
Netsite™ Communications Server
Administrator’s Guide

Document Number 007-2629-001

Netsite™ Communications Server Administrator’s Guide
Document Number 007-2629-001

© Copyright 1995, Silicon Graphics, Inc.— All Rights Reserved
This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics, the Silicon Graphics logo, and IRIS are registered trademarks and
WebFORCE and IRIX are trademarks of Silicon Graphics, Inc.

Netscape Communications, Netsite, and Netscape Navigator are trademarks of
Netscape Communications Corporation. X Window System is a trademark of
Massachusetts Institute of Technology.

Microsoft Windows is a trademark of Microsoft Corporation. Apple Macintosh is a
registered trademark of Apple Computer, Inc.

UNIX is a registered trademark in the United States and other countries, licensed
exclusively through XOpen Company, Ltd.

iii

Contents

List of Examples ix

List of Figures xi

About This Guide xiii
Contact Information xiii
Some Conventions Used in this Guide xiv

1. Quickstart Installation 1
Things You Can Do Before You Do Anything Else 1

Make Sure DNS Is Up and Running 2
Make a Home Page 2
Think of a Name for the Server and Set Up an Alias 2
Create an IRIX User Account 4
Create a Directory to Serve as Your Document Root 4
Choose a Unique Port Number 4
Deactivate Any Existing HTTP Servers 5

What Happens During Installation? 5
Server Configuration 6
Fill Out the Configuration Worksheet 7

Initial Server Configuration 9
Initial Document Configuration 14
Initial Administrative Configuration 17

Register Your Server with Netscape Communications Corporation 19
Install the Server 19

2. Netsite Server Manager 21
How to Access the Netsite Server Manager 21
How to Use Wildcard Patterns 23
Restart the Server Automatically 24

iv

Contents

Start the Server Manually 24
Stop the Server Manually 25

3. Server Configuration 27
Full Configuration 27

Configure the Specifics of Your Server 28
Change Your Document Root 30
Change Your Server’s Home Page 31
Change Your Server’s Directory Indexing Preferences 32
Create a Directory Dedicated to Running CGI Programs 32
Configure Users’ Public Information Directories 34
Add a New URL Prefix 36
Change the Default MIME Type 37
Create a Pointer to a Moved Resource 38

Quick Configuration 40

4. Server Maintenance 41
Server Resources 41

Activate CGI as a File Type 43
Text Trailers 43
Directory Indexes 44
Error Processing 45
Request Logging 46
Server-Side Includes 47
Access Control 48
Limit File System Links 50
Deny Existence 51
Query Handling 52
Remove Changes 53

Contents

v

User Databases 53
Create a New Database 53
Convert an NCSA httpd-Style Database 54
Database Administrative Password 55
Add, Edit or Remove Users 56
Remove a Database 58

Administrative Access 58
Server Error Logs 60
Process Control 60

Shut Down the Server 61
Soft Server Restart 61
Hard Server Restart 61

A. What’s Different 63
QuickStart Installation and Administration Interface 63
Reduced System Impact 63
Easier Imagemaps 64
Document Signatures, or Trailers 64
Custom Error Messages 65
Custom Logging 65
Flexible Access Control 66
Improved User Management 66
Configuration by Directory or Template 66
Multiple User Public Information Directories 66
NCSA Features Not Supported 67

B. Tutorials 69
What Is An Imagemap? 69

How Does This Compare To My Old Imagemaps? 69
How Does It Work? 70
How Are Regions Specified? 70
How Does It All Fit Together? 71
Can You Give Me An Example? 71

vi

Contents

Methods of CGI Access 71
Activate .CGI as a File Type In Certain Directories 72
Specify a CGI-BIN Alias 73

HTTP User Access Control 74
Create User Databases 74
Modify User Databases 75
Choose a Resource 75
Add Access Control 75

UNIX Users Versus HTTP Users 76
Make Your Server Safe 77

User Directories 77
CGI Security Concerns 78
Symbolic Links 79

Optimize Your Server’s Performance 80
The Maximum Number of Processes 80
Server-Parsed HTML 81

How to Use Resource Templates 82
Create a New Template 82
Modify That Template 83
Apply the New Template 83
How About an Example? 84

C. CGI-A Primer 85
How CGI Works 85
Accessing CGI Programs 89

Embedding Information in URLs 90
Accepting User Input from URLs and Other Sources 92

Information Provided by the Server 94
Environment Variables 94
Accessing Environment Variables 94
Variable Formats 95
Secure Server Variable Formats 100
HTTP Headers 100
The Standard Input 101

Contents

vii

Program Output 102
CGI Generic Headers 103
CGI Specific Headers 104
Sample Program Output 106

An Example CGI Program in ANSI C 106
Tips for CGI Program Development 115

D. Technical Information 117
Manual Configuration 117
Example Configuration Files 118
The Technical Configuration File 118

The Directives 119
The Init Directive 129

Description of Init functions 130
The Object Configuration File 134

Definition of Objects 134
The Contents of Objects 137
Format of Object Configuration Files 138
Access Control 140
Functions 141
AuthTrans Functions 142
NameTrans Functions 143
PathCheck Functions 148
ObjectType Functions 154
Service Functions 158
AddLog Functions 166
Error Directive 168

E. Netsite Technical Specifications 171
Netsite Technical Specifications 171

Glossary 173

Index 179

ix

Examples

Example C-1 Sample CGI Program (Part 1) 108
Example C-2 Sample CGI Program (Part 2) 108
Example C-3 Sample CGI Program (Part 3) 108
Example C-4 Sample CGI Program (Part 4) 109
Example C-5 Sample CGI Program (Part 5) 110
Example C-6 Sample CGI Program (Part 6) 110
Example C-7 Sample CGI Program (Part 7) 111
Example C-8 Sample CGI Program (Part 8) 112
Example C-9 Sample CGI Program (Part 9) 113
Example C-10 Sample CGI Program (Part 10) 113
Example C-11 Sample CGI Program (Part 11) 114
Example D-1 Sample of magnus.conf 119
Example D-2 Sample of obj.conf 134

xi

Figures

Figure 1-1 Anatomy of a URL 3
Figure 1-2 A Map of the Online Installation Forms 6
Figure 1-3 Sample Configuration Worksheet 8
Figure 1-4 Icons Used for Automatic Indexing 16
Figure 2-1 Netsite Server Manager Imagemap 22
Figure C-1 Step 1: The Client Contacts The Server 86
Figure C-2 Step 2: Create a CGI Process 87
Figure C-3 Step 3: Assign Variables and Open Data Paths 88
Figure C-4 Step 4: Execute the CGI Program 89
Figure C-5 Sample Guest-Book/gb.html as It Would Appear in the

Client Window 107

xiii

About This Guide

Welcome to the world of WebFORCE™. You’re about to embark on a
fascinating journey. You’ve chosen the best network and Internet
communications server available, and you’ll discover it’s quite easy to
configure, install, and manage.

This reference guide tells you everything you need to know about getting
started with the Netsite™ Communications Server and then how to
reconfigure and maintain it. The guide is organized in much the same way
as the online forms you use to install and manage the server. Chapter 1 tells
you how to do the setup and install. Chapter 2 shows you how to gain access
to the Netsite Server Manager. Chapter 3 shows you how to use the Netsite
Server Manager to perform additional server configuration. Chapter 4 tells
you how to do server maintenance. The appendices describe what’s new and
different about Netsite, provide valuable tutorials and show you how to
work directly with the server’s configuration files should you choose to do
so.

Contact Information

Silicon Graphics, Inc., provides a comprehensive product support
maintenance program for its products.

If you are in the United States or Canada and would like support for your
Silicon Graphics-supported products, contact the Technical Assistance
Center at 1-800-800-4SGI.

If you are outside these areas, contact the Silicon Graphics subsidiary or
authorized distributor in your country.

xiv

About This Guide

Some Conventions Used in this Guide

Every computer reference guide has conventions. There’s no avoiding them.
They’ll help you find your way through the reference guide.

Note: This convention is a note. It provides special information that you
might not otherwise see or pay any attention to.

This book describes, for the most part, how you fill out online document
forms. So when this guide mentions “form” or “page”, it means the
document form or page that you’d see online if you were sitting in front of
your workstation looking at the monitor while working with the Netsite
server software (not the pages or sample forms in the guide—unless it is
specifically stated otherwise).

When forms input is talked about in the guide, you’ll see something like this:

Characters that you type on your keyboard appear in bold type and look
like this .

1. Numbered steps have numbers like the one at the beginning of this
sentence.

Uniform Resource Locators (URLs) are set off from the body of certain
paragraphs and look like this:

http://www.mcom.com

Items that appear between brackets like [yourdomain] should be replaced
with a value or expression specific to what you’re doing or specific to your
site.

Variables that are used in syntax expressions or descriptions of syntax
expressions appear in a typestyle that looks like this. This convention is used
primarily in Appendix C.

What do you want to put in the field?

Some Conventions Used in this Guide

xv

With this information about some of the conventions used in this guide now
embedded in your mind, you’re ready to start installing your Netsite
Communications Server. Read on.

1

Chapter 1

1. Quickstart Installation

It’s easy to get your Netsite Communications Server up and running. There
are only five steps to the QuickStart process:

1. Answer the questions on the configuration worksheet found in
Figure 1-3. This chapter has the answers to those questions.

2. Load the software onto your machine as described in the release notes.

3. Fill out the online Netsite configuration forms (using your answers to
the questions on the worksheet).

4. Register your server with the Netscape Communications Directory of
Services (optional).

5. Click a link that automatically installs the server to your specs.

To load the software onto your server host, follow the instructions for inst
contained in your software released notes. When you have loaded that
software and run the ./mc-install command (thereby starting the installer),
you are presented with the QuickStart forms described in this chapter.

Use the worksheet (Figure 1-3) and this guide to plan your configuration
and get all the information you need in one place. Then, when you go to your
workstation to perform the initial server setup, you may be surprised at how
easy it goes.

Things You Can Do Before You Do Anything Else

To prepare for the server setup and configuration, take some time to look
over these items. If you do these things before you do anything else, the
server installation will go smoothly. And, you’ll have everything ready to go
when the time comes.

2

Chapter 1: Quickstart Installation

Make Sure DNS Is Up and Running

When you do the Netsite Communications Server installation, some items
on the installation forms request either a hostname or an IP address (or
multiple entries of the same) as input strings. As you prepare for installation,
if you plan to use hostnames, make sure your domain name system (DNS)
service is up and running properly. Otherwise, the Netsite server won’t be
able to resolve hostnames when it’s installed and running. If you can’t use
DNS or don’t have name service running, make sure you use full IP
addresses instead of hostnames where requested on the forms.

Make a Home Page

If you’ve done any “netsurfing” on the Internet with Netscape Navigator™

or some other network navigation software, you’ve probably seen these. A
home page serves as an introduction or index to the contents of your server.
You might already have one. If you have a home page and want to use it with
the new server, make a mental note of it and skip to the next part of the
guide. If you don’t have a home page, you probably want to make one. If you
don’t know how or don’t have the time right now, the server installer will
make one for you, but it’s short on glamour. If you want to bring up your
Netsite service in the most elegant manner possible, having a home page
ready to go advances this cause.

Think of a Name for the Server and Set Up an Alias

Every “thing” needs a name. In the world of computers and networks, if
something isn’t named, it doesn’t exist. You need to come up with a name for
your server so that people know it exists and how to find it.

When the Netsite server is installed, the name you give your server,
combined with your domain name and domain authority, becomes the
Uniform Resource Locator (URL) when users attempt to access your home
page. For example, when people use Netscape Navigator to reach us, they
use the URL:

http://www.sgi.com

Things You Can Do Before You Do Anything Else

3

You can see that the server name combines our domain name, “sgi” with the
top-level domain authority “com”, with a server name of “www” (separated
by the appropriate dots).

Using Netscape Navigator, you can do some netsurfing on your own and
take a look at the various URLs out there. They should give you an idea of
what to call your own server. Keep in mind that the server name part of a
URL—the last three strings between the dots—looks like this:

servername.[yourdomain].[dom]

Look at Figure 1-1 to see a visual description of URLs. For more examples of
server names see “What do you want to name your server?” on page 9.

Figure 1-1 Anatomy of a URL

DNS service must be supported on the server machine and all referring
machines in the network if you plan to use a hostname. Otherwise, you need
to make your server name using the exact IP address of the machine where
you plan to install the server. For example, the IP address for the hostname
www.sgi.com is 192.82.208.8.

A domain name system service matches the IP address with the domain
name using a database of machine name records and IP address records. If
you have any doubt that DNS is supported on the machine where you plan
to install your Netsite server, use your machine’s IP address for the server
hostname. IP addresses always work.

If your server is going to run on one machine among many in a network, you
or your network administrator should set up a DNS CNAME record or an
alias like “www” which points to the actual server machine. Later, should the
need arise, you can change the actual hostname or IP address of the server
machine without having to change all of your URLs.

home.[yourdomain].[dom]

Server name

Local site or domain name

Domain authority
(usually one of .com, .edu, .gov, .mil, .org, or .net)

4

Chapter 1: Quickstart Installation

Create an IRIX User Account

You need to be logged in as root (or superuser) to install the server. However,
you don’t necessarily want the server to run as root all the time. You
probably want the server to have restricted access to your system resources
and run under a non-privileged system user account. In this case, you need
to create an IRIX user account for the server. When the server launches, it
runs as this user. Likewise, any child processes of the server are created with
this server user as the process owner.

You can choose the user nobody if you wish, but this might not work on some
systems. Some machines ship with a uid of -2 for the user nobody . A uid less
than zero generates an error during installation. Check the /etc/passwd file
to see if the uid for nobody exists and that it is greater than zero.

If you’d prefer to use a different account than nobody , just create and use a
regular IRIX user account. (If you don’t know how to create a new user on
your system, refer to the IRIX Personal Systems Administration Guide.)

Create a Directory to Serve as Your Document Root

Using the Netsite server, you can keep all your documents in a single tree of
directories. When you set up the server during the installation, you tell it
where the root of this directory tree, called the “document root,” is located.
Although the server installer can create one during the configuration, it’s a
good idea to have one already. If you make a directory for your documents,
make sure the system user account has read and execute privileges to
access it.

Choose a Unique Port Number

Port numbers for all network accessible services are maintained in the
/etc/services file. Just as the standard Telnet port number is 23, the
standard HTTP port number is 80. However, if you plan to put your server
on a port other than 80, you should make sure that port isn’t already being
used. If you have any doubts about whether the port you plan to assign the
server is unique, look at /etc/services on the server machine to make sure
you don’t assign a port number that is already taken by another service.

What Happens During Installation?

5

Deactivate Any Existing HTTP Servers

If you plan to install the Netsite server using the same port number as the
HTTP server you’re now running, you need to deactivate the existing HTTP
server. If you want to install the new server in the same directory location as
your existing server, you should move the existing server to another
directory. If you use the same directory as your existing HTTP server when
setting up the Netsite server root, the installer can overwrite your existing
HTTP server. If you use the same port number, the Netsite server can’t start
itself using the server installer.

What Happens During Installation?

You load the Netsite server software onto your machine with the inst
program as described in your software release notes. You run the Netsite
server installer program (mc-install). You fill out the online document forms
and submit them. Figure 1-2 provides an overview of the forms pages you
fill out. When the forms are complete, you click a link that installs the server.
During the initial setup you tell the installer where to put the server. These
items (three directories, two scripts and the server application) are installed
in that location:

admin kill-httpd logs mc-httpd mc-icons start-httpd

kill-httpd is the script to use if you have to start the server from the command
line. mc-httpd is the server application. start-httpd is the script you use if you
have to start the server from the command line.

 The server writes the configuration files into the appropriate directories and
starts the server daemon running. If you specify a document root directory
and it does not exist, the server installer creates one. That’s all there is to it.

6

Chapter 1: Quickstart Installation

Figure 1-2 A Map of the Online Installation Forms

Server Configuration

Once you have installed the software and started the server installer as
described in the release notes, you are prompted to enter the name of the
HTTP-compatible network navigation software you plan to use.Silicon
Graphics recommends Netscape Navigator. If you do not have Netscape
Navigator, please use NCSA Mosaic for the X Window System™ version 2.4,
as it is known to have no problems managing this server product.

After typing the name (or accepting the displayed default) and pressing
<Enter> , you can begin the setup and installation. Read through the

Initial
server

configuration

1
Initial

document
configuration

2
Initial

administration
configuration

3
Install the

server

4
Welcome to

the world
of Netsite!

Name your
server

Select a port
number

Establish the
server root

Assign a
non−privileged

server user

Establish the
document root

Set up
directory index

filenames

Assign an
administrative

password

Choose a form
of automatic

indexing

Tell the server
what home
page to use

Set maximum
number of server

processes

Answer the questions on these
forms and you’ll have your
Netsite Server up and
running before you know it.

Establish host
administrative

access

Fill Out the Configuration Worksheet

7

following sections of this reference guide to make sure your configuration
worksheet is prepared properly.

Fill Out the Configuration Worksheet

If you take the time to answer the questions in the configuration worksheet
(shown in Figure 1-3), you’ll save time when you go to do the installation.
All the necessary information will be handy and in one place. You can then
sit at your workstation and fill out the online forms using the information
already collected. This part of the guide helps you answer the worksheet
questions based on the questions used by the Netsite server installation
forms.

8

Chapter 1: Quickstart Installation

Figure 1-3 Sample Configuration Worksheet

INITIAL SERVER CONFIGURATION

What do you want to name
your server?

What port number do you want to use?

Where do you want the
server installed?

What user should the server use to login
and spawn processes?

What is the maximum number of processes
you want your server to use?

Would you rather have errors sent to syslog?

Would like to disable access logging?

If access logging is enabled, would you like
to disable the recording of host names?

INITIAL DOCUMENT CONFIGURATION

What directory do you want
to use as the document root?

What file name or names do
you want to use for sending
directory catalogs?

Would you like to use simple or fancy
automatic indexing?

Where is your home page
located?

INITIAL ADMINISTRATIVE CONFIGURATION

What administrative user
name do you want to use?

What administrative password do you want to use?

HIDE THIS WORKSHEET IF YOU ACTUALLY WRITE THE PASSWORD HERE.

Which hosts do you want to allow administrative access?

Which IP addresses do you want to allow administrative access?

Have the answers to these questions handy when you perform
the Netsite TM QuickStart setup and installation. If you need help
answering these questions, the Reference Guide has complete
instructions. You can also launch the server installer and use
Netscape TM or some other forms−capable network navigator to
browse the forms online.

C
o

n
fig

u
ra

tio
n

W

o
rksh

e
e

t

Netsite ServerTM

IT’S THIS EASY TO GET YOUR
NETSITE COMMUNICATIONS
SERVER UP AND RUNNING:

1 Answer the questions on this worksheet.
2 Load the software onto your machine.
3 Fill out the online configuration forms.
4 Register your server with the Netscape

Communications Directory of Services (optional).
5 Click a link to install the server to your specs.

THINGS YOU CAN DO BEFORE YOU DO
ANYTHING ELSE:

■ Make sure DNS is up and running properly.
■ Think of a name for the server and set up an alias.
■ Create a UNIX system user account that the server

daemon uses to run and own server processes.
■ Make a home page.
■ Create a directory to serve as your document root.
■ Deactivate any existing HTTP servers.
■ Choose a unique port number.

HOW TO START THE INSTALLER:
1 Follow the installation instructions in the

software release notes.
2 Change to the server root directory:

cd /var/mc−httpd

3 As superuser , enter:
./mc−install

Follow the instructions on the screen and fill out
the online setup forms using the information
collected on this worksheet.

Fill Out the Configuration Worksheet

9

Initial Server Configuration

The first form you see sets up and controls the initial Netsite
Communications Server configuration. Answering the questions on this
page, you’ll:

• Name your server

• Select a port number

• Establish the server root

• Assign a non-privileged server user

• Set the maximum number of processes the server will spawn

• Set server log options

All the questions on the online page have default entries or values. You can
use those or put your preferred answers on the configuration worksheet
using the guidelines below.

What do you want to name your server?

To answer this question properly you need to understand that when the
Netsite server is installed, the name you give your server, combined with
your domain name and domain authority, becomes the Uniform Resource
Locator (URL) when users attempt to access your home page. For example,
when people use Netscape Navigator to reach Silicon Graphics, they use the
URL:

http://www.sgi.com

As expressed previously, you can see that the server name combines our
domain name, “sgi” with the top-level domain authority “com”, with a
server name of “www” (separated by the appropriate dots). This is
important if your server is going to be accessed by outside clients. Make sure
you use a name like

www.[yourdomain].[dom]

and not just wwwwithout the domain name (see Figure 1-1). As stated before,
DNS service must be supported on the server machine and all referring
machines in the network if you plan to use a hostname. Otherwise, you need
to build the URL to your server using the IP address of the machine.

10

Chapter 1: Quickstart Installation

Keep in mind, if your server is going to run on one machine among many in
a network, you or your system administrator should have set up a DNS
CNAME record or an alias like “www” which points to the actual server
machine. Later, should the need arise, you can change the actual hostname
or IP address of the server machine without changing all of your URLs.

Here are some examples of server names:

• www.university.edu

• www.company.com

• www.agency.gov

What port number do you want to use?

To answer this question, you need to know a bit about port numbers and
how processes bind to a port number when they are launched. As mentioned
earlier, the standard port number for HTTP servers is 80. If you plan to run
a server that allows access from the world at large, it’s a good idea to stick
with this common port number assignment.

When you complete the Netsite Communications Server install, the server
launches and binds to the port number you assign at this point in the setup.
Since you are logged in as either root or have superuser status while doing
the install, the server can bind to any port across the complete range of port
numbers available (1 to 65535) that are not being used by another service on
the machine. Under normal operation, a server that binds to ports 1 through
1024 must be launched by a process with root or superuser privileges. A
server that binds to a port in the range 1025 to 65535 can be launched by a
non-privileged process.

If the port number you assign to the server is in the privileged range (1–1024)
and you should ever need to take the server completely offline, you’d need
to again log in as root or attain superuser status to restart it from the
command line. This situation is rare.

On IRIX machines, the /etc/services file maintains the list of port
numbers for all network accessible services. If you don’t want to use port
number 80, examine the /etc/services file to make sure you pick an
unused port. If you end up choosing a port number other than 80, you’ll

Fill Out the Configuration Worksheet

11

have to include that port number in URLs used to access your server. For
example, if you name your server:

www.[yourdomain].[dom]

and give it port number 8080, the initial URL pointing to your server would
have to be:

http://www.[yourdomain].[com]:8080/

Where do you want the server installed?

Note: If you have an existing HTTP server still running, don’t use a path that
points to the same directory as your existing HTTP server.

The Netsite Communications Server and its support files get installed in a
central directory you name here. This directory contains the server program,
log files, configuration files, and administrative forms. The installer creates
this directory if it does not already exist.

Here are some examples of common directory locations for the server
software:

• /var/mc-httpd

• /usr/mc-httpd

• /usr/people/mc-httpd

What user should the server use to log in and spawn processes?

As suggested earlier, the name you write on your worksheet here and enter
into the online forms during setup should already exist as a normal IRIX
system user. When the server daemon starts, it runs as this system user.
Likewise, any child processes spawned by the server are created with this
user as the process owner. Normally, you want the server to have restricted
access to your system resources and run as a non-privileged user. Even
though you’re logged in as root when you set up and install the server, the
system user account the server uses need not be privileged in order to work
properly.

The default user for this field in the online form is nobody . As mentioned
previously, you can accept the default user nobody if you wish, but this

12

Chapter 1: Quickstart Installation

might not work on all systems. Some machines ship with a uid of -2 for the
user nobody . The uid of a user chosen here must be greater than zero. A UID
less than zero generates an error during installation. You can check the
/etc/passwd file to see if the UID for nobody exists and that it is greater than
zero.

What is the maximum number of processes you want your server to
use?

Whenever people access your server using an HTTP-based client, the Netsite
server uses background processes to service the requests. The processes are
spawned when the server starts. They remain idle until needed. This
number can be changed at any time using the Netsite Server Manager forms.
You can set the number of processes to any value from 1 up to a maximum
of 1024.

Base your choice here on achieving a balance between system load and
server requests. Choosing too many processes could cause needless memory
swapping as a large number of processes could grow to consume available
RAM. On the other hand, choosing too few can cause delays when users
attempt to access your server.

If your server operates with fairly low demand (under 10,000 accesses per
day), or if your server is being used for other jobs besides httpd service,
running 8-16 processes should be enough. If your server operates with
higher demand, you may want to make sure you have enough RAM and set
the number as high as you can. Thirty-two should be enough for most high
access sites, with 48 or 64 being even better if you have the RAM to spare.

To illustrate what happens if you choose a number of processes which is too
low, suppose that you’ve chosen some number of processes for your
machine. Suppose also that some number of people are currently connected
to your server and downloading large files. When another client accesses
your server, that client is placed in a waiting queue and its request is delayed
until another process becomes available. If you set the maximum number of
processes way too low, then clients will begin to receive timeout errors after
a certain number of them are in the queue.

Choosing the proper number of processes is mostly a matter of fine-tuning.
The easiest way to tell how your server is doing is to try accessing it during
peak hours to see what kind of response time you get. You can also use

Fill Out the Configuration Worksheet

13

system-specific tools such as top to see how much memory your server is
using.

Would you rather have errors sent to syslog?

Would you like to disable access logging?

If access logging is enabled, would you like to disable the recording of
hostnames?

These three questions are check box items. If the items are left unchecked, the
default answer to each question is “no.” To answer “yes,” click in one of the
boxes. Otherwise, leave the box empty. On your worksheet, you can check
the item or write “yes” for each option you want to use.

The answers to these three questions can affect system performance. Under
normal operation, the Netsite server maintains two log files in your server
root directory (which you named earlier on this form). One file logs server
errors; the other keeps a log of who accesses your server. You can have errors
reported through your system’s syslog facility if you wish. Otherwise, errors
are sent to a log in the server root directory, which is easily viewable using
the Netsite Server Manager.

If you decide to keep access logging enabled, the server maintains a log of
accesses by hostnames. You may need extra disk space to accommodate the
logging of hostnames. However, if DNS or your name service application
isn’t up and running properly, you’ll see an error message in the log file for
each hostname the server can’t resolve. If you don’t want hostnames
recorded, you need to check the box next to the question that disables the
recording of hostnames. The access log will continue to log accesses by IP
address.

If you record hostnames, server processes can get bogged down doing DNS
lookups. You can imagine how this would work if you are or plan to be a
high-demand site. This can slow performance on your entire system. The
alternative is to do access logging but leave the recording of hostnames
turned off. If you ever do need to identify a particular host, get the IP address
from the log and use an IP resolver utility to get the hostname.

14

Chapter 1: Quickstart Installation

Submitting the Form

Once this form is all filled out and you’re happy with your entries, click the
Submit this form button. If everything you entered is valid, the next page
you see says, “Success!” and you’re presented with the opportunity to quit
the install or continue on to the next form. If the entries weren’t valid, you’ll
be asked to do the form over again.

Initial Document Configuration

The second form you see using the server installer sets up and controls the
initial Netsite server document configuration. Answering the questions on
this page, you’ll:

• Establish the document root

• Set up directory index filenames

• Choose a form of automatic indexing

• Tell the server what home page to use

All the questions on the online page have default entries or values. You can
use those or put your preferred answers on the configuration worksheet
using the guidelines below.

What directory do you want to use as the document root?

By creating a root directory for all of your documents, you can keep all your
documents in one location and let the server handle the URLs. This way, any
incoming request for a document automatically gets redirected to the
document root directory you name here. Full file system pathnames are not
used and are not displayed on any HTTP-compatible client. This keeps your
file system safe from outsiders who won’t be able to get any information
about the rest of your system.

Using a central document root directory also lets you move your documents
to a larger disk as your Netsite service grows and expands, without having
to change your URLs.

Here are some examples of document root directories:

Fill Out the Configuration Worksheet

15

• /usr/netsite-docs

• /usr/html-docs

• /usr/content

• /netsite-pages

The installer can create this directory with a default name of
/usr/netsite-docs if one does not already exist. If you make the directory,
make sure the server system user has read and execute privileges to access
it.

What filename or names do you want to use for sending directory
catalogs?

When you reference a directory on your server, it’s helpful to have an index
file in it that tells people what’s in the directory. When people follow the
URL that points to a directory, the server finds this file and uses it to display
a catalog of what’s inside. By entering a name here, you can standardize
directory index filenames. A popular choice is index.html (the default
supplied in the online form). If you want to use more than one name,
separate the names with commas. The server sends back the first one it finds.
Spaces between words in the filename are ignored.

Would you like to use simple or fancy automatic indexing?

The Netsite server creates an index of directory contents automatically every
time a directory is accessed that doesn’t have an index file with one of the
names you entered above.

These automatic indexes come in two flavors, simple and fancy. A simple
index displays a list of the directory contents by name only. A fancy index
also displays icons, file sizes, and last modification dates.

There are buttons on the forms page corresponding to which type of
indexing you want (simple or fancy). Choose one or the other. The online
form can show you examples of each indexing format. Figure 1-4 shows you
the file type icons used with fancy indexing.

16

Chapter 1: Quickstart Installation

Figure 1-4 Icons Used for Automatic Indexing

Where is your home page located?

When users first navigate to your server, they usually start with a URL like:

http://www.[yourdomain].[dom]

This displays your server’s home page. To set your server’s home page, you
can do one of two things: create an index file in your document root, or
specify here the name of a specific HTML file in the document root to use. If
you do not wish to have a document root, or wish to keep your home page
outside your document root, put the full pathname in the field. However, the
home page can only exist on the server machine. A path to another machine
won’t work.

If you supply the name of a home page you already have, make sure the
server system user has read and execute privileges to access it.

If you leave this field blank the server assumes you’ve created an index file
or are using automatic indexing.

Fill Out the Configuration Worksheet

17

Submitting the Form

Once this form is all filled out and you’re happy with your entries, click the
Submit this form button. If everything you entered is valid, the next page
you see says, “Success!” and you’re presented with the opportunity to quit
the install or continue on to the next form. If the entries weren’t valid, you’ll
be asked to fill out the form over again.

Initial Administrative Configuration

The third form you see using the server installer sets up and controls the
initial Netsite Communications Server administrative configuration.
Answering the questions on this page, you’ll:

• Assign an administrative user name

• Assign an administrative password

• Establish which hosts have administrative access to your server

The administrative user name field defaults to admin. You can use that or put
your preferred administrative user name on the configuration worksheet.
There are no defaults for the password field. Come up with something
unique that is not a word in the dictionary and is undecipherable.

To get access to the administrative forms, use a URL similar to:

http://www.[yourdomain].[dom]/admin/

When you access your server’s administrative forms, Netscape Navigator
(or whatever network navigation software you’re using) displays a dialog
box that requests a user name and a password. When this happens, you’ll
need to give it the user name you enter here and the password you set here.

What administrative user name do you want to use?

You need to select and remember a user name for your administrative forms.
We recommend the user admin but you can use any HTTP user name you
want. The server will take care of creating the user for you.

18

Chapter 1: Quickstart Installation

What administrative password do you want to use?

You need to remember the password you give here. If you don’t there is no
way to find out later. If you review or print your configuration information,
the password won’t be appear there.

You’ll need to confirm the password you entered on the form. If you don’t
supply a password in both fields, the form won’t be valid when you submit
it.

Which hosts do you want to allow administrative access?

Which IP addresses do you want to allow administrative access?

The first item can be filled out with either specific hostnames or a wildcard
pattern. The second item can be filled out with either specific IP addresses or
a wildcard pattern (see “How to Use Wildcard Patterns” on page 23 in this
guide). Once the server is installed, you administer and manage it using
Netscape Navigator. Obviously, you only want authorized people to
administer your server. You need to indicate here which hosts are allowed
administrative access. All others get an error if they attempt access.

If you do not trust the security of the network between other machines and
your server, you should access the Netsite Server Manager only on the server
machine itself so that administrative information never goes over the
network.

A usable hostname can either include a full hostname such as:

www.[domain].[dom]

or a wildcard pattern designating a range of hosts. However, if DNS or your
name service application isn’t up and running properly, hostnames can’t be
used. Alternatively, you can specify hosts by their IP addresses instead,
using an IP address such as 198.93.92.103, or a wildcard pattern. Multiple
hostnames or IP addresses must be separated by commas.

Note: Specifying nothing in these fields is equivalent to specifying a
path of “*”.

Register Your Server with Netscape Communications Corporation

19

If you leave the answer to this question blank, anyone can attempt to login
to the Netsite Server Manager. The administrative password keeps them
out. If you answer the question with a single hostname, a wildcard pattern,
or a series of hostnames, all other hosts which don’t match the names or
patterns can’t get in.

Submitting the Form

Once this form is all filled out and you’re happy with your entries, click the
Submit this form button. If everything you entered is valid, the next page
you see says, “Success!” and you’re presented with the opportunity to quit
the install or continue. If the entries weren’t valid (which they won’t be if
you didn’t enter an administrative password twice), you’ll be asked to do the
form over again.

View Your Installation Setup

Once the administrative forms are complete and submitted, you’re offered
the opportunity to view a summary of the installation entries you’ve made.
If you want, once the information is on-screen, you can print the summary.
It’s probably a good idea to print it out and compare it with what you’ve
written on your configuration worksheet.

Register Your Server with Netscape Communications Corporation

When you’ve answered the last question, submitted the online forms and
reviewed your installation setup, you’re offered an opportunity to register
your server with the Netscape Communications Directory of Services. This
is entirely optional, but if you do, you’ll be automatically entered in our
network directory. Either way, you can click the “continue” link and go to the
final installation page.

Install the Server

If you’re certain the server is configured to your satisfaction, then click the
Install your Netsite server! link. The installer then sets up the
directories and configuration files, and launches the server processes. You

20

Chapter 1: Quickstart Installation

can then either visit your Netsite server as a user or access the Netsite Server
Manager to administer it.

21

Chapter 2

2. Netsite Server Manager

Once you’ve completed the installation and your server is up and running,
you may need to go back and either set up new items or reconfigure existing
items as your system changes and grows. This chapter tells you how to
access and use the Netsite Server Manager. The chapter also demonstrates
how to use wildcards, how to automatically restart the server, and how to
start and stop the server from the command line.

How to Access the Netsite Server Manager

Follow these steps to access the Netsite Server Manager using either
Netscape Navigator or some other forms-capable network navigation
software:

1. Launch Netscape Navigator or your forms-capable network navigation
software.

2. Use the URL:

http://[servername].[yourdomain].[dom]/admin/

to display the admin login.

3. For the login name, use the user name you entered during setup and
install.

4. For the password, use the administrative password you entered during
setup and install.

Netscape Navigator or your forms-capable network navigation software
displays the entry page of the Netsite Server Manager. The imagemap at the
top of the page (shown in Figure 2-1) provides a navigation interface to
quickly access the function you want.

22

Chapter 2: Netsite Server Manager

Figure 2-1 Netsite Server Manager Imagemap

Click a box on the imagemap to display the appropriate section or advance
to the link you want and use it. If you need help, refer to the section in this
guide that best suits what you’re trying to do. The specifics of Server
Configuration are covered in Chapter 3. Server Maintenance is covered in
Chapter 4.

Many of the items that are available under Server Configuration and Server
Maintenance are more directly accessible using the Master Index. You might
look there first if you only have a single, quick administrative task to carry
out.

How to Use Wildcard Patterns

23

How to Use Wildcard Patterns

To ease server setup, the server lets you specify certain items using wildcard
patterns. By using wildcard patterns in some of your entries, you can cause
any number of strings to match a single string.

A simple example of this functionality is shell wildcards. If you ask for
*.html , then foo.html , bar.html , and baz.html , all match the pattern,
whereas foo.bar doesn’t.

Inside a wildcard pattern, the characters in this list have special meaning. If
you ever need to use one of these characters without the special meaning,
precede it with a backslash (\).

* matches zero or more characters

? matches exactly one character and it can be any character

(foo| bar) is an OR expression. It matches either the substring foo, or
the substring bar. The substrings can contain other special
characters such as * or $.

$ matches the end of the string. This is really only useful in
OR expressions.

[abc] matches one occurrence of the characters a, b, or c. Within
these expressions, the only character that needs to be
escaped in this is the bracket; all others are not special.

[a-z] matches one occurrence of a character between a and z

[^ az] matches any character except a or z

~ followed by another shell expression removes any pattern
matching the shell expression from the match list

Examples:

*.sgi.com matches any string ending with .sgi.com

(core|flop).sgi.com

matches either core.sgi.com or flop.sgi.com

198.93.9[23].???

matches a numeric string starting with either 198.93.92 or
198.93.93, and ending with 3 digits

24

Chapter 2: Netsite Server Manager

. matches any string with a period in it

~foobar- matches any string except those starting with foobar-

Restart the Server Automatically

Once installed, the Netsite server and its child processes run constantly,
listening for and accepting requests. If your machine crashes or is taken
offline, the Netsite server processes die with it. Make sure your server is
configured for automatic restart on reboot with the following procedure

1. Use the chkconfig command to see if it is set to “on”:

chkconfig | grep netsite

2. If you see:

 netsite off

Enter the following command:

chkconfig netsite on

and repeat step 1 until you see:

 netsite on

When the system is rebooted, the server starts automatically.

Start the Server Manually

If you should ever need to start the server from the command line, you must
log in as root or become superuser and type this at the command-line
prompt:

/etc/init.d/netsite start

Stop the Server Manually

25

Stop the Server Manually

If you should ever need to stop the server manually, log in as root or become
superuser, check the full process load using ps -el to see if other users
might be using the server and, if not, type this at the command-line prompt:

/etc/init.d/netsite stop

27

Chapter 3

3. Server Configuration

In the Server Configuration section of the Netsite Server Manager, you have
three choices. You can:

• Do a full configuration

• Do a quick configuration

• View tutorials

This chapter covers the full configuration and briefly describes how to use
the quick configuration. The tutorials are covered in Appendix B.

Full Configuration

This section shows you how to configure various technical aspects of your
server. In this section, you can learn how to:

• Configure technical aspects of your server, such as its name or its port
number

• Change your server’s document root

• Change your server’s home page

• Change your directory indexing preferences

• Create a directory dedicated to running CGI programs

• Create a template for user’s public directories

• Set the default MIME type for your server

• Create a pointer to a resource that has moved

28

Chapter 3: Server Configuration

Note: The server allows you to create resource templates (see “How to Use
Resource Templates” on page 82 in Appendix B) to ease maintenance of
complex sites. With templates, you can apply the same configuration to
several physical directories. You might not need to use them.

These are things you’ll want to set up in your server. Occasionally, you’ll
need to reconfigure them as your server grows and changes. If you do not
understand any of them, read about them here or follow the online links and
read the various introductions.

You need to restart the server for any of your changes to actually take place.
Once you submit the forms for any changes you make, you get a pointer to
the script you should use to restart your Netsite server.

Configure the Specifics of Your Server

With this form you control various technical (non-document related) aspects
of your server’s operation. Through this form, you can:

• Set a server name

• Set a port name

• Set a server root

• Set a user for the server to run as

• Set where logging information is sent

• Set the maximum number of processes the server is allowed to use

Server Name

This field on the Technical Configuration form lets you change the name of
your server. If you don’t remember all the issues related to server names,
review “Think of a Name for the Server and Set Up an Alias” on page 2 or
“What do you want to name your server?” on page 9, both in Chapter 1.
With the proper information handy, fill out this field on the form if you want
to change the name of your Netsite server:

Full Configuration

29

Server Port Number

This field on the Technical Configuration form lets you change the server
port number. If you don’t remember all the issues related to server port
numbers, review “Choose a Unique Port Number” on page 4 or “What port
number do you want to use?” on page 10, both in Chapter 1. With the proper
information handy, fill out this field on the form if you want to change the
port number of your Netsite server:

Server User

This field on the Technical Configuration form lets you change the user
account the server uses to login and spawn processes. If you don’t remember
all the issues related to the server user, review “Create an IRIX User
Account” on page 4 or “What user should the server use to log in and spawn
processes?” on page 11, both in Chapter 1. With the proper information
handy, fill out this field on the form if you want to change the server user for
your Netsite server:

Server Processes

This field on the Technical Configuration form lets you change the
maximum number of processes the server can launch. If you don’t
remember all the issues related to server processes, review “What is the
maximum number of processes you want your server to use?” on page 12 in

What do you want to name your server? [default]

What port number do you want to use? 80

What user should the server use to
login and spawn processes? nobody

30

Chapter 3: Server Configuration

Chapter 1. With the proper information handy, fill out this field on the form
if you want to change the number of server processes for your Netsite server:

Server Log Options

Under normal operation, the Netsite server maintains two log files in your
server root directory (which you named earlier during setup and
installation). One file logs server errors; the other logs who accesses your
server. You can have errors reported through your system’s syslog facility
if you want, as indicated on this form. You can enable or disable access
logging in the Server Maintenance forms, under Server Resources (see the
reference online).

If you want to direct server logging to syslog , use the online form and click
in the box to mark the option.

This is the last item in the online Technical Configuration form. You can
review your changes by scrolling up and down the page. You can alter your
changes by typing new information in any of the fields. You can clear your
changes by clicking the “Clear this form” button. You can abandon all the
changes on this form by clicking the “Return to configuration overview”
link. To make your changes permanent, click the “Submit this form” button.

Change Your Document Root

This form lets you tell the server the new location of your server’s document
root, if you’ve moved or changed it. If you don’t remember all the issues
related to the document root, review “What directory do you want to use as
the document root?” on page 14 in Chapter 1. With the proper information
handy, fill out this field on the form if you want to change the document root
for your Netsite server:

What is the maximum number of
processes you want your server to use? 16

Full Configuration

31

You can also tell the server not to use a document root for your server by
leaving the field empty and then clicking in the box to mark that option.

You can review your changes by scrolling up and down the page. You can
alter your changes by typing new information in the field or by checking or
unchecking the box. You can clear your changes by clicking the “Reset to
original” button. You can abandon all the changes on this form by clicking
the “Return to configuration overview” link. To make your changes
permanent, click the “Change document root” button.

Change Your Server’s Home Page

This form lets you tell the server the new location of your home page, if
you’ve moved or changed it. If you don’t remember all the issues related to
the home page, review “Make a Home Page” on page 2 or “Where is your
home page located?” on page 16, both in Chapter 1. With the proper
information handy, fill out this field on the form if you have changed the
name or location of your home page:

You can also tell the server to use an index file from the document root by
clicking in the box to mark the option.

You can review your changes by scrolling up and down the page. You can
alter your changes by typing new information in the field and by checking
or unchecking the box. You can clear your changes by clicking the “Reset to
original” button. You can abandon all the changes on this form by clicking
the “Return to configuration overview” link. To make your changes
permanent, click the “Change home page” button.

Document root: /usr/netsite−docs

Home page:

32

Chapter 3: Server Configuration

Change Your Server’s Directory Indexing Preferences

This form allows you to change the style of directory indexing used by the
server.

The Netsite server creates an index of directory contents automatically every
time a directory is accessed that doesn’t have an index file with one of the
names you entered during setup and installation. These automatic indexes
come in two flavors, simple and fancy. A simple index displays a list of the
directory contents by name only. A fancy index also displays icons, file sizes,
and last modification dates.

There are buttons on the forms page corresponding to which type of
indexing you want (simple or fancy). Choose one or the other. Figure 1-4
shows you the file type icons used with fancy indexing.

Create a Directory Dedicated to Running CGI Programs

This form lets you designate certain directories as Common Gateway
Interface (CGI) directories. If you don’t use CGI programs, you can skip this
form. In order to select a directory where CGI programs can be executed, use
this form to enter a new URL prefix and then enter the name of the directory
to which that URL points. If you want to restrict access to the CGI directory,
you’ll need to enter the names of hosts or IP addresses for which you want
to allow access. If you don’t want to restrict host access, you can leave the
hosts and addresses entry fields blank.

Note: Imagemaps no longer require CGI to be set up. Refer to “What Is An
Imagemap?” on page 69 in this guide to learn how to use ISMAP in the
Netsite server.

When setting up the CGI external program interface, you can either leave
CGI programs in the same directories with your other documents (and use
the Server Maintenance forms to activate CGI as a file type in that directory),
or you can designate a few central directories which hold the CGI programs.
When you designate directories to hold them, you must create new URLs
that point to them. Whenever a URL is navigated which begins with the
prefix you designate on this form, a CGI program can be executed in the
directory you’ve specified.

Full Configuration

33

Add a New CGI Directory

If you want to add a new CGI directory, use the online forms to fill out these
items:

Restrict Host Access

If you wish, you can also make sure that only people from certain host names
or from certain IP addresses can see your new URL. Any others will get a
“not found” error. You can supply a wildcard expression to designate the
allowable hosts. If you want to restrict access, fill out these two fields in the
online form:

You can review your entries by scrolling up and down the page. Entries can
be altered by typing new information in the fields. You can clear your entries
by clicking the “Clear this form” button. All the entries on this form can be
abandoned by clicking the “Return to configuration overview” link. To make
your entries permanent, click the “Add this mapping” button.

You can also change any existing CGI directories you have by following the
link at the bottom of the page.

Map URL prefix:

To binary directory:

Only for hosts:

Only for addresses:

34

Chapter 3: Server Configuration

Configure Users’ Public Information Directories

This form lets you customize how you want users to create HTML accessible
documents within their home directories. Through this form, you can:

• Decide on a method of specifying user directories

• Decide what is allowed within those directories

Users’ public information directories are handy if you want to let your users
make their own documents and home pages available. One way to do this is
to create a central directory for your users, and keep subdirectories by each
user name. You would then use the URL Management page to create a new
URL prefix for this directory (there’s a link in the online form that lets you
do this. Also see “Add a New URL Prefix” on page 36 in this guide).

Another way to enable user public information directories is to allow your
users to create a subdirectory inside their home directory and place their
documents there. If you choose to do this, the server automatically looks in
your password file to find the user’s home directory. Normally, the password
file will be /etc/passwd, or perhaps available through the Network
Information Service (NIS). In this case, the server uses standard library calls
to find a user’s home directory. However, if you want to keep a separate
password file, used only for the HTTP server, you can specify that file’s
pathname on this form.

You might also want to load the entire user database on startup. When you
enable this option, the server scans the entire list of users and their home
directories, and stores them in memory. The advantage of loading the user
database at server startup is that lookups are very fast and it reduces
network traffic if you’re using NIS. The disadvantage is increased memory
usage—but this shouldn’t matter on most systems.

Most likely, you’ll want to restrict the things users can do from their home
directories. To do this, create a configuration template with your restrictions
(see Appendix B, “How to Use Resource Templates” on page 82 for more
information). If you do this, the name of the template should be specified on
this form.

If you want to duplicate the default behavior of the NCSA httpd, use a value
of /~ for the URL prefix, and public_html for the home subdirectory.

Full Configuration

35

If you decide to allow user directories, follow these steps:

1. Enable user public directories by unchecking the “disable user public
directories” box on this form.

2. You also need to choose a URL prefix to remap.

3. Then choose a subdirectory within the user’s directory to look in.

To enable user directories, fill out these two fields:

You can also tell the server to load the user database at startup by clicking in
the box to mark the option.

To use the system password file, leave the button enabled.

To use an alternate password file, click the system password button off, then
supply the name of a password file in this field:

To restrict user options using a configuration template, fill out this field with
the name of the template to use:

User URL prefix:

Home subdirectory:

Use password file:

Configuration template:

36

Chapter 3: Server Configuration

You can review your entries by scrolling up and down the page. Entries can
be altered by typing new information in the fields. You can clear your entries
by clicking the “Reset to original” button. You can abandon all the entries on
this form by clicking the “Return to configuration overview” link. To make
your entries permanent, click the “Change” button.

Add a New URL Prefix

This form allows you to create a new URL mapping that points outside of
the usual document root. Through this form, you can create a new URL
mapping.

You need to specify what URL you want to map, and where you want it to
map to. You can leave the other fields blank.

The server does not make your entire directory tree available to clients.
Customarily, using the Netsite Communications Server, you designate a
central directory (a document root) which contains your server’s documents.
However, sometimes you’ll want to reference items outside this directory. To
do this, you can either create a symbolic link (see ln(1) for information on how
to do this), or you can create a new URL prefix here to map outside the
document root.

When you create a new URL prefix, any directory with the same name in the
document root will no longer be available. Any URL to your server starting
with the prefix you map here gets its documents from the directory you
specify on this form.

If you want to create a new URL mapping, fill out these fields:

Map URL prefix:

To binary directory:

Full Configuration

37

You have the option of making every request coming from this directory
follow a certain configuration template. To do so, specify the name of the
template in this field:

You can also make sure that only people from certain host names or from
certain IP addresses can see your new URL by specifying the allowed hosts
or IP addresses in these fields. Any others will get a “not found” error. You
can use a wildcard expression to designate the allowable hosts or addresses.

You can review your entries by scrolling up and down the page. You can
alter your entries by typing new information in the fields. You can clear your
entries by clicking the “Clear this form” button. You can abandon all the
entries on this form by clicking the “Return to configuration overview” link.
To make your entries permanent, click the “Add this mapping” button.

You can also change any existing URL mappings you have by following the
link at the bottom of the page.

Change the Default MIME Type

This form allows you to change the default Multipurpose Internet Mail
Extensions (MIME) type to send to clients. Through this form, you can
specify a new MIME type to send when the server doesn’t know what a file
is. You don’t have to change your default MIME type, but it may help the

Configuration template:

Only for hosts:

Only for addresses:

38

Chapter 3: Server Configuration

Netscape Navigator correctly parse a file that doesn’t have a recognizable
extension.

The server uses MIME file types to distinguish various types of files, so that
network navigation software like Netscape Navigator know the difference
between an HTML file and a GIF. The server is required to give this
information to the client.

The server usually does this through filename extensions. However,
sometimes a file has no extension and the server can’t tell what kind of file it
is. When this happens, the server will send back a default type to the client.
This default type is simply a guess. Most files without extensions are text
files, but if this is not the case on your system, you should change this entry
by entering a default MIME type in this field.

You can review your entry by scrolling up and down the page. You can alter
your entry by typing new information in the field. You can clear your entry
by clicking the “Reset to original” button. You can abandon the entry on this
form by clicking the “Return to configuration overview” link. To make your
entry permanent, click the “Use this default type” button.

Create a Pointer to a Moved Resource

This form allows you to redirect a client to a document’s new home once the
document has moved. Through this form, you create a pointer to redirect
Netscape Navigator or other network navigation software to another server.

You need to fill out a prefix on this server that you want to redirect, and a
URL to send the client to.

On occasion, you’ll want to migrate information from the currently installed
server to a new one. When you do this, you must give clients who have
copies of the old URLs a pointer to the new resource. To do this, you can
create a redirection. When a client receives a redirection from your server, it
then looks at the new URL.

Default type: text/plain

Full Configuration

39

You must choose what kind of URL navigation string to send the client. If
you want to send all requests for any document to another document, then
you should select a fixed URL.

If you are moving an entire resource, and preserving its directory structure,
you can make your URL a URL prefix, and when people access the old URL,
the server will construct the new URL. For instance, if you move the /movies/
directory to a new server, and you give the URL prefix:

http://newserver/stuff/movies/

the server will redirect a request for:

/movies/oldies.html

to the new location:

http://newserver/stuff/movies/oldies.html

If you choose this option, and the prefix is a directory, you should make sure
that you are consistent with trailing slashes. That is, you should not supply
the prefix /movies and redirect to the URL prefix

http://newserver/stuff/movies/

To redirect clients to another server, enter the new URL in this field:

Then choose one of the two button options (fixed URL or URL prefix) and
supply the new URL in this field:

You can review your entries by scrolling up and down the page. Entries can
be altered by typing new information in the fields. You can clear your entries
by clicking the “Clear this form” button. All the entries on this form can be

Map the current prefix:

URL:

40

Chapter 3: Server Configuration

abandoned by clicking the “Return to configuration overview” link. To make
your entries permanent, click the “Add this mapping” button.

You can also change any existing redirections you have by following the link
at the bottom of the page.

Quick Configuration

This form allows you to get a “Configuration at-a-glance” overview of how
you have personalized your server. If you are still unfamiliar with the way
the variables should be set, you might want to follow the other link to the
fully documented version instead. The field items here are virtually identical
to those described earlier in this section. If you know what you are doing,
feel free to go ahead. Otherwise, use the fully documented version.

41

Chapter 4

4. Server Maintenance

In the Server Maintenance section of the Netsite Server Manager, you have
several choices. You can configure:

• Server resources

• User databases

• Administrative password and allowed hosts

You can also use the Server Maintenance section to:

• View the server error log

• Administer process control

You access these items from the Netsite Server Manager home page.

Server Resources

On the Netsite Server Manager home page, click the Server Resources item
on the imagemap or use the “Configure server resources” link under Server
Maintenance. This action displays the “Choosing a resource to modify” page
where you use various buttons, links or fields to select a resource to modify.
A server resource can be a file, a directory or the entire server itself. You can
also choose a template to modify. The resource selection options shown on
this page include:

• Choose an individual file

• Choose a directory

• Select a previously configured resource (has a popup menu of server
resources you’ve already modified)

• Enter a wildcard pattern directly to modify

• Choose the entire server

42

Chapter 4: Server Maintenance

• Make a new template

Once you’ve selected a resource to modify and clicked the corresponding
link, the “Modifying a resource” page is displayed where you can configure
or reconfigure different aspects of the selected resource. You can choose one
of these resource modification items:

• Activate CGI as a file type in this resource

• Add a custom signature when serving files in this resource

• Choose index files for this resource

• Customize error response within this resource

• Customize request logging in this resource

• Customize server-side includes in this resource

• Restrict access to this resource through HTTP access authorization

• Restrict the usage of file system links

• Restrict which hosts are allowed to access this resource

• Set a default query handler in this resource

• Remove your changes to this resource

Each of these items represent links. You may have to scroll up or down on
the page to find the specific link. The following sections in this guide show
you how to access and use each of the resource modification forms.

You use the resource modification items here primarily to control or log
access to a resource in some way. For example, you might want to protect a
directory so that only certain hosts can access it, or you might want to
password protect an important file.

The fields displayed in the online forms match the specific resource being
modified and vary somewhat by resource, so they are not shown here in the
guide. The information you need to exercise resource control is fully
explained here and in the online forms.

You’ll need to restart the server after you’ve modified any resource.

Server Resources

43

Activate CGI as a File Type

This form is accessed using the “Activate CGI as a file type in this resource”
link from the “Modifying a resource” page. The form lets you keep CGI
scripts in directories with other documents. Through this form, you can
activate CGI as a file type in the directory you have selected.

Requirements and Options

You only need to click a single checkbox on this page to activate CGI as a file
type in this resource. Then use the buttons to activate or reset your changes.

Description

The Netsite server allows you to use external programs through the CGI
interface. There are two ways you can set up CGI on your server.

The first way to do this is to allow CGI programs to co-exist with your
regular documents in the same directory. In this way, the server knows that
.html files are HTML text, .gif files are GIF images, and .cgi files are CGI
programs to be executed. This setup is very flexible, the only stipulation
being that you should take measures to protect your C source code from
access. You should also only activate CGI as a file type in directories where
you want it to be used (i.e. you might not want your users’ public
information directories to have CGI activation enabled).

The second way to set this up is to keep all CGI programs separate from your
normal documents in a separate directory. Then you can use Server
Configuration to tell the server which directories in your file system contain
CGI programs. This method of CGI activation requires some additional
administrative overhead in that you must explicitly add new directories to
the server. However, this method does allow you to maintain some control
over where the programs are executed.

Text Trailers

This form is accessed using the “Add a custom signature when serving files
in this resource” link from the “Modifying a resource” page. This form

44

Chapter 4: Server Maintenance

allows you to create a trailer which is automatically appended to the
documents in this resource.

Requirements and Options

If you decide to make a custom trailer, you need to fill in the types of files to
which you want the trailer appended (the default is text/html). You need
to select a time format from the “Select a format” pop-up menu or enter a
custom format using the same format as the strftime (3C)1 system call. You
then need to type in the actual trailer that you want to appear at the bottom
of the documents selected in this resource. Then use the buttons to activate
or reset your changes.

Description

Often, you might want to append a trailer, or a signature, to documents from
a certain directory. You can have this trailer contain the author’s name (and
a link to his or her home page), the date of the page’s last modification, or
any copyright information for the page.

The server can automatically determine the date of last modification for you.
You need to specify the format and where in the trailer it is to appear. If you
specify a custom format, you must use the format used by the strftime

system call. In your HTML trailer, use :LASTMOD: where you want the last
modification date to appear.

Directory Indexes

This form is accessed using the “Choose index files for this resource” link
from the “Modifying a resource” page. The form allows you to specify the
name of the index file you want to use in a directory.

1 See your IRIX system’s reference pages for the exact format.

Server Resources

45

Requirements and Options

You do not have to change the default index file names, but if you do, you
only need to specify the new names. Then use the buttons to activate or reset
your changes.

Description

When you provide a reference to a directory on your server, usually you
want to have a file inside that gives people a list of the directory contents.
When people follow a URL which points to the directory, the server sends
back this file to give them a catalog of what’s inside.

You should choose a name to use for this purpose. The defaults already in
the field are index.html and home.html . If you want to use more than one
name, separate them with commas. When the resource is accessed, the
server sends back the first index file it finds.

Error Processing

This form is accessed using the “Customize error response within this
resource” link from the “Modifying a resource” page. The form allows you
to change how the server deals with error conditions for the resource you
have selected.

Requirements and Options

You don’t have to change the default error responses, but if you choose to,
you need to specify the name of a file to send for each error type. Any file
you name here should already be written and exist at the location you
specify (use an absolute path). Use the buttons to activate or reset your
changes. If you need to change the error processing for another error type,
there’s a link on the “Success” page for you to edit the error responses again.

Description

On occasion, an error will occur. The client may ask to retrieve something
that doesn’t exist, or that it doesn’t have permission to get. The client might
ask for a file which the server doesn’t have permission to read (due to

46

Chapter 4: Server Maintenance

administrator oversight or something else). Or, the server can encounter an
internal error (such as running out of machine resources) which prevents it
from carrying out a request.

Ordinarily, the server puts together a canned response and sends it back to
the client. This message is generic and not always very helpful to the user.
Because of this, the server allows you, as the administrator, to specify an
alternate file to send.

What the default errors mean:

• Unauthorized—an area protected by HTTP access authorization was
accessed and the user failed to provide a valid user name and
password.

• Forbidden—the server was unable to read the requested file, probably
due to file system permissions.

• Not found—the client asked for something which doesn’t exist, or
asked for something which is hidden from its view by IP/domain
protection.

• Server Error—the server ran out of resources, tried to execute a CGI
program which failed to produce output, or found a syntax error or
missing parameter in a configuration file.

Request Logging

This form is accessed using the “Customize request logging in this resource”
link from the “Modifying a resource” page. With this form, you can
customize request logging for the selected resource.

Requirements and Options

You do not have to customize the default logging, but if you decide to, you
should fill out the items you want to change. You can click a button that turns
off logging for this resource. If you choose to enable logging for this resource,
you can specify a file to use. You can exclude logging for specific hostnames
or specific IP addresses or use wildcards in those fields. A checkbox exists to
have the server log only IP addresses and exclude hostnames. Use the
buttons to activate or reset your changes.

Server Resources

47

Description

The server can record various information about each request a client makes.
This information includes:

• Host name

• The document requested

• Whether the transfer was successful

• How many bytes were sent in the response

• Whether or not the user was HTTP-authenticated

For compatibility with existing log file analyzers, the server uses the common
logfile format, which is the format used by the CERN and NCSA HTTP
daemons.

Note: You can change which resource you are editing using a link online,
and thus make a separate log file for different directories on your server.

Sometimes you will not want certain hosts to show up in your log file. A
good example would be hosts from your local organization. In this case, you
can tell the server not to log requests from certain IP addresses or hostnames.
You can specify those with a wildcard pattern, if you want.

You can decide not to log the domain names of connecting hosts and only get
the IP addresses. This can save a bit of network traffic and system resources,
but won’t really impact server response time since the server does not
perform this lookup while the client is connected.

Server-Side Includes

This form is accessed using the “Customize server-side includes in this
resource” link from the “Modifying a resource” page. The form allows you
to customize server-parsed HTML, also known as “server-side includes.”
Through this form, you can:

• Activate or deactivate server-parsed HTML

• Choose how the server decides what is server-parsed HTML

48

Chapter 4: Server Maintenance

Requirements and Options

On this form, you need to toggle one of three radio buttons to tell the server
what kind of activation is allowed, and toggle one of another three radio
buttons to tell the server how to determine which HTML files to parse. Then
use the buttons to activate or reset your changes.

Description

Normally, HTML is sent back to the client exactly as it is on the disk, with no
server intervention. However, sometimes you might find it useful to have
the server parse these files, and insert request-specific information or files
into the document.

By default, any file whose name ends with .shtml will be treated as parsed
HTML and parsed by the server. Files that end with .html are not parsed. If
you don’t want to use a different extension for parsed HTML, you can
choose one of two options:

• Parse every HTML file on the server

• To avoid the performance penalty of parsing every single HTML file as
it is sent to the clients, NCSA httpd allows you to enable the exec (x)

bit of the HTML file. Then, any file which has the bit enabled is parsed.
Any file which doesn’t have the exec bit enabled won’t be parsed. We
do not encourage the use of this function, but provide it to maintain
compatibility with NCSA httpd.

Access Control

Note: HTTP user/password authorization transmits user names and
passwords in the clear. This makes it vulnerable to people who watch
packets on the network. You should not rely upon HTTP access
authorization as your only security procedure.

This form is accessed using the “Restrict access to this resource through
HTTP access authorization” link from the “Modifying a resource” page. The
form shows you how to restrict access to a resource through HTTP access
authorization. Through this form, you can:

• Activate HTTP access authorization for the selected resource

Server Resources

49

• Select a database of users

• Select which users should be able to access this resource

Requirements and Options

You need to enter the name of a user database to use, as you entered it when
you created it (see “User Databases” on page 53 in this guide to find out how
to create user databases). Then you need to enter the name of a realm so that
users can identify the part of the server to which they are connecting. Last,
you need to enter a wildcard pattern to allow access for a range of users
matching the pattern. There’s also a checkbox on the form that lets you turn
off access control for the selected resource. Use the buttons at the bottom of
the form to activate or reset your changes.

Description

The server allows you to restrict the access to certain areas for clients who
enter their user name and password when prompted. You probably don’t
want to apply authorization to your entire server. So you should first make
sure you’ve selected a specific resource to which you wish to apply access
control.

A user database must exist for access control to work. You can create the
database either before or after you set up access control for the selected
resource. If no database exists, a server error will be returned when users
attempt to access the selected resource.

The realm is the name the server sends back to the client so that users can
identify which part of the server they’re connecting to. For example, the
realm in the administration database is “Server Administration.” If you were
controlling access to a music archive, you could call the realm, “Music
Library.” The realm is completely arbitrary and up to you to come up with a
name.

Within the user database you can use a wildcard pattern to specify which
users are allowed access.

50

Chapter 4: Server Maintenance

Limit File System Links

This form is accessed using the “Restrict the usage of file system links” link
from the “Modifying a resource” page. The form lets you disable file system
links (a method of having a file appear in two places at once) in the resource
you have chosen.

Requirements and Options

The default is to allow links in the selected resource. If you want to disable
links, fill out the “From directory” parameter and then set the checkboxes
and buttons according to how you want to restrict links. Then use the
buttons at the bottom of the form to activate or reset your changes.

Description

In some directories, you may want to make absolutely sure that only files
within that directory are served, and no others. The best example of this is
users’ public information directories. For example, you may not trust your
users to exclude links to copyrighted data in their pages.

The server is only able to read files it has permission to see. Therefore, the
server can’t read anything that your users don’t have permissions for
already. The limitations provided here are only designed to make it harder,
not impossible, for them to give that data away.

The “From directory” parameter tells the server where to start looking for
links. If this is an absolute path, the server looks in any portion of the path
following the one you enter. If this is not an absolute path, the server tries to
find the first instance of a directory with the given name within the current
path, and start looking there. A good example of a non-absolute path would
be if you set public_html to be the home subdirectory of your user public
information directories.

The server only does the link searches when it is serving from the selected
resource. Nevertheless, even with a resource set, you should enter a path in
the “From directory” field to avoid needless searches.

If you want to prevent your users from giving away all of your valuable
information but still would like to allow them to keep links to their own

Server Resources

51

information, you can tell the server to disable only those symbolic links for
which the owner of the link is not the same as the owner (user) of the file or
directory to which the link has been established.

Deny Existence

This form is accessed using the “Restrict which hosts are allowed to access
this resource” link from the “Modifying a resource” page. The form allows
you to configure a resource so that it is accessible to only certain hosts or IP
addresses. The server then tells any others that the selected resource does not
exist.

Requirements and Options

Note: Specifying no path is equivalent to specifying a path of “*”.

You can leave the “path to protect” entry blank, but you should definitely
enter specific hostname patterns and IP address patterns for the clients that
you want to allow. You can use the default “Send Not Found” if you like or
you can specify a file to send in response. Use the buttons to activate or reset
your changes. You can also use a link to edit any existing mappings that are
already in place.

Description

There are two uses for this command: you can use it to hide certain files (like
EMACS backup files or files whose names start with a dot) from all of your
clients, or you can restrict the access of some materials to certain clients.

When deciding whether to deny a request or not, the server first checks the
host restrictions and, if it passes, doesn’t check the IP restrictions. If it fails
the host check, it goes on to the IP restriction check. If it fails again, then the
request is denied.

If you want to restrict access to some documents for certain clients, you can
put your protected documents in a separate directory, then use URL
Management (see “Deny the Existence of Certain Paths” on page 152) to
create a new URL for this directory which is visible only by the desired

52

Chapter 4: Server Maintenance

clients. Any non-allowed client will get a Not Found error when they try to
access the URL. This can provide security through obscurity.

Alternately, if you want to keep your protected documents along with the
other documents, you can tell the server to protect these paths and allow
only users from the given IP addresses or hostnames to access them. For
example, if the resource you selected was usr/www/resources , leaving the
path blank and submitting the form would automatically protect that
directory. Similarly, you could protect all the files associated with a special
printing project by choosing the resource people/gutenberg and leave the
path blank.

Using a wildcard pattern, you could protect all your GIF files by putting
usr/www/*.gif in the “From directory” path.

When access fails, you can specify that the server should deny the existence
of the file, or have it send back an HTML file which tells the client that access
has been denied.

Query Handling

This form is accessed using the “Set a default query handler in this resource”
link from the “Modifying a resource” page. The form allows you to specify
a default query handler for the resource you have selected.

Requirements and Options

You need to specify a full path to the program you want to use as a query
handler, or check the box to use no default query handler for this resource.
Use the buttons to activate or reset your changes.

Description

Sometimes, you might want to place ISINDEX tags in your documents. In
this case, there has to be a server side program which handles these search
queries. The Netsite server allows you to designate a single CGI program to
handle search queries for all queries within the selected resource.

User Databases

53

Remove Changes

Accessing this choice automatically removes all your changes and prompts
you to select another resource to work on.

User Databases

On the Netsite Server Manager home page, click the User Databases item on
the imagemap or use the “Configure user databases” link under Server
Maintenance. This action displays the User Databases page where you can
use links that allow you to set up databases that store user information or
control user information in the databases. Through this form, you can:

• Create a new database

• Convert an NCSA style database to the new format

• Modify the administrative password of an existing database

• Add, edit or remove users from an existing database

• Remove an existing database

The Netsite server stores its databases in the server root, in the folder
admin/userdb . When specifying a database, you should only use a name,
not a full path.

Create a New Database

This form creates a new user database, stored in your server root in the
directory userdb , which you can use with the HTTP authorization forms.
Through this form, you can create a new user database.

You need to specify a database name and an administrative password. There
are links on this page that allow you to modify an existing database or
convert an old NCSA httpd-style database to the new format.

First you need to decide on the database name. This is the name you’ll use
to refer to the database in the future, and it’ll also be the file name used in the
database directory.

54

Chapter 4: Server Maintenance

You’ll also need to set an administrative password. Enter it into both boxes,
in case of a typo.

Then use the buttons at the bottom of the form to activate or reset your
changes.

Convert an NCSA httpd-Style Database

This form allows you to convert user files similar to NCSA httpd’s to the new
format. Through this form, you can create a new user database to use in
HTTP access authorization and set the administrative password for the new
database

You only need to fill in a full pathname to the user file you want to convert,
a name to give to the newly converted database, and the administrative
password for that database.

The format to be converted should look something like this:

user1:password1
user2:password2
user3:password3
user4:password4

Passwords are not normally stored in clear text. Usually, they are encrypted
so that you cannot read them. If the file is an NCSA httpd file, the passwords

Database name:

Password:

Password (verify):

User Databases

55

will already be encrypted. Or, you can have the converter encrypt the
passwords for you, if you check the appropriate box on this form.

You then need to supply the full pathname of the database you wish to
convert and name the new converted database.

Remember, this is not the full path, just the name of the database.

You’ll also need to set an administrative password. Enter it into both boxes,
in case of a typo.

Then use the buttons at the bottom of the form to activate or reset your
changes.

Database Administrative Password

With this form you can modify a database’s administrative password.

You need to fill in a database name, the current administrative password,
and then the new administrative password.

What is the full pathname of the
database you want to convert?

What do you want to name the new
database?

Password:

Password (verify):

56

Chapter 4: Server Maintenance

Enter the name of the database you want to edit. Remember, this is not the
full path, just the name of the database.

Enter the administrative password of the database you want to edit.

Then you can enter the new administrative password. Enter it into both
boxes, in case of a typo.

Then use the buttons at the bottom of the form to activate or reset your
changes.

Add, Edit or Remove Users

With this form you manage your database of users. Through this form, you
can add, modify or delete users from this database.

You need to fill in a database name, an administrative password, and tell the
server what action you want to take.

Database name:

Administrative password:

Password:

Password (verify):

User Databases

57

Enter the name of the database you want to edit. Remember, this is not the
full path, just the name of the database.

Enter the administrative password of the database you want to edit.

Action

You can select the action to be taken here by activating one of three radio
buttons:

• Add user

• Edit user

• Remove user

Enter the name of the user you want to add, edit or remove in this field:

Enter another password only if adding or editing a user. You must enter it
twice to make sure that there are no typos.

Database name:

Administrative password:

User name:

Password:

58

Chapter 4: Server Maintenance

Then use the buttons at the bottom of the form to activate or reset your
changes.

Remove a Database

Through this form, you can delete a user database. Deletion is permanent, so
choose wisely. Think twice before submitting this form.

You need to specify a database name and an administrative password.

Enter the name of the database you want to remove. Remember, this is not
the full path, just the name of the database.

Enter the administrative password of the database you want to remove.

Then use the buttons at the bottom of the form to activate or reset your
changes.

Administrative Access

On the Netsite Server Manager home page, click the Admin Passwords and
Allowed Hosts item on the imagemap or use the “Configure admin
passwords and allowed hosts” link under Server Maintenance. This action

Password (verify):

Database name:

Administrative password:

Administrative Access

59

displays the Administrative Password form where you can use links that
allow you to:

• Modify the hosts allowed to access the administration of your server

• Modify your administrative username

• Modify your administrative password

You only have to change the fields you want to modify.

Note: Note that the IP address, 127.0.0.1, is added to the IP list regardless, in
case of emergency.

You can specify allowable hosts by hostnames, IP addresses, or both, in
wildcard patterns or comma-delimited lists.

When doing the restriction check, the server first checks the host restrictions.
If the check passes, the document is served. If the incoming request fails the
check, the server then tries the IP restrictions. If they both fail, then the client
is refused.

Here are some examples of restrictions:

Hosts: *.sgi.com
Hosts: machine1.sgi.com,machine2.sgi.com
Hosts: machine*.sgi.com
Hosts: (machine1|machine2).sgi.com
IP: 192.82.208.*.

You can change your administrative username. admin is recommended, but
not required.

Allowed hostnames:

Allowed IP addresses:

60

Chapter 4: Server Maintenance

You can also change your administrative password. Be sure to enter it twice,
to make sure there were no typing errors.

Use the buttons at the bottom of the form to activate or reset your changes.

Server Error Logs

On the Netsite Server Manager home page, click the View Server Error Log
item on the imagemap or use the “View the server error log” link under
Server Maintenance. Clicking the link displays the most recent 25 lines in the
error log. You can use a text viewer or editor to access the entire log by
looking in the logs directory in the server root.

Process Control

On the Netsite Server Manager home page, click the Process Control item on
the imagemap or use the “Process Control” link under Server Maintenance.
Through this form, you can:

• Kill your server

• Soft restart your server

• Hard restart your server

User name: admin

Password:

Reenter password:

Process Control

61

Shut Down the Server

Sometimes, you might want to shut down your server, perhaps because you
want to take it out of service while you do backups. Once you kill the server,
you can restart it with /etc/init.d/netsite start. Click the “Shut down the
server” button to do so.

Soft Server Restart

After making changes to the administrative settings, you might need to do a
soft restart of the server. This means that the server is sent a signal that tells
it to re-read the configuration files and start again without interrupting
service. Click the “Soft restart the server” button to do so.

Hard Server Restart

Sometimes, you might want to make sure the server is really fully restarted,
or perhaps you changed a major variable like the maximum number of
processes that requires that the server restart completely. Be warned,
however, that doing a full restart might cause some users to get an error
message if they try to access your server during the time when the server
goes offline and before it comes back.

Note: Remember also that if your server is running on a port less than 1024,
this script will not work. The full restart script cannot run as root, so if you're
under 1024, you have to do it by hand. The Netsite server default port is 80,
so unless you have changed that default, the full restart script will not work.

Click the “Fully restart the server” button to do so.

63

Appendix A

A. What’s Different

The Netsite Communications Server is the first commercial HTTP server
fully compatible with NCSA Mosaic and other HTTP clients and servers.
Here you’ll find descriptions of how the Netsite server compares to the
NCSA research prototype server. If you’ve never used NCSA httpd, you
may find this irrelevant—feel free to skip to the next part of the guide that
interests you.

QuickStart Installation and Administration Interface

With the Netsite Communications Server, all server setup and maintenance
(including out-of-the-box QuickStart installation) can now be performed
through a set of HTTP-navigable document forms. This makes configuration
and maintenance simple and fast. You can configure every feature of the
Netsite Communications Server through the document forms interface.

With NCSA httpd, setup and maintenance of the server require you to
directly edit configuration files. If you wish, you can still use a text editor to
modify the configuration files directly (refer to Appendix C).

Reduced System Impact

The Netsite Communications Server uses a different process model than that
used with the NCSA server. The Netsite server launches a set number of
processes to handle all requests by clients accessing the server. When a
request comes into the server, the kernel hands the request to any one of the
available processes. After the request is complete, the process simply makes
itself available again. This creates a group of processes that are always active
and never destroyed. The Netsite Server Manager server allows you to limit
the number of processes so you can manage the impact on your system. This
mechanism reserves part of your machine’s capacity for other uses and

64

Appendix A: What’s Different

prevents client requests from overwhelming system resources and crashing
your machine.

NCSA httpd creates one new process for every connection requested by
clients accessing your server. When a request is completed, its respective
process is destroyed. NCSA httpd’s inability to manage system load
periodically causes busy servers to serve documents very slowly or crash
often as system resources become exhausted.

Easier Imagemaps

The Netsite Communications Server allows you to set up images as
imagemaps by referencing a map file (whose format is the same as map files
used with NCSA httpd). When a user clicks on the image, the server
automatically processes the request using the specified map file. No external
program is necessary to handle the imagemap. Relative links can be used in
map files.

To set up images as imagemaps using NCSA httpd, you must first edit and
compile the imagemap program. Then, every time a user wants to create a
map, you must edit at least two files. This can become difficult to administer.

Document Signatures, or Trailers

Only the Netsite Communications Server lets you create a custom signature,
or trailer, that is automatically appended to the end of HTML documents
without using server-parsed HTML. This signature can be changed on a
per-directory basis, and can include such items as:

• The author’s name (or contact address)

• Any copyright notice that applies to the pages in the directory

• A small form that allows you to search a database

• Anything else you want to include in every one of your documents

You can also have the server generate the date of last modification for each
page and place it in the trailer (in a format you specify). For those of you who

Custom Error Messages

65

use caching proxies, this function does not destroy the last modified date or
content length headers.

This feature eliminates the extra system load caused by parsing each HTML
page before including a custom trailer or signature. NCSA httpd can only
complete this task using server-parsed HTML. For special situations and
creative uses, the Netsite server still allows you to use server-parsed HTML.
The Netsite server also repairs some of the problems present in the
implementation of server-parsed HTML on other HTTP servers.

Custom Error Messages

When errors occur, such as the client asking for something that doesn’t exist,
the client asking for something that the server can’t read or which it is not
authorized to read, or the server encountering an internal problem and
becoming unable to fulfill the request, both NCSA httpd and the Netsite
server generate a precompiled error message to be sent to the client. With the
Netsite server, you have the added flexibility of generating custom HTML
error messages to send back to the client instead of the standard messages
that are customarily built-in.

You can do this on a per-directory basis. For example, when users attempt to
access a page for which they have no authorization, you can put contact
information in the error message that tells them who to contact to obtain
access.

Custom Logging

With the Netsite Communications Server you can log all accesses to a central
file as well as log errors through the syslog facility. You can also add
individual log files on a per-directory or per-template basis. With this
feature, you can generate access logs for single directories or single
documents. NCSA httpd reports errors to a central error log and accesses to
a central access log.

Combined with access control, log information for a particular directory can
be made publicly available without compromising the security of the
complete, central log file. The Netsite Communications Server also allows

66

Appendix A: What’s Different

you to choose whether to skip reverse DNS lookups when generating a log
entry. Eliminating reverse DNS lookups for log purposes can save precious
system resources.

Flexible Access Control

Access control is now more flexible, allowing cases in which local hosts don’t
require user and password identification, but remote hosts do. URLs can be
effectively hidden from remote entities and the server can deny the existence
of those URLs if unwanted/unallowed persons attempt to access them.

Improved User Management

The Netsite Communications Server provides a streamlined interface for
setting up and managing HTTP access authorization. You can use the new
Netsite administrative forms to manage user databases and manage users
within those databases. Users can then use a forms interface to change their
passwords. An optional new user database file format offers fast access to an
arbitrary number of users.

Configuration by Directory or Template

With the Netsite Communications Server you can control every server
function, both on a per-directory and by-template basis. When you create a
template, you name a set of configuration parameters which can then be
applied to multiple directories.

NCSA httpd only allows you to control access to the server and enable
indexing on a per-directory basis. This makes controlling access to users’
home directories difficult unless their directories are all in the same location.

Multiple User Public Information Directories

NCSA httpd allows your system’s users (Unix users) to provide information
from their home directories through a special URL starting with /~ , such as

NCSA Features Not Supported

67

/~rob . The Netsite Communications Server not only allows you to do this
but also allows you to change the user URL to something else, such as /u/

appended with the user ID (e.g., /u/rob). If you want, you can also use
password files other than /etc/passwd or the NIS map so that you don’t
have to give your users’ accounts on the server machine. This enables you to
reduce traffic on your NIS server and reduce your server’s overall load by
telling the Netsite server to pre-scan the password file.

NCSA Features Not Supported

Due to a lack of interest or functionality that was improved elsewhere in the
server operation, the following items are not supported:

• RFC 931 identity checking for logging purposes has been not been
implemented.

• .htaccess files have no equivalent in the Netsite server. You can use
the administrative forms to configure user directories.

• In favor of the CGI program interface, the antiquated NCSA script
format (/htbin) is no longer supported.

For similar reasons, the following item has changed:

• Directory indexing can no longer be configured on a per-directory basis
(but may be configured on a global basis).

69

Appendix B

B. Tutorials

These tutorials are intended to make installing your server a bit easier on
you, whether you are migrating from NCSA httpd or simply installing the
server for the first time. They’ll help you with:

• Setting up image maps

• Setting up CGI directories

• Using HTTP user access control

• The difference between Unix users and HTTP users

• Making your server safe

• Optimizing your server’s performance

• Using resource templates

What Is An Imagemap?

An imagemap is a “clickable” image that Netscape Navigator and other
HTTP-based clients treat as a special case: clicking in different areas on the
picture causes different URLs to be loaded. Graphical menus, icons, clickable
building maps, and clickable blueprints are some of the many possible
applications of imagemaps.

How Does This Compare To My Old Imagemaps?

In NCSA httpd, imagemaps were done by creating an imagemap.conf file in
the server’s configuration directory. This involves getting the site
administrator to change a file for the user. Netsite has integrated imagemaps
into a flexible and unified handling system that is easy to use, and is less
work on the administrator.

70

Appendix B: Tutorials

How Does It Work?

Only two files are required for image mapping: a .map file and an actual
image file. The .map file contains a list of coordinates to define the regions of
the map that cause the different effects when clicked on.

How Are Regions Specified?

There are three different methods to specify the regions that can be clicked
on: by circles, by polygons, or by simple rectangles. Each has the same basic
structure…

method url coord_1 coord_2 ... coord_n

…each one uses the coordinates in a slightly different way. The coordinates
are specified simply by listing an x,y pair. Here’s how to specify the region
types:

circle (url) center edgepoint

…a circle, specified by two coordinates: first, the center, and then, a
coordinate on the circumference (any one).

poly (url) vertex_1 vertex_2 ... vertex_n

…a polygon, of up to 100 vertices. Each coordinate is a vertex. You do not
have to close off your polygons.

rect (url) upper-left lower-right

…a rectangle, specified by its upper left corner and its lower right corner.

default (url)

…this is the URL that is loaded when none of the regions match.

Remember, the URL is the URL you want to have associated with the
specified region. Also remember, you can use “#” as the first character in a
line to specify a comment.

Methods of CGI Access

71

How Does It All Fit Together?

Once you have the .map file set up, you can put the imagemap into action. It
can be referenced by the following structure:

The map file specifies the anchor, and the image file specifies the image to be
displayed. ISMAP defines this as an imagemap and tells the server to watch
for clicks.

Can You Give Me An Example?

Here is a sample .map file. We have an image, mcom.gif , which we want to
make clickable. We have a circle, a rectangle, and a polygon in the shape of
an M.

mcom.map: Sample imagemap definition
#the circle around the logo
circle http://www.mcom.com/circle.html 25,25 0,25
#a rectangle inside the circle (one of many!)
rect http://www.mcom.com/rect.html 0,0 15,30
#the m in the middle
poly http://www.mcom.com/m.html 15,35 15,10 25,15 35,10
35,35 15,35
#anything else
default http://www.mcom.com/tryagain.html

Then the image is referenced by:

Methods of CGI Access

With Netsite, there are two methods of specifying where Common Gateway
Interface (CGI) files can reside (See Appendix C for details). The first and
most efficient of these methods is to simply activate CGI as a file type in a
directory where .cgi files can reside along with other files (such as .html ,
.gif , etc.). The second method lets you keep your old NCSA httpd-style
cgi-bin directory, and you just inform the server that the directory exists
and to process the contents as CGI programs.

72

Appendix B: Tutorials

Activate .CGI as a File Type In Certain Directories

It is sometimes desirable to have only one CGI file among other non-CGI
files, and to be able to tell the server that .cgi should cause those URLs to
be treated as CGI programs.

How did it work before?

In srm.conf , you would first specify .cgi as a file extension mapping (SRM
stands for Server Resource Map) . Then, in access.conf , you would activate
CGI execution in the directory in which you wanted it.

How do I do it now?

Under Server Maintenance in the Netsite Server Manager there’s a section
called “Server Resources.” When you access that section, you’ll see several
buttons, links and fields which let you select a specific resource to work on.

The first thing you want to do is select the directory in which you want to
activate CGI execution. Use one of the links that lets you choose a directory
or your document root. The Netsite Server Manager automatically displays
a list of directories you can select. Click the directory in your document root
where you’re keeping your CGI programs. Now you are ready to activate
CGI in that directory.

From the “Modifying a resource” page, click on this link:

• Activate CGI as a file type in this resource

Then mark the “Allow CGI programs in this resource” checkbox, and click
the “Use this setting” button.

From the “Success” page click on the “Send the restart signal to the server”
link or return to the Netsite Server Manager home page, click on Process
Control, then click on “Soft server restart” and the changes will take effect.

Methods of CGI Access

73

Specify a CGI-BIN Alias

If you want to preserve the use of any existing CGI programs you may have
in an old cgi-bin directory, you can choose that directory as a resource to
modify, and then map a URL to that directory.

How did it work before?

NCSA httpd specified aliases in srm.conf through the ScriptAlias

command, by which all the files in the directory specified would be
interpreted as CGI programs, and executed accordingly.

How do I do it now?

Enter the Netsite Server Manager home page on your server, and click the
Full Configuration item on the imagemap or choose the “Configure with full
documentation” link. When that page is displayed, one of the items listed is:

• Create a directory dedicated to running CGI scripts

Click this link and you’re presented with a form that allows you to specify
the prefix to replace, the directory to map it to, and a method to allow only
certain hosts to access the CGI directory. Enter the prefix you want to remap,
the name of the directory where you want to keep your CGI programs, and
what hosts should be allowed to see the directory.

For example, if you wanted to map:

http://[yourhost].[yourdomain].[dom]/ cgi-bin

to /var/httpd/cgi-bin , you would enter /cgi-bin as the prefix to replace,
and /var/httpd/cgi-bin as the directory to map it to. If you don’t care
who accesses the directory, just leave the access restriction fields blank. If
you want to restrict access, enter a wildcard pattern to specify what hosts
and IP addresses can access your scripts.

Click “Add this Mapping.” From the “Success” page, click the “Restart the
Server” link or return to the Netsite Server Manager, click on Process Control
and then click on “Soft server restart” to make your changes take effect.

74

Appendix B: Tutorials

HTTP User Access Control

Using Netsite’s HTTP user access control system is easy, quick and intuitive.
It uses a high speed database format to offer substantially improved
performance for large database files. You can even convert NCSA
httpd-style databases to the new system.

You might want to read this and look at the Netsite Server Manager pages
while you’re reading.

Adding user access control is a three-step process:

1. First, you should access User Databases under Server Maintenance to
configure the user databases.

2. Then you can access Server Resources to choose the database to which
you want to apply access control.

3. Then you can actually apply the access control using the appropriate
link from the “Modifying a resource” page.

Create User Databases

The first step is to configure the user databases. You have two options when
creating a new user database: you can create one from scratch, or you can
convert an NCSA httpd-style database into the new format.

In either case, simply enter a name for the new database in the appropriate
form field. All of the server’s database files are kept in the server root, under
admin/userdb . The name you enter is used as a file name for the database.

You also need to enter an administrative password for the database. A user
named admin is created in the database. Remember what this password is—
you’ll need to enter it later.

If you’re creating a new database, that’s all you need. If you’re converting a
database, though, you’ll also need to enter an absolute pathname in the
appropriate field for the database to be converted. Note the format for the
file, user:password , followed by a carriage return for each user.

HTTP User Access Control

75

The converter script can also act as a batch processor. Simply create an NCSA
httpd-style user file with plain text passwords and click the checkbox to
enable encrypting passwords. It will create the database, encrypting the
passwords for you. That way, you can either type in this list yourself, or have
a database program generate it for you (see “Convert an NCSA httpd-Style
Database” on page 54 for the format of entries in the NCSA httpd-style
databases).

Modify User Databases

You can access the User Databases section in Server Maintenance to modify
user databases after you have created them. This allows you to add users,
edit users, and remove users. Simply enter the name of the database in the
appropriate form field, enter the admin password for that database, and
make whatever changes you need.

Choose a Resource

Next, you must choose a resource to which you want to apply access control.
Access Server Resources from the Netsite Server Manager home page to
choose your user database as a resource. A resource is anything accessible by
the server that it can return to a client; usually this means files and
directories.

There are a number of ways to choose a resource: you can choose by file, by
directory, or the entire server. Note that if you choose a directory, it will
apply to the subdirectories as well.

Add Access Control

Once you have chosen the database as a resource, click on the “Restrict
access to this resource through HTTP access authorization” link, and a form
is displayed that lets you set up access control.

The database name is simply the name of the database you used earlier
when you created it.

76

Appendix B: Tutorials

You can choose an allowed user pattern to specify who uses a resource. For
example, the pattern (mary|fred) allows users “mary” or “fred” access to
the database, but no one else. Entering no pattern will cause the server to
allow everyone in the selected database to have access to that resource.

Don’t forget to enter a realm, so that users know where they are connecting.
For example, the realm on the server administration pages you used to
navigate here is “Server Administration.” The realm is completely arbitrary
and it’s up to you to come up with a name.

Now, all you need to do is click in the “Use no access control for this
resource” box to unmark it.

Submit the form, restart the server, and the resource will be protected.

UNIX Users Versus HTTP Users

When you install your server, and when you use various features such as
user public information directories and HTTP access authorization, you will
be asked to create users. The term “user” can be misleading in this case.

The Netsite server maintains its own set of users, which are designated
HTTP users because they only apply to Netsite. When you install the server,
it asks you to select a user name and a password for the admin account. This
is not a real system account which people can use to log into the server machine. It
does not have a home directory, cannot read mail, and cannot do anything a
normal user can do. It is only accessible through HTTP and the Netsite
Communications Server. This user is used by the server to protect its
documents from unwanted eyes.

The confusing point is when the server documentation discusses setting up
“user public information directories” or asks what “user” you want to run
the server process as. The user being referred to in this case is a Unix user,
who can log in and has a home directory. Generally, the system keeps these
users in a database called /etc/passwd (although this database can be
shared over the network using NIS).

Make Your Server Safe

77

Make Your Server Safe

It is easy to configure your server to the level of safety you want by
configuring user directories, CGI, and sym-link usage. We call this safety
instead of its traditional name of “security” to avoid confusion with the
protection of certain documents through host restriction, HTTP user access
control and the capabilities of the Netsite Commerce Server. See the earlier
tutorial on “HTTP User Access Control” on page 74.

Making your server safer means making it more difficult for your internal
users to compromise your system by accidentally leaving the door open for
remote hackers to break into your system. To make it safer, however, you
must restrict which server features your untrusted users can use.

User Directories

On some servers, such as a server with a large number of users, the
administrator does not want to have too many people changing the
document tree. In cases like this, it is possible to allow users to create their
own public directories, and use name translation to allow the world to access
them. In most cases, the user is allowed to create a directory called
public_html in their home directory, and references to:

http://[yourserver].[yourdomain].[dom]/~user/file.html

will access:

~user/public_html/file.html

This function is activated through the users’ public information directories
configuration form.

However, this may not be appropriate for some servers. How much do you
trust your users not to put inappropriate files in their public directories? If
you trust them, it can be quite convenient and encouraging for the user to
learn HTML (since they don’t have to bother the administrator when they’re
doing it.) If you don’t trust them, however, you may want to disable user
public information directories in the configuration form.

If you trust your users not to put inappropriate content on your server, you
probably still want to keep some restrictions on what is allowed. CGI

78

Appendix B: Tutorials

programs, along with symbolic links (known as sym-links), are a good
example of something you may not want to allow in a public directory.

CGI Security Concerns

Netsite’s support for CGI programs is an extraordinarily useful way for you
to interface external programs to your server. Examples of CGI scripts
include forms handlers, administrative document handlers, and on-the-fly
document converters.

Sometimes the way CGI programs work, however, can raise security
concerns, because they can be programmed to do something inappropriate.
One concern is that the programs might be executed as the UID your server
is running as. That user should not have privileges, but it will be able to read
public files such as /etc/passwd . Again, it is a case of how much you trust
your users. If you keep your source code well protected and trust your
document authors not to do anything inappropriate in the document root,
you can safely activate CGI as a file type for the server. This allows you to
put a CGI program in any directory, so long as its name ends in .cgi (see the
earlier tutorial “Add Access Control” on page 75 and “Activate CGI as a File
Type” on page 43).

On the other hand, you may want to keep an eye on the contents of the CGI
programs, and keep them all in certain central directories. Traditionally,
there has been a directory named cgi-bin in the server root which contains
these programs. That way, you can protect the directory and control what is
put in and out of it. While this means extra work for you, it does let you keep
an eye on things if you don’t trust your users.

Silicon Graphics does not recommend turning on CGI scripts in public
directories. Although you may trust your normal users not to do anything
unsafe, the possibility of abuse is too high to ignore, especially if your system
is compromised.

You must strike a balance between trust and security.

Make Your Server Safe

79

Symbolic Links

Using symbolic links (or sym-links) is a way for the server to access files
outside the document root without trouble. Although they can be done with
name translation, sym-links don’t require the user to bug the administrator
every time a file outside the document root needs to be accessed. However,
it also means that a user could create a sym-link that lets clients access files
outside of the document root—possibly files that are inappropriate. The
time-honored example is /etc/passwd on a system which does not use
shadow passwords. Another example could be the documentation to one of
your licensed software packages—the user may mean well when he or she
makes it accessible as navigable pages, but your licensing agreement may
forbid making the copyrighted documentation public. The user might not be
aware of this restriction.

There is another type of link, however: the non-symbolic or hard link. These
links allow the user to create a pointer only to files on the same filesystem as
the link. You may want to disable these kind of links as well.

Because of these concerns, the server gives you the option to control
sym-links in one of three ways:

• No control at all

• Follow sym-links if owners match

• Disable sym-links

Both sym-links and hard links are not disabled by default.

Note: Disabling sym-links does not prevent the user from copying a file or
directory which they can read.

“Follow sym-links if owners match” means that the server will only follow
a link in the user’s public information directory (or elsewhere) if whatever
file or directory the symbolic link points to is owned by the same user as the
target directory. That way, users can point links to their own documents
without a problem but won’t be able to point to documents owned by
someone else (such as root). However, keep in mind that if a user really
wants to make that file public, they may simply copy it to their directory,
reducing the usefulness of sym-link security in the absence of disk space
quotas. It’s all a matter of trust.

80

Appendix B: Tutorials

“No control at all” is exactly what it implies: all sym-links are followed. This
may be appropriate for a server with all trusted users, especially since it
takes the server extra time to process a pathname looking for links.

Optimize Your Server’s Performance

Once you have your server installed, you can optimize the server’s
performance to best fit your needs. On some servers which are not dedicated
servers (that is, other people use the machine), you might want to keep its
resource usage low. On the other hand, on a dedicated server expecting a
great deal of requests at a time, you probably want to optimize it to offer the
best possible response time.

There are two major factors affecting server performance: the number of
processes it is allowed to run, and the usage of server-parsed HTML.

The Maximum Number of Processes

Setting the maximum number of server processes is done through either Full
Configuration or Quick Configuration on the Netsite Server Manager home
page. The number you choose can be anywhere from 1 to 1024. It should be
a function both of what kind of load you expect and how much of a server
load you can handle. On one hand, choosing too many processes could cause
unnecessary memory swapping in your system as all of the processes take
up the available RAM. On the other hand, choosing too few can cause delays
when users attempt to access your server.

If your server is fairly low demand (under 10,000 accesses per day), or if your
server is being used for other things, running 8 to 16 should be enough for
your needs. If your server is higher demand, you may want to make sure
you have enough RAM and set the number as high as you can. 32 processes
should be enough for most high access sites, with 48 or 64 being even better
if you have the RAM to spare.

To illustrate what happens if you choose a number of processes which is too
low, suppose that you’ve chosen some number of processes for your
machine. Suppose also that some number of people are currently connected
to your server and downloading large files. When another client accesses

Optimize Your Server’s Performance

81

your server, that client is placed in a waiting queue and its request is delayed
until another process becomes available. If you set the maximum number of
processes way too low, then clients will begin to receive timeout errors after
a certain number of them are in the queue.

Choosing the proper number of processes is mostly a matter of fine-tuning.
The easiest way to tell how your server is doing is to try accessing it during
peak hours to see what kind of response time you get. You can also use
system-specific tools such as top to see how much memory your server is
using.

Server-Parsed HTML

Normally, HTML is sent back to the client exactly as it is on the disk, with no
server intervention. Sometimes, however, you might find it useful to have
the server parse these files, and insert request-specific information or files
into the document. This is known as server-parsed HTML, or server-side
includes. The functionality originally appeared in NCSA httpd.

Server-parsed HTML is a very convenient function, but deciding which files
to parse can be time consuming for your system and may cause an
unnecessary load. By default, the server parses files with the .shtml

extension. That way, when a request comes in, a simple check on the file
name allows the server to decide whether or not to parse it. This is the
method we recommend.

However, you may not want to use a different name for those files. You may
want to keep parsed HTML alongside your non-parsed HTML and keep
using the .html extension (and not have to rename the files you want parsed
with the .shtml extension). In that case, you should use one of these options:

• Parse every document on the server

• Parse only documents with the exec bit turned on

Parsing every document can be a large performance hit for the server,
especially where large documents are involved. If your server is fairly
low-demand, or if you have a high performance machine running it, this
may not be a problem. A good way to know if you have CPU resources to
spare is to use a system-specific tool such as top (1) or gr_osview (1) to
examine what percentage of your CPU time is idle during peak hours.

82

Appendix B: Tutorials

Because of this performance problem, however, the exec bit method was
introduced. The exec bit method causes the server to only parse documents
that have the exec bit set in their file permissions (i.e. mode 755, etc.)
Although this is better than parsing all documents, many users have their
umask set to have all of their documents executable. In that case, your server
would be parsing documents that are not actually server-parsed HTML.
Netscape Communications Corporation considers this method of parsed HTML
selection to be an error prone solution and does not recommend its use. The feature
is provided for compatibility with NCSA httpd.

Ultimately, you must choose the configuration that best suits your needs for
convenience and performance. If you choose to use a method other than the
default method for choosing what to parse, you can evaluate performance
measurements with the parsing options enabled and with them disabled to
see if they make a real impact in your environment. Most likely, you’ll want
to strike a balance between efficiency and compatibility.

How to Use Resource Templates

Resource templates are a fast and easy way to apply one configuration to a
number of directories without having to reenter all the resource
configuration information again. In essence, templates are named objects.
That is, you create an object, configure it, then tell the server to use that
configuration when accessing the directories you choose. Some example
uses for resource templates are cgi-bin directories, public HTML
directories, or perhaps a subscription directory scheme.

Create a New Template

Creating a new template is quick and easy. Access Server Resources from the
Netsite Server Manager pages. At the bottom of the “Choosing a resource to
modify” page there’s an option for creating a new template. Activate the
radio button titled “You can make a new template” then enter a name you
want to use as a reference to the template in the field. For example, you
might choose my-CGI for a CGI template. Then, just submit the form.

How to Use Resource Templates

83

Modify That Template

You should now be in the “Modify a resource” section, with the template
you selected as the resource. Make the changes you wish to make to the
configuration.

For example, if you wanted this template to activate CGI, you might first
select “Activate CGI as a file type in this resource.” Perhaps you also want to
“Customize request logging,” and “Restrict the usage of file system links.”

Simply change the items you want to change, and when you are finished,
submit the form, restart the server and return to the Netsite Server Manager
home page.

Apply the New Template

Applying resource templates is done through name translation. With name
translation, a virtual path is mapped to a physical path on the disk that may
be quite different. For example, using the CGI example again, you might
map:

/weather-CGI

to the directory:

/local/users/weatherman/CGI

The name translation page is often called the “URL prefix page” or “URL
Management.” It is found at the bottom of the full or quick configuration
pages, or it can be found quickly using the Master Index. First, choose the
prefix you want to map to that directory. Then, select the physical directory
to which you want to map it.

There is an item labeled “Configuration template.” Enter the name of your
template here.

Submit the form, and presto, the configuration you entered for that template
will now be applied to the directory you chose.

84

Appendix B: Tutorials

How About an Example?

Suppose Bob is running an opinions newspaper, and has several featured
columnists. Bob wants the writers to be able to put their columns on the net
without his intervention, but he doesn’t want to give them access to the
entire server. He decides to create a new template.

First, Bob creates the template, using “Writers ” for the name. He then goes
to the “Modify a resource” page and makes his changes. Bob decides to
completely disable sym-links, make the index file currentarticle.html ,
and make a custom trailer that holds a number of things, including a
disclaimer, a link to the server’s index page, and the date the article was last
modified.

After restarting the server, Bob adds his name translations. He maps:

/cynthia-brown

to:

/users/authors/cyndy/articles

Then he maps:

/bob-smith

to:

/users/authors/bsmith/editorials

and:

/swedish-chef

to:

/users/culinary/swedish/bork-bork-bork

making sure that he uses the Writers template for all of them. He restarts
the server.

And now, Bob sits back and watches his writers fly!

85

Appendix C

C. CGI-A Primer

CGI stands for “Common Gateway Interface.” It is an interface between
your Netsite server and external programs you write. CGI allows those
programs to process HTML forms or other data coming from remote
navigation software, and then send a response to the navigator which
answers its query.

The word “gateway” can be interpreted in two ways. The original meaning
of “gateway” describes a gateway to other services through the HTTP server.
Some examples of other services are Archie/Prospero, WAIS, or a database
of movie information. These services can’t currently be accessed natively
through a World Wide Web navigator, but through a CGI program and an
HTTP server, they can be accessed, and the results displayed in a rich
hypermedia format.

Another way to view the term “gateway” is that CGI is a gateway between
a program and your Netsite HTTP server. That is, CGI sits on the fence
between your program and the server. In this appendix you’ll find out about:

• How CGI Works

• Accessing CGI Programs

• Information Provided by the Server

• Program Output

• An Example CGI Program in ANSI C

• Tips for CGI Program Development

How CGI Works

This section provides an overview of how CGI fits into the interaction of
client software like Netscape Navigator and an HTTP server like Netsite.

86

Appendix C: CGI-A Primer

Figure C-1 Step 1: The Client Contacts The Server

The navigation software contacts the Netsite server running on your
machine and sends it a request. This request may be for a document, or it
may send the results of filling out an HTML form. If the server finds that the
request is for a regular document, it sends that document back to the
navigator. If it finds that the request is for a an external application, then the
server uses CGI to execute that program.

Netscape
(client)

Netsite
(server)

request

How CGI Works

87

Figure C-2 Step 2: Create a CGI Process

When the CGI request comes in, the server creates a copy of itself, called a
CGI process. This process has no purpose other than to set up communication
between your CGI program and the server. Because it is a copy of the server,
it has access to a great deal of information about the incoming request. Some
examples of the kind of information to which your program has access can
include things like which remote host is making the request, whether that
host is using HTTP access authorization or not, what navigation software the
remote user is running, and others. A complete list of these variables,
referred to as “environment variables,” is provided later in this appendix.
See “Variable Formats” on page 95.

Netscape
(client)

Netsite
(server)

CGI Process

request

spawns

88

Appendix C: CGI-A Primer

Figure C-3 Step 3: Assign Variables and Open Data Paths

The CGI process then takes the data the server has about the current request
and encapsulates the data into these environment variables. Environment
variables and file descriptors are the only forms of data which can be
inherited by newly executed programs. They are used to give your program
its data. The CGI process also creates data pathways between your CGI
program and the server, so that the server can send it any encoded form data
the client has submitted, and so you can send your reply back to the client
via the server.

environment
variables

Netscape
(client)

request

Netsite
(server)

CGI Process

standard
input

standard
output

Accessing CGI Programs

89

Figure C-4 Step 4: Execute the CGI Program

At this point, your program takes the data that the server provides,
processes it, contacts any external services it needs to, and then sends its
response to the server via the standard output. The server then takes the
program’s response, prepends any necessary protocol headers to the output,
and sends it back to the client software.

Accessing CGI Programs

To determine if a URL the client is accessing refers to a CGI program, the
Netsite server can use two mechanisms. Neither mechanism is active by
default.

The first method is to designate files of a certain MIME type as CGI
programs, and then allow those programs to reside in the same directory

environment
variables

Netscape
(client)

request
response

Netsite
(server)

Your program

standard
output

standard
input

90

Appendix C: CGI-A Primer

along with your other HTML documents and graphics. This method is the
most flexible, but you should be careful not to activate CGI in directories
which you don’t trust (such as directories to which users can upload or those
that “untrusted” users own). When this feature is active, any file whose
name ends with .cgi will be executed as a CGI program (see “Activate CGI
as a File Type” on page 43).

The second method is a bit more restrictive, in that it allows only CGI
programs to be run from certain specified directories. This gives you more
control over who writes CGI scripts and who has access to where they’re
kept. By using this method, you designate certain virtual paths (or URL
prefixes) as CGI directories. Then, any file inside those directories is
executed as a CGI program. A popular example is the default virtual prefix
/cgi-bin , which maps to a directory in the server root called cgi-bin which
contains all of your CGI programs.

If an attempt is made to access a CGI program, and you get a server error
accompanied by the message no way to service request for

/foo/bar.cgi in your error log, or the text of your program appears in the
client’s window, then you have not properly activated CGI in that directory.

Embedding Information in URLs

The method of CGI activation you choose determines only part of the URL
used to access your program. URLs to CGI programs can be split into three
different parts:

[virtual path][extra path information]?[query string]

The virtual path is similar to a path you would use to access a regular
document or image. That is, it points the server to the file that contains the
CGI program you want executed.

Extra path information is additional information you can embed in the URL
after the program name. Extra path information is optional. This mechanism
can be used for two purposes. First, it can be used to convey constant
information to your scripts independent of the client’s intervention. Second,
it can be used to access the server’s virtual-to-physical path translation
mechanism. If you place another virtual path in this part of the URL, and
your script needs to access a file outside of itself, you don’t have to embed

Accessing CGI Programs

91

filesystem paths inside of your CGI URLs. You can use other partial URLs
instead. The server provides the physical pathname corresponding to that
virtual path in the environment variables using path translation (see “Add a
New URL Prefix” on page 36).

The query string is another optional part of the URL. It can either be
explicitly given in your hypertext anchor, it can come from a user typing into
a search dialog box for an HTML document with the ISINDEX tag, or it can
come from HTML forms (see “Accepting User Input from URLs and Other
Sources” on page 92).

Here are some examples of CGI URLs. In all of these examples, the script
name used is /misc/search.cgi , and the document root referred to is in
the physical directory /d/netsite/docs .

Example A:

http://yourserver/misc/search.cgi

This is a simple URL to the CGI program located at
/d/netsite/docs/misc/search.cgi , with no extra path information and
no search query.

Example B:

http://yourserver/misc/search.cgi/type=minimal

In this example, the script author has embedded the extra path information
/type=minimal into the URL. In this case, the script author likely ignores the
translated path information. The script can then read the raw extra path
information, and perform a different kind of search based on that
information. The same script could then be used with different path
information to perform a different type of search.

Example C:

http://yourserver/misc/search.cgi/misc/movies.mdb

This URL specifies the extra path information /misc/movies.mdb for this
script. The search script could then use the translated path information to
find the database /d/netsite/docs/misc/movies.mdb and then search it.

92

Appendix C: CGI-A Primer

Example D:

http://yourserver/misc/search.cgi?netscape

If this were a hyperlink, one use would be to create a link which
automatically searches for the word netscape without the user having to
type anything.

Example E:

http://yourserver/misc/search.cgi/misc/movies.mdb?netscape

This hyperlink would automatically return the results of a search for
netscape in the movies database /d/netsite/docs/misc/movies.mdb .

Accepting User Input from URLs and Other Sources

There are three cases in which the client software can send you information
that the remote user inputs:

• HTML form data

• Input to an ISINDEX search dialog

• Clickable images (ISMAP or imagemaps)

In the third case, the data you receive will be given as a query string of the
form xx,yy where xx and yy are the number of pixels from the upper left hand
corner of the image the user clicked on.

When the data is typed into a search dialog or form text entry, the data will
be encoded using URL encoding. In this encoding, there are two rules:

• Spaces are changed into plus signs

• Any of the characters can be “escaped” by changing them into a
sequence of the form %xx, where x is a hexadecimal digit. The character
is identified by translating the two hexadecimal digits into a number
from 0 to 255, which is a character.

When the data is coming from a search dialog resulting from an ISINDEX
tag, the above translations can be applied directly. Further, your CGI

Accessing CGI Programs

93

program can receive this information fully translated on the command line
if you want to avoid the hassle of performing this translation yourself.

If your data is coming from an HTML form, then the location of this data
varies depending on the method attribute specified with the FORM tag in
your HTML document. If the GET method is used, this information comes
from the QUERY_STRING variable (see “QUERY_STRING” on page 98). If
the POST method is used, this information is sent to your program using the
standard input.

Wherever the data is provided, it will be of the form:

name1=value1&name2=value2 ... &nameN=valueN

If there are any equals signs (=) or ampersands (&) in the encoded data,
they’re encoded using the above URL encoding rules. This avoids ambiguity
when your program translates the form data. To properly decode this data,
you should first split it into name=value pairs (eliminating the ampersands),
then split each pair into a name and a value, and then apply URL decoding
to each portion of the pair.

When a form is submitted, you can often use the order that the form items
appear in the form to determine what order in which your CGI program
receives the name=value pairs. However, you should not depend on this
behavior. The various form elements have their own ways to determine
what value will be associated with the name they are given. All of the textual
input areas use the user’s typed input as the value. Radio buttons use the
value of whichever button is enabled. If checkboxes are unchecked, they will
use either an empty value string, or their name won’t appear in the encoded
form data at all. Hidden form elements can be used to send constant or
per-document data to your script without the user’s knowledge or
intervention.

The example program, documented in “An Example CGI Program in ANSI
C” on page 106, demonstrates decoding of form data.

94

Appendix C: CGI-A Primer

Information Provided by the Server

As described previously, CGI uses two mechanisms to provide data from the
client to your program: the standard input, and environment variables. Let’s
tackle environment variables first.

Environment Variables

Environment variables are used to pass data about a request to your
program. This data is derived from the server software itself, from the
network socket connecting the client to the server, and from the URL that
was used to access the CGI program.

Accessing Environment Variables

There are a number of different mechanisms programs use to access
environment variables, and the mechanism you use is determined by what
programming language you use. Environment variables are identified by
character strings, and have character string values. The following are some
examples of the different mechanisms different programming languages use
to access environment variables.

Using C or C++

In C or C++, you can use the getenv library call to access the environment
variables.

#include <stdlib.h>

char *rhost = getenv("REMOTE_HOST");

Using PERL

In PERL, environment variables are accessed through a simple array.

$rhost = $ENV{’REMOTE_HOST’};

Information Provided by the Server

95

Using the Bourne Shell (/bin/sh)

In the Bourne shell, environment variables are accessed just like normal shell
variables.

RHOST=$REMOTE_HOST

Using the C-Shell

The C shell is similar to the Bourne shell, but it needs the keyword set before
any variable assignment.

set RHOST = $REMOTE_HOST

Variable Formats

The following is a list of each of the environment variables, and their format.

SERVER_SOFTWARE

Gives the name and version of the software which your program is running
under.

Format: name/version

Example: Netsite/1.0

SERVER_NAME

Gives the hostname or IP address of the server machine.

Format: a fully qualified domain name or IP address

Example: 192.82.208.8 or www.sgi.com

SERVER_URL

Gives the URL that people should use to access this server. This variable is
not supported by revision 1.1 of the CGI interface.

96

Appendix C: CGI-A Primer

Note: Iis only available using Netsite server software.

Format: protocol:// hostname: port

If the server is running on a protocol’s default port, the : port section won’t
be present.

Example: http://www.sgi.com

GATEWAY_INTERFACE

The revision of the CGI specification supported by the server software.

Format: CGI/ n.n

n.n is the numerical revision.

Example: CGI/1.1

SERVER_PROTOCOL

The name and revision of the protocol being used by the client and server.

Format: name/ version

Example: HTTP/1.0

SERVER_PORT

The port number to which this request was sent.

Format: a number between 1 and 65,535

Example: 80

REQUEST_METHOD

The HTTP protocol defines a number of different methods which are used
when accessing URLs on the server. When a person clicks on a hyperlink, the
GET method is used.

Information Provided by the Server

97

When a form is submitted, the method used is determined by the METHOD

attribute to the FORM tag. There is more information on this in the part of this
appendix that discusses processing HTML form data (see “Accepting User
Input from URLs and Other Sources” on page 92).

Format: method

Examples: GET, HEAD, POST.

CGI programs do not have to deal with the HEAD method directly and can
treat it just like the GET method.

PATH_INFO

The extra path information which the server derives from the URL used to
access the CGI program.

Format: /dir1/dir2…

Example: /html/graphics/doc1.gif

PATH_TRANSLATED

The Netsite server makes a distinction between pathnames used in URLs,
and filesystem pathnames. It is often useful to make your PATH_INFO a
virtual path, so that the server provides a physical pathname in this variable.
This allows you to avoid giving filesystem pathnames to remote client
software.

Format: /dir1/dir2…

Example: Suppose the document root is set to /d/netsite/docs , and the
URL /blat.cgi/doc1.html is used to accessthe CGI program. In this case,
PATH_INFO is /doc1.html and PATH_TRANSLATED is
/d/netsite/docs/doc1.html .

98

Appendix C: CGI-A Primer

SCRIPT_NAME

If your program needs to refer the remote client back to itself, or needs to
construct anchors in HTML referring to itself, you can use this variable to get
a virtual path to your program.

Format: /dir1/dir2/progname

Examples: /orders/tickets.cgi , /cgi-bin/order-tickets

QUERY_STRING

When a client accesses an HTML page with a form in it which uses the GET
method, or an HTML page that contains the ISINDEX tag and the user
executes a search, the information the user provided in the form or search
dialog is given to your script in this variable. This information is provided
by the server as it was sent by the client, which means it is encoded using the
URL encoding rules as described earlier.

Format: varies

Example: From a form, you might get button1=on&button2=off , or from a
document which contains the ISINDEX tag you might get two+words .

REMOTE_HOST

This returns the hostname of the remote client software. This is a
fully-qualified domain name such as www.sgi.com instead of just www.

Format: machine.subdomain.domain

Example: core.sgi.com

If no host name information is available, the script will have to rely on the
REMOTE_ADDR variable instead.

REMOTE_ADDR

This returns the IP address of the remote host. This information is
guaranteed to be present.

Information Provided by the Server

99

Format: n.n.n.n

n is a number between 1 and 255.

Example: 192.82.208.8

AUTH_TYPE

The Netsite server supports HTTP basic access authorization, and in the
future may support additional types of authorization. If the script is
protected by any type of authorization, this variable will be set to identify
the type.

Example: basic

REMOTE_USER

If and only if HTTP access authorization has been activated for this script’s
URL, then this variable will be set to the name of the local HTTP user of the
person using the navigation software. This is not a way to determine the user
name of any person accessing your program.

Example: robm

CONTENT_TYPE

If a form is submitted with the POST method, then this is the type of data
being sent by the client. Note that while clients currently only send
application/x-www-form-urlencoded , this variable can contain any
MIME type. In the future, systems may use this method to transfer data back
and forth.

Format: type/subtype

CONTENT_LENGTH

This is the number of bytes being sent by the client. Note that while some
HTTP servers do not send an EOF at the end of the data, Netsite does send an
EOF, alleviating the need to count the number of bytes your script has read
from the input stream.

100

Appendix C: CGI-A Primer

Secure Server Variable Formats

The Netsite Commerce Server defines the following additional variables to
describe the server and client’s security status.

HTTPS

On or off, depending on whether security is active on this server.

HTTPS_KEYSIZE

When security is on, this is the number of bits in the session key used to
encrypt the session.

HTTPS_SERVER_ISSUER

The issuer of this server’s key pair.

HTTPS_SERVER_SUBJECT

The subject of this server’s key pair.

HTTP Headers

In addition to the environment variables, if the client sends any additional
HTTP headers along with its request, then these headers are also placed into
the environment. The only exception is the Authorization header. The HTTP
header is prefixed with HTTP_, and have all of its letters changed to upper
case and all dash (-) characters changed into underscore (_) characters.
Examples of these are shown here.

HTTP_ACCEPT

This header enumerates the types of data the client can accept. For most
client software, this protocol feature has become a bit convoluted and this
information isn’t always very useful.

Format: type/subtype[, type/subtype]…

Information Provided by the Server

101

Example: image/gif , image/jpeg , */*

HTTP_USER_AGENT

This identifies the software being used to access your program.

Format: varies

Example: Mozilla/0.9b (Windows)

HTTP_IF_MODIFIED_SINCE

The client requests that the program’s response be sent only if the data has
been modified since the given date. This date is set according to GMT
standard time.

Format: Weekday, dd-mon-yy hh:mm:ss GMT

Weekday specifies the full name of the day, such as Thursday or Friday. dd
specifies the number of the day of the month. mon specifies the 3-letter
abbreviation of the month. yy specifies the current year within the century.
hh:mm:ss gives the current time, in 24-hour format.

HTTP_FROM

This is the e-mail address of the remote user. If their client software supports
this header the client software can send it. This may be user selectable
depending on the kind of client software being used.

Format: user@machine.subdomain.domain

Example: robm@sgi.com

The Standard Input

As discussed previously in the section about translating form data, HTML
forms which use the POST method send their encoded information using the
standard input. In this case, the standard input will have your form data. If
you do not need to worry about your program running with other server

102

Appendix C: CGI-A Primer

software, you can simply read this data until receiving an end of file.
Although the only currently used content-type is
application/x-www-form-urlencoded you may use the standard input
with a custom navigator or application to send other types of data to your
programs via the standard input.

Program Output

As shown at the beginning of this appendix, your script’s output goes
through the server-spawned CGI process. The server usually does things to
make your CGI program’s life easier, by speaking the client’s protocol, so
you don’t have to worry about the output. This makes your programs
simpler and guarantees that they can take advantage of newer revisions of
the protocol with little or no changes.

However, if you know enough about the HTTP protocol to code the protocol
and send it directly back to the client, and you absolutely need to do so, you
can use the non-parsed header feature. As of CGI/1.1, the only reason you
would need this feature is if your program outputs an excessively lengthy
amount of data, and you want to sidestep the server’s buffering of your
output. To activate the feature, make your script’s name start with the
characters nph- and the server will make the standard output a direct copy
of the socket to the client. At this point your program is responsible for any
protocol-related response headers or messages.

Regardless of the fact that you can do this, in most cases your programs will
want to avoid this feature. CGI programs must print a valid CGI header on
the standard output for the server to accept their response and send it on to
the client. In the Netsite server, the standard output and the standard error
file streams are directed to the same place: back into the server.

This means that errors your program generates or system utilities your
program call can interfere with your header. Similarly, if your program is
abnormally terminated (through a bug or some other disaster), the server
will send a server error to the client, and describe the error in the server’s
error log. Because of this, you will want to print your header as early as
possible in your program.

Program Output

103

CGI Generic Headers

A CGI header consists of several text lines, of the form:

name: value

The end of the header is signaled by a single blank line. After the blank line,
the server stops parsing your program’s header and sends the rest of your
data untouched back to the client. This means that your program can output
any type of data it needs to, including HTML, GIFs, or JPEGs.

Each name: value pair is an HTTP protocol header. You can output any
header you wish, and the server will send it back to the client. Some of the
commonly used HTTP headers are described here.

Content-length

The length of your data in bytes, not including the header.

Content-type

The type of data your program is returning. This is a valid MIME type in the
format type/subtype. This header should always be sent from any CGI
program.

Examples: text/html , text/plain , image/gif , image/jpeg , audio/basic

Expires

Gives the date on which this file should be considered outdated by the client.
The date format is the same as the format for if-modified-since .

Example: Saturday, 12-Nov-94 14:05:51 GMT

Content-encoding

The data is the given content-type, but it is compressed. Current values that
can be used are x-gzip for GNU zip compression, and x-compress for
standard UNIX compression.

104

Appendix C: CGI-A Primer

When you output any of the above headers, the server will not alter their
values or their output.

CGI Specific Headers

On the other hand, the following headers are special to CGI and cause the
server to take an action on your behalf.

Location

Location gives the location of a new file to have the server or client retrieve.
This header must be in one of two forms.

If the value is a virtual path, such as /misc/file.html , then the server
re-starts the request as if the client had originally requested:

http://yourserver/misc/file.html

Note that the client won’t be informed about this, however, and any relative
links will be resolved from the directory of your CGI program, not of the
document that is actually being returned.

If the value is a full URL, such as:

http://yourserver/misc/file.html

then the server redirects the navigator to the new URL. The navigator then
acts as if it had originally requested that URL, and all relative links are
resolved from the directory specified in that URL. You do not necessarily
have to redirect to an HTTP URL, you can redirect to a gopher, news, FTP, or
any other valid URL.

Status

Every HTTP request is returned with a status code which indicates to the
client whether the request succeeded or not. If the request was unsuccessful,
several error codes are provided to tell the client what happened. If the
request was successful, there are also status codes to indicate a successful
request and request further action from the client. If no Status line is

Program Output

105

provided, the default is 200 OK unless a Location header with a full URL is
present. If the location is present, the default is 302 Found .

The status line has the form nnn reason, where nnn is the 3-digit code for the
request, and reason is a short string describing the error. The following codes
and reasons are currently recognized by Netscape Navigator.

• 200 OK

The request finished normally.

• 204 No response

The request was understood and processed, but there is no new
document to be loaded by the client.

• 302 Found

The client should look for data at a new URL, given by a Location
header.

• 304 Use local copy

The client sent a request with an if-modified-since header, and the
requested data hasn’t been modified since the given date.

• 400 Bad request

The request had illegal or unintelligible HTTP inside.

• 401 Unauthorized

If access authorization is enabled, the request could not be fulfilled
because the user did not provide the proper authorization to access the
area. With current authorization schemes, a WWW-Authenticate header
must be provided to give the client instructions on how to complete the
request with the proper authorization.

• 403 Forbidden

The client is not allowed to access what it requested.

• 404 Not found

The client asked for something the server couldn’t find.

• 500 Server error

106

Appendix C: CGI-A Primer

This is a catch-all error code which indicates that something has gone
wrong in the server or the CGI program, and that problem stopped the
request from being completed.

• 501 Not implemented

The client asked the server to perform an action which the server
knows about, but can’t do.

Sample Program Output

The following CGI program output would send an HTML document back to
the client:

Content-type: text/html

<title>My little document</title> This is my own little
document. Do you like it?

The following output would instruct the client to retrieve a different URL.
The small HTML fragment at the bottom is customary, and allows
navigation software which doesn’t support redirection properly to retrieve
the given URL.

Location: http://foobar.org/boards/fromitz

This document can be accessed at the following location.

An Example CGI Program in ANSI C

Here is an example CGI program which handles the output of an HTML
form. Here is the text of the form, presented without the markup is:

<TITLE>Guest book</TITLE>

<H1>Guest book</H1>

Welcome to our guest book! Choose one of the following:<p>

<FORM ACTION=gb.cgi METHOD=POST>

<INPUT TYPE=radio NAME=action VALUE=log> Log your name to
the guest book: <INPUT TYPE=text NAME=email SIZE=40><p>

An Example CGI Program in ANSI C

107

<INPUT TYPE=radio NAME=action VALUE=read> Read the guest
book<p>

<INPUT TYPE=submit VALUE="Let's do it!">

</FORM>

The user would first access the above HTML form, as /guestbook/gb.html .
Once the user selects an action, and optionally types in their name for the
guest book, they click on the submit button. Note that the name of the radio
button is action , and can have the values log or read . Also note that there
is a text area called email .

Figure C-5 Sample Guest-Book/gb.html as It Would Appear in the Client
Window

Here is the program that is called when the user submits this form. In this
example, the server administrator has activated CGI as a file type, and so the
compiled program which goes with this source code is called gb.cgi .

For brevity, the example does not include the code necessary to actually
update or maintain a guest book. It shows only the code necessary to get
information to and from the server and client through CGI.

108

Appendix C: CGI-A Primer

Example C-1 Sample CGI Program (Part 1)

/*
 * gb.c: A short CGI example program in C.
 *
 * This takes the output of a form and does something with it. If the user
 * entered their name, then it enters it into an imaginary guest book.
 *
 * If they decided to view the guest book instead, they are redirected to
 * a new URL. The function to update the guest book is not actually
 * provided here, in order to keep the focus on CGI related things.
 *
 *
 * Rob McCool
 */

The comments to the right of these header file includes indicate which
function prototypes are used from that header file.

Example C-2 Sample CGI Program (Part 2)

#include <stdio.h> /* stdin, printf, fread */
#include <stdlib.h> /* malloc, getenv */
#include <ctype.h> /* isalpha */
#include <string.h> /* strchr, strcmp */

Start out with some defines and prototypes. Code execution will begin in the
main function below.

Example C-3 Sample CGI Program (Part 3)

/* The biggest set of form data we’ll accept. This is a small form */
#define MAX_CONTENT_LEN 2048

/* Function defined below which prints an error to the client and exits */
void err(char *s);

/*
 * Function defined below which takes a pointer to some URL-encoded
 * data and allocates a new string, copies and decodes the data into
 * that string, and returns the new string.
 */

char *url_decode(char *encoded);

An Example CGI Program in ANSI C

109

/* This function logs the given e-mail address to the guest book */

void log_address(char *email)
{
 /* This code is not provided... it should be straightforward */
}

int main(int argc, char *argv[])
{

The above functions and defines will be used in the main subroutine. This is
where the program starts. Note that the command line parameters to main
are defined, but not used. It begins by defining and initializing its variables.
The variables that are not initialized here are initialized below as they are
needed.

Example C-4 Sample CGI Program (Part 4)

 /*
 * Get the method used to access the script from the environment. This
 * form uses the POST method, and using any other results in an error.
 */
 char *method = getenv(“REQUEST_METHOD”);
 /* The length of the form results the browser sends us (set below) */
 char *clstr;
 int clen;
 /* We hold the form contents in this buffer (+1 for the null) */
 char content[MAX_CONTENT_LEN + 1];
 /* Return code from system or library calls */
 int ret;
 /* Pointers used to parse the form data */
 char *name, *value;

 /* A pointer for the remote person’s e-mail address */
 char *email = NULL;
 /*
 * Which action the user selected. -1 is invalid and used to indicate
 * that no action was selected.
 */
 int action = -1;

110

Appendix C: CGI-A Primer

The code begins here. The first thing this program does is check the data the
server provides in the environment to see if it is correct. If it is not, the
request cannot proceed and a message is sent to the navigation software.

Example C-5 Sample CGI Program (Part 5)

 /* First, see if they got the method right. */
 if(strcmp(method, “POST”) != 0)
 err(“you must submit a form to access this URL.”);

 /* Make sure we got form data and check its length */
 clstr = getenv(“CONTENT_LENGTH”);
 if(!clstr)
 err(“your browser didn’t send any content. Is it not POST capable?”);
 /* Change that string into a number */
 clen = atoi(clstr);

 /* Make sure it’s really form data */
 if(strcmp(getenv(“CONTENT_TYPE”), “application/x-www-form-urlencoded”) != 0)
 err(“your browser sent the wrong content type.”);

 /*
 * Check for negative or outrageously large content lengths
 * An upper limit is set to make sure they don’t steal extra system
 * resources for no good reason
 */
 if((clen < 0) || (clen >= MAX_CONTENT_LEN))
 err(“your browser created too much data from that tiny form.”);

The variables appear to be set correctly. The program can now read the form
data into a string variable.

Example C-6 Sample CGI Program (Part 6)

 /* Read in the data in one shot */
 ret = fread(content, 1, clen, stdin);
 /* Return of < 1 means either EOF or error */
 if(ret < 1)
 err(“an I/O error occurred before your form data could be read.”);
 /* Terminate it with a null char */
 content[ret] = ‘\0’;

Now that the program has the string of data the client sent it, the program
parses that string. This involves splitting the string into name=value pairs,

An Example CGI Program in ANSI C

111

then splitting those pairs into name and value strings, and then
URL-decoding those strings.

Example C-7 Sample CGI Program (Part 7)

 /*
 * Here’s where the fun starts. Most of the time, you will want to create
 * a generic function to decode form data, and then use that routine in
 * your scripts.
 *
 * Form data looks like this:
 *
 * name1=value1&name2=value2 ...
 *
 * The nameN and valueN strings are URL-encoded, which means that many
 * special characters such as spaces, semicolons, forward or back slashes,
 * question marks, percent signs, newlines, plus signs, and colons will be
 * changed from one character into three, of the form %xx, where x is a
 * hexadecimal digit. These two digits are changed into a number from 0-255
 * which is interpreted as a character.
 *
 * Further, many browsers turn spaces into plus signs.
 */

 /* Start our name pointer at the beginning of the data */
 name = content;
 /* name will be set to NULL by some of the code below when we’re done */
 while(name && (*name != ‘\0’)) {
 /* We first find somewhere to put the value pointer */
 value = strchr(name, ‘=’);
 /* However, we must check to make sure we got the right data */
 if(value == NULL)
 err(“the submitted form data was corrupt.”);

 /* Otherwise, mark the end of the name string. */
 *value++ = ‘\0’;

 /*
 * We now have the name string by itself. See what it is.
 * Note that we do not URL-decode the name string, because our form
 * is set up such that the names don’t use any bad characters.
 */
 if(strcmp(name, “action”) == 0) {
 /* First, find the next name string. NULL indicates the last one */
 name = strchr(value, ‘&’);

112

Appendix C: CGI-A Primer

 if(name != NULL)
 *name++ = ‘\0’;

 /*
 * Action can have two values: “log” and “read”. Again, we
 * avoid URL-decoding the value because we don’t use any
 * special chars in our form.
 */
 if(strcmp(value, “log”) == 0)
 action = 1;
 else if(strcmp(value, “read”) == 0)
 action = 2;
 else
 err(“your form results had an invalid action.”);
 }
 else if(strcmp(name, “email”) == 0) {
 /* Find the next name string. NULL indicates the last one */
 name = strchr(value, ‘&’);
 if(name != NULL)
 *name++ = ‘\0’;

 /*
 * The email value will be an e-mail address, which can have
 * weird % signs and ! marks in them. We have to URL decode
 * this string. url_decode is defined below.
 */
 email = url_decode(value);
 }
 }

Now that the program has the data in the email and action variables, it can
verify that the form was filled out in its entirety.

Example C-8 Sample CGI Program (Part 8)

 /* Check to make sure they filled out the necessary data. */
 if(action == -1)
 err(“you did not pick a button.”);
 if((action == 1) && ((email == NULL) || (*email == ‘\0’)))
 err(“you did not fill out your e-mail address”);

Finally, the program looks at the action the user selected and does what they
asked it to do. Note that there is an example of returning a new document (a

An Example CGI Program in ANSI C

113

success page in HTML) and an example of redirecting the client to a new
URL (the one that has the guest book for them to view).

Example C-9 Sample CGI Program (Part 9)

 /* Now that we have the data, do something with it. */
 if(action == 1) {
 /* Log their e-mail address */
 log_address(email);

 /* Now generate a success page */
 printf(“Content-type: text/html\n\n”);
 printf(“<title>Congratulations</title><h1>Congratulations</h1>\n”);
 printf(“Your name has been added to our guest book, %s!\n”, email);
 }
 else {
 /* View the guest book */

 /*
 * Instead of printing a new HTML page, this function sends them to
 * a new URL. This URL is hard-coded to a certain location, but uses
 * CGI variables to get the server’s hostname and port.
 */

 printf(“Location: http://%s:%s/guestbook/guests.html\n\n”,
 getenv(“SERVER_NAME”), getenv(“SERVER_PORT”));
 }
 return 0;
}

Below are the supporting functions that the main program calls to perform
its basic tasks.

Example C-10 Sample CGI Program (Part 10)

/* ---------------------------- Function: err ----------------------------- */

/* Returns an error to the client */
void err(char *s)
{
 /* Print the CGI header telling the client that this is HTML */
 printf(“Content-type: text/html\n\n”);

 /* This generates HTML for the client, telling them what went wrong. */

114

Appendix C: CGI-A Primer

 printf(“<title>Guestbook error</title><h1>Guestbook error</h1>\n”);
 printf(“Your form results could not be processed because %s.\n”);

 /* Now, just exit and let them try again */
 exit(0);
}

The following functions look a lot scarier than they are. They perform URL
decoding on the string.

Example C-11 Sample CGI Program (Part 11)

/* ------------------------- Function: url_decode ------------------------- */

/* First, a function that verifies that a 2-char string is a hex digit */
int is_hex(char hex)
{
 /* Make sure it’s lower case */
 if(isalpha(hex))
 hex = toupper(hex);

 /* This just checks the character to see if it’s in the two ranges */
 if(((hex < ‘A’) && (hex > ‘F’)) && ((hex < ‘0’) && (hex > ‘9’)))
 return 0;
 else
 return 1;
}

char *url_decode(char *encoded)
{
 /* Allocate space for the new string. We won’t need more space than we
 already have after decoding */
 char *new = (char *) malloc((strlen(encoded) + 1) * sizeof(char));
 /* Index register for string copy */
 char *enc, *dec;
 /* Digit is used to translate hex into character */
 char digit;

 if(new == NULL)
 err(“the program ran out of memory.”);

 /* We go through the string, looking for + signs or percents */
 for(enc = encoded, dec = new; *enc; enc++, dec++) {
 if(*enc != ‘%’) {

Tips for CGI Program Development

115

 /* Plus goes to space, but most chars are untouched */
 if(*enc == ‘+’)
 *dec = ‘ ‘;
 else
 *dec = *enc;
 }
 else {
 /* Another tricky part. First, make sure we got what we want. */
 if((!is_hex(enc[1])) || (!is_hex(enc[2])))
 err(“invalid escape sequence”);

 /* Now, advance over the % sign to the first digit, and decode. */
 /* The 0xdf is to turn the character into upper case */
 ++enc;
 if(*enc >= ‘A’)
 digit = 16 * (((*enc & 0xdf) - ‘A’) + 10);
 else
 digit = 16 * (*enc - ‘0’);

 /* Now, advance to the second digit and decode. */
 ++enc;
 if(*enc >= ‘A’)
 digit += ((*enc & 0xdf) - ‘A’) + 10;
 else
 digit += *enc - ‘0’;

 /* Finally, transfer the digit to the new string. */
 *dec = digit;
 }
 }
 *dec = ‘\0’;

 return new;
}

Tips for CGI Program Development

When developing CGI programs, the first thing you will notice is that you
can’t effectively use a debugger to find out what’s wrong with your
programs. A primitive though effective solution to this problem is to use
print statements in your program which print the contents of a variable to
the client. Note that you’ll need to print a small CGI header before you print

116

Appendix C: CGI-A Primer

the value of a variable if you haven’t already printed a header in your
program yet.

If you are using C to write your program, and you have the dbx or cvd

debugger installed on your system, then it is possible to attach to your
program before it begins doing its work. That is, place a call to sleep at the
beginning of your program, and make that sleep long enough for you to
search the process list for your program and attach to that process with your
debugger.

Finally, although the CGI specification does not explicitly require it, the
Netsite server changes its current directory to the directory in which the CGI
program resides. This means that if your program dumps core, the core file
can be found in the directory in which the program is executing (if the user
the server is running as can write to that directory).

117

Appendix D

D. Technical Information

This appendix is intended to provide technical information for editing the
configuration files directly with a text editor or are simply interested in how
the files work. You’ll find descriptions of:

• Manual configuration

• Example configuration files

• The technical configuration file

• The Init directive

• The object configuration file

Manual Configuration

On occasion, you may need to configure your server by hand. One such case
is if you forget your administrative password. Another is if you accidentally
lock your hosts out of the administrative forms.

To find your way out of these binds, familiarize yourself with the various
Netsite server configuration files. These files are kept in the directory
admin/config in your server root. The following files are in that directory:

• magnus.conf : the server’s main technical configuration file. This file
controls aspects of the server operation not related to documents, such
as hostname and port. This file is described in detail in “The Technical
Configuration File” on page 118.

• obj.conf : the server’s object configuration file, which controls how the
server finds your documents. This file is described in detail in “The
Object Configuration File” on page 134.

• mime.types : the file the server uses to convert file name extensions
such as .gif into a MIME type like image/gif .

118

Appendix D: Technical Information

• admpw: administrative password. Format is user:password . The
password is DES-encrypted in the same fashion it would be in
/etc/passwd . If you ever forget your password, there is no way to find
out what it was. You must encrypt a new one and replace the old
version with it.

To see how it all fits together, take a look at the example configuration files.

Example Configuration Files

After you install your server with the Netsite QuickStart installation forms,
you will find that the server has already written the magnus.conf and
obj.conf configuration files. Understanding these files can help you
understand how to set up (and change) the basic functionality of the server.
Figures D-1 through D-4 show the example files.

The Technical Configuration File

The technical configuration file, called magnus.conf , controls those aspects
of server operation which are not related to specific documents or directories
of documents. All of the items in this configuration file are global and apply
to the entire server, as opposed to affecting only one directory or set of
directories.

Each line has the format:

Directive value

Comment lines must begin with a # character, with no leading white space.
Directive lines may contain a mix of white space at the beginning of the line
and between the directive and value, but trailing white space after the value
may confuse the server. Long lines (which should only occur with the Init
directive) can be continued with a \ character just before the line feed.

Directive identifies which aspect of server operation you are changing.
This string is case insensitive.

The Technical Configuration File

119

value is a specific value you are giving the directive. Its format depends on
the directive. This string is usually case sensitive.

Example D-1 Sample of magnus.conf

In this file, any line beginning with a # is a comment.
Note that ServerRoot is not a directive to the server itself, but the
administrative forms put this line in there to keep themselves in sync.
#ServerRoot /var/mc-httpd
This server is running on the default HTTP port.
Port 80
Declares that obj.conf should be loaded as our object configuration file
LoadObjects obj.conf
Within obj.conf, the object named default will be the server’s root
object. Global configuration for the server will be derived from
this object.
RootObject default
Sends errors to a file
ErrorLog /var/mc-httpd/logs/errors
Logs the pid where the admin forms expect them to be
PidLog /var/mc-httpd/logs/pid
After startup, run as the user named netsite
User netsite
No matter what the hostname, make sure URLs reference www.sgi.com
ServerName www.sgi.com
We only want 32 server processes running at a time.
MaxProcs 32
Loads mime.types as the filename extension to MIME type database
Init fn=load-types mime-types=mime.types
Opens an access log in the logs subdirectory. This log is internally
named global, which will be important below.
Init fn=init-clf global=/var/mc-httpd/logs/access

The Directives

This section defines the directives, and describes their characteristics
including: directive name and description, caveats (or things to watch out
for), format for value string, default value if the directive is omitted, how
many instances of the directive should be in the file and examples. The
directives covered here include:

• ServerName

• Port

120

Appendix D: Technical Information

• User

• MaxProcs

• ErrorLog

• PidLog

• LoadObjects

• RootObject

• Chroot

ServerName

Name and Description

ServerName tells the server what to put in the hostname section of any URLs
it sends back to the client.

Caveats

The setting of this directive does not affect the URLs you write to your
server, but only affects the URLs the server automatically generates. If you
want to be able to take a machine named:

machine.[yourdomain].[dom]

and access it as

www.[yourdomain].[dom]

in your URLs, this flag is only part of the work you need to do. You also need
to have your system or network administrator set up a DNS CNAME or alias
which makes

www.[yourdomain].[dom]

a hostname pointer to

machine.[yourdomain].[dom]

The Technical Configuration File

121

Syntax

ServerName host

host is a fully qualified domain name such as

yourhostname.[yourdomain].[dom]

Default

If no ServerName is given, the server will attempt to derive a hostname
through various system calls. If this fails to return a fully qualified domain
name (for example. it gets yourhostname instead of
yourhostname.[yourdomain].[dom]), the server will not start up and will
ask you to set this value manually.

How many?

There should be one or zero ServerName directives in the configuration file.

Examples

ServerName www.sgi.com
ServerName www.company.com
ServerName www.agency.gov

Port

Name and Description

Port controls which TCP port the server listens to.

Caveats

If you choose a port number less than 1024, the server must be started as root
or superuser.

The port you choose affects URLs you write to your server. If you choose a
port number other than 80, you must include that port number in your URLs
like so:

122

Appendix D: Technical Information

http://www.foobar.org:8080/

If you choose port 80, your URLs may be written like so:

http://www.foobar.org/

Syntax

Port number

number is a whole number between 0 and 65,535

Default

If no Port is given, the server assumes Port 80

How many?

There should be one or zero Port directives in the configuration file.

Examples

Port 8080
Port 8000
Port 1000

User

Name and Description

User controls which of your IRIX system’s users1 the daemon will run as. If
it is started by the superuser, the server will bind to the Port you give it, and
then switch its effective user ID to the user you specify here. The user you
select should have no special privileges because privileges get passed on to
server processes and are inherited by other objects. Were the server to enter
a fault state, you would want it to have limited privileges.

1 Note that this is a Unix user, not an HTTP user.

The Technical Configuration File

123

Caveats

This directive is ignored if the server is not started as the superuser.

The user must exist in the system’s passwd database, and have a valid user
ID. You can choose the user nobody if you wish, but this might not work on
all systems. Some systems define the user nobody such that its user ID is
invalid. A uid less than zero is invalid and generates an error during startup.
Check the /etc/passwd file to see if the uid for nobody exists and that it is
greater than 0. This same principle holds true for any Unix user you assign
as the server user.

Syntax

User login

login is the 8 character or less login name of one of your system’s users.

Default

If no User is given, the server will run as whichever user it is started as. If it
is started as root, and no User directive is present, the server will print a
warning that it is running as the superuser.

How many?

There should be one or zero User directives in the configuration file.

Examples

User rob
User nobody
User netsite

MaxProcs

Name and Description

MaxProcs sets the number of processes the server has active at any given
time. Netsite always starts up the number of MaxProcs processes indicated

124

Appendix D: Technical Information

with the directive but it won’t start any additional processes. It replaces any
children which exit, up to the number indicated with MaxProcs .

Caveats

Choosing a number which is too low for this directive can result in a low
system load for your server machine, but may expose clients to unnecessary
delays in service.

Choosing a number which is too high may not cause serious problems, but
can tie up more resources than necessary on your server machine. This might
be an issue on a machine which is not a dedicated server.

Syntax

MaxProcs number

number is a number between 1 and the size of your system’s process table

Default

If no MaxProcs directive is given, the server assumes MaxProcs 50

How many?

There should be one or zero MaxProcs directives in the configuration file.

Examples

MaxProcs 16
MaxProcs 8
MaxProcs 64

ErrorLog

Name and Description

ErrorLog tells the server where to log its errors. The syslog facility can be
used if desired.

The Technical Configuration File

125

Caveats

If errors are to be reported to a file (instead of syslog), then the file and
directory in which the log is kept must be writable by whatever User the
server is running as.

Syntax

ErrorLog log

log is either a full pathname to a log file, or the keyword SYSLOG which
indicates that errors should be reported through the syslog facility.

Default

There is no default error log.

How many?

There should be one ErrorLog directive in the configuration file.

Examples

ErrorLog /var/mc-httpd/logs/errors
ErrorLog SYSLOG

PidLog

Name and Description

PidLog specifies a file in which to record the process ID of the base server
process. To shut down your server, you should kill the base server process
with a -TERM signal. To tell your server to re-read its configuration files and
re-open its log files, use kill with the -HUP signal.

Caveats

If the file you give here is not writable by the user the server is started as, the
server doesn’t complain or log its pid anywhere.

126

Appendix D: Technical Information

Some of the server support programs assume that the pid log will be kept in
the server root, under logs/pid .

Syntax

PidLog file

file is the full pathname of the file to log the server process ID in.

Default

There is no default PidLog .

How many?

There should be one or zero PidLog directives in the configuration file.

Examples

PidLog /var/mc-httpd/logs/pid
PidLog /tmp/mc-httpd.pid

LoadObjects

Name and Description

LoadObjects parses an object configuration file, which (among other things)
tells the server where to find documents.

Caveats

The administration forms assume that there is only one object configuration
file and that it will be in the server root, under:

admin/config/obj.conf

Syntax

LoadObjects filename

The Technical Configuration File

127

filename is either the full pathname, or a relative pathname. Relative
pathnames are resolved from the directory specified with the -d command
line flag. If no -d flag was given, the server looks in the current directory.

Default

There is no default LoadObjects directive.

How many?

There should be one or more LoadObjects directives in the configuration
file.

Examples

LoadObjects obj.conf
LoadObjects /var/mc-httpd/admin/config/local-objs.conf

RootObject

Name and Description

RootObject tells the server which object loaded from an object file is the
server default. The default object is expected to have all of the name
translation directives for the server, and any server behavior which is
configured in the default object affects the entire server.

Caveats

If you name an object which doesn’t exist, the server doesn’t report an error
until a client tries to retrieve a document.

Syntax

RootObject name

name is the name of an object defined in one of the object files loaded with a
LoadObjects directive.

128

Appendix D: Technical Information

Default

There is no default RootObject .

How many?

There should be one RootObject directive in the configuration file.

Examples

RootObject default
RootObject server1

Chroot

Name and Description

Chroot allows the administrator to place the server into a jail, where it is
only allowed to access files from a given directory. The idea is that if the
server’s security is ever compromised, and an intruder managed to obtain
shell access on the server machine, that intruder would only be able to affect
a very limited set of documents on the server machine.

Caveats

The server must be started as the superuser to use the Chroot directive.

If the Chroot directive is used, CGI C programs must be linked statically. If
any system binaries are used (such as perl or /bin/sh) they must be copied
to the chroot directory.

A chroot server cannot be restarted with the -HUP signal.

You won’t be able to use the Netsite Server Manager forms on a chroot
server.

The user public information directory feature will not be available unless a
copy of /etc/passwd is kept in the chroot directory, and all of the users’
home directories are exactly mirrored within the chroot directory.

The Init Directive

129

Logs and server configuration files should be kept outside the chroot
directory.

Syntax

Chroot directory

directory is the full pathname of the directory to use as the server’s root
directory.

Default

There is no default Chroot .

How many?

There should be one or zero Chroot directives in the configuration file.

Examples

Chroot /d/mc-httpd
Chroot /www

The Init Directive

Init is a special directive which initializes certain server subsystems such as
access logging and user public directories. Generally, the purpose of these
functions is to load data for specific subsystems once on server startup, and
to keep that data internally until the server is shut down. Zero or more Init
directives may appear in the technical configuration file.

Init directives have the form:

Init fn=function-name [parm1=value1] ... [parmN=valueN]

function-name identifies which server initialization function should be
called. Subsystem initializers should not be called more than once.

parm=value pairs are each values to give function-specific parameters.
Depending on the function, you will need zero or more of these parameters.

130

Appendix D: Technical Information

The order of parameters on the line does not matter. In fact,
fn=function-name may appear anywhere among the parameters.

Description of Init functions

This section defines the Init functions, and gives their characteristics,
including: name and description, importance, caveats, required parameters,
optional parameters and examples. The Init functions covered here include:

• File Name Extension to MIME Types

• Logging

• User Public Info Dirs

• Directory Indexing

File Name Extension to MIME Types

Name and Description

The function load-types scans a file which tells it how to map filename
extensions to MIME types. These types are essential for network navigators
like Netscape Navigator to be able to tell the difference between an HTML
file and a GIF file, for instance.

Importance

Calling this function is crucial unless your server only serves one type of file.

Caveats

None.

Required Parameters

mime-types specifies either the full filesystem path of the global MIME
types file, or a file name relative to the server configuration directory. This
file is supplied with the server and called mime.types .

The Init Directive

131

Optional Parameters

local-types is in the same format as the global MIME types file, but can be
used to maintain types which may only be applicable to your particular site.

Examples

Init fn=load-types mime-types=mime.types

Init fn=load-types mime-types=/foo/mime.types
local-types=local.types

Logging

Name and Description

The function init-clf initializes the Common Log subsystem. It opens the
log files whose names are given as parameters, and these log files stay open
until the server is shut down, or until the base server process is sent the -HUP

signal, at which time the logs will be closed and re-opened.

Importance

Initializing this function is required if you are using the common log feature
of the server.

Caveats

If you move, remove, or otherwise disturb the log file without shutting
down or restarting the server, client accesses may not be recorded.

Parameters

At least one log file should be given. The parm part of the parm=value pair
should be a unique name for the log file. You will use this name later on, as
a parameter to the common-log function.

132

Appendix D: Technical Information

Examples

Init fn=init-clf global=/var/mc-httpd/logs/access

Init fn=init-clf global=/tmp/httpd-access cgi=/tmp/script-log

User Public Information Directories

Name and Description

The function init-uhome loads information about the system’s users’ home
directories into internal hash tables. This increases the shared memory size
a bit, while saving CPU cycles for servers which have a lot of traffic to and
from home directories.

Importance

Calling this function is entirely optional.

Caveats

None.

Optional Parameters

pwfile specifies the full filesystem path of a file to use other than
/etc/passwd . If no pwfile is given, the system default (use NIS or look in
/etc/passwd) is used.

Examples

Init fn=init-uhome

Init fn=init-uhome pwfile= /etc/passwd -http

Directory Indexing

Name and Description

The function cindex-init sets certain global characteristics of the fancy
indexing subsystem.

The Init Directive

133

Importance

Calling this function is completely optional.

Caveats

You must be using fancy indexing for this function to have any meaning.

Optional Parameters

opts specifies certain options to be activated for indexing. This value is a
string of letters, one for each option to activate. i makes all icons links. s

makes the server scan HTML documents in the directory it is indexing in
order to place their titles in the description field.

widths specifies the width for each column in the indexing printout. A
width of zero disables that column. The widths string should be a
comma-separated list of numbers, specifying the column widths
corresponding to name, last modified date, size and description. The length
of size and last modified is fixed (that is,giving any non-zero width activates
the column).

ignore gives a wildcard pattern of file names to ignore while indexing. File
names starting with a dot are automatically ignored.

icon-uri gives the prefix the server should use for icons. By default, this is
/mc-icons/ . The server looks in this directory for the GIF files to use in
fancy indexing.

Defaults

If you don’t call this function, the internal data is initialized as if you entered:

Init fn=cindex-init widths=22,1,1,33

134

Appendix D: Technical Information

Examples

Init fn=cindex-init widths=50,1,1,0

Init fn=cindex-init widths=50,1,1,30 opts=s

Init fn=cindex-init widths=22,0,0,50 opts=is

The Object Configuration File

This section is intended to provide a basic overview of how the server deals
with your documents, and to provide you with the knowledge you need to
understand the object configuration file, usually called obj.conf , a sample
of which is shown on the following pages.

Definition of Objects

The first thing you should be wondering is just what an object is, since the
rest of the documentation does not use this terminology. Internally, the
server views all of its contents as a set of objects. Any number of directories,
CGI programs, documents, imagemap files, and so on. can be grouped
together to form an object for the server. This grouping can then be used to
control the behavior of the specified part of your server. You can create any
number of objects. Object configuration lets you exercise fine grain control
over every part of your server.

Example D-2 Sample of obj.conf

The first object in this file is the object named default. This is
the server’s root object. Any server behavior defined in this object
which is not overridden by another object affects the entire server.

<Object name=default>

The first name translation here causes URLs beginning with
/admin/bin to come from the directory /var/mc-httpd/admin/bin. Note
the name=cgi reference to the named object cgi. This means that the
/var/mc-httpd/admin/bin directory will get configuration information
from the cgi object, and so every file in admin/bin will be treated
as a CGI object.

NameTransfn=pfx2dir from=/admin/bin dir=”/var/mc-httpd/admin/bin”

The Object Configuration File

135

name=cgi

Another two name translations, but these do not link to the cgi object
NameTrans fn=pfx2dir from=/admin dir=”/var/mc-httpd/admin/html”
NameTrans fn=pfx2dir from=/mc-icons dir=”/var/mc-httpd/mc-icons”

Any request that doesn’t start with the above three prefixes will
come from this directory.
NameTrans fn=document-root root=”/usr/netsite-docs”

The first thing we do is look for nasties like ../ and // in the
path. Any request that has them is returned a not found error. This
line is crucial to maintain your system’s security.
PathCheck fn=unix-uri-clean

This looks for any path info attached to the path. If path info is
found, but the document type doesn’t need it (i.e. it’s not a CGI
program or parsed HTML) then the request will be flagged as not found.

PathCheck fn=find-pathinfo

If someone references a directory anywhere on the server, this
directive will cause the server to look in that directory for
either index.html or home.html. If it finds one, it will use that
file to send the user an index of that directory.

PathCheck fn=find-index index-names=”index.html,home.html”

This simply tells the server to use the MIME types loaded in
magnus.conf to determine each file’s type.

ObjectType fn=type-by-extension

If the above directive fails to find the type, force the type to be
text/plain by default.

ObjectType fn=force-type type=text/plain

The following three lines cause .map files to be handled as
imagemaps, directories with no index files to be indexed using the
common format, and any other non-internal file format to be sent as
plain files.

Service method=(GET|HEAD) type=magnus-internal/imagemap fn=imagemap
Service method=(GET|HEAD) type=magnus-internal/directory fn=index-common

136

Appendix D: Technical Information

Service method=(GET|HEAD) type=*~magnus-internal/* fn=send-file

All accesses to the server will be recorded in the log named global.
AddLog fn=common-log
</Object>

The following named object is used for implementing CGI directories.
Note that any file from these directories is typed as a CGI program.

<Object name=cgi>
ObjectType fn=force-type type=magnus-internal/cgi
Service fn=send-cgi
</Object>

The following is an example of an object specified by a path
pattern. It’s used to protect the administration forms. The
configuration directives here apply only to the directory
/var/mc-httpd/admin.

<Object ppath=”/var/mc-httpd/admin/*”>

This directive assigns a user database and HTTP authorization type for
this directory.
AuthTransfn=basic-ncsa auth-type=basic
userfile=”/var/mc-httpd/admin/config/admpw”

The following cluster is used to hide this directory from anyone
except *.sgi.com or 127.0.0.1. The *~ at the beginning of each
pattern means “every pattern except”.

<Client dns=”*~*.sgi.com” ip=”*~127.0.0.1”>
PathCheck fn=deny-existence
</Client>

This is the part that actually requires the authorization.

PathCheck fn=require-auth realm=”Server Administration” auth-type=basic
</Object>

The server allows you to specify which of your files or directories are part of
each object in two ways:

• By an arbitrary name. This is also called configuration-by-template. In
order to easily apply the same configuration parameters to an arbitrary
number of directories, you can assign a name to the configuration you

The Object Configuration File

137

want these directories to have. You then use the name translation
functions to tell the server which directories should use this
configuration.

A good example of this is users’ public information directories. If your
users have their home directories scattered all over the system, with
other servers you would need to list each directory explicitly in the
configuration file. You would also have to update your configuration
file if a new directory of users was ever added, a process which can be
error prone. By contrast, if you assign a named object to be the
configuration for your users’ public directories, then any user’s home
directory automatically uses the template configuration.

Another example is cgi-bin directories. In these directories, all files are
treated as programs and are executed rather than sent. If you assign a
named object to be the CGI configuration, and have that configuration
assign the same type (CGI program) to every file, then you may have an
arbitrary number of CGI directories without duplicating configuration
information for each.

• By a wildcard expression. The Netsite Communications Server
supports the use of wildcard expressions much like those used by the
Unix shell to specify a set of pathnames which should be grouped into
an object. Using this method, single files can be specified by giving their
path, whole directories can be specified by giving the path followed by
/* , and various other tricks (such as *.html) can be used to construct a
set of documents which should all have the same configuration
information.

To control the behavior of the entire server, one named object is considered
the root object. This object must contain all of the name translation directives
for the server, and contains any global configuration changes you want to
make.

The Contents of Objects

The Netsite server design breaks down the process of responding to an
information request into the following steps:

• Authorization translation. Translate any HTTP user authorization
information given by the client into a user and group. If necessary,
decode the message to get the actual request.

138

Appendix D: Technical Information

• Name translation. Before anything else is done, a URL must be
translated into a filesystem-dependent name or redirection URL.

• Path checks. Perform various tests on the resulting path. This is largely
used to make sure that it’s safe for the given client to retrieve the
document.

• Object types. Determine the MIME type information for the given
document. MIME types can be registered document types such as
text/html and image/gif , or may be internal document identification
types. Internal types always begin with magnus-internal/ , and are
used to select a server function to use to decode the document.

• Service. Select an internal server function which should be used to send
the result back to the client. This function may be a simple file blast, a
CGI execution, or one of many other type-dependent functions.

• Log. Select a function or functions to be used to record information
about the transaction which just finished.

These steps map directly to six of the configuration directives allowed in
each object. There is a seventh configuration directive which controls how
the server responds to the client when it encounters an error.

Format of Object Configuration Files

Object configuration files are comprised of lines of directives. There are
seven directives:

• AuthTrans

• NameTrans

• PathCheck

• ObjectType

• Service

• AddLog

• Error

Each line has the following format:

The Object Configuration File

139

Directive fn=function [parm1=value1] ... [parmN=valueN]

Note: Note that fn=function may appear anywhere among the other
parameters.

Directive must be at the beginning of the line, with no leading white space.
Lines starting with # are considered comments lines and are ignored. There
may be an arbitrary amount of white space between each parm=value pair,
but there must be no space between the parm, the equals sign and its value.
You can put double quotes (") around the value.

Any line with leading white space is considered a continuation of the
preceding line. For example:

PathCheck fn=grab-widget
widget=square

is the same as:

PathCheck fn=grab-widget widget=square

If there is more than one instance of a particular directive in an object, the
directives are applied in the order they appear in the file (top-down).

Knowing a bit about HTML can help you understand the underlying
structure of object configuration files. In HTML, regions of text can be
marked by having an opening anchor, the text, and then a closing anchor.
Any text between the anchors is affected by the anchor.

Similarly, the object configuration file uses opening anchors and closing
anchors to specify regions of configuration directives which are attributed to
different objects.

Note: Note that the Object tag has two possible parameters: name and ppath ,
which correspond to creating a named object and specifying an object with
wildcard expressions. You can use both if you want.

To get a better handle on this, here’s a simple example configuration file:

140

Appendix D: Technical Information

<Object name=default>

NameTrans fn=document-root root=/usr/netsite

PathCheck fn=unix-uri-clean

ObjectType fn=type-by-extension

ObjectType fn=force-type type="text/plain"

Service fn="send-file"

</Object>

<Object ppath=/usr/netsite/local/*>

AddLog fn=common-log name=localaccess

</Object>

In this file, there are two objects. The first is named default , and the second
applies to all files from the directory /usr/ netsite/local . The directives
between the second set of <Object> and </Object> tags only apply to the
specified directory, while the directives between the first set of Object tags
apply to the root object and thus affect the whole server.

Access Control

Another use of HTML-like regions is to allow certain directives to be hidden
to certain hosts, or to make those directives only apply to certain hosts. Other
HTTP servers use a strict binary methodology for access control: a host is
either forbidden or allowed to access a document. Netsite allows directives
to be applied only to certain hosts, which allows for a very powerful set of
customization options. For instance, by hiding an AddLog directive from
certain hosts, you can exclude those hosts from your log files.

Note: Note that the Client tag takes two parameters: dns and ip . You can use
both in one tag. The /Client tag can be placed after more than one directive
(i.e. you can make the region larger than one directive).

To accomplish this, a region called Client is placed around directives within
objects. For instance, let’s tinker with the second object from the example
above:

The Object Configuration File

141

<Object ppath=/usr/netsite/local/*>

<Client dns=*.sgi.com>

AddLog fn=common-log name=localaccess

</Client>

</Object>

Now, the localaccess log will only contain accesses from hosts in the
sgi.com domain. The dns and ip parameters to the Client tag are wildcard
expressions telling the server to which clients to apply the directive. If you
want to apply the directive to everybody except a certain host or IP address,
use *~ as a prefix to your wildcard pattern.

A PathCheck function is provided which forbids access and duplicates the
forbidden/not forbidden type of access control provided by other servers.
This directive is then only applied to unwanted hosts. This can be more
efficient because it doesn’t require a full check each time.

Functions

Now that you know the basic format of the file, you need to become familiar
with the server’s functions and their parameters. Functions are divided into
six classes, depending on the directive that should be used to apply them.

Note: It is not wise to use functions for one directive with another directive.

The following pages describe each directive, what it’s used for, and then
details each of the functions available of that class. The functions and
directives described here include:

• AuthTrans Functions

• NameTrans Functions

• PathCheck Functions

• ObjectType Functions

• Service Functions

• AddLog Functions

• Error Directive

142

Appendix D: Technical Information

AuthTrans Functions

AuthTrans stands for Authorization Translation. Server resources can be
protected such that accessing them requires the client to provide certain
information about the user who is using that client. This HTTP user
authorization information is encoded with some sort of simple security to
prevent clients from authorizing themselves as a different user.

The server breaks the HTTP user authorization of client users into two steps:
translating HTTP authorization information sent by the client, and requiring
that such authorization information be present. This is done in the hope that
multiple translation schemes can be easily incorporated, as well as
providing the flexibility to have resources which record HTTP user
authorization information but do not require it.

If there is more than one AuthTrans directive in an object, all functions will
be applied.

For each callable function, this section provides the following information:
name and description, notes, required parameters, optional parameters and
examples. The single AuthTrans function covered here is NCSA-Style Basic
Authorization.

NCSA-Style Basic Authorization

Name and Description

basic-ncsa translates authorization information provided through the
HTTP basic authorization scheme. This scheme uses user names and
passwords which are sent in the clear across the network, making them
vulnerable to snooping attacks.

Notes

This function is usually used in conjunction with the PathCheck function
require-auth .

Required Parameters

auth-type gives the type of HTTP user authorization to be used. For this
function, the setting should always be basic .

The Object Configuration File

143

One of either userfile or dbm must be provided. Providing both yields
undefined results.

userfile specifies the full pathname of the user database, in the NCSA
httpd user file format. This format consists of name:password lines where
password is encrypted.

dbm specifies the full path and base file name of the user database, in the
server’s native format. The native format is a system DBM file, which is a
hashed file format allowing instantaneous access to an arbitrary number of
all system users.

Optional Parameters

grpfile specifies the NCSA httpd group file to be used. Each line of a group
file consists of group:user1 user2 ... userN where each user is separated
by spaces.

Examples

AuthTrans fn=basic-ncsa auth-type=basic
dbm=/var/mc-httpd/userdb/rs

AuthTransfn=basic-ncsa auth-type=basic
userfile=/var/mc-httpd/.htpasswd

grpfile=/var/mc-httpd/.grpfile

NameTrans Functions

NameTrans stands for Name Translation. When people access your server,
they will give URLs like:

http://yourserver.[yourdomain].[dom]/foo/bar

The /foo/bar doesn’t correspond directly to any full pathnames on your
system. Instead, this is a virtual path.

The Netsite server uses NameTrans functions to translate this virtual path
into the full pathname of a file or directory on your system. This is done to
protect your system and prevent remote users from looking at your private
files. If you are using the Chroot function to change your server root to the

144

Appendix D: Technical Information

directory with your documents, then you can safely avoid using name
translation.

NameTrans directives should appear in the root object, although you can put
them elsewhere. If there is more than one NameTrans directive in an object,
the server applies the functions until one succeeds and modifies the virtual
path forming a full filesystem path.

For each callable function, this document provides the following
information: name and description, notes, required parameters, optional
parameters and examples. The NameTrans functions covered here include:

• Prefix to Directory

• User Public Information Directories

• Document Root

• Redirect

• Home Page

Prefix to Directory

Name and Description

pfx2dir looks for a certain directory prefix at the beginning of the virtual
path the client is requesting. If it finds the prefix, it replaces the prefix with a
real directory name.

Notes

The directory and the prefix you give should not have trailing slashes.
Having them there will cause Not Found errors.

Required Parameters

from is the prefix to be mapped.

dir is the directory that prefix should be mapped to.

The Object Configuration File

145

Optional Parameters

name gives a named object from which to derive configuration for this
directory.

Examples

Designate /sw/httpd/cgi-bin as a CGI directory
NameTrans fn=pfx2dir from=/cgi-bin dir=/sw/httpd/cgi-bin name=cgi

Make all requests for /icons come from /var/mc-httpd/admin/icons
NameTrans fn=pfx2dir from=/icons dir=/var/mc-httpd/admin/icons

Users’ Public Information Directories

Name and Description

unix-home is a NameTrans function which allows your system’s users to
provide information out of their home directories. This function allows you
to designate a URL prefix which corresponds to user directories. Any
request starting with this prefix then comes from a subdirectory of the user’s
home directory.

Notes

If you want to have the server scan the passwd file only once at startup, use
the Init function init-uhome . This option saves wear and tear on your NIS
server or local passwd file, but makes the server’s resident size a bit larger.

You cannot use a ppath such as:

~user/public_html/*

to specify an object by wildcard expression. Instead, you must use:

/home/user/public_html/*

or whatever the full pathname is.

Required Parameters

from is the URL prefix to map to your users’ directories. Previous servers
used /~ for this prefix.

146

Appendix D: Technical Information

subdir is the subdirectory of the users’ directory which contains their
documents.

pwfile is the full pathname of a passwd file to use, if you wish to use a file
other than /etc/passwd or the NIS database.

Optional Parameters

name gives a named object from which to derive configuration for this
directory.

Examples

Map /~user/foobar to ~user/public_html/foobar, get config from userhomes
NameTrans fn=unix-home prefix=/~ subdir=public_html name=userhomes

Same thing, but let's use /u/ instead.
NameTrans fn=unix-home prefix=/u/ subdir=public_html name=userhomes

Document Root

Name and Description

document-root is a NameTrans function which specifies one directory to
contain all of your documents. This directory will be prepended to the
virtual path the client sends to form the full pathname of the file or directory
to be used.

Notes

The directory you give should not have a trailing slash.

Required Parameters

root gives the directory which contains documents.

Optional Parameters

None.

The Object Configuration File

147

Examples

Requests such as /foobar/blatz should come from /d/netsite/foobar/blatz
NameTrans fn=document-root root=/d/netsite

Redirect

Name and Description

redirect is a NameTrans function which creates pointers to other URLs on
your server. When a client accesses your server and gives a certain virtual
path, they are told to use the URL you provide instead of the one they had.

Notes

None.

Required Parameters

from gives the virtual path prefix to be redirected.

At least one of url or url-prefix must be given. url gives a single URL to
redirect any request beginning with from .

url-prefix gives a URL prefix to redirect any request beginning with from .
The prefix will be replaced by the URL, and anything following the prefix
will be appended to the URL.

Optional Parameters

None.

Examples

This server has been temporarily moved
NameTrans fn=redirect from=/ url-prefix=http://tmpserver/

This directory moved to another server, so we map them to a moved document
NameTransfn=redirect from=/popular-stuff
url=http://bigserver/popular/wemoved.html

148

Appendix D: Technical Information

Home Page

Name and Description

home-page is a NameTrans function which sets your server’s home page.
When people access your server as:

http://yourserver.[yourdomain].[dom]

by default they will get an index file from the document root. You may
specify another file with this function.

Notes

The file must exist on a local file system of the server machine.

Required Parameters

path is the new home page. If this is a partial path such as welcome.html ,
the client’s request will be restarted as if it accessed the:

http://yourserver.[yourdomain].[dom]/welcome.html

If you specify a full path, the path you give will be used as the full file system
path of the client’s request.

Optional Parameters

None.

Examples

Set my home page to /my/document/root/homepage.html
NameTrans fn=home-page path=homepage.html

Set my home page to /d/netsite/welcome.html
NameTrans fn=home-page path=/d/netsite/welcome.html

PathCheck Functions

PathCheck directives check the full filesystem path which is returned after
all of the NameTrans directives finish execution. The path is checked for

The Object Configuration File

149

such things as CGI path info and for things like ../ and // which are
dangerous elements. Then any access restriction is applied.

If there is more than one PathCheck directive in an object, all of the directives
are applied in the order they appear.

For each callable function, this document provides the following
information: name and description, notes, required parameters, optional
parameters and examples. The PathCheck functions covered here include:

• URI Cleaning for Unix Systems

• Find Index Files

• Require Authorization

• Deny the Existence Of Certain Paths

• Find Filesystem Links

• Find Path Information

URI Cleaning for IRIX Systems

Name and Description

unix-uri-clean is a PathCheck function. If a client ever sends a path with
../ in it, this can fool the file open system call into opening a document
outside the document root. If a client sends a path with a // in it, then the
file open system call allows that path to open a file, but any of your
pathname-based access restrictions are not applied. This function will deny
access to any client whose path has these elements in it.

Notes

If you plan to have scripts with extra path information, and that path
information has // in it, be sure you call find-pathinfo before calling
unix-uri-clean .

Required Parameters

None.

150

Appendix D: Technical Information

Optional Parameters

None.

Examples

PathCheck fn=unix-uri-clean

Find Index Files

Name and Description

find-index is a PathCheck function which determines if the requested path
is a directory. If it is, then the function searches for a pre-written index file in
the directory. If it finds one, it changes the path to point to the index file. If
none is found, no action is taken, and later the server will most likely be
asked to automatically generate a listing of the directory.

Notes

If the client was accessing a directory, and the virtual path did not end in a
slash, then this function would redirect them to a new URL which has the
trailing slash (/). This is done so that relative links in the HTML index are
functional.

Required Parameters

index-names is a comma separated list of file names to look for. There
should be no spaces unless they are part of the file names.

Optional Parameters

None.

Examples

Look for /dir/index.html and /dir/home.html
PathCheck fn=find-index index-names=index.html,home.html

Just look for index.html
PathCheck fn=find-index index-names=index.html

The Object Configuration File

151

Require Authorization

Name and Description

require-auth is a PathCheck function which performs the second step of
HTTP user authorization: denying access to unauthorized clients.

Notes

This function requires that an AuthTrans directive be executed prior to
execution of require-auth .

Required Parameters

auth-type is the type of HTTP user authorization. Currently, the only valid
type is basic.

realm is a short string which tells the client for which resource the server is
requiring HTTP authorization.

Optional Parameters

auth-user specifies which users to allow. If missing, any valid user is
allowed.

auth-group specifies which groups to allow. If missing, no group is
required, and any valid group is allowed.

Examples

Require group stalag-staff or users hogan, kinch
PathCheckfn=require-auth auth-type=basic realm="TurkishPlans"
auth-group=stalag-staff auth users=(hogan|kinch)

Just let anybody in who has been authorized
PathCheck fn=require-auth auth-type=basic realm="secret recipe"

152

Appendix D: Technical Information

Deny the Existence of Certain Paths

Name and Description

deny-existence is a PathCheck function which sends a Not Found error
when a client tries to access a path. If this directive is protected by a Client
region, then it performs access control.

Notes

Not Found is sent instead of Forbidden to help hide paths from unwanted
clients.

Required Parameters

None.

Optional Parameters

path gives a wildcard expression of the path to check. Not specifying this
parameter is equivalent to specifying “* ”. Paths matching the expression
you give will have their existence denied.

bong-msg is a file to send instead of the canned error message the server
wants to send. This allows you to tell the client why it is unwanted.

Examples

Deny existence of emacs auto-backup files
PathCheck fn=deny-existence path=*\~

Make sure nobody except company employees see this document
<Client dns=*~*.sgi.com>
PathCheck fn=deny-existence bong-msg=/var/mc-httpd/go-away.html
</Client>

The Object Configuration File

153

Find Filesystem Links

Name and Description

find-links is a PathCheck function which searches along the current path,
looking for symbolic or hard links. If any are found, the server returns a
Server Error and logs a message in the error log.

Notes

This function is only generally useful for directories you don’t trust, such as
users’ home directories. It is debatable how much disabling links really
helps safety, since the users can’t access anything through the server that
they can’t already access (and copy) as themselves.

Required Parameters

disable is a character string specifying which links to disable. If the string
contains h, then hard links are disabled. If the string contains s , soft links are
disabled. If the string contains o, and the path is coming out of a user’s home
directory, symbolic links are allowed only if the target of the link is owned
by that user.

dir is the directory at which to start checking. If this is the full pathname of
the directory, then the current path will be checked against this one, and if
the current path is not from this directory no action is taken. Link checks
start at the path component which comes after the given directory. If dir is
not a full path, link scans start at the first occurrence of the given string.

Optional Parameters

None.

Examples

Directory maintained by foreign system, we don't trust it
PathCheck fn=find-links disable=sh dir=/foreign-dir

Don't let our users use symlinks unless it's theirs. Start at subdir
of their home to avoid automounter conflicts
PathCheck fn=find-links disable=so dir=public_html

154

Appendix D: Technical Information

Find Path Information

Name and Description

find-pathinfo is a PathCheck function which looks at a given path, and
looks in the filesystem for the file. If it doesn’t find the file, it attempts to find
extra path information for CGI. Extra path information is information
conveyed through extra directories following the file name being accessed.
For example, in the path:

/myscript.cgi/foo/bar

/myscript.cgi is the file which exists, and /foo/bar is path information. If
find-pathinfo is unable to find a file, or finds a directory before it finds a
file, no action is taken and the request is returned as Not Found.

Notes

None.

Required Parameters

None.

Optional Parameters

None.

Examples

Scan for CGI path information in this directory.
PathCheck fn=find-pathinfo

ObjectType Functions

ObjectType directives determine the MIME type of the file being sent to the
client. This type is usually sent back to the client to allow the client to readily
decide what to do with it. MIME attributes currently sent are type,
encoding, and language.

The Object Configuration File

155

If there is more than one ObjectType directive in an object, all of the
directives are applied in the order they appear. If a directive sets an attribute
and a later directive tries to set that attribute to something else, the first
setting is taken.

For each callable function, this document provides the following
information: name and description, notes, required parameters, optional
parameters and examples. The ObjectType functions covered here include:

• File Typing By File Name Extension

• File Typing By Wildcard Pattern

• Forcing File Types

• Server-Parsed HTML Hacks

File Typing By File Name Extension

Name and Description

type-by-extension is an ObjectType directive which uses file name
extensions to determine information about a file. File name extensions are
the things after the first period in a file name. In foo.tar.gz , tar and gz are
the extensions. type-by-extension strips off extensions one at a time, and
tries to determine a type, language, or encoding for each one.

Notes

If a name begins with a dot and the string after the dot matches a type, the
file may be incorrectly flagged as a certain type.

It is truly regrettable that the most reliable and least error prone method of
determining file types in “modern” filesystems is to use magical names.

Required Parameters

None.

Optional Parameters

None.

156

Appendix D: Technical Information

Examples

ObjectType fn=type-by-extension

File Typing By Wildcard Pattern

Name and Description

type-by-exp is an ObjectType function which tries to match the current
path with a wildcard expression and, if it matches, the type information
given as the function parameters is used.

Notes

None.

Required Parameters

exp is the wildcard expression of paths to which the information is applied.

Optional Parameters

type is the type to give any matching paths.

enc is the encoding to give any matching paths.

lang is the language to give any matching paths.

Examples

Anything ending in .googol or with an extension .googol.something
is of type application/googolplex
ObjectType fn=type-by-exp exp=*.googol($|.*) type=application/googolplex

Forcing File Types

Name and Description

force-type is an ObjectType function which just sets the type to the
parameter you give.

The Object Configuration File

157

Notes

This is used to implement a default type for the server.

Required Parameters

None.

Optional Parameters

type is the type to give any matching paths.

enc is the encoding to give any matching paths.

lang is the language to give any matching paths.

Examples

Force anything that hasn't been typed at this point to be plaintext
ObjectType fn=force-type type=text/plain

Force a default language for my documents
ObjectType fn=force-type language=en_US

Server-Parsed HTML Hacks

Name and Description

shtml-hacktype are provided for backward compatibility with server-side
includes. The problem is that server-side includes require a different MIME
type than HTML. This means that your parsed documents must have
different file name extensions than your non-parsed ones. If this is a
problem, this function is a solution. One solution is to have the server parse
all HTML, which could get costly in terms of performance. The other
solution is to check for the execute bit on the file. If it’s on, the file is parsed,
otherwise, it isn’t.

158

Appendix D: Technical Information

Notes

Netscape Communications Corporation does not recommend these
solutions.

Required Parameters

None.

Optional Parameters

exec-hack , if present, tells the function to check to see if the exec bit is
enabled for this file. If this parameter is not present, all files are marked as
parsed.

Examples

Parse every HTML file we have
ObjectType fn=shtml-hacktype

Parse only those documents which have the execute bit on
ObjectType fn=shtml-hacktype exec-hack=true

Service Functions

Once the other directives have found a file to send, the Service class of
functions actually takes care of sending the data and completing the request.
For most files, the Service function simply sends the binary data back to the
client untouched.

Service directives support all the following Optional Parameters, which help
determine whether the directive will be used or not:

• type gives a wildcard expression of MIME types to which the directive
is applied. The server defines several MIME types internally which are
used only to select a Service function which will translate the internal
type into a form presentable to the client.

• method specifies a wildcard expression of HTTP methods which the
client must be using to have the directive applied. Valid HTTP methods
are GET, HEAD, and POST.

The Object Configuration File

159

• query specifies a wildcard expression of search queries which must be
present for the directive to be executed.

If there is more than one Service directive in an object, the first applicable
directive is executed and the rest are ignored.

For each callable function, this document provides the following
information: name and description, notes, required parameters, optional
parameters and examples. The Service functions covered here include:

• Send a Plain File

• Send an Error Message

• Append a Trailer To HTML Documents

• Execute a CGI Program

• Set a Default Query Handler

• Imagemap

• Simple Directory Indexing

• Fancy Directory Indexing

• Parse HTML (also known as server-side includes)

160

Appendix D: Technical Information

Send a Plain File

Name and Description

send-file sends the contents of a plain file back to the client.

Notes

If this function finds any extra path information, it flags the request as Not
Found.

Required Parameters

None.

Optional Parameters

None.

Examples

For non-internal types, accessed with GET or HEAD, send file back
without touching its contents
Service type=*~magnus-internal/* method=(GET|HEAD) fn=send-file

Send an Error Message

Name and Description

send-error sends a certain HTML file back to the client regardless of the
path the client was requesting. This is useful largely for error messages.

Notes

The file must be HTML.

Required Parameters

path specifies the full filesystem path of the HTML file to send.

The Object Configuration File

161

Optional Parameters

None.

Examples

Send back a message saying this resource has moved
Service fn=send-error path=/popular/service/we-moved.html

Send a polite message saying we don't allow POSTing to normal files
Service fn=send-error path=/d/netsite/errors/no-post.html

Append a Trailer to HTML Documents

Name and Description

append-trailer appends text to the end of every HTML document from
the current object. This is primarily useful for author information and
copyright messages. The date of last modification for the file can be
automatically included in the message.

Notes

This function pre-calculates the length of the document after the trailer is
appended, allowing the last-modified and content-length HTTP headers to
be passed back to the client. This is primarily useful to caches.

If extra path information is found, the request is flagged as Not Found.

Required Parameters

trailer is the text of the trailer to be appended to the documents. This text
may contain HTML tags. The magical string :LASTMOD: is replaced by the
last modification date of the file, using the time format specified by timefmt .
If timefmt is not specified, no action will be taken.

Optional Parameters

timefmt is a time string in the strftime function format. See the manual
pages for a description of the possible flags.

162

Appendix D: Technical Information

Examples

Insert our copyright message at the end of every HTML document
Service type=text/html fn=append-trailer
trailer="<hr> Copyright 1994"

Personalize my HTML documents
Service type=text/html fn=append-trailer timefmt="%D"
trailer="<hr>Rob McCool, last update :LASTMOD:"

Execute a CGI Program

Name and Description

send-cgi is a Service function which executes a file as a CGI program and
sends the results to the client.

Notes

This documentation page assumes you already know about CGI. There’s a
good tutorial about CGI in Appendix C..

Required Parameters

None.

Optional Parameters

None.

Examples

Execute every file in this object as a CGI program
Service fn=send-cgi

Execute only files ending with .cgi as CGI programs
Service type=magnus-internal/cgi fn=send-cgi

The Object Configuration File

163

Set a Default Query Handler

Name and Description

query-handler is a Service function which executes the CGI program you
specify instead of referencing the path being requested.

Notes

This function’s primary purpose is to support the obsolete ISINDEX tag. If
possible, a FORM should be used instead.

Required Parameters

path is the full pathname of a CGI program to be executed.

Optional Parameters

None.

Examples

Handle all searches with grep
Service query=* fn=query-handler path=/d/netsite/cgi/do-grep

Handle all searches with searcher, give it path info to specify parameter
Service query=* fn=query-handler path=/d/netsite/cgi/search/parm1=faster

Imagemap

Name and Description

imagemap is a Service function which parses imagemap files. Map files
specify ranges of coordinates as well as the URL that should be sent when
the user clicks in one of them.

Notes

This page does not describe the format of a map file. There’s a good tutorial
about imagemaps in “What Is An Imagemap?” on page 69 in Appendix B.

164

Appendix D: Technical Information

Required Parameters

None.

Optional Parameters

None.

Examples

Service type=magnus-internal/imagemap method=(GET|HEAD) fn=imagemap

Simple Directory Indexing

Name and Description

index-simple takes a filesystem directory and produces a simple bulleted
HTML list of the contents.

Notes

If index-simple creates a link to a directory (because one of the items found
is a sub-directory), the function does not provide the server with enough
information to know such a link exists, so it does not append the URL with
a trailing slash. In this situation, when the user clicks on the link, the client
is redirected to the sub-directory. In other words, it takes 2 connections to
follow a directory link with the index-simple function; with the
index-common function it just takes 1 connection (see “Fancy Directory
Indexing” on the next page).

Required Parameters

None.

Optional Parameters

None.

The Object Configuration File

165

Examples

Service type=magnus-internal/directory fn=index-simple

Fancy Directory Indexing

Name and Description

index-common creates a listing of a directory in the common directory
indexing format implemented by the CERN and NCSA HTTP servers. This
format contains quite a bit of information, looks fancier than simple
indexing, and references icons.

Notes

This form of indexing may be resource-intensive, especially with scan
HTML titles turned on.

The behavior of this function can be tweaked with the cindex-init Init
function.

Required Parameters

None.

Optional Parameters

header is a file to prepend to the indexing which introduces the contents of
the directory. If you specify filename for this parameter, the server looks for
filename.html first and incorporates that as HTML if found. Otherwise, it
incorporates the file name as plain text.

readme is a file to append to the indexing which gives more information
about the contents of the directory. If you specify filename for this
parameter, the server looks for filename.html first and incorporates that as
HTML if found. Otherwise, it incorporates the file name as plain text.

Examples

Look for HEADER and README for top and bottom of indexing pages
Service type=magnus-internal/directory method=(GET|HEAD) fn=index-common
header=HEADER readme=README

166

Appendix D: Technical Information

Parse HTML

Name and Description

parse-html (also known as server-side includes) parses an HTML
document, scanning for embedded server directives. These server directives
are executed to provide certain information only the server has, or to include
the contents of other files.

Notes

This page assumes you are familiar with the parsed HTML directives.

Parsing lots of HTML documents can be costly in terms of performance.

Required Parameters

None.

Optional Parameters

opts specifies the options for parsing. no-exec is the only current option,
which disables the use of the exec directive.

Examples

Parse SHTML documents, allowing use of the exec directive.
Service type=magnus-internal/parsed-html method=(GET|HEAD) fn=parse-html

AddLog Functions

After the request completes and the server has stopped talking to the client,
there is still work that the server needs to do. The server records information
about every access clients make, and records information about the client
making the request as well.

If there is more than one AddLog directive in an object, all are applied.

For each callable function, this document provides the following
information: name and description, notes, required parameters, optional
parameters and examples. The AddLog functions covered here include:

The Object Configuration File

167

• Log In the Common Format

• Record the Client Software Name

Log In the Common Format

Name and Description

common-log is an AddLog function which records request-specific data in
the common log format used by most HTTP servers. There are a number of
freely available statistics generators for this format.

Notes

None.

Required Parameters

None.

Optional Parameters

name gives the name of a log file, which must have been given as a parameter
to the init-clf Init function. If no name is given, global is assumed.

iponly , if present, instructs the server to skip looking up the hostname of the
remote client, and records the IP address instead.

Examples

Log all accesses to the central log file
AddLog fn=common-log

Log non-local accesses to another log file
<Client ip=*~198.93.9[2345].*>
AddLog fn=common-log name=nonlocal
</Client>

168

Appendix D: Technical Information

Record the Client Software Name

Name and Description

record-useragent is an AddLog function which records the IP address of
each client followed by the User-Agent HTTP header they provided. If none
was provided, the server records “(none given)”. The User-Agent header
field tells the server what version of Netscape Navigator (or another
HTTP-based client) is in use.

Notes

None.

Required Parameters

None.

Optional Parameters

name gives the name of a log file, which must have been given as a parameter
to the init-clf Init function. If no name is given, global is assumed.

Examples

I'm curious what software people are using, so I can see how many
forms-capable clients use my server.
AddLog fn=record-useragent name=useragents

Error Directive

At any time during a request, a certain number of conditions may occur
which cause the server to stop fulfilling a request and return an error to the
client. When this happens, the server can send a short HTML page to the
client telling them in very general terms about the error.

In order to make error handling more friendly, the Netsite Commerce Server
allows you to intercept certain errors and send a file of your choosing instead
of the server’s canned error message.

The Object Configuration File

169

The following is a list of errors which are returned by the server. Each line
has the 3-digit HTTP code which designates the error, followed by a short
reason.

• 401 Unauthorized

The files in this object are protected (see the AuthTrans function
basic-ncsa and the PathCheck function require-auth). The server
requires HTTP user authorization to allow access, and the client either
provided none or its HTTP authorization was insufficient.

• 403 Forbidden

The server tried to access a file or directory, and found that the user it
was running as didn’t have sufficient permission to access the file.

• 404 Not Found

The client asked for a filesystem path which doesn’t exist, or which the
server has been instructed to tell the client that it doesn’t exist. If you
use access control, changing the response to this error can let you nicely
tell people to go away.

• 500 Server Error

Server errors mean that an error has occurred within the server which
prevents it from finishing the request. Server errors can happen because
of misconfigurations, CGI programs exiting early or otherwise failing,
or machine resources such as swap space being exhausted.

Most Service functions can be called from Error directives. To decide when
to apply an Error directive, there are two optional parameters given to
Service functions being used from Error directives:

reason gives one of the above reason strings in lowercase (such as
forbidden or not found).

code gives a 3-digit error code such as 404 or 500.

See “Service Functions” on page 158 to determine which functions you can
call from an Error directive.

171

Appendix E

E. Netsite Technical Specifications

Netsite Technical Specifications

• All HTTP-based clients supported. Serves HTML documents

• Backward compatibility with NCSA httpd. Speaks industry-standard
HTTP 1.0 protocol

• CGI 1.1 compliant

• DNS and IP address based access control

• HTTP 1.0-based access authorization

• Client accesses logged in common log file format

• Server restarts or log files rotate with SIGHUP

• Multiple log files which can restrict logging from certain hosts

• Simplified imagemap setup

• User public information directories (IRIX users)

• Allow user databases other than /etc/passwd or NIS map

• Can be pre-loaded to save network or disk bandwidth

• Common indexing format for directories

• Customized error messages

• Simplified installation, configuration and maintenance through
intuitive online forms

• Increased load capacity and system load limitation through creation of
a configurable number of recyclable server processes

• Server configuration control per-directory, per-file, by shell wildcard
pattern or using templates

• Streamlined server-parsed HTML

• Symbolic link searches friendly to automounter

172

Appendix E: Netsite Technical Specifications

• Document root and virtual-to-physical mappings

• Ability to disable symbolic links and hard links

• MIME typing through filename extensions (including compression)

• DBM hashed file format used for high capacity user database

• Supports UNIX-based operating systems from: Digital Equipment
Corp. (OSF/1 2.0), Hewlett Packard (HP-UX 9.03), IBM RS/6000 (AIX
3.2.5), Silicon Graphics (IRIX 5.2), Sun (Solaris 2.3 & 2.4; SunOS 4.1.3),
386/486/Intel Pentium PCs (BSDI 1.1)

173

Glossary

CGI

Common Gateway Interface—an interface for external programs to “talk” to
the HTTP server. Programs that are written to use CGI are called CGI
programs or CGI scripts. CGI programs do things like handle forms or
perform output parsing not normally done by the server. For more
information about CGI scan the Contents page at the beginning of this guide
and, specifically, read Appendix C.

common log file format

The common logfile format is the format used by the server for entering
information into the access and error logs. The format was originally
developed through a joint effort between NCSA and CERN.

DNS

Domain Name System. The system used by machines on a network to
associate standard IP addresses (such as 198.93.93.10) with hostnames (such
as www.mcom.com). Machines normally get this translation information
from a DNS server, or look it up in tables maintained on their systems.

DNS alias

A DNS alias is a hostname that the DNS server knows points to a different
host—specifically, a DNS CNAME record. For example,
www.[yourdomain].[dom] may be an alias that points to a real machine
called wilma.[yourdomain].[dom] where the server currently exists.
When somebody uses Netscape Navigator or some other network
navigation software to access the server, the only URL they need is:
http://www.[yourdomain].[dom]
Later, should you move the server to another machine called
fred.[yourdomain].[dom] , you simply update the DNS CNAME record to
reflect the server’s new location and user’s can continue to use:
http://www.[yourdomain].[dom]
but need not know or be aware that the server has actually moved.

174

Glossary

document root

A directory on the server machine that contains the files, images and data
you want to present to users accessing the server.

EMACS

A Unix text editing program—also used to read e-mail and news. EMACS
originally stood for Editing MACroS (the baroque interpretation of this
acronym is “Escape Meta Alt Control Shift”).

fancy indexing

Fancy indexing provides more information than simple indexing. Fancy
indexing displays a list of contents by name with file size, last modification
date, and an icon reflecting file type. Because of this, fancy indexes may take
longer than simple indexes for the client to load.

file extension

The last section of a file’s name, usually preceded by the last period in the
name. For example, in the filename index.html , the file extension is html .

file type

The format of a given file. For example, a graphics file does not have the
same file type as a music file. Often identified by the file’s extension (for
example, .gif , .wav , .html .).

GIF

A cross-platform image format originally created by Compuserve. The
acronym stands for Graphics Interchange Format. GIF files are usually much
smaller in terms of file size than they would be in their native
platform-specific format. GIF is one of the most common interchange
formats. GIF images are readily viewable on UNIX, Microsoft Windows™
and Apple Macintosh® systems using the appropriate software.

home page

A document that exists on the server and acts as a catalog or entry point for
the server’s contents. The location of this document is defined within the
server’s configuration files.

hostname

A name for a machine of the form machine.domain.dom , which is translated

175

Glossary

to an IP address. For example: www.mcom.com is the machine www in the
subdomain mcom with domain com.

HTML

The acronym stands for Hypertext Markup Language and is the document
formatting language used by Netscape Navigator. HTML controls the
format of text, the positioning of graphics and forms input items, and the
navigable links found on pages which are viewed with HTML-compatible
network navigation software.

HTTP

Hypertext Transport Protocol. The method by which information is
exchanged on a network between HTTP servers and clients.

httpd

An abbreviation for HTTP daemon, which means a program which serves
information using the HTTP protocol. The Netsite Commerce Server is often
called an httpd.

imagemap

A process which makes areas of an image active, allowing users to navigate
and obtain information by clicking the different regions of the image with a
mouse. Imagemap can also refer to a CGI program call “imagemap” which
is used to handle imagemap functionality in other httpd implementations.

inittab

Often called /etc/inittab because of its location, it is a file which describes
programs that need to be restarted if they should ever die (to provide
continual service).

IP address

Internet Protocol address—a set of numbers, separated by dots, which
specify the actual location of a machine on the network.

ISINDEX

Documents can often use a network navigator’s capabilities to accept a
search string and send it to the server to access a searchable index without
using forms. In order to use ISINDEX, you must create a query handler.

176

Glossary

ISMAP

ISMAP is an extension to the IMG SRC tag used in an HTML document to tell
the server that the named image is an imagemap.

MIME

Multi-Purpose Internet Mail Extensions. This is an emerging standard for
multimedia e-mail and messaging.

NIS

Network Information System—a system of programs and data files that
Unix machines can use to collect, collate and share specific information
about machines, users, file systems and network parameters throughout a
network of computers.

NCSA

The National Center for Supercomputing Applications—a research
organization at the University of Illinois at Urbana-Champaign, where the
original research prototype of Netscape was designed and produced.

password file

A file on Unix machines that stores Unix user login names, passwords and
user ID numbers, among other things. Known as /etc/passwd in the case of
the Unix password file, because of where it is kept.

public information directories

Directories not inside the document root that are in a Unix user’s home
directory (or directories) which are under the user’s control.

RAM

Random Access Memory. The physical semiconductor-based memory in a
computer.

rc.local

Often called /etc/rc.local because of its location, it is a file which
describes programs that need to be run at machine startup.

realm

A term used in HTTP access authorization that helps the user identify what
part of the system is asking for an HTTP user name and password. For

177

Glossary

example, the realm in the Netsite Server Manager is “Server Administrator.”

redirection

A system by which clients accessing a particular URL are sent to a different
location, either on the same server or on a different server. This is useful if a
resource has moved and you want the clients to be able to find the new
location transparently.

resource

Any file, directory or program that the server can access and send to a client
that asks for it.

root

The most privileged user available on Unix machines. Has complete access
privileges to all files on the local machine.

ScriptAlias

The way that NCSA httpd did some of its configuration, including directory
remapping and CGI activation.

server daemon

The server daemon is the server. The server daemon is a process which, once
executed, listens for and accepts requests from clients.

server root

A directory on the server machine dedicated to holding the server
configuration, maintenance and information files.

simple index

The opposite of fancy indexing—this type of directory listing displays only
the names of the files without any graphical elements.

strftime

A function that converts a date and a time to a string. Used by the server
when appending trailers. strftime has a special format language for the
date and time that the server can use in a trailer to illustrate a file’s last
modified date.

178

Glossary

superuser

A level of Unix system privileges equal to those of the root user.

sym-links

Abbreviation for symbolic links—these are a type of redirection used by the
Unix operating system. They allow you to create a pointer from one part of
your file system to an existing file or directory on another part of the file
system.

telnet

A protocol for two machines on the network to be connected to each other
and to support terminal emulation for remote login.

top

A program that exists on some Unix systems which can show the current
state of system resource usage.

top-level domain authority

The highest category of hostname classification, usually signifying either the
type of organization the domain is (.com is a company, .edu is an
educational institution) or the country of its origin (.us is the United States,
.jp is Japan, .au is Australia).

uid

A unique number associated with each Unix user on a machine.

URL

Uniform Resource Locator—the address system used by the server and the
client to request documents. It is often called a “location.” The format of a
URL is:
[protocol]://[machine:port]/[document]

An example of a URL is:
http://www.mcom.com/index.html

179

Index

A

absolute pathname, 45, 50, 74
access.conf, 72
access control, 48-49, 66, 74, 75, 76
access logging, 13
AddLog directive, 140
admin account, 76
admin/config, 117
administrative access

hosts allowed, 18-19
administrative password, 17-19, 21, 53-60, 74, 118
administrative user name, 17, 21, 59
admin/userdb, 74
admpw, 118
alias, 3, 10
append-trailer function, 161
automatic indexing, 15-16

icons used for, 16

B

basic-ncsa function, 142

C

CERN, 47
CGI, 27, 32, 33, 46, 52, 71-73, 77, 78-82, 137

activation as a file type, 42, 43, 72
program interface, 32, 67

cgi-bin directory, 71-73, 78, 82, 137
.cgi file extension, 78, 71
child processes, 4, 11
Chroot directive, 120, 128, 129, 143
cindex-init function, 132
circle (in imagemaps), 70, 71
common logfile format, 47, 131
common-log function, 167
configuration at-a-glance, 40
configuration files, 11, 46, 61, 63, 117, 118
configuration template, 34, 37, 82-84, 136

creating, 42
configuration worksheet, 1, 7, 14, 17, 19

sample, 8
conventions, xiv
custom trailer, 44, 84

D

default query handler, 52
deny-existence function, 152
directives, 118, 119
directories

installation of, 5
directory

as resource, 41
central, for users, 34

180

Index

where server is installed, 11
directory catalogs, 15
directory indexing, 32, 44, 45, 67
disable user public directories, 35
DNS, 2, 3, 9, 13, 18, 66

CNAME record, 3, 10, 120
document root, 14-15, 30, 36, 72, 78, 79
document-root function, 146
domain authority, 2, 9

E

EMACS, 51
entire server

selecting as a resource, 41
Environment variables

AUTH_TYPE, 99
CONTENT_LENGTH, 99
CONTENT_TYPE, 99
GATEWAY_INTERFACE, 96
HTTPS, 100
HTTPS_KEYSIZE, 100
HTTPS_SERVER_ISSUER, 100
HTTPS_SERVER_SUBJECT, 100
PATH_INFO, 97
PATH_TRANSLATED, 97
QUERY_STRING, 98
REMOTE_ADDR, 98
REMOTE_HOST, 98
REQUEST_METHOD, 96
SCRIPT_NAME, 98
SERVER_NAME, 95
SERVER_PORT, 96
SERVER_PROTOCOL, 96
SERVER_SOFTWARE, 95
SERVER_URL, 95

ErrorLog directive, 120, 124, 125
error processing, 45, 46

error types, 46
/etc/passwd, 4, 12, 34, 76, 78, 79, 118, 123, 128, 132,

146
/etc/services, 4, 10
exec bit, 48, 81, 82

F

fancy indexing, 15
filename extensions, 38
file system

safety, 14
file system links, 50-51
file system permissions, 46
find-index function, 150
find-links function, 153
find-pathinfo function, 154
fixed URL, 39
force-type function, 156
form or page

usage, xiv

G

GIF, 38, 43, 52

H

hard links, 79
hard restart, 60, 61
high demand system, 12, 80
home page, 2, 16, 31, 34
home-page function, 148
host access restrictions, 32, 33, 37, 51, 52, 59, 73, 77
hostname, 2, 3, 9, 10, 13, 18, 19, 46, 47, 59

181

Index

listing multiple, 18
HTML, 16, 43, 48, 52, 64, 65, 77, 81, 82

server parsed, 47, 48, 80, 81-82, 166
.html file extension, 48, 71, 81
HTTP access authorization, 42, 46, 47, 48, 53, 54, 66,

74, 76, 77
HTTP server

deactivation, 5
existing, 5, 11
port numbers, 4, 10
user name, 17

I

image file, 70, 71
imagemap, 64, 69-71
imagemap function, 163
index-common function, 164, 165
index file, 16
indexing

automatic, 15-16, 32
fancy, 15, 32
simple, 15, 32

index-simple function, 164
individual file

selecting as resource, 41
init-clf function, 131
Init directive, 118
Init functions, 130
init-uhome function, 132
IP address, 2, 3, 9, 10, 13, 18, 46, 47, 51, 52, 59

listing multiple, 18
IP resolver utility, 13
ISINDEX, 52
ISMAP, 32, 71

K

kill-httpd, 5

L

:LASTMOD:, 44
last modification date, 44
LoadObjects directive, 120, 126, 127
load-types function, 130
local-types parameter, 131
log files, 11, 13, 65
logging, 13

enabling and disabling, 30, 46
hostnames, 13
information types, 47
IP addresses, 13

logs directory, 60
low demand system, 12, 80

M

magnus.conf, 117, 118
map file, 70, 71
Master Index, 22, 83
maximum number of processes, 12-13, 29, 30, 80-81
MIME, 27, 37, 38

changing default type, 37
mime.types file, 117
mime-types parameter, 130
moved resource, 38-39

creating a pointer to, 38

182

Index

N

navigable regions, 70
NCSA

httpd, 34, 48, 65, 81
HTTP daemons, 47
script format, 67

NCSA httpd-style user databases
converting, 54, 55, 75

NCSA Mosaic for the X Window System, 6
Netscape Communications

Directory of Services, 1, 19
Netscape Navigator, 3, 6, 17, 18, 21
Netsite Server Manager

accessing, 21
navigation interface, 21, 22

NIS, 34, 67, 76
nobody, 4, 11
non-absolute path, 50
non-symbolic links, 79

O

obj.conf, 117, 118, 134

P

page or form
usage, xiv

parse-html function, 166
password

administrative, 17-19, 21, 53-60, 74, 118
password file

alternate, 35
performance optimization, 80-82
pfx2dir directive, 144

PidLog directive, 120, 125, 126
polygon (in imagemaps), 70, 71
Port directive, 121
port numbers, 4, 5, 10-11, 29

80, 10
non-privileged range, 10
privileged range, 10

previously configured resource, 41
process control, 60
processes, 11

maximum number of, 12-13, 29, 30, 80-81
process handling, 63-64
process load, 25
process owner, 4, 11

Q

query handler
default, 52

query-handler function, 163

R

RAM, 12, 80
read and execute privileges, 4, 16
realm, 76
record-useragent function, 168
rectangle (in imagemaps), 70, 71
redirect function, 147
redirection, 38, 40
regions, navigable, 70
removing all changes, 53
request denial, 51
request logging, 46
require-auth function, 151

183

Index

resource
directory, 41
entire server, 41
individual file, 41
modification, 42
previously configured, 41
removing all changes to, 53
selection, 41, 75, 83

resource selection, 75
restart the server, 28, 42, 72, 73, 76, 83
RFC 931, 67
root

log in as, 4, 10, 11, 24
root directory

documents, 15
RootObject directive, 120, 127, 128

S

safety, 77
ScriptAlias, 73
search queries, 52
send-cgi function, 162
send-error function, 160
send-file function, 160
server

as resource, 41
daemon, 11
error log, 60
hard restart, 60, 61
manually starting, 24
manually stopping, 25, 60
performance optimization, 80-82
registration, 19
soft restart, 60, 61

server daemon, 11
server name, 3, 9-10

ServerName directive, 120
server parsed HTML, 47, 48, 64, 65, 80, 81-82, 166
server root, 5, 13, 53, 74, 117

admin/userdb directory, 53
server root directory, 30
server side includes, 47
server user, 16

non-privileged, 78
.shtml file extension, 48, 81
shtml-hacktype function, 157
shutting down the server, 60
signature, 44
simple indexing, 15, 32
soft restart, 60, 61
srm.conf, 72, 73
start-httpd, 5
starting the server

from the command line, 24
start netsite, 61
stopping the server

from the command line, 25
using the Netsite Server Manager, 60

strftime, 44
superuser, 4, 10, 24, 25
sym-links, 36, 77, 78, 79, 80, 84
syntax error, 46
syslog, 13, 30, 65
system password file, 35
system user account, 4, 11, 29, 76

non-privileged, 4

T

Telnet, 4
top (Unix program), 13, 81
top-level domain authority, 3, 9

184

Index

trailer, 44, 64
type-by-exp function, 156
type-by-extension function, 155

U

uid, 4, 12
umask, 82
unix-home function, 145
unix-uri-clean function, 149
URL, 2, 3, 9, 11, 14, 15, 16, 17, 32, 51, 66, 67, 70

fixed, 39
mapping, 36, 37
prefix, 34, 35, 36, 39

URL Management, 34, 51, 83
URL mapping, 36
URL prefix, 36
user databases, 53-58, 66, 74

adding, editing or removing users, 56, 57, 75
controlling access to, 49
converting NCSA httpd-style, 54, 55, 75
name, 53, 56, 74
removing, 58

User directive, 122
user name

administrative, 17, 21, 59
users’ public information directories, 34, 34-35, 43,

50, 76, 77, 78, 79

W

wildcard pattern, 18, 19, 23-24, 33, 41, 47, 49, 52, 59,
76, 137, 156

We'd Like to Hear From You

As a user of Silicon Graphics documentation, your comments are important
to us. They help us to better understand your needs and to improve the
quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested
topics to comment on:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please include the title and part number of the document you are
commenting on. The part number for this document is
007-2629-001.

Thank you!

Three Ways to Reach Us

The postcard opposite this page has space for your comments. Write your
comments on the postage-paid card for your country, then detach and mail
it. If your country is not listed, either use the international card and apply the
necessary postage or use electronic mail or FAX for your reply.

If electronic mail is available to you, write your comments in an e-mail
message and mail it to either of these addresses:

• If you are on the Internet, use this address: techpubs@sgi.com

• For UUCP mail, use this address through any backbone site:
[your_site]!sgi!techpubs

You can forward your comments (or annotated copies of manual pages) to
Technical Publications at this FAX number:

415 965-0964

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

BUSINESS REPLY MAIL

Silicon Graphics, Inc.

2011 N. Shoreline Blvd.

Mountain View, CA 94043

