The trade off is that the time
tolerances are very stringent. Each stream is required to issue the read/write
operation within a second. If the process issues the call too late, the request
blocks until the next time period for that process on the disk. In this example,
this could mean a delay of up to eight seconds. In order to receive the rate
guarantee, the application must access the file sequentially. The time periods
move sequentially down the stripe allowing each process to access the next
512 KB of the file.

96

Chapter 5: Guaranteed-Rate I/O

GRIO System Components

Several components make up the GRIO mechanism: a system daemon,
support utilities, configuration files, and an application library.

The system daemon is ggd(1M). It is started from the script /etc/rc2.d/S94grio
when the system is started. It is always started; unlike some other daemons,
it is not turned on and off with chkconfig(1M). A lock file is created in the /tmp
directory to prevent two copies of the daemon from running simultaneously.
The daemon reads the GRIO configuration files /etc/grio_config and
/etc/grio_disks.

/etc/grio_config describes the various I/O hardware paths on the system,
starting with the system bus and ending with the individual peripherals
such as disk and tape drives. It also describes the bandwidth capabilities of
each component. The format of this file is described in the section
“/etc/grio_config File Format” in this chapter. If you want a soft rate
guarantee, you must edit this file. See step 9 in the section “Example: Setting
Up an XLV Logical Volume for GRIO” in this chapter for more information.

The utility cfg(1M) is used to automatically generate an /etc/grio_config
configuration file for a system’s configuration. A checksum is appended to
the end of the file by cfg. When the ggd daemon reads the configuration
information, it validates the checksum. You can edit /etc/grio_config to tune
the performance characteristics to fit a given application. See the next
section, “Configuring the ggd Daemon,” for more information.

/etc/grio_disks describes the performance characteristics for the types of disk
drives that may be found on the system. You can edit the file to add support
for new drive types. The format of this file is described in the section
“/etc/grio_disks File Format” in this chapter.

The library /usr/lib/libgrio.so contains a collection of routines that enable an
application to establish a GRIO session. The library routines are the only
way in which an application program can communicate with the ggd
daemon.

Hardware Configuration Requirements for GRIO

97

Hardware Configuration Requirements for GRIO

Guaranteed-rate I/O requires the hardware to be configured so that it
follows these guidelines:

• Put only real-time subvolume volume elements on a single disk (not log
or data subvolume volume elements). This configuration is
recommended for soft guarantees and required for hard guarantees.

• Only SCSI disks can be used for real-time subvolumes. IPI, ESDI, and
other non-SCSI disks cannot be used.

• For GRIO with hard guarantees, each disk used for hard guarantees
must be on a controller whose disks are used exclusively for real-time
subvolumes. These controllers cannot have any devices other than SCSI
disks on their buses. Any other devices could prevent the disk from
accessing the SCSI bus in a timely manner and cause the rate to be
missed.

• The drive firmware in each disk used in the real-time subvolume must
have the predictive failure analysis and thermal recalibration features
disabled. All disk drives have been shipped from Silicon Graphics this
way since March 1994.

• For hard guarantees, the disk drive retry and error correction
mechanisms must be disabled for all disks used in the real-time
subvolume. See the section “Disabling Disk Error Recovery” in this
chapter for more information.

• When possible, disks used in the real-time subvolume of an XLV
volume should have the RC (read continuous) bit enabled. This allows
the disks to perform faster, but at the penalty of occasionally returning
incorrect data (without giving an error). Enabling the RC bit is part of
the procedure described in the section “Disabling Disk Error Recovery.”

• Disks used in the data and log subvolumes of the XLV logical volume
must not have their retry mechanisms disabled. The data and log
subvolumes contain information critical to the filesystem and cannot
afford an occasional disk error.

98

Chapter 5: Guaranteed-Rate I/O

Disabling Disk Error Recovery

SCSI disks in XLV logical volumes used by GRIO applications that require
hard guarantees must have their parameters modified to prevent the disk
from performing automatic error recovery. When the drive does error
recovery, its performance degrades and there can be lengthy delays in
completing I/O requests. When the drive error recovery mechanisms are
disabled, occasionally invalid data is returned to the user without an error
indication. Because of this, the integrity of data stored on an XLV real-time
subvolume is not guaranteed.

The fx(1M) utility is used in expert mode to set the drive parameters for
real-time operation. Table 5-1 shows the disk drive parameters that must be
changed for GRIO.

Caution: Setting disk drive parameters must be performed correctly on
approved disk drive types only. Performing the procedure incorrectly, or
performing on an unapproved type of disk drive could severely damage the
disk drive. Setting disk drive parameters should be performed only by
experienced system administrators.

fx reports the disk drive type after the controller test on a line that begins
with Scsi drive type . The approved disk drives types whose parameters
can be set for real-time operation are:

• SGI 0664N1D 6s61

• SGI 0664N1D 4I4I

The procedure for setting disk drive parameters is shown in the example
below. It uses the parameters shown in Table 5-1 for a disk drive on
controller 131, unit 1.

Table 5-1 Disk Drive Parameters for GRIO

Parameter New Setting

Auto bad block reallocation (read) Disabled

Auto bad block reallocation (write) Disabled

Delay for error recovery (disabling this parameter
enables the read continuous (RC) bit)

Disabled

Disabling Disk Error Recovery

99

fx -x
fx version 5.3, Nov 18, 1994
fx: "device-name" = (dksc) <Enter>
fx: ctlr# = (0) 131
fx: drive# = (1) 1
fx: lun# = (0)
...opening dksc(131,1,0)

...controller test...OK
Scsi drive type == SGI 0664N1D 6s61
----- please choose one (? for help, .. to quit this menu)-----
[exi]t [d]ebug/ [l]abel/
[b]adblock/ [exe]rcise/ [r]epartition/
fx > label

----- please choose one (? for help, .. to quit this menu)-----
[sh]ow/ [sy]nc [se]t/ [c]reate/
fx/label> show

----- please choose one (? for help, .. to quit this menu)-----
[para]meters [part]itions [b]ootinfo [a]ll
[g]eometry [s]giinfo [d]irectory
fx/label/show> parameters

----- current drive parameters-----
Error correction enabled Enable data transfer on error
Don't report recovered errors Do delay for error recovery
Don't transfer bad blocks Error retry attempts 10
Do auto bad block reallocation (read)
Do auto bad block reallocation (write)
Drive readahead enabled Drive buffered writes disabled
Drive disable prefetch 65535 Drive minimum prefetch 0
Drive maximum prefetch 65535 Drive prefetch ceiling 65535
Number of cache segments 4
Read buffer ratio 0/256 Write buffer ratio 0/256
Command Tag Queueing disabled

----- please choose one (? for help, .. to quit this menu)-----
[para]meters [part]itions [b]ootinfo [a]ll
[g]eometry [s]giinfo [d]irectory
fx/label/show> ..

----- please choose one (? for help, .. to quit this menu)-----

100

Chapter 5: Guaranteed-Rate I/O

[sh]ow/ [sy]nc [se]t/ [c]reate/
fx/label> set

----- please choose one (? for help, .. to quit this menu)-----
[para]meters [part]itions [s]giinfo
[g]eometry [m]anufacturer_params [b]ootinfo
fx/label/set> parameters
fx/label/set/parameters: Error correction = (enabled) <Enter>
fx/label/set/parameters: Data transfer on error = (enabled) <Enter>
fx/label/set/parameters: Report recovered errors = (disabled) <Enter>
fx/label/set/parameters: Delay for error recovery = (enabled) disable
fx/label/set/parameters: Err retry count = (10) <Enter>
fx/label/set/parameters: Transfer of bad data blocks = (disabled) <Enter>
fx/label/set/parameters: Auto bad block reallocation (write) = (enabled) disable
fx/label/set/parameters: Auto bad block reallocation (read) = (enabled) disable
fx/label/set/parameters: Read ahead caching = (enabled) <Enter>
fx/label/set/parameters: Write buffering = (disabled) <Enter>
fx/label/set/parameters: Drive disable prefetch = (65535) <Enter>
fx/label/set/parameters: Drive minimum prefetch = (0) <Enter>
fx/label/set/parameters: Drive maximum prefetch = (65535) <Enter>
fx/label/set/parameters: Drive prefetch ceiling = (65535) <Enter>
fx/label/set/parameters: Number of cache segments = (4) <Enter>
fx/label/set/parameters: Enable CTQ = (disabled) <Enter>
fx/label/set/parameters: Read buffer ratio = (0/256) <Enter>
fx/label/set/parameters: Write buffer ratio = (0/256) <Enter>
 * * * * * W A R N I N G * * * * *
about to modify drive parameters on disk dksc(131,1,0)! ok? yes

----- please choose one (? for help, .. to quit this menu)-----
[para]meters [part]itions [b]ootinfo [a]ll
[g]eometry [s]giinfo [d]irectory
fx/label/set> ..

----- please choose one (? for help, .. to quit this menu)-----
[sh]ow/ [sy]nc [se]t/ [c]reate/
fx/label> ..

----- please choose one (? for help, .. to quit this menu)-----
[exi]t [d]ebug/ [l]abel/ [a]uto
[b]adblock/ [exe]rcise/ [r]epartition/ [f]ormat
fx> exit
label info has changed for disk dksc(131,1,0). write out changes? (yes) <Enter>

Configuring the ggd Daemon

101

Configuring the ggd Daemon

The files /etc/grio_disks, /etc/grio_config, and /etc/config/ggd.options can be
modified as described below to configure and tune the ggd daemon. After
any of these files have been modified, ggd must be restarted. Give these
commands to restart ggd:

/etc/init.d/grio stop
/etc/init.d/grio start

When ggd is restarted, current rate guarantees are lost.

Some ways to configure and tune ggd are:

• You can edit /etc/grio_config to tune the performance characteristics to fit
a given application. See the section “/etc/grio_config File Format” for
information about the format of this file. ggd must then be started with
the –d c option, so the file checksum is not used. This is done by
creating or editing the file /etc/config/ggd.options and adding –d c.

• Run ggd as a real-time process. If the system has more than one CPU
and you are willing to dedicate an entire CPU to performing GRIO
requests, add the –c cpunum to the file /etc/config/ggd.options. This causes
the CPU to be marked isolated, restricted to running selected processes,
and nonpreemptive. After ggd has been restarted, you can confirm that
the CPU has been marked by giving this command (cpunum is 3 in this
example):

mpadmin -s
processors: 0 1 2 3 4 5 6 7
unrestricted: 0 1 2 5 6 7
isolated: 3
restricted: 3
preemptive: 0 1 2 4 5 6 7
clock: 0
fast clock: 0

Processes using GRIO should mark their processes as real-time and
runable only on CPU cpunum. The sysmp(2) reference page explains
how to do this.

102

Chapter 5: Guaranteed-Rate I/O

To mark an additional CPU for real-time processes after ggd has been
restarted, give these commands:

mpadmin -r cpunum2
mpadmin -I cpunum2
mpadmin -C cpunum2

Example: Setting Up an XLV Logical Volume for GRIO

This section gives an example of configuring a system for GRIO as described
in previous sections: creating an XLV logical volume with a real-time
subvolume, making a filesystem on the volume and mount it, and
configuring and restarting the ggd daemon. It assumes that the disk
partitions have been chosen following the guidelines in the section
“Hardware Configuration Requirements for GRIO” and that the disk drive
parameters have already been modified as described in the section
“Disabling Disk Error Recovery.”

1. Determine the values of variables that will be used while constructing
the XLV logical volume:

vol_name The name of the volume with a real-time subvolume.

rate The rate at which applications using this volume will
access the data. rate is the number of bytes per second
per stream (the rate) divided by 1K. This information
may be available in published information about the
applications or from the developers of the applications.
Remember that the GRIO system allows each stream to
issue only one read/write request each second. The
stream must obtain all the data it needs in one second
from a single read call.

num_disks The number of disks that will be included in the
real-time subvolume of the volume.

Example: Setting Up an XLV Logical Volume for GRIO

103

stripe_unit When the real-time disks are striped (required for Video
on Demand and recommended otherwise), this is the
amount of data written to one disk before writing to the
next. It is expressed in 512-byte sectors.

For non-VOD guarantees:

stripe_unit = rate * 1K / (num_disks * 512)

For VOD guarantees:

stripe_unit = rate * 1K / 512

extent_size The filesystem extent size.

For non-VOD guarantees:

extent_size = rate * 1K

For VOD guarantees:

extent_size = rate * 1K * num_disks

opt_IO_size The optimal I/O size.

For non-VOD guarantees, it should be an even factor of
stripe_unit, but not less than 64.

For VOD guarantees:

opt_IO_size = rate

Table 5-2 gives examples for the values of these variables.

Table 5-2 Examples of Values of Variables Used in Constructing an XLV
Logical Volume Used for GRIO

Variable Type of Guarantee Comment Example
Value

vol_name any This name matches the last
component of the device name for
the volume,
/dev/dsk/xlv/vol_name

xlv_grio

rate any For this example, assume 512 KB
per second per stream

512

num_disks any For this example, assume 4 disks 4

stripe_unit hard or soft 512*1K/(4*512) 256

104

Chapter 5: Guaranteed-Rate I/O

2. Create an xlv_make(1M) script file that creates the XLV logical volume.
(See the section “Using xlv_make to Create Volume Objects” in
Chapter 4 for more information.) Example 5-1 shows an example script
file for a volume.

Example 5-1 Configuration File for a Volume Used for GRIO

Configuration file for logical volume vol_name. In this
example, data and log subvolumes are partitions 0 and 1 of
the disk at unit 1 of controller 1. The real-time
subvolume is partition 0 of the disks at units 1-4 of
controller 2.
#
vol vol_name
data
plex
ve dks1d1s0
log
plex
ve dks1d1s1
rt
plex
ve -stripe -stripe_unit stripe_unit dks2d1s0 dks2d2s0 dks2d3s0
dks2d4s0
show
end
exit

VOD hard or soft 512*1K/512 1024

extent_size hard or soft 512 * 1K 512k

VOD hard or soft 512 * 1K * 4 2048k

opt_IO_size hard or soft 128/1 = 128 or 128/2 = 64 are
possible

64

VOD hard or soft Same as rate 512

Table 5-2 (continued) Examples of Values of Variables Used in Constructing an
XLV Logical Volume Used for GRIO

Variable Type of Guarantee Comment Example
Value

Example: Setting Up an XLV Logical Volume for GRIO

105

3. Run xlv_make to create the volume:

xlv_make script_file

script_file is the xlv_make script file you created in step 2.

4. Create the filesystem by giving this command:

mkfs -r extsize= extent_size /dev/dsk/xlv/ vol_name

5. To mount the filesystem immediately, give these commands:

mkdir mountdir
mount /dev/dsk/xlv/ vol_name mountdir

mountdir is the full pathname of the directory that is the mount point
for the filesystem.

6. To configure the system so that the new filesystem is automatically
mounted when the system is booted, add this line to /etc/fstab:

/dev/dsk/xlv/ vol_name mountdir xfs
rw,raw= /dev/rdsk/xlv/ vol_name 0 0

7. If the file /etc/grio_config exists, and you see OPTSZ=65536 for each
device, skip to step 9.

8. Create the file /etc/grio_config with this command:

cfg -d opt_IO_size

9. If you want soft rate guarantees, edit /etc/grio_config and remove this
string:

RT=1

from the lines for disks where software retry is required (see the section
“/etc/grio_config File Format” in this chapter for more information).

10. Restart the ggd daemon:

/etc/init.d/grio stop
/etc/init.d/grio start

Now the user application can be started. Files created on the real-time
subvolume volume can be accessed using guaranteed-rate I/O.

106

Chapter 5: Guaranteed-Rate I/O

GRIO File Formats

The following subsections contain reference information about the contents
of the three GRIO configuration files, /etc/grio_config, /etc/grio_disks, and
/etc/config/ggd.options.

/etc/grio_config File Format

The /etc/grio_config file describes the configuration of the system I/O devices.
The information in this file is used by the ggd daemon to construct a tree that
describes the relationships between the components of the I/O system and
their bandwidths. In order to grant a rate guarantee on a disk device, the ggd
daemon checks that each component in the I/O path from the system bus to
the disk device has sufficient available bandwidth.

There are two basic types of records in /etc/grio_config: component records
and relationship records. Each record occupies a single line in the file.
Component records describe the I/O attributes for a single component in the
I/O subsystem. CPU and memory components are described in the file, as
well, but do not currently affect the granting or refusal of a rate guarantee.

The format of component records is:

componentname= parameter=value parameter=value ... (descriptive text)

componentname is a text string that identifies a single piece of hardware
present in the system. Some componentnames are:

SYSTEM The machine itself. There is always one SYSTEM
component.

CPUn A CPU board in slot n. It is attached to SYSTEM.

MEMn A memory board in slot n. It is attached to SYSTEM.

IOBn An I/O board with n as its internal location identifier. It is
attached to SYSTEM.

IOAnm An I/O adaptor. It is attached to IOBn at location m.

CTRn SCSI controller number n. It is attached to an I/O adaptor.

DSKnUm Disk device m attached to SCSI controller n.

GRIO File Formats

107

parameter can be one of the following:

OPTSZ The optimal I/O size of the component

NUM The number of OPTSZ I/O requests supported by the
component each second

SLOT The backplane slot number where the component is located,
if applicable (not used on all systems)

VER The CPU type of system (for example, IP22, IP19, and so on;
not used on all systems)

NUMCPUS The number of CPUs attached to the component (valid only
for CPU components; not used on all systems)

MHZ The MHz value of the CPU (valid only for CPU
components; not used on all systems)

CTLRNUM The SCSI controller number of the component (valid only
for SCSI devices)

UNIT The SCSI unit number of the component (valid only for
SCSI devices)

RT Set to 1 if the disk is in a real-time subvolume (remove this
parameter for soft guarantees)

The value is the integer or text string value assigned to the parameter. The
string enclosed in parentheses at the end of the line describes the
component.

Some examples of component records taken from /etc/grio_config on an
Indy™ system are shown below. Each record is a single line, even if it is
shown on multiple lines here.

• SYSTEM= OPTSZ=65536 NUM=5000 (IP22)

The componentname SYSTEM refers to the system bus. It supports five
thousand 64 KB operations per second.

• CPU= OPTSZ=65536 NUM=5000 SLOT= 0 VER=IP22 NUMCPUS=1

MHZ=100

This describes a 100 MHz CPU board in slot 0. It supports five thousand
64 KB operations per second.

108

Chapter 5: Guaranteed-Rate I/O

• CTR0= OPTSZ=65536 NUM=100 CTLRNUM=0 (WD33C93B,D)

This describes SCSI controller 0. It supports one hundred 64 KB
operations per second.

• DSK0U0= OPTSZ=65536 NUM=23 CTLRNUM=0 UNIT=1 (SGI SEAGATE

ST31200N9278)

This describes a SCSI disk attached to SCSI controller 0 at SCSI unit 1. It
supports twenty three 64 KB operations per second.

Relationship records describe the relationships between the components in
the I/O system. The format of relationship records is:

component: attached_component1 attached_component2 ...

These records indicate that if a guarantee is requested on
attached_component1, the ggd daemon must determine if component also has
the necessary bandwidth available. This is performed recursively until the
SYSTEM component is reached.

Some examples of relationship records taken from /etc/grio_config on an Indy
system are:

• SYSTEM: CPU

This describes the CPU board as being attached to the system bus.

• CTR0: DSK0U1

This describes SCSI disk 1 being attached to SCSI controller 0.

/etc/grio_disks File Format

The file /etc/grio_disks contains information that describes I/O bandwidth
parameters of the various types of disk drives that can be used on the
system. The ggd daemon and cfg contain built-in knowledge for the disks
supported by Silicon Graphics for optimal I/O sizes of 64K, 128K, 256K, and
512K. To add additional disks or to specify a different optimal I/O size, you
must add additional information to the /etc/grio_disks file.

GRIO File Formats

109

The records in /etc/grio_disks are of the form:

ADD " disk id string" optimal_iosize number_optio_per_second

The first field is always the keyword ADD. The next field is a 28-character
string that is the drive manufacturer’s disk ID string. The next field is an
integer denoting the optimal I/O size of the device in bytes. The last field is
an integer denoting the number of optimal I/O size requests that the disk
can satisfy in one second.

Some examples of these records are:

• ADD “SGI SEAGATE ST31200N9278” 64K 23

• ADD “SGI 0064N1D 4I4I” 64K 23

Both of these disk drives support twenty-three 64 KB requests per second.

/etc/config/ggd.options File Format

/etc/config/ggd.options contains command-line options for the ggd daemon.
Options you might include in this file are:

–d c Do not use the checksum at the end of /etc/grio_config. This
is option is required when /etc/grio_config has been modified
to tune performance for an application.

–c cpunum Dedicate CPU cpunum to performing GRIO requests
exclusively.

If you change this file, you must restart ggd to have your changes take effect.
See the section “Configuring the ggd Daemon” in this chapter for more
information.

111

Appendix A

A. Error Messages

This appendix explains some of the error messages that can occur while
performing the procedures in this guide.

Error Messages While Converting From EFS to XFS

This section contains error messages that can occur during the conversion of
a filesystem from EFS to XFS or when the system is rebooted after a
conversion.

mountdir: Device busy

If umount reports that the root filesystem or any other
filesystem is busy when you try to unmount it while in the
miniroot, return to the Inst> prompt and follow this
procedure to force inst to release files in the busy filesystem
so that it can be unmounted:

Inst> quit
Building dynamic ELF inventory file for rqs(1) processing .. 100% Done.
Invoking rqs(1) on necessary dynamic ELF objects .. 100% Done.
Automatically reconfiguring the operating system.
Ready to restart the system. Restart? { (y)es, (n)o, (sh)ell, (h)elp }: no
Reinvoking software installation.
...
Inst Main Menu
...
Inst> admin

Administrative Commands Menu
...
Admin> umount -b /,/proc
Re-initializing installation history database
Reading installation history .. 100% Done.
Checking dependencies .. 100% Done.

112

Appendix A: Error Messages

mount: device on mountdir: Invalid argument

This message for a wide variety of problems. For example,
this error message occurs if you try to mount a device that
doesn’t contain a valid filesystem.

WARNING: initial mount of root device 0x2000010 failed with
errno 22
PANIC: vfs_mountroot: no root found

This panic at system startup is caused by a bad kernel. Some
possible causes are:

• eoe2.sw.xfs was not installed, but the root filesystem is
an XFS filesystem.

• eoe2.sw.efs was not installed, but the root filesystem is
an EFS filesystem.

• Conversion of a system disk with separate root and usr
partitions from EFS to XFS was not performed
correctly; /var wasn’t linked to /usr/var, so kernel object
files weren’t found in /var/sysgen when the kernel was
autoconfigured.

XFS dev 0x nnnnnnnn read error in file system meta-data.

XFS dev 0x nnnnnnnn write error in file system meta-data.

These panics are caused by disk errors in filesystem
metadata. 0xnnnnnnnn is the hexadecimal representation of
the device that returned the error.

After getting this type of panic, you should:

• Reboot the system and check the filesystems with
xfs_check(1M) (see the section “Checking Filesystem
Consistency” in Chapter 2).

• Replace the disk that gives the errors if panics
continue.

General Error Messages

113

General Error Messages

NOTICE: Start mounting filesystem: /
NOTICE: Ending xFS recovery for filesystem: / (dev: 128/16)

NOTICE: Start mounting filesystem: /vol1
NOTICE: Ending clean xFS mount for filesystem: /vol1

These messages, which occur during system startup, are
normal and do not indicate that any error or problem has
occurred.

/mountdir: Filesystem too large for device

This message is the result of mounting a disk partition that
doesn’t have an XFS filesystem on it, but it overlaps or has
the same starting point as a disk partition that does have an
XFS filesystem on it. For example, you see this error
message if you make a filesystem on /dev/dsk/dks0d2s7, and
then mount /dev/dsk/dks0d2s0.

mount: device on mountdir: Invalid argument

This message for a wide variety of problems. For example,
this error message occurs if you try to mount a device that
doesn’t contain a valid filesystem.

Error Messages from xlv_make

The xlv_make(1M) reference page provides a complete listing of error
messages from xlv_make and their causes. The xlv_make(1M) reference page
is included in Appendix B in the printed version of this guide.

Error Messages from xfs_check

The xfs_check(1M) reference page provides a listing of error messages from
xfs_check and describes them. The xfs_check(1M) reference page is included
in Appendix B in the printed version of this guide.

115

Appendix B

B. Reference Pages

This appendix lists reference pages (man pages) that provide information
about topics that relate to XFS and XLV. The printed form of this guide
includes copies of the reference pages for key utilities and file formats.

All reference pages can be viewed online using the man(1) command. On
systems with graphics, they can also be viewed using the xman(1) command
or the “Man Pages” item on the Help toolchest.

XFS, XLV, and GRIO Reference Pages

Table B-1 lists reference pages that contain information related to XFS, XLV,
and GRIO. For each category of reference pages, the table lists the subsystem
that includes these reference pages.

Table B-1 Related Reference Pages

Category Reference Pages Subsystem

General information grio(5), xfs(4), xlv(7M) eoe2.man.xfs,
eoe2.man.xlv

XFS utilities mkfs_xfs(1M), xfs_bmap(1M),
xfs_check(1M), xfs_estimate(1M),
xfs_growfs(1M), xfs_logprint(1M),
xfsdump(1M), xfsrestore(1M)

eoe2.man.xfs

XLV utilities lv_to_xlv(1M), xlv_assemble(1M),
xlv_make(1M),
xlv_set_primary(1M),
xlv_shutdown(1M)

eoe2.man.xlv

XLV daemons xlv_labd(1M), xlv_plexd(1M),
xlvd(1M)

eoe2.man.xlv

116

Appendix B: Reference Pages

Reference Pages in This Guide

The printed form of this guide includes the reference pages listed below. The
IRIS InSight form of this guide doesn’t include these reference pages, but
they can be viewed online using man(1), xman(1), or Man Pages on the Help
toolchest as described above.

GRIO utility and
daemon

cfg(1M), ggd(1M) eoe2.man.xfs

GRIO library routines grio_get_rtgkey(3X),
grio_remove_request(3X),
grio_request(3X),
grio_use_rtgkey(3X)

dev.man.irix_lib

GRIO file formats grio_config(4), grio_disks(4) eoe2.man.xfs

Standard utilities and
files that have been
modified for use with
XFS and XLV

Add_disk(1), bru(1), cpio(1), df(1),
find(1), fx(1M), mkfs(1M),
mount(1M), od(1), tar(1), fstab(4)

eoe1.man.unix

System calls that are
new or have been
extended for use with
XFS

fcntl(2), fstat64(2), ftruncate64(2),
getrlimit64(2), lseek64(2), lstat64(2),
mmap64(2), mount(2), setrlimit64(2),
stat64(2), syssgi(2), truncate64(2)

dev.man.irix_lib

New library routines aio_cancel64(3), aio_error64(3),
aio_read64(3), aio_return64(3),
aio_sgi_init(3), aio_sgi_init64(3),
aio_suspend64(3), aio_write64(3),
lio_listio64(3), fd_to_handle(3X),
fgetpos64(3S), free_handle(3X),
fseek64(3S), fsetpos64(3S), ftell64(3S),
ftw64(3C), handle_to_fshandle(3X),
nftw64(3C), open_by_handle(3X),
path_to_fshandle(3X),
path_to_handle(3X),
readlink_by_handle(3X)

dev.man.irix_lib

New data structure stat64(5) dev.man.irix_lib

Table B-1 (continued) Related Reference Pages

Category Reference Pages Subsystem

Reference Pages in This Guide

117

• cfg(1M) on page 116

• dump(1M) on page 119

• ggd(1M) on page 125

• lv_to_xlv(1M) on page 126

• mkfs(1M) on page 127

• mkfs_xfs(1M) on page 128

• restore(1M) on page 132

• xfs_check(1M) on page 138

• xfs_estimate(1M) on page 141

• xfs_growfs(1M) on page 143

• xfsdump(1M) on page 144

• xfsrestore(1M) on page 149

• xlv_admin(1M) on page 154

• xlv_assemble(1M) on page 161

• xlv_labd(1M), xlv_plexd(1M), xlvd(1M) on page 163

• xlv_make(1M) on page 165

• xlv_set_primary(1M) on page 174

• xlv_shutdown(1M) on page 175

• grio_config(4) on page 176

• grio_disks(4) on page 177

• xfs(4) on page 178

• grio(5) on page 179

• xlv(7M) on page 182

cfg(1M)hh

NAME
cfg − generates guaranteed-rate I/O device configuration file

SYNOPSIS
cfg [−−d optiosize] [−−f file]

DESCRIPTION
cfg scans the hardware available on the system and creates a file that describes the rates that can be
guaranteed on each I/O device. The output file is file if the −−f option is specified, otherwise /etc/grio_config
is used. 64 kilobytes is used as the optimal i/o size unless the −−d option is used.

The cfg utility appends a checksum to the end of the file so that ggd can determine if the file has been
edited.

NOTES
If the −−d option is used to change the optimal I/O size, the /etc/grio_disks file must be edited to indicate
the number of requests supported per second for the given optimal I/O size.

FILES
/etc/grio_config
/etc/grio_disks

SEE ALSO
ggd(1M), grio_config(4), grio_disks(4)

118

DUMP(1M)hh

NAME
dump, rdump − incremental file system dump

SYNOPSIS
/sbin/dump [key [argument ...]] filesystem
/sbin/rdump [key [argument ...]] filesystem

DESCRIPTION
dump backs up all files in filesystem, or files changed after a certain date to magnetic tape or files. The key
specifies the date and other options about the dump. Key consists of characters from the set
0123456789fusCcdbWwn. Any arguments supplied for specific options are given as subsequent words on
the command line, in the same order as that of the options listed.

If no key is given, the key is assumed to be 9u and the filesystem specified is dumped to the default tape
device /dev/tape.

0−−9 This number is the ‘dump level’. All files modified since the last date stored in the file /etc/dumpdates
for the same filesystem at lesser levels will be dumped. If no date is determined by the level, the
beginning of time is assumed; thus the option 0 causes the entire filesystem to be dumped. For
instance, if you did a ’’level 2’’ dump on Monday, followed by a ’’level 4’’ dump on Tuesday, a
subsequent ’’level 3’’ dump on Wednesday would contain all files modified or added to the filesys-
tem since the ’’level 2’’ (Monday) backup. A ’’level 0’’ dump copies the entire filesystem to the
dump volume.

f Place the dump on the next argument file instead of the default tape device /dev/tape. If the name of
the file is ‘‘−’’, dump writes to standard output. If the name of the file is of the format machine:device
the filesystem is dumped across the network to the remote machine. Since dump is normally run by
root, the name of the local machine must appear in the .rhosts file of the remote machine. If the file
name argument is of the form user@machine:device, dump will attempt to execute as the specified user
on the remote machine. The specified user must have a .rhosts file on the remote machine that
allows root from the local machine. dump creates a remote server, /etc/rmt, on the client machine
to access the tape device.

u If the dump completes successfully, write the date of the beginning of the dump on file
/etc/dumpdates. This file records a separate date for each filesystem and each dump level. The format
of /etc/dumpdates is readable by people, consisting of one free format record per line: filesystem
name, increment level and ctime(3C) format dump date. /etc/dumpdates may be edited to change any
of the fields, if necessary.

s The size of the dump tape is specified in feet. The number of feet is taken from the next argument.
When the specified size is reached, dump will prompt the operator and wait for the reel/volume to
be changed. The default tape size for the standard 9 track half inch reels is 2400 feet. The default for
cartridge tapes is an effective tape length of 5400 feet, and this assumes a 9-track QIC-24 tape whose
physical tape length is 600 feet. See note on cartridge tapes parameters below.

119

DUMP(1M)hh

d The density of the tape, expressed in BPI (bytes per inch), is taken from the next argument. This is
used in calculating the amount of tape used per reel. The default is 1600 BPI, except for the cartridge
tape which has a default density of 1000 BPI. Unless a higher density is specified explicitly, dump
uses its default density - even if the tape drive is capable of higher-density operation (for instance
6250 BPI). If the density specified does not correspond to the density of the tape device being used,
dump will not be able to handle end-of-tape properly.

b The blocking factor (number of 1 Kbyte blocks written out together) is taken from the next argument.
The default is 10. The default blocking factor for tapes of density 6250 BPI and greater is 32. If
values larger than 32 are used, restore will not correctly determine the block size unless the b option
is also used. To maximize tape utilization, use a blocking factor which is a multiple of 8. For most
types of supported tape drives, the greatest capacity and tape throughput is obtained using a block-
ing factor of 128 or even larger; note that restore(1m) will only automatically determine the blocking
factor if it is 32 or less.

C This specifies the total tape capacity in 1K blocks, overriding the c, s, and d arguments if they are
also given. No adjustment is made for possible inter-record gaps, or lost capacity due to stop/start
repositioning, so it isn’t necessary to guess how the dump algorithm for these factors will affect the
parameters. Since they aren’t taken into account, and there may also be lost capacity due to retries
on media errors (by the drive), one should be conservative when specifying capacity.

The argument is parsed with strtoul(3), so it may be in any base (e.g., a 0x prefix specifies a hex
value, a 0 prefix specifies octal, no prefix is decimal). The argument may have a k , K, m, or M suffix.
The first two multiply the value by 1024, the 3rd and 4th multiple by 1048576, so a tape with a 2.2
Gbyte capacity might be specified as C 2m allowing 10% loss to retries, etc.

c Indicates that the tape is a cartridge tape instead of the standard default half-inch reel. This should
always be specified when using cartridge tapes. The values for blocking factor, size and density are
taken to be 10 (1 KByte blocks), 5400 feet and 1000 BPI respectively unless overridden with the ’b’,
’s’ or ’d’ option. Cartridge tapes with multiple tracks have a greater effective length which can be
specified with the ’s’ option.

W dump tells the operator what file systems need to be dumped. This information is gleaned from the
files /etc/dumpdates and /etc/fstab. The W option causes dump to print out, for each file system in
/etc/dumpdates the most recent dump date and level, and highlights those file systems that should be
dumped. The mnt_freq field in the /etc/fstab entry of the file system must be non-zero for dump to
determine whether the file system should be dumped or not. If the W option is set, no other option
must be given, and dump exits immediately.

w Is like W, but prints only those filesystems which need to be dumped.

n Whenever dump requires operator attention, notify by means similar to a wall(1) all of the operators
in the group ‘‘operator’’.

120

DUMP(1M)hh

dump reads the character device associated with the filesystem and dumps the contents onto the specified
tape device. It searches /etc/fstab to find the associated character device.

NOTES
rdump is a link to dump.

Operator Intervention
dump requires operator intervention on these conditions: end of tape, end of dump, tape write error,
tape open error or disk read error (if there are more than a threshold of 32). In addition to alerting all
operators implied by the n key, dump interacts with the operator on dump’s control terminal at times
when dump can no longer proceed, or if something is grossly wrong. All questions dump poses must be
answered by typing ‘‘yes’’ or ‘‘no’’, appropriately.

Since making a dump involves a lot of time and effort for full dumps, dump checkpoints itself at the start
of each tape volume. If writing that volume fails for some reason, dump will, with operator permission,
restart itself from the checkpoint after the old tape has been rewound and removed, and a new tape has
been mounted.

dump reports periodically including usually the percentage of the dump completed, low estimates of the
number of blocks to write in 1 Kbyte (or more strictly, TP_BSIZE units from <protocols/dumprestore.h), the
number of tapes it will take, the time to completion, and the time to the tape change. The estimated time
is given as hours:minutes and is based on the time taken to dump the blocks already on tape. It is normal
for this estimate to show variance and the estimate improves over time. The output is verbose, so that
others know that the terminal controlling dump is busy, and will be for some time.

Suggested Dump Schedule
It is vital to perform full, ‘‘level 0’’, dumps at regular intervals. When performing a full dump, bring the
machine down to single-user mode using shutdown -is, Otherwise the dump may not be internally con-
sistent, and may not restore correctly. While preparing for a full dump, it is a good idea to clean the tape
drive and heads (most types of drives require head cleaning for approximately every 30 hours of tape
motion).

Incremental dumps allow for convenient backup and recovery on a more frequent basis of active files,
with a minimum of media and time. However there are some tradeoffs. First, the interval between back-
ups should be kept to a minimum (once a day at least). To guard against data loss as a result of a media
failure (a rare, but possible occurrence), it is a good idea to capture active files on (at least) two sets of
dump volumes. Another consideration is the desire to keep unnecessary duplication of files to a
minimum to save both operator time and media storage. A third consideration is the ease with which a
particular backed-up version of a file can be located and restored. The following four-week schedule
offers a reasonable tradeoff between these goals.

Sun Mon Tue Wed Thu Fri
Week 1: Full 5 5 5 5 3
Week 2: 5 5 5 5 3
Week 3: 5 5 5 5 3
Week 4: 5 5 5 5 3

121

DUMP(1M)hh

Although the Tuesday — Friday incrementals contain ‘‘extra copies’’ of files from Monday, this scheme
assures that any file modified during the week can be recovered from the previous day’s incremental
dump.

Dump Parameters
The following table gives a list of available tape formats, size and densities. It is important that the correct
parameters be given to dump, if they are different from the defaults.

Parameters for cartridge tapes
Cartridge Interface QIC-24 QIC-120 QIC-150
Number of Tracks 9 15 18
Physical Tape Length (feet) 600 600 600
Effective Tape Length (feet) 5400 9000 10800

Cartridge tapes with multiple tracks have an greater effective length. The tape lengths give above assume
a physical tape length of 600 feet. In general the effective tape length can be calculated by multiplying the
physical tape length by the number of tracks. Since some tape is usually lost due to tape errors, and
because dump does not handle end-of-tape gracefully, it pays to be conservative in estimating the effec-
tive tape length.

Parameters for half-inch tapes
Thickness

Reel Sizes (inches) 6.0 7.0 8.5 10.5
Tape Length (feet) 200 600 1200 2400 1.9 mm

3600 1.3 mm

The density for these tapes can be any one of the following: 800, 1600, 3200 or 6250 BPI.

Parameters for 8mm tapes
Tape Type length capacity

(meters) (Mbytes)
P5 (European) 112 2200
P6 (American) 112 2000

There was a bug in dump which causes it to miscalculate the number of tapes required when it is given a
large value for the density and a small value for tape length. To work around this, a density of 54000 and
length of 6000 feet was recommended while using 8mm tapes, rather than the actual density and length,
now the calculations are done with floating point numbers, so overflow is no longer an issue; with large
capacity drives such as the 8mm and 4mm, it is normally easier to specify capacity as C 2000k, rather than
trying to calculate a workable density and length.

If you do not wish to use the C option, then when using drives with no "inter-record gaps" (i.e., almost
every type except 9-track), use the c option, and the formula:

capacity in bytes = 7 * densityvalue * lengthvalue

122

DUMP(1M)hh

and round down a bit to be conservative (allowing for block rewrites, etc.). The density should be kept
under 100000 to avoid overflows in the capacity calculations. Thus, for a DAT drive with a 90 meter tape
(2 * 10ˆ9 capacity), one might use:

2000000000 = 7 * 47619 * 6000

or rounding down:

dump 0csd 6000 47000

EXAMPLES
/dev/usr /usr efs rw,raw=/dev/rdsk/dks0d1s6 0 0

Here are a few examples on how to dump the /usr filesystem with the above /etc/fstab entry.

dump 0fuc guest@kestrel:/dev/tape /usr

will do a level ’0’ dump of /usr on to a remote cartridge tape device /dev/tape on host kestrel using the
guest account. dump also updates the file /etc/dumpdates.

dump 2uc /usr

does a level ’2’ dump of /usr to the local cartridge tape device /dev/tape and also updates the file
/etc/dumpdates.

dump 0sdb 10800 1000 128 /usr
dump 0Cb 125k 128 /usr

does a level ’0’ dump of /usr to the local tape device /dev/tape using a blocking factor of 128. The tape is
specified to have a length of 10800 feet with a density of 1000 BPI (appropriate for a QIC150 drive) in the
first case, and a capacity of 125 Mbytes in the second, which allows for retries, lost space to repositioning,
etc., also appropriate for a QIC 150 quarter inch tape drive. The ordering of the arguments is dependent
on the ordering of the key.

dump 1sfc 10800 /dev/mt/tps0d7 /usr
dump 1sfc 10800 /dev/mt/tps0d7 /dev/rdsk/dks0d1s6

both do a level ’1’ dump of /usr to the local cartridge tape device /dev/mt/tps0d7 using a tape length of
10800 feet.

dump /usr

does a level ’9’ dump of /usr to the local tape device /dev/tape and updates the file /etc/dumpdates.

123

DUMP(1M)hh

dump 9ucdsf 54000 6000 /dev/mt/tps0d6nrnsv /os
dump 9uCf 2048 /dev/mt/tps0d6nrnsv /os
dump 9uCf 2m /dev/mt/tps0d6nrnsv /os

All do a level ’9’ dump of /os to the local tape device /dev/mt/tps0d6nrnsv using a tape density of 54000
BPI and tape length of 6000 feet where the tape device being used is an 8mm tape drive (there is a slight
difference in capacity between the first form and the others).

dump W

prints out, for each file system in /etc/dumpdates the most recent dump date and level, and highlights those
file systems that should be dumped.

FILES
/dev/tape default tape unit to dump to
/etc/dumpdates new format dump date record
/etc/fstab dump table: file systems and frequency
/etc/group to find group operator

SEE ALSO
restore(1M), dump(5), fstab(5), group(4), rmt(1M), rhosts(1M), mtio(7), wall(1), shutdown(1M), ctime(3C)

DIAGNOSTICS
While running, dump emits many verbose messages.

Exit Codes

0 Normal exit.
1 Startup errors encountered.
3 Abnormal termination.

BUGS
Fewer than 32 read errors on the filesystem are ignored. Each reel requires a new process, so parent
processes for reels already written just hang around until the entire tape is written.

dump with the W or w options does not report filesystems that have never been recorded in
/etc/dumpdates, even if listed in /etc/fstab.

It would be nice if dump knew about the dump sequence, kept track of the tapes scribbled on, told the
operator which tape to mount when, and provided more assistance for the operator running restore .

It is recommended that incremental dumps also be performed with the system running in single-user
mode.

dump needs accurate information regarding the length and density of the tapes used. It can dump the
filesystem on multiple volumes, but since there is no way of specifying different sizes for multiple tapes,
all tapes used should be at least as long as the specified/default length. If dump reaches the end of the
tape volume unexpectedly (as a result of a longer than actual length specification), it will abort the entire
dump.

124

ggd(1M)hh

NAME
ggd − rate-guarantee-granting daemon

SYNOPSIS
ggd [−−d [cd]] [−−c cpunum]

DESCRIPTION
ggd manages the I/O-rate guarantees that have been granted to processes on the system. The daemon is
started from a script in the /etc/rc2.d directory. It reads the /etc/grio_config and /etc/grio_disks files to obtain
information about the available hardware devices. Processes can make requests for I/O-rate guarantees
by using the grio_request(3X) library call. After determining if the I/O rate can be guaranteed, the dae-
mon returns a confirmation or rejection to the calling process.

The /etc/grio_config and /etc/grio_disks files are only read when the daemon is started. If these files are
edited, the daemon must be stopped and restarted in order to use the new information.

The −−d option with the d modifier causes verbose debugging information to be displayed. The −−d option
with the c modifier causes the checksum processing of the /etc/grio_config file to be disabled. This allows
the system administrator to customize a system by editing the configuration file. The −−c option causes the
daemon to mark the given cpunum cpu as a real-time cpu. The cpu will be isolated from the rest of the
processors on the system and the ggd daemon will be allowed to only run on this cpu. See the sysmp(2)
reference page for more information on real-time processing.

FILES
/etc/grio_config
/etc/grio_disks

SEE ALSO
cfg(1M), sysmp(2), grio_get_rtgkey(3X), grio_remove_request(3X), grio_request(3X), grio_use_rtgkey(3X),
grio_config(4), grio_disks(4)

NOTES
If the ggd daemon is killed and restarted, all previous rate guarantees will become invalid. It creates a
lock file, /tmp/grio.lock, to prevent more than one copy of the daemon from running concurrently. If the
daemon is killed, this file must be removed before it can be successfully restarted.

125

lv_to_xlv(1M)hh

NAME
lv_to_xlv − generate a script for converting from lv to XLV

SYNOPSIS
lv_to_xlv [−−f lvtab_file] [−−o output_file]

DESCRIPTION
lv_to_xlv parses the file describing the logical volumes used by the local machine and generates the
required xlv_make(1M) commands to create an equivalent XLV volume. Normally, lv_to_xlv uses the logi-
cal volume file /etc/lvtab , but when the −−f option is specified, the given argument lvtab_file is used. If the
−−o option is specified, the xlv_make(1M) commands are sent to the file output_file instead of stdout.

FILES
/etc/lvtab

SEE ALSO
xlv_make(1M), lvtab(4), xlv(7M)

NOTE
You must be root to run lv_to_xlv .

126

mkfs(1M)hh

NAME
mkfs − construct a filesystem

SYNOPSIS
mkfs [−−t efs] efs_mkfs_options
mkfs [−−t xfs] xfs_mkfs_options

DESCRIPTION
mkfs constructs a filesystem by writing on the special file given as one of the command line arguments.
The filesystem constructed is either an EFS filesystem or an XFS filesystem depending on the arguments
given. mkfs constructs EFS filesystems by executing mkfs_efs; XFS filesystems are constructed by execut-
ing mkfs_xfs. The filesystem type chosen can be forced with the −−t option (also spelled −−F). If one of those
options is not given, mkfs determines which filesystem type to construct by examining its arguments.

SEE ALSO
mkfs_efs(1M), mkfs_xfs(1M)

127

mkfs_xfs(1M)hh

NAME
mkfs_xfs − construct an XFS filesystem

SYNOPSIS
mkfs_xfs [−−b subopt=value] [−−d subopt[=value]] [−−i subopt=value]

[−−l subopt[=value]] [−−p protofile] [−−q] [−−r subopt[=value]]
[xlv-device]

DESCRIPTION
mkfs_xfs constructs an XFS filesystem by writing on a special file using the values found in the arguments
of the command line. It is invoked automatically by mkfs(1M) when mkfs is given the −−t xfs option or
options that are specific to XFS.

XFS filesystems are composed of a data section, a log section, and optionally a real-time section. This
separation can be accomplished using the XLV volume manager to create a multi-subvolume volume, or
by embedding an internal log section in the data section. In the former case, the xlv-device name is sup-
plied as the final argument. In the latter case a disk partition, lv(7M) logical volume, or XLV logical
volume without a log subvolume may contain the XFS filesystem, which must be named by the −−d
name=special option.

Each of the subopt=value elements in the argument list above can be given as multiple comma-separated
subopt=value suboptions if multiple suboptions apply to the same option. Equivalently, each main option
may be given multiple times with different suboptions. For example, −−l internal,size=1000b and −−l inter-
nal −−l size=1000b are equivalent.

In the descriptions below, sizes are given in bytes, blocks, kilobytes, or megabytes. Sizes are treated as
hexadecimal if prefixed by 0x or 0X, octal if prefixed by 0, or decimal otherwise. If suffixed with b then
the size is converted by multiplying it by the filesystem’s block size. If suffixed with k then the size is
converted by multiplying it by 1024. If suffixed with m then the size is converted by multiplying it by
1048576 (1024 * 1024).

−−b Block size options.

This option specifies the fundamental block size of the filesystem. The valid suboptions are:
log=value and size=value; only one can be supplied. The block size is specified either as a base
two logarithm value with log=, or in bytes with size=. The default value is 4096 bytes (4 KB).
The minimum value for block size is 512; the maximum is 65536 (64 KB).

−−d Data section options.

These options specify the location, size, and other parameters of the data section of the filesystem.
The valid suboptions are: agcount=value, file[=value], name=value, and size=value.

The agcount suboption is used to specify the number of allocation groups. The data section of the
filesystem is divided into allocation groups to improve the performance of XFS. More allocation
groups imply that more parallelism can be achieved when allocating blocks and inodes. The
minimum allocation group size is 16 MB; the maximum size is just under 4 GB. The data section
of the filesystem is divided into agcount allocation groups (default value 8, unless the filesystem is
smaller than 128 MB or larger than 32 GB).

128

mkfs_xfs(1M)hh

The name suboption is used to specify the name of the special file containing the filesystem. In
this case, the log section must be specified as internal (with a size, see the −−l option below) and
there can be no real-time section. Either the block or character special device can be supplied. An
XLV logical volume with a log subvolume cannot be supplied here.

The file suboption is used to specify that the file given by the name suboption is a regular file.
The suboption value is either 0 or 1, with 1 signifying that the file is regular. This suboption is
used only to make a filesystem image (for instance, a miniroot image).

The size suboption is used to specify the size of the data section. This suboption is required if −−d
file=1 is given. Otherwise, it is only needed if the filesystem should occupy less space than the
size of the special file.

−−i Inode options.

This option specifies the inode size of the filesystem. The XFS inode contains a fixed-size part and
a variable-size part. The variable-size part, whose size is affected by this option, can contain:
directory data, for small directories; symbolic link data, for small symbolic links; the extent list for
the file, for files with a small number of extents; and the root of a tree describing the location of
extents for the file, for files with a large number of extents.

The valid suboptions are: log=value, perblock=value, and size=value; only one can be supplied.
The inode size is specified either as a base two logarithm value with log=, in bytes with size=, or
as the number fitting in a filesystem block with perblock=. The default value is 256 bytes. The
minimum value for inode size is 128, and the maximum value is 2048 (2 KB) subject to the restric-
tion that the inode size cannot exceed one half of the filesystem block size.

−−l Log section options.

These options specify the location, size, and other parameters of the log section of the filesystem.
The valid suboptions are: internal[=value] and size=value.

The internal suboption is used to specify that the log section is a piece of the data section instead
of being a separate part of an XLV logical volume. The suboption value is either 0 or 1, with 1
signifying that the log is internal.

The size suboption is used to specify the size of the log section. This suboption is required if −−l
internal[=1] is given. Otherwise, it is only needed if the log section of the filesystem should
occupy less space than the size of the special file.

−−p protofile
If the optional −−p protofile argument is given, mkfs_xfs uses protofile as a prototype file and takes its
directions from that file. The blocks and inodes specifiers in the protofile are provided for back-
wards compatibility, but are otherwise unused. The prototype file contains tokens separated by
spaces or newlines. A sample prototype specification follows (line numbers have been added to
aid in the explanation):

1 /stand/diskboot
2 4872 110

129

mkfs_xfs(1M)hh

3 d--777 3 1
4 usr d--777 3 1
5 sh ---755 3 1 /bin/sh
6 ken d--755 6 1
7 $
8 b0 b--644 3 1 0 0
9 c0 c--644 3 1 0 0
10 fifo p--644 3 1
11 slink l--644 3 1 /a/symbolic/link
12 : This is a comment line
13 $
14 $

Line 1 is a dummy string. (It was formerly the bootfilename.) It is present for backward compati-
bility; boot blocks are not used on SGI machines.

Note that some string of characters must be present as the first line of the proto file to cause it to
be parsed correctly; the value of this string is immaterial since it is ignored.

Line 2 contains two numeric values (formerly the numbers of blocks and inodes). These are also
merely for backward compatibility: two numeric values must appear at this point for the proto
file to be correctly parsed, but their values are immaterial since they are ignored.

Lines 3-11 tell mkfs_xfs about files and directories to be included in this filesystem. Line 3
specifies the root directory. Lines 4-6 and 8-10 specifies other directories and files. Note the spe-
cial symbolic link syntax on line 11.

The $ on line 7 tells mkfs_xfs to end the branch of the filesystem it is on, and continue from the
next higher directory. It must be the last character on a line. The colon on line 12 introduces a
comment; all characters up until the following newline are ignored. Note that this means you
may not have a file in a prototype file whose name contains a colon. The $ on lines 13 and 14 end
the process, since no additional specifications follow.

File specifications give the mode, the user ID, the group ID, and the initial contents of the file.
Valid syntax for the contents field depends on the first character of the mode.

The mode for a file is specified by a 6-character string. The first character specifies the type of the
file. The character range is −−bcdpl to specify regular, block special, character special, directory
files, named pipes (fifos) and symbolic links, respectively. The second character of the mode is
either u or −− to specify setuserID mode or not. The third is g or −− for the setgroupID mode. The
rest of the mode is a 3-digit octal number giving the owner, group, and other read, write, execute
permissions (see chmod(1)).

Two decimal number tokens come after the mode; they specify the user and group IDs of the
owner of the file.

130

mkfs_xfs(1M)hh

If the file is a regular file, the next token of the specification may be a pathname from which the
contents and size are copied. If the file is a block or character special file, two decimal numbers
follow that give the major and minor device numbers. If the file is a symbolic link, the next token
of the specification is used as the contents of the link. If the file is a directory, mkfs_xfs makes the
entries . and .. and then reads a list of names and (recursively) file specifications for the entries in
the directory. As noted above, the scan is terminated with the token $.

−−q Quiet option.

Normally mkfs_xfs prints the parameters of the filesystem to be constructed; the −−q flag
suppresses this.

−−r Real-time section options.

These options specify the location, size, and other parameters of the real-time section of the
filesystem. The valid suboptions are: extsize=value and size=value.

The extsize suboption is used to specify the size of the blocks in the real-time section of the
filesystem. This size must be a multiple of the filesystem block size. The minimum allowed value
(and the default) is 64 KB; the maximum allowed value is 1 GB. The real-time extent size should
be carefully chosen to match the parameters of the physical media used.

The size suboption is used to specify the size of the real-time section. This suboption is only
needed if the real-time section of the filesystem should occupy less space than the size of the XLV
real-time subvolume.

SEE ALSO
mkfs(1M), mkfs_efs(1M)

BUGS
With a prototype file, it is not possible to specify hard links.

131

RESTORE(1M)hh

NAME
restore, rrestore − incremental file system restore

SYNOPSIS
/sbin/restore key [name ...]
/sbin/rrestore key [name ...]

DESCRIPTION
restore reads tapes dumped with the dump (1M) command and restores them relative to the current direc-
tory. Its actions are controlled by the key argument. The key is a string of characters containing at most
one function letter and possibly one or more function modifiers. Any arguments supplied for specific
options are given as subsequent words on the command line, in the same order as that of the options
listed. Other arguments to the command are file or directory names specifying the files that are to be
restored. Unless the h key is specified (see below), the appearance of a directory name refers to the files
and (recursively) subdirectories of that directory.

The function portion of the key is specified by one of the following letters:

r Restore the entire tape. The tape is read and its full contents loaded into the current directory. This
should not be done lightly; the r key should only be used to restore a complete ’’level 0’’ dump tape
onto a clear file system or to restore an incremental dump tape after a full level zero restore. Thus

/etc/mkfs /dev/dsk/dks0d2s0
/etc/mount /dev/dsk0d2s0 /mnt
cd /mnt
restore r

is a typical sequence to restore a complete dump. Another restore can be done to get an incremental
dump in on top of this. Note that restore leaves a file restoresymtable in the root directory to pass
information between incremental restore passes. This file should be removed when the last incre-
mental tape has been restored. Also, see the note in the BUGS section below.

R Resume restoring. restore requests a particular tape of a multi volume set on which to restart a full
restore (see the r key above). This allows restore to be interrupted and then restarted.

x The named files are extracted from the tape. If the named file matches a directory whose contents
had been written onto the tape, and the h key is not specified, the directory is recursively extracted.
The owner, modification time, and mode are restored (if possible). If no file argument is given, then
the root directory is extracted, which results in the entire content of the tape being extracted, unless
the h key has been specified.

t The names of the specified files are listed if they occur on the tape. If no file argument is given, then
the root directory is listed, which results in the entire content of the tape being listed, unless the h
key has been specified. Note that the t key replaces the function of the old dumpdir program.

i This mode allows interactive restoration of files from a dump tape. After reading in the directory
information from the tape, restore provides a shell like interface that allows the user to move
around the directory tree selecting files to be extracted. The available commands are given below;
for those commands that require an argument, the default is the current directory.

132

RESTORE(1M)hh

ls [arg] − List the current or specified directory. Entries that are directories are appended with a
‘‘/’’. Entries that have been marked for extraction are prepended with a ‘‘*’’. If the verbose
key is set the inode number of each entry is also listed.

cd arg − Change the current working directory to the specified argument.

pwd − Print the full pathname of the current working directory.

add [arg] − The current directory or specified argument is added to the list of files to be extracted. If
a directory is specified, then it and all its descendents are added to the extraction list (unless
the h key is specified on the command line). Files that are on the extraction list are prepended
with a ‘‘*’’ when they are listed by ls.

delete [arg] − The current directory or specified argument is deleted from the list of files to be
extracted. If a directory is specified, then it and all its descendents are deleted from the extrac-
tion list (unless the h key is specified on the command line). The most expedient way to
extract most of the files from a directory is to add the directory to the extraction list and then
delete those files that are not needed.

extract − All the files that are on the extraction list are extracted from the dump tape. restore will
ask which volume the user wishes to mount. The fastest way to extract a few files is to start
with the last volume, and work towards the first volume.

setmodes − All the directories that have been added to the extraction list have their owner, modes,
and times set; nothing is extracted from the tape. This is useful for cleaning up after a restore
has been prematurely aborted.

verbose − The sense of the v key is toggled. When set, the verbose key causes the ls command to list
the inode numbers of all entries. It also causes restore to print out information about each file
as it is extracted.

help − List a summary of the available commands.

quit − restore immediately exits, even if the extraction list is not empty.

The following characters may be used in addition to the letter that selects the function desired.

b The next argument to restore is used as the block size of the tape (in kilobytes). If the b option is not
specified, restore tries to determine the tape block size dynamically, but will only be able to do so if
the block size is 32 or less. For larger sizes, the b option must be used with restore.

133

RESTORE(1M)hh

f The next argument to restore is used as the name of the archive instead of /dev/tape. If the name of the
file is ‘‘−’’, restore reads from standard input. Thus, dump(1M) and restore can be used in a pipeline
to dump and restore a file system with the command

dump 0f - /usr | (cd /mnt; restore xf -)
If the name of the file is of the format machine:device then the filesystem dump is restored from the
specified machine over the network. restore creates a remote server /etc/rmt, on the client machine
to access the tape device. Since restore is normally run by root, the name of the local machine must
appear in the .rhosts file of the remote machine. If the file name argument is of the form
user@machine:device, restore will attempt to execute as the specified use on the remote machine. The
specified user must have a .rhosts file on the remote machine that allows root from the local
machine.

v Normally restore does its work silently. The v (verbose) key causes it to type the name of each file it
treats preceded by its file type.

y restore will not ask whether it should abort the restore if gets a tape error. It will always try to skip
over the bad tape block(s) and continue as best it can.

m restore will extract by inode numbers rather than by file name. This is useful if only a few files are
being extracted, and one wants to avoid regenerating the complete pathname to the file.

h restore extracts the actual directory, rather than the files that it references. This prevents hierarchi-
cal restoration of complete subtrees from the tape.

s The next argument to restore is a number which selects the dump file when there are multiple dump
files on the same tape. File numbering starts at 1.

n Only those files which are newer than the file specified by the next argument are considered for res-
toration. restore looks at the modification time of the specified file using the stat(2) system call.

e No existing files are overwritten.

E Restores only non-existent files or newer versions (as determined by the file status change time
stored in the dump file) of existing files. Note that the ls(1) command shows the modification time
and not the file status change time. See stat(2) for more details.

d Turn on debugging output.

o Normally restore does not use chown(2) to restore files to the original user and group id unless it is
being run by the super-user (or with the effective user id of zero). This is to provide Berkeley style
semantics. This can be overridden with the o option which will result in restore attempting to
restore the original ownership to the files.

N Do not write anything to the disk. This option can be used to validate the tapes after a dump. If
invoked with the "r" option, restore goes through the motion of reading all the dump tapes without
actually writing anything to the disk.

134

RESTORE(1M)hh

DIAGNOSTICS
restore complains about bad key characters.

On getting a read error, restore prints out diagnostics. If y has been specified, or the user responds ‘‘y’’,
restore will attempt to continue the restore.

If the dump extends over more than one tape, restore will ask the user to change tapes. If the x or i key
has been specified, restore will also ask which volume the user wishes to mount. The fastest way to
extract a few files is to start with the last volume, and work towards the first volume.

There are numerous consistency checks that can be listed by restore. Most checks are self-explanatory or
can ‘‘never happen’’. Common errors are given below.

Converting to new file system format.
A dump tape created from the old file system has been loaded. It is automatically converted to the
new file system format.

<filename>: not found on tape
The specified file name was listed in the tape directory, but was not found on the tape. This is
caused by tape read errors while looking for the file, and from using a dump tape created on an
active file system.

expected next file <inumber>, got <inumber>
A file that was not listed in the directory showed up. This can occur when using a dump tape
created on an active file system.

Incremental tape too low
When doing incremental restore, a tape that was written before the previous incremental tape, or
that has too low an incremental level has been loaded.

Incremental tape too high
When doing incremental restore, a tape that does not begin its coverage where the previous incre-
mental tape left off, or that has too high an incremental level has been loaded.

Tape read error while restoring <filename>
Tape read error while skipping over inode <inumber>
Tape read error while trying to resynchronize

A tape read error has occurred. If a file name is specified, then its contents are probably partially
wrong. If an inode is being skipped or the tape is trying to resynchronize, then no extracted files
have been corrupted, though files may not be found on the tape.

resync restore, skipped <num> blocks
After a tape read error, restore may have to resynchronize itself. This message lists the number of
blocks that were skipped over.

Error while writing to file /tmp/rstdir*
An error was encountered while writing to the temporary file containing information about the
directories on tape. Use the TMPDIR environment variable to relocate this file in a directory which
has more space available.

135

RESTORE(1M)hh

Error while writing to file /tmp/rstdir*
An error was encountered while writing to the temporary file containing information about the
owner, mode and timestamp information of directories. Use the TMPDIR environment variable to
relocate this file in a directory which has more space available.

EXAMPLES
restore r

will restore the entire tape into the current directory, reading from the default tape device /dev/tape.

restore rf guest@kestrel.sgi.com:/dev/tape

will restore the entire tape into the current directory, reading from the remote tape device /dev/tape on
host kestrel.sgi.com using the guest account.

restore x /etc/hosts /etc/fstab /etc/myfile

will restore the three specified files into the current directory, reading from the default tape device
/dev/tape.

restore x /dev/dsk

will restore the entire /dev/dsk directory and subdirectories recursively into the current directory, read-
ing from the default tape device /dev/tape

restore rN

will read the entire tape and go through all the motions of restoring the entire dump, without writing to
the disk. This can be used to validate the dump tape.

restore xe /usr/dir/foo

will restore (recursively) all files in the given directory /usr/dir/foo. However, no existing files are
overwritten.

restore xn /usr/dir/bar

will restore (recursively) all files which are newer than the given file /usr/dir/bar.

FILES
/dev/tape

This is the default tape device used unless the environment variable TAPE is set.

136

RESTORE(1M)hh

/tmp/rstdir*
This temporary file contains the directories on the tape. If the environment variable TMPDIR is set,
then the file will be created in that directory.

/tmp/rstmode*
This temporary file contains the owner, mode, and time stamps for directories. If the environment
variable TMPDIR is set, then the file will be created in that directory.

./restoresymtable
Information is passed between incremental restores in this file.

SEE ALSO
dump(1M), mount(1M), mkfs(1M), rmt(1M), rhosts(4), mtio(7)

NOTES
rrestore is a link to restore.

BUGS
restore can get confused when doing incremental restores from dump tapes that were made on active file
systems.

A ’’level 0’’ dump must be done after a full restore. Because restore runs in user code, it has no control
over inode allocation. This results in the files being restored having an inode numbering different from
the filesystem that was originally dumped. Thus a full dump must be done to get a new set of directories
reflecting the new inode numbering, even though the contents of the files is unchanged, so that later incre-
mental dumps will be correct.

Existing dangling symlinks are modified even if the e option is supplied, if the dump tape contains a hard
link by the same name.

137

xfs_check(1M)hh

NAME
xfs_check − check XFS filesystem consistency

SYNOPSIS
xfs_check [−−i ino] ... [−−s] [−−v] xlvspecial

xfs_check −−d [−−i ino] ... [−−s] [−−v] diskspecial

xfs_check −−f [−−i ino] ... [−−s] [−−v] file

DESCRIPTION
xfs_check checks whether an XFS filesystem is consistent. It is normally run only when there is reason to
believe that the filesystem has a consistency problem. The filesystem to be checked is specified by the
xlvspecial or diskspecial argument, which should be the disk or volume device for the filesystem. Filesys-
tems stored in files can also be checked, using the −−f flag. The filesystem should normally be unmounted
or read-only during the execution of xfs_check, otherwise spurious problems are reported.

The options to xfs_check are:

−−d Specifies that the special device is a disk partition name or an lv(7M) volume name (as opposed
to an XLV logical volume).

−−f Specifies that the special device is actually a file (see the mkfs_xfs -d file option). This might hap-
pen if an image copy of a filesystem has been made into an ordinary file.

−−s Specifies that only serious errors should be reported. Serious errors are those that make it
impossible to find major data structures in the filesystem. This option can be used to cut down
the amount of output when there is a serious problem, when it might make it difficult to see
what the real problem is.

−−v Specifies verbose output; it is impossibly long for a reasonably-sized filesystem. This option is
intended for internal use only.

−−i ino Specifies verbose behavior for a specific inode. For instance, it can be used to locate all the
blocks associated with a given inode.

Any output from xfs_check means that the filesystem has an inconsistency. The only repair mechanism
available is to dump the filesystem with xfsdump(1M), then use mkfs_xfs(1M) to make a new filesystem,
then use xfsrestore(1M) to restore the data.

DIAGNOSTICS
Under two circumstances, xfs_check unfortunately might dump core rather than produce useful output.
First, if the filesystem is completely corrupt, a core dump might be produced instead of the message ‘‘xxx
is not a valid filesystem.’’ Second, if the filesystem is very large (has many files) then xfs_check
might run out of memory.

138

xfs_check(1M)hh

The following is a description of the most likely problems and the associated messages. Most of the diag-
nostics produced are only meaningful with an understanding of the structure of the filesystem.

xxx is not an XLV volume device name
The −−d option is needed for filesystems that reside in disk partitions instead of in XLV
volumes.

agf_freeblks n, counted m in ag a
The freeblocks count in the allocation group header for allocation group a doesn’t match
the number of blocks counted free.

agf_longest n, counted m in ag a
The longest free extent in the allocation group header for allocation group a doesn’t
match the longest free extent found in the allocation group.

agi_count n, counted m in ag a
The allocated inode count in the allocation group header for allocation group a doesn’t
match the number of inodes counted in the allocation group.

agi_freecount n, counted m in ag a
The free inode count in the allocation group header for allocation group a doesn’t match
the number of inodes counted free in the allocation group.

block a/b expected inum 0 got i
The block number is specified as a pair (allocation group number, block in the allocation
group). The block is used multiple times (shared), between multiple inodes. This mes-
sage usually follows a message of the next type.

block a/b expected type unknown got y
The block is used multiple times (shared).

block a/b type unknown not expected
The block is unaccounted for (not in the freelist and not in use).

link count mismatch for inode nnn (name xxx), nlink m, counted n
The inode has a bad link count (number of references in directories).

rtblock b expected inum 0 got i
The block is used multiple times (shared), between multiple inodes. This message usu-
ally follows a message of the next type.

rtblock b expected type unknown got y
The real-time block is used multiple times (shared).

rtblock b type unknown not expected
The real-time block is unaccounted for (not in the freelist and not in use).

sb_fdblocks n, counted m
The number of free data blocks recorded in the superblock doesn’t match the number
counted free in the filesystem.

139

xfs_check(1M)hh

sb_frextents n, counted m
The number of free real-time extents recorded in the superblock doesn’t match the
number counted free in the filesystem.

sb_icount n, counted m
The number of allocated inodes recorded in the superblock doesn’t match the number
allocated in the filesystem.

sb_ifree n, counted m
The number of free inodes recorded in the superblock doesn’t match the number free in
the filesystem.

SEE ALSO
mkfs_xfs(1M), xfsdump(1M), xfsrestore(1M), xfs(4)

140

xfs_estimate(1M)hh

NAME
xfs_estimate − estimate the space that an XFS filesystem will take

SYNOPSIS
xfs_estimate [−−h?] [−−b blocksize] [−−i logsize] [−−e logsize] [−−v] directory ...

DESCRIPTION
For each directory argument, xfs_estimate estimates the space that directory would take if it were copied to
an XFS filesystem. Note that xfs_estimate does not cross mount points. Also, the following definitions are
used: KB = *1024, MB = *1024*1024, GB = *1024*1024*1024.

−−b blocksize
Use blocksize instead of the default blocksize of 4096 bytes. The modifier k may be used after the
number to indicate multiplication by 1024. For example,

xfs_estimate -b 64k /

requests an estimate of the space required by the directory / on an XFS filesystem using a block-
size of 64k (65536) bytes.

−−v Display more information, formatted.

−−h Display usage message.

−−? Display usage message.

−−i, -e logsize
Use logsize instead of the default log size of 10 MB. -i refers to an internal log, while -e refers to
an external log. The modifier k or m may be used after the number to indicate multiplication by
1024 or 1048576, respectively.

For example,

xfs_estimate -i 1m /

requests an estimate of the space required by the directory / on an XFS filesystem using an inter-
nal log of 1 megabyte.

EXAMPLES
% xfs_estimate -e 10m /var/tmp
/var/tmp will take about 4 megabytes

with the external log using 2560 blocks or about 11 megabytes

% xfs_estimate -v -e 10m /var/tmp
directory bsize blocks megabytes logsize
/var/tmp 4096 792 4MB 10485760

% xfs_estimate -v /var/tmp
directory bsize blocks megabytes logsize
/var/tmp 4096 3352 14MB 10485760

141

xfs_estimate(1M)hh

% xfs_estimate /var/tmp
/var/tmp will take about 14 megabytes

142

xfs_growfs(1M)hh

NAME
xfs_growfs − expand an XFS filesystem

SYNOPSIS
xfs_growfs [−−D size] [−−d] [−−i] [−−L size] [−−l]

[−−R size] [−−r] [−−x] mount-point

DESCRIPTION
xfs_growfs expands an existing XFS filesystem, see xfs(4). The mount-point argument should be the path-
name of the directory where the filesystem is mounted. The filesystem must be mounted to be grown, see
mount(1M). The existing contents of the filesystem are undisturbed, and the added space becomes avail-
able for additional file storage.

The −−d option specifies that the data section of the filesystem will be grown. If the −−D size option is given,
the data section will be grown to that size, otherwise the data section will be grown to the largest size pos-
sible. The size is expressed in filesystem blocks.

The −−r option specifies that the real-time section of the filesystem will be grown. If the −−R size option is
given, the real-time section will be grown to that size, otherwise the real-time section will be grown to the
largest size possible. The size is expressed in filesystem blocks. The filesystem does not need to have con-
tained a real-time section before the growfs operation.

The −−l option specifies that the log section of the filesystem will be grown, shrunk, or moved. If the −−L
size option is given, the log section will be changed to be that size, if possible. The size is expressed in
filesystem blocks. The size of an internal log must be smaller than the size of an allocation group (this
value is printed at mkfs(1M) time). If the −−i option is given, the new log will be an internal log (inside the
data section). If the −−x option is given, the new log will be an external log (in an XLV log subvolume). If
neither −−i nor −−x is given with −−l, then the log will continue to be internal or external as it was before.

xfs_growfs is most often used in conjunction with logical volumes, see xlv(7M) or lv(7M). However, it can
also be used on a regular disk partition, for example if a partition has been enlarged while retaining the
same starting block.

PRACTICAL USE
Filesystems normally occupy all of the space on the device where they reside. In order to grow a filesys-
tem, it is necessary to provide added space for it to occupy. Therefore there must be at least one spare
new disk partition available. Adding the space is done through the mechanism of logical volumes. If the
filesystem already resides on a logical volume, the volume is simply extended using mklv(1M) or
xlv_admin(1M). If the filesystem is currently on a regular partition, it is necessary to create a new logical
volume whose first member is the existing partition, with subsequent members being the new partition(s)
to be added. Again, mklv or xlv_admin is used for this. In either case xfs_growfs is run on the mounted
filesystem, and the expanded filesystem is then available for use.

SEE ALSO
mkfs_xfs(1M), mklv(1M), mount(1M), xlv_make(1M), lv(7M), xlv(7M)

143

xfsdump(1M)hh

NAME
xfsdump − XFS filesystem incremental dump utility

SYNOPSIS
xfsdump [−−f destination] [−−l level] [−−s pathname ...]

[−−v verbosity] [−−F] [−−I [subopt=value ...]] [−−J]
[−−L session_label] [−−M media_label] [−−R] [−−]
filesystem

DESCRIPTION
xfsdump backs up files in a filesystem. The files are dumped to storage media, a regular file, or standard
output. Options allow the operator to have all files dumped, just files that have changed since a previous
dump, or just files contained in a list of pathnames.

The xfsrestore(1M) utility re-populates a filesystem with the contents of the dump.

Each invocation of xfsdump dumps just one filesystem. That invocation is termed a dump session. The
dump session sends a single dump stream to the destination. The dump stream can span several media
objects, and a single media object can contain several dump streams. The typical media object is a tape
cartridge. The media object records the dump stream as one or more media files. A media file is a self-
contained partial dump. The portion of the dump stream contained on a media object can be split into
several media files to minimize the impact of media dropouts on the entire dump stream.

xfsdump maintains an online dump inventory in /var/xfsdump/inventory. The −−I option displays the inven-
tory contents hierarchically. The levels of the hierarchy are: filesystem, dump session, stream, and media
file.

−−f destination
Specifies the dump destination. It can be the pathname of a device (such as a tape drive), a regular
file, or a remote tape drive (see rmt(1M)). This option must be omitted if the standard output option
(a lone −− preceding the filesystem specification) is specified.

−−l level
Specifies a dump level of 0 to 9. The dump level determines the base dump to which this dump is
relative. The base dump is the most recent dump at a lesser level. A level 0 dump is absolute − all
files are dumped. A dump level where 1 <= level <= 9 is referred to as an incremental dump. Only
files that have been changed since the base dump are dumped. Subtree dumps (see the −−s option
below) cannot be used as the base for incremental dumps.

−−s pathname ...
Restricts the dump to files contained in the specified pathnames (subtrees). Up to 100 pathnames
can be specified. A pathname must be relative to the mount point of the filesystem. For example, if a
filesystem is mounted at /d2, the pathname argument for the directory /d2/users is ‘‘users’’. A path-
name can be a file or a directory; if it is a directory, the entire hierarchy of files and subdirectories
rooted at that directory is dumped. Subtree dumps cannot be used as the base for incremental
dumps (see the −−l option above).

144

xfsdump(1M)hh

−−v verbosity_level
Specifies the level of detail of the messages displayed during the course of the dump. The argument
can be silent, verbose, or trace. The default is verbose.

−−F Don’t prompt the operator. When xfsdump encounters a media object containing non-xfsdump data,
xfsdump normally asks the operator for permission to overwrite. With this option the overwrite is
performed, no questions asked. When xfsdump encounters end-of-media, xfsdump normally asks the
operator if another media object will be provided. With this option the dump is instead interrupted.

−−I Displays the xfsdump inventory (no dump is performed). xfsdump records each dump session in an
online inventory in /var/xfsdump/inventory. xfsdump uses this inventory to determine the base for
incremental dumps. It is also useful for manually identifying a dump session to be restored.
Suboptions to filter the inventory display are described later.

−−J Inhibits the normal update of the inventory. This is useful when the media being dumped to will be
discarded or overwritten.

−−L session_label
Specifies a label for the dump session. It can be any arbitrary string up to 255 characters long.

−−M media_label
Specifies a label for all media objects (for example, tape cartridges) written during the session. It
can be any arbitrary string up to 255 characters long.

−−R Resumes a previously interrupted dump session. If the most recent dump at this dump’s level (−−l
option) was interrupted, this dump contains only files not in the interrupted dump and consistent
with the incremental level. However, files contained in the interrupted dump that have been subse-
quently modified are re-dumped.

−− A lone −− causes the dump stream to be sent to the standard output, where it can be piped to another
utility such as xfsrestore(1M) or redirected to a file. This option cannot be used with the −−f option.
The −− must follow all other options, and precede the filesystem specification.

The filesystem, filesystem, can be specified either as a mount point or as a special device file (for example,
/dev/dsk/dks0d1s0). The filesystem must be mounted to be dumped.

NOTES
Dump Interruption

A dump can be interrupted at any time and later resumed. To interrupt, type control-C (or the current
terminal interrupt character). The operator is prompted to select one of several operations, including
dump interruption. After the operator selects dump interruption, the dump continues until a convenient
break point is encountered (typically the end of the current file). Very large files are broken into smaller
subfiles, so the wait for the end of the current file is brief.

Dump Resumption
A previously interrupted dump can be resumed by specifying the −−R option. If the most recent dump at
the specified level was interrupted, the new dump does not include files already dumped, unless they
have changed since the interrupted dump.

145

xfsdump(1M)hh

Media Management
A single media object can contain many dump streams. Conversely, a single dump stream can span mul-
tiple media objects. If a dump stream is sent to a media object already containing one or more dumps,
xfsdump appends the new dump stream after the last dump stream. Media files are never overwritten. If
end-of-media is encountered during the course of a dump, the operator is prompted to insert a new
media object into the drive. The dump continuation is appended after the last media file on the new
media object.

Inventory
Each dump session updates an inventory database in /var/xfsdump/inventory. xfsdump uses the inventory
to determine the base of incremental and resumed dumps.

This database can be displayed by invoking xfsdump with the −−I option. The display uses tabbed indenta-
tion to present the inventory hierarchically. The first level is filesystem. The second level is session. The
third level is media stream (currently only one stream is supported). The fourth level lists the media files
sequentially composing the stream.

Several suboptions are available to filter the display. Specifying −−I depth=n (where n is 1, 2, or 3) limits
the hierarchical depth of the display. Specifying −−I mobjid=value (where value is a media id) or −−I
mobjlabel=value (where value is a media label) limits the display to media files contained in the specified
media object. Similarly, the display can be restricted to a specific filesystem identified by mount point
using −−I mnt=host-qualified_mount_point_pathname, by filesystem id using −−I fsid=filesystem_id, or by dev-
ice using −−I dev=host-qualified_device_pathname. At most three suboptions may be specified at once: one
to constrain the depth, one to constrain the media object, and one to constrain the filesystem. For exam-
ple, −−I depth=1,mobjlabel="tape 1",mnt=host1:/test_mnt would display only the filesystem information
(depth=1) for those filesystems which were mounted on host1:/test_mnt at the time of the dump, and only
those filesystems dumped to the media object labeled "tape 1".

There is currently no way to remove dumps from the inventory.

An additional media file is placed at the end of each dump stream. This media file contains the inventory
information for the current dump session. This is currently unused.

When operating in the miniroot environment, xfsdump does not create and does not reference the inven-
tory database. Thus incremental and resumed dumps are not allowed.

Labels
The operator can specify a label to identify the dump session and a label to identify a media object. The
session label is placed in every media file produced in the course of the dump, and is recorded in the
inventory.

The media label is used to identify media objects, and is independent of the session label. Each media file
on the media object contains a copy of the media label. An error will be returned if the operator specifies
a media label which does not match the media label on a media object containing valid media files.
Media labels are recorded in the inventory.

146

xfsdump(1M)hh

UUIDs
UUIDs (Universally Unique Identifiers) are used in three places: to identify the filesystem being dumped,
to identify the dump session, and to identify each media object. The inventory display (−−I) includes all of
these.

Dump Level Usage
The dump level mechanism provides a structured form of incremental dumps. A dump of level level
includes only files that have changed since the most recent dump at a level less than level. For example,
the operator can establish a dump schedule that involves a full dump every Friday and a daily incremen-
tal dump containing only files that have changed since the previous dump. In this case Friday’s dump
would be at level 0, Saturday’s at level 1, Sunday’s at level 2, and so on, up to the Thursday dump at level
6.

The above schedule results in a very tedious restore procedure to fully reconstruct the Thursday version
of the filesystem; xfsrestore would need to be fed all 7 dumps in sequence. A compromise schedule is to
use level 1 on Saturday, Monday, and Wednesday, and level 2 on Sunday, Tuesday, and Thursday. The
Monday and Wednesday dumps would take longer, but the worst case restore requires the accumulation
of just three dumps, one each at level 0, level 1, and level 2.

Miniroot Restrictions
xfsdump is subject to the following restrictions when operated in the miniroot environment: non-
restartable, no incrementals, no online inventory, synchronous I/O.

FILES
/var/xfsdump/inventory dump inventory database

SEE ALSO
rmt(1M), xfsrestore(1M)

DIAGNOSTICS
The exit code is 0 on normal completion, non-zero if an error occurs or the dump is terminated by the
operator.

BUGS
xfsdump always rewinds tape media, then seeks to the end of the last dump prior to appending the
current dump.

Some of the command line options are not checked until the media has been rewound. Thus, errors in
those options are not reported immediately.

xfsdump does not dump unmounted filesystems.

The dump frequency field of /etc/fstab is not supported.

xfsdump does not have the capability to send mail when operator intervention is required.

Only one −−f option is allowed, because xfsdump does not have the capability to partition the dump into
multiple streams, each directed to a different media drive.

147

xfsdump(1M)hh

No means is provided to remove media objects from the inventory.

xfsdump requires root privilege (except for inventory display).

xfsdump can only dump XFS filesystems.

The media format used by xfsdump can only be understood by xfsrestore.

Dumps may not be written to fixed block size tape devices via the remote tape device interface.

xfsdump does not know how to manage CD-ROM or other removable disk drives.

148

xfsrestore(1M)hh

NAME
xfsrestore − XFS filesystem incremental restore utility

SYNOPSIS
xfsrestore [−−a housekeeping] [-e] [−−f source] [−−i]

[−−n file] [−−r] [−−s subtree ...] [−−t] [−−v verbosity]
[−−E] [−−I [subopt=value ...]] [−−L session_label]
[−−S session_id] [−−]
destination

DESCRIPTION
xfsrestore restores filesystems from dumps produced by xfsdump(1M). Two modes of operation are avail-
able: simple and cumulative.

The default is simple mode. xfsrestore populates the specified destination directory, destination, with the
files contained in the dump media.

The −−r option specifies the cumulative mode. Successive invocations of xfsrestore are used to apply a
chronologically ordered sequence of delta dumps to a base (level 0) dump. The contents of the filesystem
at the time each dump was produced is reproduced. This can involve adding, deleting, renaming, link-
ing, and unlinking files and directories.

A delta dump is defined as either an incremental dump (xfsdump −−l option with level > 0) or a resumed
dump (xfsdump −−R option). The deltas must be applied in the order they were produced. Each delta
applied must have been produced with the previously applied delta as its base.

−−a housekeeping
Each invocation of xfsrestore creates a directory called xfsrestorehousekeeping. This directory is nor-
mally created directly under the destination directory. The −−a option allows the operator to specify
an alternate directory, housekeeping, in which xfsrestore creates the xfsrestorehousekeeping directory.
When performing a cumulative (−−r option) restore, each successive invocation of xfsrestore must
specify the same alternate directory.

−−e Prevents xfsrestore from overwriting existing files in the destination directory.

−−f source
Specifies the source of the dump to be restored. This can be the pathname of a device (such as a
tape drive), a regular file, or a remote tape drive (see rmt(1M)). This option must be omitted if the
standard input option (a lone −− preceding the destination specification) is specified.

−−i Selects interactive operation. Once the on-media directory hierarchy has been read, an interactive
dialogue is begun. The operator uses a small set of commands to peruse the directory hierarchy,
selecting files and subtrees for extraction. The available commands are given below. Initially noth-
ing is selected, except for those subtrees specified with −−s command line options.

ls [arg] List the entries in the current directory or the specified directory, or the specified
non-directory file entry. Both the entry’s original inode number and name are
displayed. Entries that are directories are appended with a ‘‘/’’. Entries that have
been selected for extraction are prepended with a ‘‘*’’.

149

xfsrestore(1M)hh

cd [arg] Change the current working directory to the specified argument, or to the filesys-
tem root directory if no argument is specified.

pwd Print the pathname of the current directory, relative to the filesystem root.

add [arg] The current directory or specified file or directory within the current directory is
selected for extraction. If a directory is specified, then it and all its descendents are
selected. Entries that are selected for extraction are prepended with a ‘‘*’’ when
they are listed by ls.

delete [arg] The current directory or specified file or directory within the current directory is
deselected for extraction. If a directory is specified, then it and all its descendents
are deselected. The most expedient way to extract most of the files from a direc-
tory is to select the directory and then deselect those files that are not needed.

extract Ends the interactive dialogue, and causes all selected subtrees to be restored.

quit xfsrestore ends the interactive dialogue and immediately exits, even if there are files
or subtrees selected for extraction.

help List a summary of the available commands.

Simultaneous cumulative (−−r option) and interactive restores are not allowed.

−−n file
Allows xfsrestore to restore only files newer than file. The modification time of file (i.e., as displayed
with the ls -l command) is compared to the i-node modification time of each file on the source
media (i.e., as displayed with the ls -lc command) . A file is restored from media only if its i-node
modification time is greater than or equal to the modification time of file.

−−r Selects the cumulative mode of operation.

−−s subtree
Specifies a subtree to restore. Any number of −−s options are allowed. The restore is constrained to
the union of all subtrees specified. Each subtree is specified as a pathname relative to the restore
destination. If a directory is specified, the directory and all files beneath that directory are restored.
Simultaneous cumulative (−−r option) and subtree restores are not allowed.

−−t Displays the contents of the dump, but does not create or modify any files or directories. It may be
desirable to set the verbosity level to silent when using this option.

−−v verbosity_level
Specifies the level of detail of the messages displayed during the course of the restore. The argu-
ment can be silent, verbose, or trace. The default is verbose.

−−E Prevents xfsrestore from overwriting newer versions of files. The i-node modification time of the
on-media file is compared to the i-node modification time of corresponding file in the destination
directory. The file is restored only if the on-media version is newer than the version in the destina-
tion directory. The i-node modification time of a file can be displayed with the ls -lc command.

150

xfsrestore(1M)hh

−−I Causes the xfsdump inventory to be displayed (no restore is performed). Each time xfsdump is used,
an online inventory in /var/xfsdump/inventory is updated. This is used to determine the base for
incremental dumps. It is also useful for manually identifying a dump session to be restored (see the
−−L and −−S options). Suboptions to filter the inventory display are described later.

−−L session_label
Specifies the label of the dump session to be restored. The source media is searched for this label. It
is any arbitrary string up to 255 characters long. The label of the desired dump session can be
copied from the inventory display produced by the −−I option.

−−S session_id
Specifies the session UUID of the dump session to be restored. The source media is searched for
this UUID. The UUID of the desired dump session can be copied from the inventory display pro-
duced by the −−I option.

−− A lone −− causes the standard input to be read as the source of the dump to be restored. Standard
input can be a pipe from another utility (such as xfsdump(1M)) or a redirected file. This option can-
not be used with the −−f option. The −− must follow all other options, and precede the destination
specification.

The dumped filesystem is restored into the destination directory. There is no default; the destination must
be specified.

NOTES
Cumulative Restoration

A base (level 0) dump and an ordered set of delta dumps can be sequentially restored, each on top of the
previous, to reproduce the contents of the original filesystem at the time the last delta was produced. The
operator invokes xfsrestore once for each dump. The −−r option must be specified. The destination direc-
tory must be the same for all invocations. Each invocation leaves a directory named xfsrestorehousekeeping
in the destination directory (however, see the −−a option above). This directory contains the state informa-
tion that must be communicated between invocations. The operator must remove this directory after the
last delta has been applied.

xfsrestore also generates a directory named orphanage in the destination directory. xfsrestore removes this
directory after completing a simple restore. However, if orphanage is not empty, it will not be removed.
This can happen if files present on the dump media are not referenced by any of the restored directories.
The orphanage has an entry for each such file. The entry name is the file’s original inode number.

xfsrestore does not remove the orphanage after cumulative restores. Like the xfsrestorehousekeeping direc-
tory, the operator must remove it after applying all delta dumps.

Media Management
A dump consists of one or more media files contained on one or more media objects. A media file con-
tains all or a portion of the filesystem dump. Large filesystems are broken up into multiple media files to
minimize the impact of media dropouts, and to accommodate media object boundaries (end-of-media).

151

xfsrestore(1M)hh

A media object is any storage medium: a tape cartridge, a remote tape device (see rmt(1M)), a regular file,
or the standard input (currently other removable media drives are not supported). Tape cartridges can
contain multiple media files, which are typically separated by (in tape parlance) file marks. If a dump
spans multiple media objects, the restore must begin with the media object containing the first media file
dumped. The operator is prompted when the next media object is needed.

Media objects can contain more than one dump. The operator can select the desired dump by specifying
the dump label (−−L option), or by specifying the dump UUID (−−S option). If neither is specified, xfsrestore
scans the entire media object, prompting the operator as each dump session is encountered.

The inventory display (−−I option) is useful for identifying the media objects required. It is also useful for
identifying a dump session. The session UUID can be copied from the inventory display to the −−S option
argument to unambiguously identify a dump session to be restored.

Dumps placed in regular files or the standard output do not span multiple media objects, nor do they
contain multiple dumps.

Inventory
Each dump session updates an inventory database in /var/xfsdump/inventory. This database can be
displayed by invoking xfsrestore with the −−I option. The display uses tabbed indentation to present the
inventory hierarchically. The first level is filesystem. The second level is session. The third level is media
stream (currently only one stream is supported). The fourth level lists the media files sequentially com-
posing the stream.

Several suboptions are available to filter the display. Specifying −−I depth=n (where n is 1, 2, or 3) limits
the hierarchical depth of the display. Specifying −−I mobjid=value (where value is a media id) or −−I
mobjlabel=value (where value is a media label) limits the display to media files contained in the specified
media object. Similarly, the display can be restricted to a specific filesystem identified by mount point
using −−I mnt=host-qualified_mount_point_pathname, by filesystem id using −−I fsid=filesystem_id, or by dev-
ice using −−I dev=host-qualified_device_pathname. At most three suboptions may be specified at once: one
to constrain the depth, one to constrain the media object, and one to constrain the filesystem. For exam-
ple, −−I depth=1,mobjlabel="tape 1",mnt=host1:/test_mnt would display only the filesystem information
(depth=1) for those filesystems which were mounted on host1:/test_mnt at the time of the dump, and only
those filesystems dumped to the media object labeled "tape 1".

There is currently no way to remove dumps from the inventory.

An additional media file is placed at the end of each dump stream. This media file contains the inventory
information for the current dump session. This is currently unused.

Media Errors
xfsdump is tolerant of media errors, but cannot do error correction. If a media error occurs in the body of
a media file, the filesystem file represented at that point is lost. The bad portion of the media is skipped,
and the restoration resumes at the next filesystem file after the bad portion of the media.

152

xfsrestore(1M)hh

If a media error occurs in the beginning of the media file, the entire media file is lost. For this reason,
large dumps are broken into a number of reasonably sized media files. The restore resumes with the next
media file.

FILES
/var/xfsdump/inventory dump inventory database

SEE ALSO
rmt(1M), xfsdump(1M)

DIAGNOSTICS
The exit code is 0 on normal completion, and non-zero if an error occurred or the restore was terminated
by the operator.

BUGS
There is no option to restore a specific media file contained in a media object.

Subtree options and interactive commands may be used to eliminate some files from the restore. xfsre-
store does not know how to skip media files and media objects which do not contain selected files.

xfsrestore can only handle dumped filesystems with 8 million or less directory entries. This can be
increased to 32 million directory entries by increasing the maximum value of rlimit_vmem_max in
/var/sysgen/mtune/kernel to 0x7fffffff (see mtune(4), systune(1M)).

Pathnames of restored non-directory files (relative to the destination directory) must be 1023 characters or
less. Longer pathnames are discarded and a warning message displayed.

There is no verify option to xfsrestore. This would allow the operator to compare a filesystem dump to an
existing filesystem, without actually doing a restore.

Restores can not be resumed from the point of interruption. The entire restore must be restarted from the
beginning.

xfsrestore restores the owner, group, and mode of each file and directory exactly. Thus, for example, files
owned by root at the time of the dump are owned by root after the restoration.

xfsrestore must be run with root privilege.

Dumps cannot be read on fixed block size tape devices via the remote tape device interface.

The interactive commands (−−i option) do not understand regular expressions.

Arguments to interactive commands (−−i option) are pathnames, but are limited to just one level (for
example, ls foo is allowed, but ls foo/bar is not).

153

xlv_admin(1M)hh

NAME
xlv_admin − modifies XLV logical volume objects and their disk labels

SYNOPSIS
xlv_admin [−−r root]

DESCRIPTION
xlv_admin is a menu-driven command that is used to modify existing XLV objects (volumes, plexes,
volume elements, and XLV disk labels). xlv_admin can operate on XLV volumes even while they are
mounted and in use.

xlv_admin supports a single command line option:

−−r root Use root as the root directory. This is used in the miniroot when / is mounted as /root.

The xlv_admin menu is:

**************** XLV Administration Menu **********
................ Add Existing Selections...........
1. Add a ve to an existing plex.
2. Add a ve at the END of an existing plex.
3. Add a plex to an existing volume.
................ Detach Selections................
11. Detach a ve from an existing plex.
12. Detach a plex from an existing volume.
................ Remove Selections................
21. Remove a ve from an existing plex.
22. Remove a plex from an existing volume.
................ Delete Selections................
31. Delete an object.
32. Delete all XLV disk labels.
................ Show Selections................
41. Show object by name and type, only.
42. Show information for an object.
................ Exit................
99. Exit

Note that the selections that refer to plexes (for example selection 3) are displayed only when your system
has been licensed for the plexing portion of XLV.

xlv_admin provides five types of operations: add, detach, remove, delete, and show:

add The add operations allow you to add an XLV object to another XLV object. This allows you to,
for example, add a plex to a volume. The plex or volume element to be added must first be
created via xlv_make(1M). Note that xlv_admin refers to the larger object (the volume, in this
case) as the ‘‘object to be operated on.’’

154

xlv_admin(1M)hh

detach The detach operations allow you to separate a part of an XLV object and make it an indepen-
dent XLV object. If you ‘‘detach’’ a plex from a plexed volume, for example, that plex would
be separated from the volume and made into a standalone plex. The original volume would
have one less plex.

remove The remove operations allow you to destroy a part of an XLV object. Removing plex number
1 from a volume with two plexes results in an XLV volume that has a single plex. The disk
partitions that were part of the removed plex are no longer part of any XLV object.

delete The delete operations allow you to delete entire XLV objects.

show The show operations allow you to examine the list of XLV objects on the system and their
structure.

The following are details on the various menu selections:

1. Add a ve to an existing plex.
Allows you to add a volume element to a gap in a plex. This is useful, for example, when you
are replacing a faulty disk. xlv_admin prompts you for the name of the plex, the relative posi-
tion within the plex to insert the volume element, and the name of the volume element that
you want to add. (The first volume element in a plex is at position 0.)

The plex to be operated on can be a standalone plex or a part of a volume. If the plex is part of
a volume, then the volume, subvolume, and plex must be specified. If the volume has only
one plex then xlv_admin automatically uses that plex. The user can use an XLV name (for
example, movies.data.0) to name the plex. If only a component of the name is given, then
xlv_admin prompts for the remaining components. In all cases the ‘‘object to be operated on’’
is the plex. In the example below it is volume test . The following shows an example where we
are inserting a volume element ve5 to a gap in the volume test . (You can tell that there is a gap
because the first volume element starts at block number 76200.) Note that we first display the
configuration of test and ve5 before we add ve5 to test .

xlv_admin> 42
Please enter name of object to be operated on.
xlv_admin> test

============= Displaying Requested Object ==========
vol test
ve test.data.0.0 [active]

start=76200, end=152399, (cat)grp_size=1
/dev/dsk/dks0d2s1 (76200 blks)

ve test.data.0.1 [active]
start=152400, end=228599, (cat)grp_size=1
/dev/dsk/dks0d2s2 (76200 blks)

Please select choice...

155

xlv_admin(1M)hh

xlv_admin> 42
Please enter name of object to be operated on.
xlv_admin> ve5

============= Displaying Requested Object ==========
ve ve5 [empty]

start=0, end=76199, (cat)grp_size=1
/dev/dsk/dks0d2s5 (76200 blks)

Please select choice...
xlv_admin> 1
Please enter name of object to be operated on.
xlv_admin> test
Please enter ve number.
xlv_admin> 0
Please enter the object you wish to add to the target.
xlv_admin> ve5
Please select choice...
xlv_admin> 42
Please enter name of object to be operated on.
xlv_admin> test

============= Displaying Requested Object ==========
vol test
ve test.data.0.0 [stale]

start=0, end=76199, (cat)grp_size=1
/dev/dsk/dks0d2s5 (76200 blks)

ve test.data.0.1 [active]
start=76200, end=152399, (cat)grp_size=1
/dev/dsk/dks0d2s1 (76200 blks)

ve test.data.0.2 [active]
start=152400, end=228599, (cat)grp_size=1
/dev/dsk/dks0d2s2 (76200 blks)

Please select choice...
xlv_admin>

2. Add a ve at the END of an existing plex.
Allows you to grow a volume by adding a volume element to the end of a plex. You can use
this in conjunction with xfs_growfs(1M) to grow an XFS filesystem without having to unmount
it.

156

xlv_admin(1M)hh

Assuming that we have a volume element, spareve, that contains a single disk partition
/dev/dsk/dks1d4s2 , the following sequense of commands adds it to the end of plex 0 of the data
subvolume of volume db1:

Please select choice...
xlv_admin> 2
Please enter name of object to be operated on.
xlv_admin> db1.data.0
Please enter the object you wish to add to the target.
xlv_admin> spareve

Please select choice...
xlv_admin> 42
Please enter name of object to be operated on.
xlv_admin> db1
vol db1
ve db1.data.0.0 [active]
start=0, end=1100799, (cat)grp_size=1
/dev/dsk/dks1d4s0 (1100800 blks)
ve db1.data.0.1 [active]
start=1100800, end=2201599, (cat)grp_size=1
/dev/dsk/dks1d4s1 (1100800 blks)
ve db1.data.0.2 [active]
start=2201600, end=3302399, (cat)grp_size=1
/dev/dsk/dks1d4s2 (1100800 blks)

3. Add a plex to an existing volume.
Allows you to add a plex to a volume. This allows you to create duplicate copies of the data
on the volume for greater reliability. This operation is sometimes called mirroring. When you
pick this selection, xlv_admin prompts you for the volume to add the plex to and the name of
the plex. After the plex has been added, xlv_admin automatically initiates a plex revive opera-
tion; this copies the data from the original XLV plexes to the newly added plex so that the plex
holds the same data as the original plexes in the volume. The following shows how to add a
plex named plex2 to the data subvolume of volume db1:

Please select choice...
xlv_admin> 3
Please enter name of object to be operated on.
xlv_admin> db1.data
Please enter the object you wish to add to the target.
xlv_admin> plex2

157

xlv_admin(1M)hh

You can use selection 42 to display volume db1 and see that the disk partitions that were part
of plex2 are now a component of db2. Note that plex2 no longer exists as a standalone plex
since it has been merged into volume db1.

11. Detach a ve from an existing plex.
Allows you to separate a volume element from a plex. This volume element can later be rein-
serted into some other XLV object. The plex from which the volume element is detached may
be a standalone plex or part of a volume. The detached volume element remains an XLV
object. The user first specifies the object from which the volume element will be detached and
then the name to be given to the detached volume element.

Note that detach and remove operations differ in how they handle the volume element once it
has been separated from the plex. A detach operation leaves the volume element intact while
the remove operation destroys the volume element by freeing its associated disks for use by
other volumes. The detach operation may be thought of as an unlink. You should use either
the detach or remove operation depending on whether you want the volume element to be left
intact after it has been separated from its plex.

12. Detach a plex from an existing volume.
Allows you to separate a plex from a volume. The user first specifies the volume and subvo-
lume from which the plex is to be detached and then the name to assign to the newly created
standalone plex. This plex can later be added back to a volume by choosing selection 3.

The following example shows how to detach the first plex from a volume:

xlv_admin> 12
Please enter name of object to be operated on.
xlv_admin> db1.data
Please select plex number (0-3).
xlv_admin> 0
Please enter name of new object.
xlv_admin> detplex0
Please select choice...
xlv_admin>

21. Remove a ve from an existing plex.
Allows you to separate a volume element from a plex and destroys the removed volume ele-
ment. The following shows how you can remove the second volume element from a plex:

xlv_admin> 21
Please enter name of object to be operated on.
xlv_admin> db1.data
Please select plex number (0-3).
xlv_admin> 0
Please enter ve number.
xlv_admin> 1
Please select choice...

158

xlv_admin(1M)hh

xlv_admin>

22. Remove a plex from an existing volume.
Allows you to separate a plex from a volume and destroys the removed plex.

31. Delete an object.
Allows you to delete a volume, a standalone plex, or a standalone volume element. This
operation removes the XLV configuration from the disk partitions that make up the XLV
object. Because the XLV configuration information is stored in the volume header (see
vh(7M)), this operation does not affect any user data that may have been written to the user
disk partitions.

32. Delete all XLV disk labels.
Allows you to delete the XLV configuration from all the disks on the system. You might want
to do this, for example, to initialize all the disks on a new system to ensure that there are no
leftover XLV configuration information on the disks. Note that this is a very dangerous opera-
tion. Deleting the disk labels destroys all of the XLV objects on the system.

41. Show object by name and type, only.
Allows you to view all the XLV objects on the system. This command lists only the names and
types of the XLV objects. The following shows what the output of this selection looks like:

Please select choice...
xlv_admin> 41

==================== Listing Objects =============
Volume: ’root_vol’
Volume: ’db1’
Volume Element: ’ve12’
Plex: ’plex2’

42. Show information for an object.
Allows you to see detailed information on an XLV object. It displays all the XLV parameters
as well as the disk partitions that make up the object.

In the example below, you can see that the volume named db1 has one subvolume of type data
that contains two plexes. The first plex has two volume elements, while the second plex only
has one volume element. The first volume element in each plex covers the same range of disk
blocks. For each volume element, xlv_admin displays the partitions that make up the volume
element, the size of the partition, and the range of this volume’s disk blocks that map to the
volume element.

Please select choice...
xlv_admin> 42
Please enter name of object to be operated on.
xlv_admin> db1
vol db1

159

xlv_admin(1M)hh

ve db1.data.0.0 [active]
start=0, end=1100799, (cat)grp_size=1
/dev/dsk/dks1d4s0 (1100800 blks)
ve db1.data.0.1 [active]
start=1100800, end=2201599, (cat)grp_size=1
/dev/dsk/dks1d4s1 (1100800 blks)
ve db1.data.1.0 [active]
start=0, end=1100799, (cat)grp_size=1
/dev/dsk/dks1d4s2 (1100800 blks)

Note that the xlv_admin operations are complete in that they modify the XLV disk labels and
kernel as appropriate. If an operation is not successful, an error message is printed to the
screen explaining the failure.

SEE ALSO
xlv_assemble(1M), xlv_make(1M), xlv_plexd(1M), xlv_shutdown(1M), xlv(7M)

NOTES
Note that the xlv_admin operations modify both the XLV disk labels and the kernel data structures as
appropriate. This means that you do not need to run xlv_assemble(1M) for your changes to take effect.
The only exception to this is selection 32, which affects only the disk labels.

xlv_admin automatically initiates plex revive operations (see xlv_plexd(1M)) as required when you add a
new plex or when you add a volume element to a plexed volume.

You must be root to run xlv_admin.

160

xlv_assemble(1M)hh

NAME
xlv_assemble − initialize logical volume objects from disk labels

SYNOPSIS
xlv_assemble [−−h name] [−−lnq] [−−r root] [−−tvKP]

DESCRIPTION
xlv_assemble scans all the disks attached to the local system for logical volume labels. It assembles all the
available logical volumes and generates a configuration data structure. xlv_assemble also creates the dev-
ice nodes for all XLV volumes in /dev/dsk/xlv and /dev/rdsk/xlv . The kernel is then activated with the
newly created configuration data structure. If necessary, xlv_assemble will also ask the xlv_plexd(1M) to
perform any necessary plex revives.

xlv_assemble is automatically run on system startup from a script in the /etc/init.d/xlv directory. By default,
it is also automatically run after you run xlv_make(1M).

xlv_assemble supports the following options:

−−h name Use name as the local nodename. Every logical volume label contains a system nodename. See
the −−l option below.

−−l Assemble only those logical volumes that were created on this local system. Local logical
volumes have the local nodename in their logical volume labels. The default is to assemble all
logical volumes.

−−n Scan all disks for logical volume labels, but don’t save the logical volume configuration and
don’t activate the kernel with this configuration.

−−q Proceed quietly and don’t display status messages after putting together the logical volume
configuration.

−−r root Use root as the root directory. This is used in the miniroot when / is mounted as /root.

−−t Display terse status messages naming the logical volumes configured.

−−v Display verbose status messages about the logical volumes configured.

−−K Don’t activate the kernel with this logical volume configuration.

−−P Don’t initiate plex revives on the logical volumes configured.

FILES
/dev/dsk/xlv/...
/dev/rdsk/xlv/...
/dev/dsk/xlv_root
/dev/rdsk/xlv_root

SEE ALSO
xlv_admin(1M), xlv_labd(1M), xlv_make(1M), xlv_plexd(1M), xlv_shutdown(1M), xlvd(1M), xlv(7M)

161

xlv_assemble(1M)hh

NOTE
You must be root to run xlv_assemble.

162

xlv_labd(7M)hh

NAME
xlv_labd, xlv_plexd, xlvd − logical volume daemons

SYNOPSIS
xlv_labd
xlv_plexd [−−m #_subprocs] [−−b blocksize] [−−w sleep-interval]

[−−v verbosity] [−−h]

DESCRIPTION
xlv_labd, xlv_plexd, and xlvd are logical volume daemons. xlv_labd and xlv_plexd reside in user process
space and xlvd resides in kernel process space.

The XLV label daemon, xlv_labd, is a user process that writes logical volume disk labels. It is normally
started during system restart. Upon startup, xlv_labd immediately calls into the kernel to wait for an
action request from the kernel daemon, xlvd. When an action request comes, xlv_labd processes it and
updates the appropriate volume disk labels. After completing the update, xlv_labd calls back into the ker-
nel to wait for another request.

The XLV plex copy daemon, xlv_plexd, is a user process responsible for making all plexes within a subvo-
lume consistent. The master xlv_plexd process is started at system startup time, with the −−m option, and
subsequently used when new plexes are added. It receives requests to revive plexes via the named pipe
/etc/.xlv_plexd_request_fifo and starts child processes to perform the actual plex copy.

−−m #_subprocs #_subprocs is the maximum number of subprocesses the master xlv_plexd process
forks off at any given time.

−−b blocksize blocksize is the granularity of a single plex copy operation in blocks. The default is
128 blocks, which means XLV initiates a plex copy of 128 blocks, sleeps as indi-
cated by the −−w option (see below), then moves on to the next set of 128 blocks.

−−w sleep-interval sleep-interval is an arbitrary delay enforced at regular intervals while performing a
plex copy in order to share available disk bandwidth. The default delay is 0.

−−v verbosity verbosity is the level of verbosity. The minimum is 0 and the maximum is 3.
xlv_plexd writes its messages to syslog. The default verbosity is 2.

−−h Print the help message.

The XLV daemon, xlvd, is a kernel process that handles I/O to plexes and performs plex error recovery.
When disk labels require updating, xlvd initiates an action request to xlv_labd to perform the disk label
update. If there aren’t multiple plexes, xlvd does not do anything.

NOTE
All three daemons are automatically started and do not need to be explicitly invoked.

FILES
/etc/.xlv_plexd_request_fifo

163

xlv_labd(7M)hh

SEE ALSO
xlv(7M)

164

xlv_make(1M)hh

NAME
xlv_make − create logical volume objects

SYNOPSIS
xlv_make [−−f] [−−v] [−−A] [input_file]

DESCRIPTION
xlv_make creates new logical volume objects by writing logical volume labels to the devices that are to
constitute the volume objects. A volume object can be an entire volume, a plex, or a volume element.
xlv_make allows you to create objects that are not full volumes so that you can maintain a set of spares.

xlv_make supports the following options:

−−f Force xlv_make to create a volume element even if the partition type for the partition specified does
not correspond with its intended usage. This is useful, for example, in converting lv(7M) volumes
to xlv(7M) volumes. It is also used to allow creation of objects involving currently mounted parti-
tions.

−−v Verbose option. Causes xlv_make to generate more detailed output. Also, it causes
xlv_assemble(1M) to generate output upon exit from xlv_make .

−−A Do not invoke xlv_assemble(1M) upon exit from xlv_make . The default is to invoke xlv_assemble
with the −−q option unless the −−v option is specified, in which case xlv_assemble is invoked with no
options. To invoke other xlv_assemble options, specify the −−A option and invoke xlv_assemble
manually.

xlv_make only allows you to create volume objects out of disk partitions that are not currently part of
other volume objects. Partitions must be of a type suitable for use by xlv_make. Suitable types are xfs, efs,
xlv, and xfslog. Partition types other than these will be rejected unless the −−f command line option or the
ve −−force interactive command is specified. See fx(1M) for more information regarding partition types.
xlv_admin(1M) must be used to modify or destroy volume objects.

xlv_make can be run either interactively or it can take its commands from an input file, input_file. xlv_make
is written using Tcl. Therefore, all the Tcl features such as variables, control structures, and so on can be
used in xlv_make commands.

xlv_make creates volume objects by writing the disk labels. To make the newly created logical volumes
active, xlv_assemble(1M) must be run. xlv_assemble is, by default, automatically invoked upon successful
exit from xlv_make; xlv_assemble scans all the disks attached to the system and automatically assembles all
the available logical volumes.

Objects are specified top-down and depth-first. You start by specifying the top-level object, and continue
to specify the pieces that make it up. When you have completed specifying an object at one level, you can
back up and specify another object at the same level.

The commands are:

165

xlv_make(1M)hh

vol volume_name
Specifies a volume. The volume_name is required. It can be up to 14 characters in length.

log Specifies a log subvolume.

data Specifies a data subvolume.

rt Specifies a real-time subvolume. Real-time subvolumes are used for guaranteed-rate I/O and
also for high performance applications that isolate user data on a separate subvolume.

plex [plex_name]
Specifies a plex. If this plex is specified outside of a volume, then plex_name must be given. A
plex that exists outside of a volume is known as a standalone plex.

ve [volume_element_name] [−−stripe] [−−concat] [−−force]
[−−stripe_unit stripe_unit_size] [−−start blkno] device_pathnames

Specifies a volume element. If this volume element is specified outside of a plex, then
volume_element_name must be given.

−−stripe Specifies that the data within this volume element will be striped across all the
disks named by device_pathnames.

−−concat Specifies that all the devices named by device_pathnames are to be joined linearly
into a single logical range of blocks. This is the default if no flags are specified.

−−force Forces the specification of the volume element when the partition type does not
agree with the volume element’s intended usage. For example, a partition with
type ‘‘xfslog’’ could be assigned to a data subvolume. Also, −−force allows the
specification of an object that includes a partition that is currently mounted.

−−stripe_unit stripe_unit_size
specifies the number of blocks to write to one disk before writing to the next disk
in a stripe set. stripe_unit_size is expressed in 512-byte blocks. −−stripe_unit is
only meaningful when used in conjunction with −−stripe. The default stripe unit
size, if this flag is not set, is one track. Note: lv called this parameter the granu-
larity.

−−start blkno Specifies that this volume element should start at the given block number within
the plex.

end Terminates the specification of the current object.

clear Removes the current, uncompleted object.

show Prints out all the volume objects on the system. This includes existing volume objects (created
during an earlier xlv_make session) and new objects specified during this session that have not
been created (written out to the disk labels) yet.

166

xlv_make(1M)hh

exit Create the objects specified during this session by writing the disk labels out to all the disks
affected, and exit xlv_make. In interactive mode, the user will be prompted to confirm this action
if any new objects have been created.

quit Leave xlv_make without creating the specified objects (without writing the disk labels). All the
work done during this invocation of xlv_make will be lost. In interactive mode, the user is
prompted to confirm this action if any objects have been specified.

help Displays a summary of xlv_make commands.

? Same as help.

sh Fork a shell.

EXAMPLES
Example 1

To make a volume from a description in an input file called volume_config.txt, give this command:

xlv_make volume_config.txt

Example 2
This example shows making some volume objects interactively.

xlv_make

Make a spare plex so we can plug it into another volume on demand.

xlv_make> plex spare_plex1

spare_plex1

xlv_make> ve /dev/dsk/dks0d2s1 /dev/dsk/dks0d2s2

spare_plex1.0

xlv_make> end

Object specification completed

Now make a small volume. (Note that xlv_make automatically adds a /dev/dsk to the disk paritition name
if it is missing from the ve command.)

xlv_make> vol small

small

xlv_make> log

small.log

xlv_make> plex

small.log.0

xlv_make> ve dks0d2s3

small.log.0.0

xlv_make> data

small.data

xlv_make> plex

small.data.0

167

xlv_make(1M)hh

xlv_make> ve dks0d2s14 dks0d2s12

small.data.0.0

xlv_make> end

Object specification completed

xlv_make> show

vol small

ve small.log.0.0 d710aa7d-b21d-1001-868d-080069077725

start=0, end=1523, (cat)grp_size=1

/dev/dsk/dks0d2s3 (1524 blks) d710aa7e-b21d-1001-868d-080069077725

ve small.data.0.0 d710aa81-b21d-1001-868d-080069077725

start=0, end=4571, (cat)grp_size=2

/dev/dsk/dks0d2s14 (1524 blks) d710aa82-b21d-1001-868d-080069077725

/dev/dsk/dks0d2s12 (3048 blks) d710aa83-b21d-1001-868d-080069077725

plex spare_plex1

ve spare_plex1.0 d710aa77-b21d-1001-868d-080069077725

start=0, end=3047, (cat)grp_size=2

/dev/dsk/dks0d2s1 (1524 blks) d710aa78-b21d-1001-868d-080069077725

/dev/dsk/dks0d2s2 (1524 blks) d710aa79-b21d-1001-868d-080069077725

xlv_make> help

vol volume_name - Create a volume.

data | log | rt - Create subvolume of this type.

plex [plex_name] - Create a plex.

ve [-start] [-stripe] [-stripe_unit N] [-force] [volume_element_name] partition(s)

end - Finished composing current object.

clear- Delete partially created object.

show - Show all objects.

exit - Write labels and terminate session.

quit - Terminate session without writing labels.

help or ? - Display this help message.

sh - Fork a shell.

xlv_make> exit

#

Note that the strings like d710aa82-b21d-1001-868d-080069077725 shown above are the universally unique
identifiers (UUIDs) that identify each XLV object.

Example 3
This example shows a description file that makes the same volume objects as in Example 2.

A spare plex

plex spare_plex1

ve dks0d2s1 dks0d2s2

A small volume

168

xlv_make(1M)hh

vol small

log

plex

ve dks0d2s3

data

plex

ve dks0d2s14 dks0d2s12

end

Write labels before terminating session.

exit

Example 4
This example shows making a complex volume interactively. It makes a volume for an XFS filesystem
that has a single-partition log and a plexed (mirrored) data subvolume that is striped.

xlv_make

xlv_make> vol movies

movies

xlv_make> log

movies.log

xlv_make> plex

movies.log.0

xlv_make> ve /dev/dsk/dks0d2s1

movies.log.0.0

Let the data subvolume have two plexes, each of which consists of two sets of striped disks. The data
written to the data subvolume will be copied to both movies.data.0 and movies.data.1.

xlv_make> data

movies.data

xlv_make> plex

movies.data.0

xlv_make> ve -stripe dks0d1s6 dks0d2s6 dks0d3s6

movies.data.0.0

xlv_make> ve -stripe dks0d4s6 dks0d5s6

movies.data.0.1

xlv_make> plex

movies.data.1

xlv_make> ve -stripe dks1d1s6 dks1d2s6 dks1d3s6

movies.data.1.0

xlv_make> ve -stripe dks1d4s6 dks1d5s6

movies.data.1.1

Add a small real-time subvolume. Stripe the data across two disks, with the stripe unit set to 1024 512-
byte sectors.

169

xlv_make(1M)hh

xlv_make> rt

movies.rt

xlv_make> plex

movies.rt.0

xlv_make> ve -stripe -stripe_unit 1024 dks4d1s6 dks4d2s6

movies.rt.0.0

xlv_make> end

Object specification completed

xlv_make> exit

#

DIAGNOSTICS
Previous object not completed

You have tried to specify a new object before the previous object has been completely
specified. For example, the sequence plex plex is not valid because the volume elements
for the first plex have not been specified yet.

A volume has not been specified yet
This error results from giving rt, data, or log without first specifying a volume to which
these subvolumes belong.

An object with that name has already been specified
This error results from giving the vol volume_name, plex plex_name, or ve
volume_element_name command when an object with the same name already exists or has
been specified in this session.

A log subvolume has already been specified for this volume

A data subvolume has already been specified for this volume

A real-time subvolume has already been specified for this volume
These errors results from giving the log, data, or rt command for a volume that already
has a subvolume of the given type.

A subvolume has not been specified yet
You have given a volume command and then given the plex command without first
specifying a subvolume to which the plex belongs.

Too many plexes have been specified for this subvolume
You have already specified the maximum allowable number of plexes for this subvo-
lume.

A plex has not been specified yet
You have given a ve command without first giving the plex command.

170

xlv_make(1M)hh

Too many volume elements have been specified for this plex
You have reached the maximum number of volume elements that can be in a single plex.

An error occurred in creating the specified objects
An error occurred while writing the volume configuration out to the disk labels.

Unrecognized flag: flag
flag is not recognized.

Unexpected symbol: symbol
symbol is an unknown command.

A volume name must be specified
You have given a vol command without giving the name of the volume as an argument.

Too many disk partitions
You have specified too many devices for the volume element.

Cannot determine size of partition; please verify that the device exists
xlv_make is unable to figure out the size of the specified disk partition. Make sure that
the device exists.

Unequal partition sizes, truncating the larger partition
The partitions specified for a striped volume element are not of the same size. This
leaves some disk space unusable in the larger partition because data is striped across all
the partitions in a volume element.

A disk partition must be specified
You have given the ve command without specifying the disk partitions that belong to the
volume element as arguments to the command.

Unknown device: %s
You have specified a disk partition that either has no device node in /dev/dsk or is miss-
ing altogether.

Illegal value
The value is out of range for the given flag.

The volume element’s address range must be increasing
When you specify the starting offset of a volume element within a plex by using the ve
−−start command, you must specify them in increasing order.

Disk partition partition is already being used
The disk partition named in the ve command is already in use by some other volume
object.

Disk partition partition is mounted; use ‘‘−force’’ to override
The disk partition named in the ve command is currently mounted. Use of the −−force
argument is required to perform the operation.

171

xlv_make(1M)hh

Address range doesn’t match corresponding volume element in other plexes
A volume element within a plex must have the same address range in all plexes for the
subvolume that includes those plexes.

There are partially specified objects, use ‘‘quit’’ to exit without
creating them You have entered the quit command while there are specified, but not
created objects. You should enter quit again to really quit at this point and discard
specified objects.

Missing flag value for: %s
A command was given that requires an additional argument that was not given.

Malloc failed
There is insufficient memory available for xlv_make to operate successfully.

An error occurred in updating the volume header
An attempt to modify a disk’s volume header was unsuccessful.

A striped volume element must have at least two partitions
The ve −−stripe command was given and only one partition was specified.

Log ve should have partition type xfslog

Data ve should have partition type xlv

Rt ve should have partition type xlv

Standalone object should have partition type xlv or xfslog

Mixing partition type xfslog with data types not allowed
All the paritions that make up a volume element must have the same partition type,
either xlv or xfslog.

Partition type must be consistent with other ve’s in plex
Partition type does not correspond with intended usage.

Partition could already belong to lv.
Check /etc/lvtab A warning that this partition may already belong to an lv volume.

Illegal partition type
An attempt was made to specify a partition that cannot, under any circumstance, be
used in an xlv(7M) volume. An example of such a partition would be the volume
header.

Subvolume type does not match any known
The subvolume being operated on is of no known type.

Size mismatch
The partition size information in the volume header does not match that contained in the
xlv label.

172

xlv_make(1M)hh

Device number mismatch
A warning that the device number in the xlv label does not match that of the volume
header.

The same partition cannot be listed twice
The ve command was given with the same partition listed twice.

SEE ALSO
xlv_admin(1M), xlv_assemble(1M), xlv_labd(1M), xlv_plexd(1M), xlv_shutdown(1M), xlvd(1M), xlv(7M)

Tcl and the Tk Toolkit by John K. Ousterhout, Addison-Wesley, 1994.

NOTES
The disk labels created by xlv_make are stored only in the volume header of the disks. They do not des-
troy user data. Therefore, you can make an lv(7M) volume into an XLV volume and still preserve all the
data on the logical volume.

xlv_make changes the partition type of partitions used in newly created objects to either xlv or xfslog
depending upon their usage.

You must pick a different name for each volume, standalone plex, and standalone volume element. You
cannot have, for example, both a volume and a plex named yy.

You must be root to run xlv_make .

173

xlv_set_primary(1M)hh

NAME
xlv_set_primary − set the primary plex of a logical volume

SYNOPSIS
xlv_set_primary device_name

DESCRIPTION
xlv_set_primary finds the XLV volume and plex to which device_name belongs and makes that plex the
active copy. All the other plexes that belong to this volume are marked stale. This causes all of the plexes
in this volume to be synchronized to the contents of the active plex when the volume is later assembled by
xlv_assemble(1M).

xlv_set_primary is designed for use during the miniroot when only a single plex of the volume is running.
Making that plex the primary plex of the volume ensures that whatever changes are made to this plex (for
example, installing software) are made to the other plexes when they come online.

This command has no effect if device_name is not part of an XLV volume.

SEE ALSO
xlv_admin(1M), xlv_assemble(1M), xlv_plexd(1M), xlv(7M)

NOTE
You must be root to run xlv_set_primary.

174

xlv_shutdown(1M)hh

NAME
xlv_shutdown − shutdown XLV volumes

SYNOPSIS
xlv_shutdown [−−v] [−−n volume-name]

DESCRIPTION
xlv_shutdown is used to gracefully shut down (‘‘disassemble’’) logical volumes after their corresponding
filesystems have been unmounted. It is called by /etc/umountfs, which is called by /etc/inittab at system
shutdown time. xlv_shutdown typically does not need to be explicitly invoked.

xlv_shutdown gets the XLV volumes from the kernel and cleanly shuts them down. This ensures that all
the plexes in a volume are in sync so that they do not need to be revived when restarted. After a volume
has been shut down, xlv_assemble(1M) needs be run before using the volume again. Note that
xlv_shutdown does not shut down a root volume or volumes with mounted filesystems.

xlv_shutdown supports the following options:

−−n volume-name Shut down only the given volume. The default behavior is to close down all possible
volumes.

−−v Display verbose status messages.

SEE ALSO
shutdown(1M), xlv_assemble(1M), inittab(4), xlv(7M)

NOTE
You must be root to run xlv_shutdown.

175

grio_config(4)hh

NAME
grio_config − description of device I/O rates

DESCRIPTION
The /etc/grio_config file contains information describing the I/O rates for each device or controller in the
system. This information is read by ggd and is used to allocate I/O-rate guarantees to requesting
processes.

The grio_config file is composed of entries of two different types. The first describes a system element and
its bandwidth:

device_name= OPTSZ=# NUM=# CTLRNUM=# UNIT=# RT=1 (comment)

OPTSZ, NUM, CTLRNUM, and UNIT are keywords. OPTSZ refers to the optimal I/O size of the dev-
ice in bytes, and NUM is the number of OPTSZ sized I/O requests that can be guaranteed each second.
These fields are required for each device. CTLRNUM and UNIT refer to the device SCSI controller and
unit respectively. These are used only when necessary to identify a particular device. RT=1 is used to
indicate that the disk device is part of an XLV real-time subvolume and that the error retry mechanism
should be disabled. The comment field is optional, but usually contains a description of the device.

The second type of entry describes the relationship between elements in the system:

device_name: dev1 dev2 dev3

This means that dev1, dev2, and dev3 are attached to device_name. In order to get a rate guarantee on one of
these devices, a rate guarantee must also be obtained on device_name as well.

With these entries, ggd is able to construct a performance tree. This tree is used to determine if an I/O-
rate-guarantee request can be satisfied.

FILES
/etc/grio_config

SEE ALSO
cfg(1M), ggd(1M), grio.disks(4), grio(5), xlv(5)

NOTES
Currently, all devices have OPTSZ set to 64K bytes. If a device has OPTSZ and NUM values of 0, the
I/O characteristics of the device could not be determined, and the device is not considered when making
rate guarantees.

176

grio_disks(4)hh

NAME
grio_disks − description of guaranteed I/O rates for disk drives

DESCRIPTION
The /etc/grio_disks file contains information describing the I/O rates for individual types of disk drives.

The entries are of the form:

ADD "SGIxxxxxxxxxxxxxxxxxxxxxxxxx" # #

The first item is the key word ADD. The next item is a 28 character string describing the type of disk
drive. This is the same as the disk drive ID string. Drives recommended by Silicon Graphics usually have
the "SGI" string as the first characters in this string. The next number describes the optimal I/O size in
bytes for the disk device. The final number is the number of optimal sized I/O requests that can be per-
formed by the disk drive each second.

The performance characteristics for most supported disk drives are already known by the ggd daemon.
This file is used to allow system administrators to add the characteristics of new types of drives so that
ggd can make reliable guarantees.

FILES
/etc/grio_disks

SEE ALSO
cfg(1M), ggd(1M), grio.config(4), grio(5)

NOTE
The number of optimal sized I/O requests that can be guaranteed each second may be significantly less
than the maximum performance of the drive. This is because each request is considered to be distinct and
may require a maximum length seek before the request is issued.

177

xfs(4)hh

NAME
xfs − layout of the XFS filesystem

DESCRIPTION
An XFS filesystem can reside on a regular disk partition or on a logical volume (see lv(7M) and xlv(7M)).
An XFS filesystem has up to three parts: a data section, a log section, and a real-time section. For disk
partition and lv logical volume filesystems, the real-time section is absent, and the log area is contained
within the data section. For XLV logical volume filesystems, the real-time section is optional, and the log
section can be separate from the data section or contained within it. The filesystem sections are divided
into a certain number of blocks, whose size is specified at mkfs(1M) time with the −−b option.

The data section contains all the filesystem metadata (inodes, directories, indirect blocks) as well as the
user file data for ordinary (non-real-time) files and the log area if the log is internal to the data section.
The data section is divided into a number of allocation groups. The number and size of the allocation
groups are chosen by mkfs so that there is normally a small number of equal-sized groups. The number of
allocation groups controls the amount of parallelism available in file and block allocation. It should be
increased from the default if there is sufficient memory and a lot of allocation activity. More allocation
groups are added (of the original size) when xfs_growfs(1M) is run.

The log section (or area, if it is internal to the data section) is used to store changes to filesystem metadata
while the filesystem is running until those changes are made to the data section. It is written sequentially
during normal operation and read only during mount. When mounting a filesystem after a crash, the log
is read to complete operations that were in progress at the time of the crash.

The real-time section is used to store the data of real-time files. These files had an attribute bit set through
fcntl(2) after file creation, before any data was written to the file. The real-time section is divided into a
number of extents of fixed size (specified at mkfs time). Each file in the real-time section has an extent size
that is a multiple of the real-time section extent size.

Each allocation group contains several data structures. The first sector contains the superblock. For allo-
cation groups after the first, the superblock is just a copy and is not updated after mkfs. The next three
sectors contain information for block and inode allocation within the allocation group. Also contained
within each allocation group are data structures to locate free blocks and inodes; these are located
through the header structures.

All these data structures are subject to change, and the headers that specify their layout on disk are not
provided.

SEE ALSO
mkfs(1M), xfs_growfs(1M), fcntl(2), syssgi(2), lv(7M), xlv(7M)

178

grio(5)hh

NAME
grio − guaranteed-rate I/O

DESCRIPTION
Guaranteed-rate I/O (GRIO) refers to a guarantee made by the system to a user process indicating that
the given process will receive data from a peripheral device at a predefined rate regardless of any other
activity on the system. The purpose of this mechanism is to manage the sharing of scarce I/O resources
amongst a number of competing processes, and to permit a given process to reserve a portion of the
system’s resources for its exclusive use for a period of time.

Currently, the only I/O resources that can be reserved using the GRIO mechanism are files stored on the
real-time subvolume of an XFS filesystem.

A GRIO guarantee is defined as the number of bytes that can be read or written to a given file by a given
process, each second. If a process has a GRIO guarantee on a file and it issues I/O requests in sizes equal
to the guaranteed amount, then the read or write calls are guaranteed to complete in less than one second.
If the process issues I/O requests at a size or rate greater than the guarantee, the excess requests are
blocked until such time as they fall within the scope of the guarantee.

There are a number of components in the GRIO mechanism. The first is the guarantee-granting daemon,
ggd. This is a user level process that is started when the system is booted. It controls the granting of
guarantees, the initiation and expiration of existing guarantees, and the monitoring of the available
bandwidths of each I/O device on the system. User processes communicate with the daemon using the
grio_request(3X), grio_remove_request(3X), grio_get_rtgkey(3X), and grio_use_rtgkey(3X) library calls.

When ggd is started, it reads the files /etc/grio_config and /etc/grio_disks to determine the bandwidths of the
various devices on the system. These files are generated by the cfg utility but may be edited by the system
administrator to tune performance. If ggd is terminated, all existing rate guarantees are removed.

The next component of the GRIO mechanism is the XLV volume manager. Rate guarantees may only be
obtained from files on the real-time subvolume of an XFS filesystem. The disk driver command retry
mechanism is disabled on the disks that make up the real-time subvolume. This means that if a drive
error occurs, the data is lost. The intent of real-time files is to read/write data from the disk as rapidly as
possible. If the device driver is forced to retry one process’s disk request, it causes the requests from
other processes to become delayed.

If one partition of a disk is used in a real-time subvolume, the entire disk is considered to be used for
real-time operation. If one disk on a SCSI controller is used for real-time operation then all the other dev-
ices on that controller must be used for real-time operation as well.

In order to use the guaranteed-rate I/O mechanism effectively, the XLV volume and XFS filesystem must
be set up properly. The next section gives an example.

By default, the ggd daemon will allow two process streams to obtain rate guarantees. If support for more
streams is desired, it is necessary to obtain licenses for the additional streams. The license information is
stored in the /usr/var/netls/nodelock file and interpreted by the ggd daemon on startup.

179

grio(5)hh

EXAMPLE
The example in this section describes a method of laying out the disks, filesystem, and real-time file that
enables the greatest number of processes to obtain guarantees on a single file concurrently. It is not neces-
sary to construct a file in this manner in order to use GRIO, however fewer processes can obtain rate
guarantees on the file as a result. Assume that there are four disk partitions available for the real-time
subvolume of an XLV volume. Each one of the partitions is on a different physical disk.

Before setting up the XFS filesystem, the I/O request size used by the user process must be determined.
In order to get the greatest I/O rate, the file data should be striped across all the disks in the subvolume.
To avoid filesystem fragmentation and to force all I/O operations to be on stripe boundaries, the file
extent size should be an even multiple of the volume stripe width. Rate guarantees are always made
assuming I/O request sizes that are even multiples of an optimal I/O size. The optimal I/O size is
specified on a per device basis in the /etc/grio_config file but it is usually 64K bytes. Therefore, the I/O
request size should be a multiple of 64K bytes and equal to the volume stripe width. The file extent size
should be set to a multiple of the volume stripe width.

In this example, let the file extent size be equal to the stripe width. The application always issues I/O
operations of size equal to the extent size. Assuming there are four disks available, let the stripe step size
be equal to 64k bytes. The file extent size and volume stripe width are set to 256K bytes. All application
I/O operations then will be performed in 256k byte blocks.

Once the XLV volume and XFS filesystem have been created, the application can create the real-time file.
Real-time files must be read or written using direct, synchronous I/O requests. The open(2) manual page
describes the use and buffer alignment restrictions when using direct I/O. When creating a real-time file,
the F_FSSETXATTR command must be issued to set the XFS_XFLAG_REALTIME flag. This can only be
issued on a newly created file. It is not possible to mark a file as real-time once non-real-time data blocks
have been allocated to it. Rate guarantees cannot be obtained when creating a file. In order for a rate
guarantee to be obtained, it is necessary to know the layout of the blocks of the file on the disks. This can-
not be determined until after the file has been written.

After the real-time file has been created, the application can issue a grio_request(3X) to obtain the rate
guarantee. With the rate guarantee established, the application read or write requests to the file, using the
given file descriptor, will complete within the guaranteed time. This will continue until the file is closed,
the guarantee is removed by the application via grio_remove_request(3X), or the guarantee expires.

DIAGNOSTICS
If a rate cannot be guaranteed, ggd returns an error to the requesting process. It also returns the amount
of bandwidth currently available on the device. The process can then determine if this amount is
sufficient and if so issue another rate guarantee request.

FILES
/etc/grio_config
/etc/grio_disks
/usr/var/netls/nodelock

180

grio(5)hh

SEE ALSO
ggd(1M), grio_get_rtgkey(3X), grio_remove_request(3X), grio_request(3X), grio_use_rtgkey(3X),
grio_config(4), grio_disks(4)

181

xlv(7M)hh

NAME
xlv − logical volume disk driver

SYNOPSIS
/dev/dsk/xlv/*
/dev/rdsk/xlv/*

DESCRIPTION
XLV devices provide access to disk storage as logical volumes. A logical volume is an object that behaves
like a disk partition, but its storage may span several physical disk devices.

Using XLV, you can concatenate disks together to create larger logical volumes, stripe data across disks to
create logical volumes with greater throughput, and plex (or mirror) disks for reliability. In addition,
XLV enables you to change the configuration of volumes while the volume is actively being used as a
filesystem.

The geometry of logical volumes (e.g., the disks that belong to it, how they are put together, etc.) are
stored in the disk labels of the disks that belong to the logical volumes. When the system starts up, the
utility xlv_assemble(1M) scans all the disks on the system and automatically assembles them into logical
volumes. xlv_assemble(1M) also creates any necessary device nodes.

XLV device names always begin with /dev/{r}dsk/xlv/device_name where the device_name is assigned by
the creator of the volume. See xlv_make(1M) for how volumes are created.

Device numbers range from 0 to one less than the maximum number of logical volume devices
configured in the system. This is 10 by default; this number may be changed by rebuilding a kernel with
lboot(1M).

There is a kernel driver, referred to as xlv, and some daemons for the logical volume devices. The driver
is a ’pseudo device’ not directly associated with any physical hardware; its function is to map requests on
logical volume devices into requests on the underlying disk devices. The daemons take care of error
recovery and dynamic reconfiguration of volumes.

Volume Objects
XLV allows you to work with whole volumes and pieces of volumes. Pieces of volumes are useful for
creating and reconfiguring volumes in units that are larger than individual disk partitions.

Each volume consists of up to three subvolumes. An xfs(4) filesystem usually has a large data subvolume in
which all the user files and metadata such as inodes are stored and a small log subvolume in which the
filesystem log is stored. For high-performance and real-time applications, a volume can also have a real-
time subvolume that contains only user files aligned at configurable block boundaries. Guaranteed rate
I/O can be done to real-time subvolumes. See grio(5).

Each subvolume can be independently organized as 1 to 4 plexes. Plexes are sometimes known as mir-
rors. XLV makes sure that the data in all the plexes of a subvolume are the same. Plexes are useful for
reliability since a subvolume remains available if any of its plexes are available. Since each subvolume is
independently organized, you can choose to plex any, all, or none of the subvolumes within a volume.

182

xlv(7M)hh

Each plex consists of up to 128 volume elements. Each volume element is a collection of disk partitions that
may be either striped or concatenated. By adding volume elements, you can extend the size of a subvo-
lume − even one that is striped. Volume elements within a plex do not need to be of the same size. How-
ever, all the volume elements at the same offset in all the plexes of the subvolume must be the same size.
For example, the first and second volume elements in a plex can have different sizes. But the first volume
element in all the plexes of the subvolume must be the same size. This restriction is necessary because the
volume element is the unit of recovery. Note that if XLV gets an unrecoverable disk error on one disk
partition in a volume element, the entire volume element is taken offline.

Each volume element can consist of from 1 to 100 disk partitions. The disks can be treated as either a con-
catenated set (in which case XLV writes to the partitions sequentially) or as a striped set (in which case XLV
writes a stripe unit’s worth of data to one disk and then rotates to the next disk in the stripe set.) In gen-
eral, it is better to use volume elements that contain single disks when you want to concatenate disks
together and only use volume elements with multiple disks when you want to use disk-striping. This is
because the volume element is the unit of recovery.

XLV allows you to create and work with volumes, subvolumes, plexes, and volume elements. The
interesting operations associated with volumes are: creating them, assembling disk partitions into
volumes, mounting them, changing volume configurations, shutting them down, and destroying them.

Naming Volume Objects
Each XLV object is composed of a hierarchy of lower level objects. For example, a volume is composed of
subvolumes that are in turn composed of plexes, etc. To let you refer to a component of an XLV object,
XLV has adopted a hierarchical naming convention. For example:

movies.data.0.5.50 Refers to the volume named movie, the data subvolume, plex 0 of that subvolume,
volume element 5 within that plex, and disk partition 50 within that volume ele-
ment. Note that the numbers are zero-based.

movies.log.2 Refers to plex number 2 in the log subvolume of the volume named movies.

movies.rt.1.5 Refers to volume element 5 within plex number 1 of the real-time subvolume of the
volume named movies.

If you create an object outside of a volume, then that object has a user-assigned name. For example,
spare_plex.2.1 refers to disk partition number 1 of volume element number 2 of a standalone plex named
spare_plex. spare_plex does not currently belong to any subvolumes.

These names are echoed by xlv_make(1M) as objects are created. They are also useful in specifying the
objects to change via xlv_admin(1M).

Creating Volumes
Volumes are created via xlv_make(1M). This utility writes the volume geometry to all the disks that
belong to the volume object. The geometry is written to the volume headers. See vh(7M).

Assembling Volumes
After a volume has been created, it must be made known to the kernel driver before I/O can be initiated
to the volume. The command xlv_assemble(1M) scans all the disks attached to the system and assembles
all the logical volumes that it finds. It then passes the configuration to the kernel. This is usually done

183

xlv(7M)hh

during system startup. Once a volume has been assembled, I/O can be performed.

Working with Filesystems
The normal filesystem utilities such as mkfs(1M) and mount(1M) work with logical volumes.

A logical volume consisting of a single disk partition (that may be plexed) can be used as root(7M). You
cannot boot directly off a logical volume; you must specify the underlying disk partition. partition.

Modifying Volumes
The geometry of a volume object can be modified either offline or online. To modify a volume object
offline, first unmount the filesystem, then destroy the volume object by using xlv_admin(1M). Then, you
can run xlv_make(1M) to create new XLV objects. Note that xlv_make only allows you to use disk parti-
tions that are not currently part of volume objects.

You can also modify volume objects while they are online by using xlv_admin(1M). You can grow a
volume, add a plex, and remove a plex while the volume is actively being used. Note that I/O is blocked
while the configuration is being changed. The blocked I/O is completed after the configuration has been
written out to the disk labels.

You can also use xlv_admin to remove a volume element from a plex while the volume is online if there is
at least one other plex that covers the range of disk blocks affected. Note that you can choose to plex only
a portion of the address space of a subvolume.

Working with Plexes
When there are multiple plexes, XLV recovers from read errors. In addition, XLV attempts to rewrite the
data back to the failed plex. XLV masks write errors if it can write to at least one of the plexes.

When a plexed volume starts up, XLV automatically makes sure that all the data among the plexes within
each subvolume is consistent. This may involve copying the data from one plex to the others. While this
is going on, the volume is available at a degraded performance. You can eliminate the need for plex
recovery by shutting down the plex with xlv_shutdown(1M). xlv_shutdown synchronizes the plexes and
marks them as been the same so that when they restart, XLV knows that the plexes are consistent and can
therefore avoid the plex copies.

FILES
/dev/dsk/xlv/*
/dev/rdsk/xlv/*
/var/sysgen/master.d/xlv

SEE ALSO
cfg(1M), lv_to_xlv(1M), xlv_admin(1M), xlv_assemble(1M), xlv_make(1M), xlv_shutdown(1M), grio(5),
xlv_labd(1M), xlv_plexd(1M), xlvd(1M)

NOTES
XLV runs on both XFS and EFS filesystems. In addition, you can read and write to XLV devices using the
raw device interfaces.

184

xlv(7M)hh

XLV disk labels are stored on the disks themselves. Therefore, you can physically reposition the disk
drives and XLV still assembles them correctly.

You can upgrade from an existing lv(7M) volume to an XLV volume by using lv_to_xlv(1M).

When you are running in the miniroot, the XLV device nodes are created in /root/dev/dsk/xlv and
/root/dev/rdsk/xlv .

185

187

not allowed on root filesystems, 70
cpio utility, 57
CPUs

restrict to running GRIO processes, 101, 109
cumulative restores, xfsrestore utility, 52

D

daemons
GRIO, 96, 101
XLV, 69

data segments, xfsdump utility, 32
/dev/dsk/xlv directory, 68
device name

disk for dump file, 20
identifying, 15
identifying with prtvtoc, 19
tape drive, 19

df utility and XLV, 89
direct I/O, 90
disk labels

and logical volume assembly, 69
daemon that writes them, 69
information used at system startup, 63
written by xlv_make, 73

disk partitions
and external log size, 71
and volume elements, 66
block and character devices, 60
device names, 15, 19

B

backup and restore
amount of time it takes, 14
compatibility of dump and restore utilities, 13
during conversion to XFS, 13, 21, 26
using xfsdump and xfsrestore, 29-58
utilities, 3

block sizes
and mkfs, 15, 23, 26
guidelines, 7
range of sizes, 2, 7
syntax, 7

bru utility, 57

C

cfg utility
description, 96
reference page, 117
using, 105

compatibility
32-bit programs and XFS, 2
dump/restore and filesystem type, 3
EFS and XFS, 1
NFS, 2
of software releases, 6

component records, 106
concatenation

definition, 66
guidelines, 73

Index

188

Index

making an XFS filesystem, 14
partition types, 13
planning, 12
repartitioning, 12
repartitioning during conversion, 22
sizes for striped volume elements, 72

Disk Plexing Option, 59
disk space

estimating with xfs_estimate, 10
for logs, 9
getting more, 11
growing a logical volume, 81
increase for XFS, 10

dump inventory, xfsdump utility, 32
dump session, xfsdump utility, 32
dump stream, xfsdump utility, 32
dump utility

commands used during conversion to XFS, 21
commands used during coversion to XFS, 26
reference page, 117
requirements for conversion to XFS, 13
vs. xfsdump, 29
when to use, 3

dvhtool utility and volume element sizes, 72

E

EFS filesystems
and XLV logical volumes, 60
XLV subvolumes, 71

error messages, 111-113
error recovery

and XLV, 70
disabling for GRIO, 98-100
from specific errors, 111-113

/etc/config/ggd.options file, 96, 109
/etc/fstab file

entries for system disk, 20

entries for XLV logical volumes, 76
entry for an XLV logical volume, 17, 105
entry for disk partition, 16
entry for XLV logical volume, 78

/etc/grio_config file, 96, 101, 105, 106, 109
/etc/grio_disks file, 96, 108
/etc/lvtab file, 78
/etc/rc2.d/S94grio file, 96
extent size, 2, 8, 103, 105

F

fcntl system call, 89
font conventions, xvii
fx utility

disk partition types, 13
new features, 12
standalone vs. IRIX, 12
using the standalone version, 22

G

ggd daemon
description, 96
reference page, 117
restarting, 101, 105

GRIO
component records, 106
configuring the ggd daemon, 101
creating an XLV logical volume for, 102
description, 4, 91
disabling disk error recovery, 98-100
disk errors, 93
features, 4
file descriptors, 92
file formats, 106-109
hard guarantees, 93, 97
hardware configuration requirements, 97

189

Index

library routines, 116
lock file, 96
overview, 92
rate, 92, 102
relationship records, 108
reservations, 92
soft guarantees, 94
streams, 91
system components, 96
types of guarantees, 93
VOD guarantees, 94

grio(5) reference page, 117
grio_config(4) reference page, 117
grio_disks(4) reference page, 117
guaranteed-rate I/O. See GRIO.

H

hard errors, 70
hard guarantees, 93, 97
hardware requirements, xvii, 97
housekeeping directory, 56

I

IDO software release, 6
incremental dumps, xfsdump utility, 42
interactive restore, xfsrestore utility, 51
interrupted restores, xfsrestore utility, 55
inventory, xfsdump utility, 32, 44
IRIS Volume Manager, 1, 4

J

journaling information, 2, 63

K

kernel panics, 112

L

library routines new with XFS, 116
logical volumes

adding plexes, 82
choosing which subvolumes, 71
coming up at system startup, 63, 69
creating, examples, 73-76
definition of volume, 62
deleting objects, 88
description, 60
detaching plexes, 86
device names, 68
disk labels, 59, 63, 69, 73
displaying objects, 80
example (figure), 60
growing, 81
hierarchy of objects, 60
increasing size, 81
lv. See lv logical volumes.
moving to a new system, 63, 69
naming, 68
preparing for use, 76
read and write errors, 70
See also subvolumes.
See also volume elements.
See also XLV.
sizes, 71
used as raw devices, 59, 63
volume composition, 62

logs
choosing size, 9
choosing type, 8
description, 8
external, definition, 8
external, specifying size, 9

190

Index

internal, definition, 8
internal, specifying size, 9
internal log, when used, 71
size syntax, 10

lv_to_xlv utility
reference page, 117
using, 77

lv logical volumes, 4
converting to XLV, 77

M

manual pages, xviii, 115
media layout, xfsdump utility, 32
media object, xfsdump utility, 32
metadata, filesystem, 3, 112
mkfs_xfs utility

reference page, 117
See also mkfs utility, 117

mkfs utility
command line syntax, 15, 16, 23, 26
example output, 15, 16, 23
for GRIO, 105
reference page, 117

mpadmin utility, 101

N

NetLS licenses
Disk Plexing Option, xv, 4, 59
High Performance Guaranteed-Rate I/O, xv, 4, 91

NFS
compatibility, 2
software release, 6

O

online reference pages, 115
optimal I/O size, 103, 107, 108
orphanage directory, 56

P

plexes
adding to volumes, 82
definition, 64
deleting, 88
detaching, 86
Disk Plexing Option, xv, 4, 59
displaying, 80
example of creating, 75
holes in address space, 64, 72
monitoring plex revives, 85
plex composition, 65
plex revive definition, 65
read and write errors, 70
See also logical volumes.
volume element sizes, 72
when to use, 72

plex revives, 85
prerequisite hardware, xvii, 97
prerequisite software, 6
prtvtoc utility, 19

R

read continuous (RC) bit, 97
real-time files, 89
real-time process, 101
real-time subvolumes

and utilities, 89
creating files, 89

191

Index

GRIO files, 92
hardware requirements, 97
only real-time on disk, 64

reference pages
for more information, xviii
included in this guide, 116
related to XFS and XLV, 115
viewing, 115

relationship records, 108
restore utility

and XFS filesystems, 3
commands used during conversion to XFS, 24, 27
reference page, 117
vs. xfsrestore, 29

restoring files, xfsrestore utility, 50
restoring interrupted dumps, xfsrestore utility, 53
retry mechanisms, 97
root filesystem

combining with usr, 11
converting to XFS, 18
dumping, 21
growing, 6
restoring all files, 24
restrictions, 72

root partition
and striping, 72
and XLV, 70
combining with usr partition, 22
converting to XFS, 18-25
device name, 19

S

soft guarantees, 94
software release, 6
stream terminator, xfsdump utility, 32
striped volume elements. See volume elements.
stripe unit, definition, 67

subvolumes
composition, 63
data subvolume definition, 63
displaying, 80
log subvolume definition, 63
real time subvolume definition, 64
See also logical volumes.
subvolume types, 63

system calls, new and modified for XFS, 116
System Recovery, PROM Monitor, 58

T

tapes, reusing with xfsdump utility, 40
tar utility, 57
terminator, xfsdump utility, 32

U

usr filesystem
combining with root filesystem, 11
converting to XFS, 18
dumping, 21
restoring all files, 24

/usr/lib/libgrio.so, 96
usr partition

combining with root partition, 22
device name, 19

utilities changed for XFS and XLV, 116

V

VOD (Video On Demand) guarantees, 94
volume elements

changing size with dvhtool, 72
definition, 66
deleting, 88

192

Index

displaying, 80
multipartition volume elements, definition, 67
multipartition volume elements not

recommended, 73
single partition volume elements, definition, 66
striped, definition, 67
striped, example of creating, 75
striping, when to use, 72, 94

volumes. See logical volumes.

X

XFS
and standard utilities, 2
block sizes, 2, 7
can’t use when ..., 5
changed system calls, 116
changed utilities, 116
compatibility with EFS, 1
converting an option disk, 25
converting system disk, 18-25
features, 1
filesystem on a new disk partition, 14
journaling information, 63
logs. See logs.
making filesystems, 14-17
new library routines, 116
on system disk, 18
preparing to make filesystems, 5-14
restore compatibility, 3
subsystems, 6
utilities, 2, 115

xfs(4) reference page, 117
xfs_check utility

error messages, 113
how to use, 27
reference page, 117
reporting and repairing problems, 28

xfs_estimate utility

how to use, 10
reference page, 117

xfs_growfs utility, 82, 117
xfsdump utility

dump inventory, 44
features, 30
incremental dumps, 42
media layout, 32
network usage, 56
reference page, 117
resumed dumps, 42
reusing media, 40
specifying media, 37
STDOUT, 56
using, 37

xfsrestore utility
and EFS filesystems, 3
cumulative restores, 52
features, 30
interactive restore, 51
interrupted restores, 55
network usage, 50, 56
reference page, 117
restoring files, 50
restoring interrupted dumps, 53
session ID, 48
session label, 48
simple restores, 48
STDIN, 56
using, 47

XLV
compatibility with EFS, 1
compatibility with XFS, 1
converting lv logical volumes, 77
daemons, 69, 115
don’t use XLV when ..., 70
error policy, 70
features, 3
logical volumes. See logical volumes.
no configuration file, 69

193

Index

overview, 60-70
planning logical volumes, 70-73
relationship to IRIS Volume Manager, 1
relationship to lv, 1
See also logical volumes.
utilities, 115
with EFS, 3

xlv(7M) reference page, 117
xlv_admin utility

adding a plex, 82
and Disk Plexing Option, 79
deleting volume objects, 88
detaching a plex, 86
displaying objects, 80
growing a volume, 81
menu, 79
reference page, 117

xlv_assemble utility, 117
xlv_labd daemon

description, 69
reference page, 117

xlv_make utility
error messages, 113
GRIO example, 104
reference page, 117
using to create volume objects, 73-76

xlv_plexd daemon
description, 69
reference page, 117

xlv_set_primary utility, 117
xlv_shutdown utility, 117
xlvd daemon

description, 69
reference page, 117

XLV logical volumes. See logical volumes.

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-2549-001.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 415-965-0964

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

