IRIX® GSN™
Administrator’s Guide

Document Number 007-3719-002

CONTRIBUTORS

Written by Carlin Otto

Updated by Julie Boney and Crystal Boney

Mlustrated by Carlin Otto

Production by Judi Holin

Engineering contributions by Jeffrey Chung, Jim Pinkerton, and Jean-Michel Pittet

COPYRIGHT

© 1999-2000 Silicon Graphics, Inc. All rights reserved; provided portions may be
copyright in third parties, as indicated elsewhere herein. No permission is granted to
copy, distribute, or create derivative works from the contents of this electronic
documentation in any manner, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND

The electronic (software) version of this document was developed at private expense;
if acquired under an agreement with the USA government or any contractor thereto,
it is acquired as "commercial computer software" subject to the provisions of its
applicable license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if
acquired for Department of Defense units, (b) 48 CFR 227-7202 of the DoD FAR
Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon
Graphics, Inc., 1600 Amphitheatre Pkwy 2E, Mountain View, CA 94043-1351.

TRADEMARKS AND ATTRIBUTIONS

Silicon Graphics, IRIS, IRIX, Octane and Onyx2 are registered trademarks, and SGI,
the SGI logo, Origin, Origin 200 Gigachannel, and IRIS InSight are trademarks of
Silicon Graphics Inc. Gigabyte System Network and GSN are trademarks of the
HIPPI Networking Forum. UNIX is a registered trademark in the United States and
other countries, licensed exclusively through X/Open Company, Ltd.

IRIX® GSN™ Administrator’s Guide
Document Number 007-3719-002

Contents

List of Figures vii
List of Tables ix
About This Guide xi

Audience xi
Where to Find More Information xi
Installation Instructions xiii
Hardware Owner’s Guide xiii
Administrator’'s Guide xiii
IRIX Administration Documents xiv
Online Man Pages xiv
World Wide Web-Accessible Documentation xv
Release Notes xvi
InfoSearch xvi
Obtaining Updated or Printed Versions of This Document xvii
SGI Product Support xvii
Conventions Used in This Guide xvii

Reader Comments xvii

Overview of IRIXGSN 1

SGI GSN Products 1
Components of Products 1
GSN Within IRIX Network Stacks 3
Standards Compliance 4
GSN Product Names 4
Compatibility Issues 5

Overview of Protocols 5

Contents

What Is GSN? 6

GSN Terminology 6

GSN Overview 8

GOSN Physical Layer 8

GSN Virtual Channels 9

GSN Micropacket 11

GSN Flow Control 16

GSN Message 17

GSN Admin Micropackets 18
What is ST? 23

ST Overview 23

ST Terminology 23

ST Operations 24

ST Header 27

ST Sequences 29

ST Connection Setup Sequence 29

ST Connection Teardown Sequence 32

ST Data Movement Sequences Including Memory Allocation 33

ST Flow Control Sequences 44

ST Status Sequences 46

ST Termination Sequence for a Data Movement 47
Example of ST Virtual Connections and GSN Channels 48
GSN Fabrics and Logical Networks 49

Basic Concept #1 49

Basic Concept #2 50

Basic Concept #3 50

Consequences and Examples 51
Address Resolution for GSN 57

HARP and Broadcast Support 58

HARP Address Resolution 60

Static Address Resolution 65

Guidelines for Selecting a HARP Server 65

How Address Resolution Works for ST-over-GSN 66

Contents

IRIX HARP Table 66
Static Entries 66
Dynamic Entries 66
Assignment of Unit Numbers and Network Interfaces to GSN Hardware
Assignment of Unit Numbers to Hardware 67
Assignment of Network Interface to Hardware Device 69
Comparison of STto IP 70

Installing and Configuring IRIX GSN 73
Complete GSN Installation Process 74
Collect Information Before Starting 75
Configure IP-over-GSN 76
Configure ST-over-GSN 77
Configure the Address Resolution Service 77
Individual Configuration Tasks 79
Change HARP Lookup Table 79
Configure IRIX GSN Network Interfaces In Real Time 81
Configure IRIX HARP Client 82
Configure IRIX HARP Server 83
Edit gsnarp.options File 85
Edit hosts File 88
Edit ifconfig-#.options File 88
Edit master.d/gsn File 91
Edit netif.options File 92
Enable Networking 93
Building a New Driver Into the Operating System 94
Instruction Set 1 94
Instruction Set 2 94
List of All Configurable Parameters for IRIX GSN 95

67

Contents

3. Maintaining, Monitoring, Verifying, and Troubleshooting IRIX GSN 99
Commands Available for IRIX GSN 99
Instructions for Common Procedures 100
Disable or Enable IP/ST Interface 101
Display ULA (MAC) Address 102
Configure the SGI GSN Board for On-board (Internal) Loopback Operation 102
Check Status of Hardware 103
Check Status of GSN Traffic 127
Build New HARP Server Addresses Into Network Interfaces 131
Display Client’s Active HARP Server 132
Display Address Resolution Lookup Table 132
Installing a Loopback Device 133
Verifying the IRIX GSN Subsystem 135
Verify That the Board Has Been Located by the Software 135
Verify the SGI GSN Hardware 136
Verify an IP-over-GSN Interface 138
Troubleshooting 141
Troubleshoot SGI GSN Hardware 141
Troubleshoot IP-over-GSN Interfaces 141

4. IRIX GSN Error Messages 145
Overview of the Error Message Listing 145
Error Messages from the gsnarp Command 146
Error Messages from the gsncntl Command 149
Error Messages from the gsntest Command 152
Error Messages from the GSN Driver 154

Index 179

Vi

List of Figures

Figure i
Figure 1-1
Figure 1-2

Figure 1-3
Figure 1-4
Figure 1-5
Figure 1-6
Figure 1-7
Figure 1-8
Figure 1-9
Figure 1-10
Figure 1-11
Figure 1-12
Figure 1-13
Figure 1-14
Figure 1-15
Figure 1-16
Figure 1-17
Figure 1-18
Figure 1-19
Figure 1-20
Figure 1-21
Figure 1-22
Figure 1-23
Figure 1-24

Sources of Additional Information xii
IRIX GSN Modules Within OSI-style Network Protocol Stack 3

GSN Micropackets From Virtual Channels Interleaved In Datastream
10

GSN Micropacket Control Bits 11

GSN Admin Micropacket 15

GSN Flow Control 16

GSN Message Composed of Header and Data Micropackets 17
Dual-port HIPPI-6400-PH Elements 18

Hop Count >0 Indicates Forward Admin Micropacket 19

Hop Count =0 Indicates Process Admin Micropacket 19

Hop Count Example: hop_count =0 20

Hop Count Example: hop_count=1 20

Hop Count Example: hop_count =2 21

ST Operation 24

ST Header 28

ST Connection Setup Sequence: Identification Parameters Only 31
ST Connection Setup Sequence: VC Parameters Only 31

ST Connection Setup Sequence: Rejection 32

ST Connection Teardown Sequence 33

Data Handling for ST Data Movements 36

ST Data Movement Sequence: Persistent Memory—Put 38

ST Data Movement Sequence: Persistent Memory—Get 39

ST Data Movement Sequence: Persistent Memory—FetchOp 40
Example of FetchOp 41

ST Data Movement Sequence: Single-use Memory with Initiator as
Source 42

vii

List of Figures

viii

Figure 1-25

Figure 1-26
Figure 1-27
Figure 1-28
Figure 1-29

Figure 1-30
Figure 1-31
Figure 1-32
Figure 1-33
Figure 1-34
Figure 1-35
Figure 2-1

Figure 3-1

Figure 3-2
Figure 3-3
Figure 4-1

ST Data Movement Sequence: Single-use Memory with Initiator as
Destination 43

Status Sequence Using Request_State 46
Status Sequence Using S Flag in ST Header 46
Termination Sequence 47

Example of ST Virtual Connections Using Multiple GSN Virtual
Channels 48

Subnet Mask for Examples 51

Single-switch GSN Fabric with Subnets/LISs 53
Multiple-switch GSN Fabric with Subnets/LISs 55
LIS Membership That Spans Fabrics 56

HARP Registration 63

HARP Normal Operation 64

Decision Tree for HARP Configuration Procedures 78

Physical Position of GSN Elements for Different Connection Scenarios
119

Installing a HIPPI-6400 Loopback Connector 134
The /fusr/etc/netstat -ina Display 139
Error Message Format in /var/adm/SYSLOG File 145

List of Tables

Table 1-1
Table 1-2
Table 1-3
Table 1-4
Table 1-5
Table 1-6
Table 1-7
Table 1-8
Table 1-9
Table 1-10
Table 1-11
Table 2-1
Table 2-2
Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 3-5
Table 3-6
Table 3-7
Table 3-8
Table 3-9
Table 3-10

GSN Compared to Other Communication Technologies
GSN Bandwidth Calculations 9

Data Restrictions for Each GSN Virtual Channel 10
GSN Micropacket Control Bits 12

Types of GSN Micropackets 13

GSN Admin Micropacket Commands 21

ST Operations 25

Data Movement Sequences 34

Data Sizes Possible for Data Movements 35

ST Flow Control Sequence 45

STvsIP 70

IP Network Interface Operational Parameters 90
Summary of Configurable Items for IRIX GSN 95
Utilities for Monitoring and Maintaining IRIX GSN 99

Common Procedures for Monitoring and Maintaining IRIX GSN

Status Information for GSN Physical Link 105

GSN Status Information for Copper-Based XIO Hardware 107

SHAC ASIC Status: Basic Listing 108
SHAC ASIC Status: Verbose Listing 108
HIPPI-6400-PH Element (Hop) Status 120

Meaning of “VC hex_value” in Status Screen Displays 126

Local Element’s HIPPI-6400 ADMIN Traffic Status 127
HARP Flags 132

100

Audience

About This Guide

This document, the IRIX GSN Administrator’s Guide, provides instructions for
configuring, verifying, monitoring, and troubleshooting an SGI Gigabyte System
Network (GSN) connection. This guide does not provide information about system
administration of a GSN fabric. This guide documents IRIX GSN version 2.0 operating
over IRIX 6.5.9f or later.

The audience for this document is network system administrators who are already
familiar with general IRIX networking and system administration. This document
assumes that the reader already knows the information documented in the online, IRIS
InSight-viewable guide IRIX Admin: Networking and Mail, which is shipped with each
copy of IRIX.

Where to Find More Information

Figure i illustrates sources of additional information for the IRIX GSN product and IRIX
networking. Subsequent sections describe each of the illustrated sources.

Xi

About This Guide

Hard Copies Optional Hard Copy

sgi

11199999999911444

:

SGI GSN XIO Hardware IRIX GSN
Installation Instructions IRIX Admin Manual Set Administrator's Guide
and

SGI GSN Hardware
Owner's Guide

283

CDs (IRIS InSight Books)

E IRIX GSN Administrator's Guide

SGI GSN Hardware Owner's Guide

Man Pages IRIX Admin: Networking and Mail
Release Notes
InfoSearch
World Wide Web
F— http://techpubs.sgi.com/
Figure i Sources of Additional Information

Xii

About This Guide

Installation Instructions

The SGI GSN XIO Hardware Installation Instructions for SGI Origin Family, SGI-2000-series,
and Silicon Graphics Onyx2 Platforms provides instructions for System Service Engineers
(SSEs) who have been trained by SGI. This document is for the SSE (only).

Hardware Owner’s Guide

The SGI GSN Hardware Owner’s Guide describes the customer interface to the SGI GSN
hardware: the LED behavior, the connectors on the panel plate, and the cable
specifications. A printed copy of this guide is shipped with the SGI GSN hardware /IRIX
GSN software product.

Administrator’s Guide

This document, the IRIX GSN Administrator’s Guide, describes the IRTX GSN software.
Refer to the IRIX GSN Administrator’s Guide to set up, configure, verify, monitor, and
troubleshoot the IRIX GSN connection, including the network interface (for IP and ST),
and suspected hardware problems. IRIX GSN is designed so that you can maintain most
of the components of the system without the help of a trained technician. Hardware
installation/removal is the only part of the IRIX GSN product that requires an SSE.

The administrator’s guide can be viewed by the following methods:

® UseIRIS InSight. The digital format for this document (that is, the installable image)
is included with the IRIX GSN software.

¢ Use a Web browser to view the HTML version at http:/ /techpubs.sgi.com.

¢ Order a printed manual from http:/ /techpubs.sgi.com or from the local SGI sales
representative.

¢ Use a Web browser to download PostScript or PDF files from
http:/ /techpubs.sgi.com.

Xiii

About This Guide

Xiv

IRIX Administration Documents

The Networking and Mail volume of the IRIX Admin manual set is recommended as a
reference for system administration tasks of logical network interfaces (for example, IP).

This document can be viewed by the following methods:

e Use IRIS InSight. The image is included with IRIX, either preinstalled on the system
disk or available on CD-ROM. You can display this book from a graphics
workstation using the IRIS InSight viewer.

e Use a Web browser to view the HTML version at the Silicon Graphics Technical
Publications Library on the World Wide Web: http:/ /techpubs.sgi.com.

e Order a printed copy from the local SGI sales representative.

e Use a Web browser to download PostScript or PDF files from
http:/ /techpubs.sgi.com/library.

Online Man Pages

The IRIX GSN software includes a set of IRIX man (manual) pages, formatted in the
standard UNIX man page style. These are installed on the main system disk along with
the IRIX GSN software, and are displayed using the man command. For example, to
display the man page for the gsncntl command, enter the following command at a shell
prompt:

man gsncntl

IRIX GSN includes man pages for the following items: gsn(7m), gsnentl(1m),
gsntest(1m), and gsnarp(1m).

Citations in the documentation to these man pages include the name of the command
and the section number in which the command is found. For example, “gsncntl(1)” refers
to the gsnentl command and indicates that it is found in section 1 of the IRIX reference.

For additional information about displaying man pages using the man command, see
man(1).

About This Guide

In addition, the apropos command locates man pages based on keywords. For example,
to display a list of man pages that contain information about GSN, enter the following
command at a shell prompt:

apropos gsn

For information about setting up and using apropos, see apropos(1) and makewhatis(1M).

World Wide Web-Accessible Documentation

SGI maintains a World Wide Web (WWW) page from which you can retrieve manuals in
a variety of formats. For example, you can retrieve the latest versions of many of the
company’s documents, or you can order printed (paper-copy) versions of online
documents.

To view or retrieve the latest version of a document, use your Web browser to open the
following URL:

http:/ /techpubs.sgi.com/

To locate the latest versions of IRIS GSN documents (including this one), make the
following selections:

1. In the “Keyword search” field, enter gsn

2. Inthe “Look in” area, select “Title only”.

3. Click the “Search” button.

4. From the list of documents, click on the document that you want to view, download

and print, or purchase in bound printed format.

To order a printed (paper-copy) version of a document, use your Web browser to open
the following URL:

http:/ /techpubs.sgi.com/library/tpl/cgi-bin/order.cgi

XV

About This Guide

XVi

Release Notes

You can view the release notes for a variety of SGI products and software subsystems
using one of two utilities:

relnotes Text-based viewer for online release notes

grelnotes Graphical viewer for online release notes

To see a list of available Release Notes, type the following at a shell prompt:

rel notes

For more information, see the relnotes(1) and grelnotes(1) man pages.

InfoSearch

InfoSearch is a unified system for retrieving and viewing online information, providing
you with quick and easy access to online information available on SGI computers. With
InfoSearch, you can search or browse through release notes, man pages, application help
cards, online books, and other forms of online information.

There are two ways to use InfoSearch:
e The infosearch utility, which runs on IRIX workstations.
e A World Wide Web interface, infosrch.cgi, that you can access through any Web

browser.

An SGI system can be configured as an InfoSearch server so that other workstations on
your network can use it to retrieve information. However, you must have a graphical
workstation in order to use InfoSearch, either with the infosearch command or via a Web
browser.

For basic information about getting started with InfoSearch, see the infosearch(1),
sgindexAdmin(1), booksAdmin(1), and infosrch.cgi(1) man pages.

About This Guide

Obtaining Updated or Printed Versions of This Document

To order printed (paper-copy) manuals or to retrieve a newer version of a manual, use
the SGI Web page, as described in “World Wide Web-Accessible Documentation” on
page xv, or contact your sales representative.

SGI Product Support

SGI provides a comprehensive product support and maintenance program for its
products. If you are in North America and would like support for your SGI supported
products, contact the Technical Assistance Center at 1-800-800-4SGI. If you are outside
North America, contact the SGI subsidiary or authorized distributor in your country.

Conventions Used in This Guide

Throughout this guide, the following stylistic conventions are used:

Italicized text Represents commands, variables, document titles, and
filenames.

Initial capitalization ~ Identifies proper names for protocol entities. The initial capital
letter distinguishes the word from generic use of the term. For
example, GSN Message, refers to the item described and labeled
in the ANSI standard, as opposed to message, which can refer to
any communication that has a clear beginning and an ending.

Courier font Represents text that appears on a terminal.

Glossary term Indicates that the term is explained in the Glossary.

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
document, please tell us. Be sure to include the title and document number of the manual
with your comments. (Online, the document number is located in the front matter of the

manual. In printed manuals, the document number can be found on the back cover.)

You can contact us in any of the following ways:

XVii

About This Guide

¢ Send e-mail to the following address:
t echpubs@gi . com

® Use the Feedback option on the Technical Publications Library World Wide Web
page:
http://techpubs. sgi.com

¢ Contact your customer service representative and ask that an incident be filed in the
SGI incident tracking system.

e Send mail to the following address:

Technical Publications

SGI

1600 Amphitheatre Pkwy., M/S 535
Mountain View, California 94043-1351

e Send a fax to the attention of "Technical Publications" at +1 650 932 0801.

We value your comments and will respond to them promptly.

Xviii

Chapter 1

SGI GSN Products

Overview of IRIX GSN

This chapter provides an overview of IRIX GSN version 2.0.

Gigabyte System Network (GSN) is a full-duplex, error-free, flow-controlled
communications protocol that simultaneously provides a full gigabyte (8 gigabits) of
data transfer in each direction (6.4 gigabits of data plus 1.6 gigabits for control and
HIPPI-6400 protocol information). Table 1-1 compares theoretical GSN data rates to the
theoretical rates of other communications protocols.

Table 1-1 GSN Compared to Other Communication Technologies

Protocol BAUD Rate Peak User Payload Rate? Sustained User
Payload Rate

GSN (copper) 500 MBaud on 20 lines 6.4 gigabits/sec. 6.365 gigabits/sec.

Gigabit Ethernet 1256 MBaud on one line 1.0 gigabit/sec. 0.924 gigabits/sec.

ATM OCl12c 622 MBaud on line 0.622 gigabits/sec. 0.541 gigabits/sec.

over SONET

a. Peak rate is the rate required for hardware’s direct-memory-access (DMA) when hardware has small input
queue.

b. All rates are decimal not digital (that is, they are base-ten, not base-two); for example, giga is 1,000,000,000.

Components of Products

The GSN products offered by SGI consist of multiple components that implement the
following protocols:

* SGIGSN hardware: copper-based Gigabyte System Network (GSN, also known as
HIPPI-6400 or SuperHIPPI) hardware for use in XIO slots.

Overview of IRIX GSN

IP-over-GSN driver (gsn#) included in IRIX GSN. This component is the interface
between the GSN hardware and the Internet Protocol (IP) with its associated
transport-layer protocols: TCP, UDP, ICMP, and so on. Requires IRIX 6.5.9f or later.

ST-over-GSN driver (gsn#) included in IRIX GSN. This component interfaces the
GSN hardware to the Scheduled Transfer Protocol (ST). Requires IRIX 6.5.9f or later.

Address resolution protocol server (daemon) and client functionality shipped with
IRIX GSN. The dynamic HARP component handles HIPPI-6400 clients. IRIX HARP
also supports static table lookup for handling HIPPI systems that do not support
HARP.

IRIX sockets-based application programming interface (API) to the IP network stack
(driver) for use by customers who want to develop or port applications to

send /receive data through the IP-over-GSN subsystem. Available with IRIX 6.5.9f
and subsequent versions.

IRIX sockets-based application programming interface (API) to the ST network
stack (driver) for use by customers who want to develop or port applications to
send /receive data through the ST-over-GSN subsystem. Available with IRIX 6.5.9f
and subsequent versions.

SGI GSN Products

GSN Within IRIX Network Stacks

The SGI GSN hardware and IRIX GSN software support the following network stacks
(illustrated in Figure 1-1):

e IP-over-GSN: applications that use the standard IRIX interface (BSD sockets) to
send /receive data using the IP suite of protocols.

e ST-over-GSN: applications that use the IRIX GSN product’s Scheduled Transfer (ST)
programmatic interface to send/receive data over GSN. Applications that use this
interface include the IRIX utilities shipped with the IRIX GSN product and
customer-developed ST applications.

e ARP for HIPPI/GSN (HARP): automatically resolves physical-layer HIPPI-6400
ULA addresses to and from network-layer addresses (IP and ST).

Note: Each gsn# network interface services two main protocols: ST and IP. The INET
address that the customer assigns to an instance of gsn# is shared by the ST-over-GSN
and IP-over-GSN stacks. Some of the upper-layer address processing (for example,
routing) that is performed on the address applies to both IP and ST traffic.

Applications
customer-developed customer-developed
ping gsnarp gsntest application layer (7)

y

login ftp

user space

kernel space

Sockets .
_________________________ L session layer (5)

K
soc_type=datagram, stream, raw ! soc_type=sequenced-packet-stream

——

TCP | UDP | ICMP transport layer (4)
' ! HARP

P

Scheduled Transfer

IP-over-GSN Network

Interface Driver
(if_gsn)

INET address 7

network layer (3)

GSN Hardware Driver (running in the host)

data link layer (2)

e mm e e e — 4
1

e A I

GSN Hardware } physical layer (1)

KEY:bold type identifies GSN modules

Figure 1-1 IRIX GSN Modules Within OSI-style Network Protocol Stack

Overview of IRIX GSN

Standards Compliance

IRIX GSN complies with the following industry standards:
® GSN (also called HIPPI-6400 or SuperHIPPI)

- Information Technology - High-performance Parallel Interface - 6400 Mbit/s Physical
Layer (HIPPI-6400-PH), ISO/IEC 11518-10, NCITS (ANSI) standard.

- Information Technology - High-performance Parallel Interface - 6400 Mbit/s Switch
Control (HIPPI-6400-5C), T11.1, Project 1231-D, Rev. 2.5, August 1998, working
draft for NCITS (ANSI). Only those functions that apply to GSN endpoints.

e ST-over-GSN

- Information Technology - Scheduled Transfer Protocol (ST), T11.1, Project 1245-D,
Rev. 2.6, December 1998, working draft for NCITS (ANSI).

e JP-over-GSN
— RFC 2067, IP over HIPPI

— Other standard internet protocols provided with IRIX (IP versions 4 and 6, NFS
versions 2 and 3, TCP, UDP, ICMP, and so on.)

e IRIX HARP
— RFC Internet Draft, IP and ARP over HIPPI-6400, December 1998

To obtain copies of the GSN and ST documents, see the Web site

http:/ /www.hippi.org, or contact the American National Standards Institute
(ANSI) at 11 West 42nd Street, New York, New York 10036, telephone: 212-642-4900.
For RFCs, see the Web site http:/ /info.internet.isi.edu/in-notes/rfc.

GSN Product Names

The following strings are used to identify the GSN product:

* Name for software image: gsn
(for example, inst gsn and versions gsn)

* Name for each hardware device/adapter: gsn# or xi o_gsn
(for example, gsncntl gsnlandfind /hw nodul e -name xi o_gsn)

¢ Hardware inventory name for each adapter:
GSN 1-Port adapter and GSN 2-Port adapter

Overview of Protocols

* Name for each logical IP or STnetwork interface: gsn#
(for example, netstat -i gsn3 and ifconfig gsn0 up)

Compatibility Issues

IRIX GSN 2.0 requires IRIX 6.5.9f. Use this command to verify the version of IRIX that is
currently running on the system. The version number (displayed by the -n option) must
be equal to or greater than the version shown in this example:

% versions -n eoe
| eoe 1275719131 | Rl X Execution Environnent, 6.5.9f

The SGI GSN hardware requires the system’s HUB ASICs to be version 5. Use this
command to verify the version of the HUB on each Node board:

% hinv -v | grep HUB
HUB i n Modul e #/ Sl ot
HUB i n Modul e #/ Sl ot
HUB i n Modul e #/ Sl ot
HUB i n Modul e #/ Sl ot

Revi sion 5 Speed 97.50 Mz (enabl ed)
Revi sion 5 Speed 97.50 Mz (enabl ed)
Revi sion 5 Speed 97.50 Mz (enabl ed)
Revi sion 5 Speed 97.50 Mz (enabl ed)

nell A A

Overview of Protocols

These sections provide an overview of the protocols that make up and interoperate with
IRIX GSN. Figure 1-1 illustrates the GSN protocol stacks.

e “What Is GSN?”

e “Whatis ST?”

e “Address Resolution for GSN”

e “How Address Resolution Works for ST-over-GSN”

Overview of IRIX GSN

What Is GSN?

Gigabyte System Network (GSN) is a set of ANSI standards (listed in “Standards
Compliance” on page 4) that defines physical and data link layers for a very high-speed
communications protocol. The GSN protocol is also known by two other names:
HIPPI-6400 and SuperHIPPI. Throughout this document, the term GSN is used for this
entire set of protocols, except when referring to an item from a specific ANSI standard,
in which case the term from the ANSI document’s title is used (for example,
HIPPI-6400-PH micropacket).

GSN Terminology

The following terms have specific meanings when used within the context of GSN:

Physical link
One section of HIPPI-6400-PH cable (copper or fiber-optic) that connects two
HIPPI-6400-PH elements. Each element can be either a switch or an endpoint.
Each physical link is a full-duplex link composed of two simplex links; each
simplex link carries data in only one direction; the two streams of data in the
full-duplex link flow in opposite directions. The path (virtual connection)
between an original point of transmission (the originating source) and a final
point for reception (the final destination) can involve numerous physical links.

Element
Any component of a HIPPI-6400 fabric or system that is able to receive, process,
and send HIPPI-6400 Admin micropackets in a manner that conforms with the
HIPPI-6400 standard. Each HIPPI-6400 element contains both a source and a
destination. For example, the SUMAC chip in an SGI GSN product is a GSN
element.

Source
The transmitting element located at one end of a physical link. An upper-layer
entity (host, network-layer interface, or program) that uses the GSN subsystem
is sometimes loosely referred to as the source. However, it is more correct to call
these software entities upper-layer protocols (that is, source ULPs). An
“originating source” refers to the element that first transmitted a micropacket; an
element that is retransmitting the micropacket (for example, a switch) is simply
a source.

What Is GSN?

Destination

The receiving element located at the other end of a physical link. An upper-layer
entity (host, network-layer interface, or program) that receives communications
through the GSN subsystem is sometimes loosely referred to as the destination.
However, it is more correct to call these software entities upper-layer protocols
(that is, destination ULPs). A “final destination” refers to the element that is the
ultimate receiver for a micropacket; an element that receives, then retransmits a
micropacket (for example, a switch) is simply a destination.

Endpoint

Switch

Fabric

A final destination or an originating source of GSN traffic. An endpoint may
have only one GSN port. A single system may have many endpoints (for
example, an Origin module with two SGI GSN products has two endpoints).

A node thatis located along the route between two endpoints. GSN traffic passes
through the switch on its way to a destination endpoint. A switch must have at
least two, and usually has more, GSN ports.

All the HIPPI nodes (switches, endpoint devices, extenders) that are physically
interconnected and communicate using the same physical-layer protocol.

One GSN fabric can be logically divided into multiple upper-layer address
spaces (that is, networks). For example, a single GSN fabric can support multiple
IP networks. And, conversely, one logical network can include members from
multiple HIPPI fabrics.

Hop count

A number used in HIPPI-6400 Admin micropackets to specify the number of
elements through which the micropacket should be forwarded. Each time a
micropacket exits an element, the hop count is decremented by one. See “GSN
Admin Micropackets” on page 18 for further details.

Overview of IRIX GSN

GSN Overview

The GSN protocol provides 6.4 gigabits of user data per second from source to
destination (in each direction) over either copper-based or fiber-optics-based physical
media.! The protocol is point-to-point, full-duplex, and flow-controlled. It uses small
fixed-size micropackets (illustrated in Figure 1-4 and Figure 1-6) and up to four
interleaved logical datastreams (channels) per point-to-point connection.

GSN Physical Layer

Each physical link is composed of two simplex links that connect two HIPPI-6400
elements; data flows in only one direction on each simplex link. Both simplex links are
required for a connection because control information for each datastream travels in the
reverse direction (that is, along the other simplex link of the connection). This design
provides a full-duplex connection between two endpoints.

The GSN data rate is stated as 6.4 gigabits of user data per second on each simplex link;
however, each link physically carries a total of 8 gigabits (1 gigabyte) of data (user and
control) every second. The following items describe the GSN bandwidth:

* Atthe physical layer (that is, on the wire), GSN uses a dual-edged 250-million-cycle
-per-second clock, which results in 500 million transmission events per second. Said
another way, GSN operates at 500 MBaud.

e For each baud, GSN transmits 16 bits of user data and 4 bits of control data that is
encoded with 4b/5b. This means that 20% of the total bandwidth is overhead for
the encoding, and, of the remaining bandwidth, 20% is overhead for the HIPPI-6400
protocol. This results in user bandwidth of 6.4 gigabits or 6400 megabits per second.

® The available bandwidth for user data is 6400 megabits/second, which is
6.4 gigabits or 0.8 gigabytes of per second in each direction.

! For SGI GSN release 1.0, only the copper-based medium is supported.

What Is GSN?

Table 1-2 summarizes the mathematical calculations:

Table 1-2 GSN Bandwidth Calculations

Item Bandwidth Calculation Details

Total physical signal carrying capacity 10 GBaud 20 simultaneous signals multiplied by 500
MBaud, which is 10 billion signals per
second in each direction.

Bandwidth available for protocols 8.0 Gbits/s Rate in row above, minus bandwidth used
by 4b/5b encoding.

Bandwidth available for users (thatis, 6.4 Gbits/s Rate in row above, minus amount used by
layers above the HIPPI-6400 layer) GSN control information. GSN control = 4
of the 20 bits (20% of 8 Gbits).

GSN Virtual Channels

Each simplex link can carry up to four logical datastreams (virtual channels). These
virtual channels are allocated for control traffic, low latency traffic, and bulk traffic to
avoid the latency/blocking issues that occur when only a single channel is attempting to
handle both bulk and interactive traffic.

Overview of IRIX GSN

Each virtual channel is commonly implemented as a queue; micropackets are selected
alternately from the active queues and placed onto the physical link in an interleaved
fashion, as illustrated in Figure 1-2. Not all four channels need to be active on every
connection. All the micropackets belonging to a single GSN Message always travel
through the same channel, even when the message traverses switches along its way to
the final destination. The restrictions for the data that can be carried on each channel are
described in Table 1-3.

Table 1-3 Data Restrictions for Each GSN Virtual Channel

Virtual Description

Channel

0 Carries GSN Messages that do not exceed 68 micropackets of TYPE data (about
2176 bytes of upper-layer data). For ST-over-GSN traffic, ST data channel 0 maps to
this GSN channel; all ST control operations (for example, Request_To_Send and
Clear_To_Send) travel on this virtual channel.

1 Carries GSN Messages that do not exceed 4100 micropackets of TYPE data (about
128 kbytes of upper-layer data) and Admin micropackets in which the COMMAND
field specifies a request or a command (that is, not a response). IP-over-GSN traffic is
carried on this VC. For ST-over-GSN traffic, ST data channel 1 maps to this GSN
channel.

2 Carries GSN Messages that do not exceed 4100 micropackets of TYPE data (about
128 kbytes of upper-layer data) and Admin micropackets in which the COMMAND
field specifies a response. For ST-over-GSN traffic, ST data channel 2 maps to this GSN
channel.

3 Carries GSN Messages that do not exceed 134,217,728 micropackets that are of TYPE
data (about 4Gbytes of upper-layer data). This channel requires that the final
destination endpoint agree to accept this Message via a flow-controlled protocol such
as Scheduled Transfer. For ST-over-GSN traffic, ST data channel 3 maps to this GSN
channel.

Micropackets from different virtual channels (Ch #)
Datastream Ch 1: Ch 2: Ch 3: Ch 1: Ch 2: Ch 1: Ch 3:
on GSN link upkt1 | ppktl | ppktl | ppkt2 | ppkt2 | ppkt3 | ppkt2 | ® ® ®

Figure 1-2 GSN Micropackets From Virtual Channels Interleaved In Datastream

10

What Is GSN?

GSN Micropacket

The micropacket is the basic protocol data unit for GSN. Each GSN micropacket is
32-bytes of data accompanied by 8 bytes (64 bits) of control information. The TYPE field
within the control bits indicates the format and purpose of the micropacket’s 32 bytes of
data. The VC field determines which virtual channel carries the micropacket. Some of the
control bits that accompany a 32-byte chunk of data refer to that chunk of data (for
example, the VC and TYPE fields), and some bits refer to the datastream traveling in the
opposite direction on the other physical link (for example, the credits in the CR field that
allow the reader/receiver of the control bits to transmit more data for its own
datastream). Figure 1-3 illustrates the control bits and Table 1-4 describes them. Table 1-5
summarizes the different TYPEs of GSN micropackets.

direction of Micropacket data
datastream « (32bytes) |

_-="" Control bits >~

bitQ_ -~ (64 bits) >~ 15
byte 0 | ve | TvpE | & | £ | ver CR byte 1
Ll L L]
byte 2 RSEQ TSEQ byte 3
byte 4 ECRC byte 5
byte 6 LCRC byte 7

Figure 1-3 GSN Micropacket Control Bits

11

Overview of IRIX GSN

12

Table 1-4 GSN Micropacket Control Bits
Name of Number of Description Applies to
Field Bits in Data in
Field Which Link
VC 2 Virtual channel selector for this micropacket (binary values): This one
00=channel_0; 01=channel_1; 10=channel_2; 11=channel_3
TYPE 4 Type of micropacket: see Table 1-5 This one
T 1 Tail: This one
O=more micropackets follow to complete this GSN Message;
1=this is the last micropacket for this Message.
E 1 Error: This one
O=this GSN Message is OK so far;
1=an unrecoverable error was detected for this Message.
VCR 2 Virtual channel for which the credits (in CR field) apply. Other
CR 6 Credits: number of credits the source (that is, the receiver of Other
these control bits) can add to the data transfer on the virtual
channel indicated in the VCR field. (See “GSN Flow Control”
for further explanation.)
RSEQ 8 Reception sequence number: Other
Acknowledgment for the highest-received sequence number
(TSEQ) for data micropackets on the other link.
TSEQ 8 Transmission sequence number: This one
The sequence number associated with this micropacket.
ECRC 16 End-to-end checksum. Checksum for all data bytes of the This one
GSN Message, up to and including, the bytes in this
micropacket. This checksum is verified by the final
destination.
LCRC 16 Link checksum. Checksum for the 32 bytes of data and the This one

first 48 bits of control information in this micropacket. This
checksum is verified by each GSN element at the end of a
link.

What Is GSN?

Most of the GSN micropacket TYPEs are related to control and management of the GSN
link. Only three TYPEs of micropackets are passed to the upper layers: Admin, Header,
and Data micropackets. The Admin micropacket (illustrated in Figure 1-4) is used by
upper-layer GSN administrative programs to manage and configure a GSN fabric; hence,

the Admin micropacket is defined by the Switch Control ANSI standard

(HIPPI-6400-SC). The Header and Data micropackets are used to create GSN Messages

(illustrated in Figure 1-6) that carry user-level data.

Table 1-5 Types of GSN Micropackets

Type Type Description of the Micropacket Supported by
(Name) (Hexadecimal) IRIX GSN
Hardware?
Reset 2 Causes the receiving HIPPI-6400-PH deviceto Y
reset the local link (that is, the physical link
between this sender and the device at the other
end of the physical link).
Reset_Ack 3 Acknowledges that the Reset micropacket was Y
received and that the HIPPI-6400-PH link reset
was completed.
Initialize 4 Causes the receiving HIPPI-6400 device to Y
reinitialize.
Initialize_Ack 5 Acknowledges that the Initialize micropacket Y
was received and that the HIPPI-6400-PH
initialization procedure was completed.
Reserved 6 na. na
Null 7 Contains no data in the 32-byte data area; there Y
may be valid information in the Control Bits.
This type is transmitted only when there is
nothing else to transmit; it keeps the physical
link active/alive.
Data 8 Contains data for a GSN (HIPPI-6400) Message Y
(illustrated in Figure 1-6).
Header 9 Contains the header information for a GSN Y

(HIPPI-6400) Message (illustrated in Figure 1-6).

13

Overview of IRIX GSN

14

Table 1-5 (continued) Types of GSN Micropackets

Type Type Description of the Micropacket Supported by
(Name) (Hexadecimal) IRIX GSN
Hardware?

Credit-only A Contains only valid credits (VCR and CR fields Y

of Control Bits) that allow the transmitter to send

more data. The micropacket contains no data in

the 32-byte data area. This type is transmitted

only when there are no Admin, Header, or Data

micropackets awaiting transmission.
Reserved B-E n.a. n.a.
Admin F Used for administering GSN switches and Y

endpoints. Format for Admin micropacket is
defined by the HIPPI-6400-SC standard. A
number of functions (commands) are supported,
including: ping another GSN device, request
ULA of a remote GSN device, and set up
broadcast capability for a GSN fabric.

One of the functions for the Admin micropacket is to allow each switch on a GSN fabric
to discover the fabric’s physical configuration and each endpoint to discover the

universal LAN MAC address (ULA) that its switch has assigned to it. This functionality
is not available on every GSN product; however, when it is implemented, this is how it

Wwor

ks.

For an endpoint, upon starting, it transmits an Admin micropacket that asks the
device at the other end of the link to identify its function (for example, is it an
endpoint or a switch). If the device is a switch, the endpoint asks for an assigned
ULA,; if the device is another endpoint, the local endpoint uses its locally assigned
ULA (which might be stored in the hardware’s PROM).

For a switch, upon starting, it transmits Admin micropackets that ask for other
devices’ functions (for example, is it a switch or an endpoint). The switch sends one
such request to each hop (successive hardware device) down each of its links until
an endpoint is reached. Upon discovery of each endpoint or a switch, it uses Admin
micropackets to exchange ULA information with that device. As it receives
responses from these Admin requests, the switch constructs a map (spanning tree)
of its fabric. Once this map has been constructed, a micropacket destined for a
known endpoint (that is, any endpoint discovered within that fabric) can be
delivered.

What Is GSN?

Note: This fabric discovery scheme does not solve the problem of how each endpoint
comes to know the ULA for the other endpoints with which it wants to communicate.
That problem can be solved by an upper-layer address resolution mechanism (for

example, HARP or another network-layer address resolution mechanism). For details,

see “Address Resolution for GSN.”

8 bits
32 bits
D et e e T TP >
byte 0 Key Hop Count Dest. Admin. Element Register byte 3
Dest. Admin. Element Address
Command Status/Return Hop Src. Admin. Element Register
Src. Admin. Element Address
———————————————————— Admin Data Bytes B it e T
byte 28 byte 31

Commands include:
ping remote element (device)
discover remote element's function (is it a switch or an endpoint?)
clear (reset) remote element's HIPPI-6400-SC state information
request remote element's ULA
read remote element's administrative register
request a list of ULAs for all connected elements
set remote element's HIPPI-6400-SC address

Figure 1-4 GSN Admin Micropacket

15

Overview of IRIX GSN

GSN Flow Control

A GSN destination (receiving) endpoint controls the flow of micropackets by
periodically releasing credits to the source.! Each credit represents memory at the
destination for one GSN micropacket. Each credit gives the source permission to send
one additional micropacket on a specific channel. The destination gives credits to the
source in the control bits (CR and VCR bits) that accompany the destination’s own
micropackets. Note that the credits travel in the opposite direction from the data, as

illustrated in Figure 1-5, and can accompany micropackets traveling on any of the GSN
virtual channels for the connection.

GSN GSN GSN GSN
micropacket micropacket micropacket micropacket Datastream_1 on GSN channel 2
om <
c . c
'é_ Credits for S
S Datastream_1 : : s
c h . \ H c
i} piggybacking \ l \ l w
on channel 2 \ A
GSN GSN GSN GSN
micropacket micropacket micropacket micropacket
Datastream_2 on a different GSN channel

Figure 1-5 GSN Flow Control

! Flow control is a mechanism for preventing data loss that is caused by a source transmitting data
faster than the destination can process it. Without flow control, the destination drops incoming data
when it does not have memory available (free) in which to store the data.

16

What Is GSN?

byte 0

GSN Message

The GSN Message is the basic data transfer unit between source and final destination
endpoints. Each Message is composed of one initial Header micropacket followed by
zero or more Data micropackets (illustrated in Figure 1-6). The micropackets of a
Message are sequentially ordered and all travel over the same virtual channel using the
same originating source (S_ULA value) and final destination (D_ULA value). The last
micropacket in a Message has a bit set (the TAIL flag) to indicate that the Message is
complete. Figure 1-6 illustrates a complete GSN Message.

One Message)) |

T N

Header Micropacket Data Micropacket tte Last Data Micropacket
I I | I
1 NN RN L _
1 ~ o ~-. ~-__ .

byte 3
Final destination ULA Y byte 0 byte 3
Source ULA
Messagelengh | p———— Payload _______]
(up to 32 valid
DSAP | SSAP | Control | Og | [T user-data bytes) |
Org EtherType
L - - Payload ~ ------
(first 8 bytes of upper-layer data) byte 31 byte 31 Control bits
Header bits Upper-layer data bits (see Figure 1-3)
32 Bytes 32 Bytes

Figure 1-6 GSN Message Composed of Header and Data Micropackets

When the GSN Header micropacket is carrying an IP datagram (EtherType=2048), the 8
bytes of payload in the Header micropacket are the first 8 bytes of the IP header. (Note
that the 8 bytes immediately preceding the Payload are an 802.2 SNAP header.) When the
GSN Header micropacket is carrying an ST transfer (EtherType=8181), the payload bytes
in the Header micropacket are the initial 8 bytes of the ST Header.

17

Overview of IRIX GSN

18

GSN Admin Micropackets

Every HIPPI element is capable of processing GSN (HIPPI-6400-SC) Admin
micropackets. These micropackets configure elements, discover the fabric topology, and
maintain the elements of a GSN fabric. The TYPE field of the control bits (illustrated in
Figure 1-3) indicates that a micropacket is of the Admin type. Admin micropackets have
the format illustrated in Figure 1-4.

Most HIPPI-6400 elements have two ports: one leading toward the fabric and the other
leading toward the host/core. For example, a link end element (such as the SuMAC
ASIC) has one port connected to a physical link/the fabric and the other port connected
to additional GSN logic (which may be another local element) on an adapter board.
Notice that a GSN system may contain more than one element; this fact is important in
understanding the processing of Admin micropackets.

An Admin micropacket can enter an element through either port, as illustrated in
Figure 1-7. Each Admin micropacket is either processed and responded to or forwarded
to the next element through the element’s other port, as illustrated in Figure 1-7. A
response to an Admin micropacket always exits the element through the same port by
which the original Admin micropacket arrived.

Admin arrives from "host" direction:

) path if forwarded
Leading > Leading

to

Port_1 Port 2 to

host/core “other port” I < fabric

path for response Element ABC
if processed

Admin arrives from "fabric" direction:

path for response
if processed

Leading > > Leading

to

Port_1

" " Port_2 to
host/core other port fabric

path if forwarded Element ABC

Figure 1-7 Dual-port HIPPI-6400-PH Elements

What Is GSN?

The hop count field in the Admin micropacket determines when the Admin packet is
acted upon/processed. The count indicates the number of elements (hops) through

which the Admin micropacket is propagated /forwarded before it is processed. As long
as the hop count is greater than zero, the receiving element decrements the hop count by
one and transmits the Admin micropacket out the element’s other port (which leads to

another element), as illustrated in Figure 1-8. When the count is zero, the receiving

element processes the micropacket and responds, as illustrated in Figure 1-9. Figure 1-10

through Figure 1-12 show examples of various hop count values and the manner in
which hop count determines which element acts on and responds to the micropacket.

Table 1-6 lists the administrative commands that are available with Admin micropackets.

ho count=2
P Port through

which Admin

. "other" port
arrived

Element ABC

Figure 1-8 Hop Count >0 Indicates Forward Admin Micropacket

hop count=0 Port through

"other" port

which Admin
Admin_X_
response

arrived
Element ABC
Figure 1-9 Hop Count =0 Indicates Process Admin Micropacket

Admin_X
hop_count=1

19

Overview of IRIX GSN

20

Host/Core

Admin_X
hop_count=0

Admin_X
response

Admin from host/core element
to local link-end element

Element 1: Link End Element
(e.g., local SUMAC)

Physical link

"other" port

Figure 1-10

Host/Core

Admin_X
hop_count=1

Element 1: Link End Element
(e.g., local SUMAC)

"other" port

Figure 1-11

Hop Count Example: hop_count = 0

Physical

link Admin_X
hop_count=0
Admin_X_
response

Hop Count Example: hop_count =1

A remote element
—————————— > (e.g., LInk end on switch)

Admin from host/core element
to first remote element on fabric

Element 2: Link End
a remote element
(e.g., on switch)

What Is GSN?

| Host/Core

Admin_X
hop_count=2

Element 1: Link End Element
(e.g., local SUMAC)

Admin from host/core element
to remote host/core element

Element 2: Link End

=
o

o

S hop_count=1
£ Physical Admin_X
o .

: link

Figure 1-12

Table 1-6

Hop Count Example: hop_count = 2

GSN Admin Micropacket Commands

a remote element
(e.g., on switch)

Admin_X
hop_count=0 Admin_X
Response

Element 2: Link End Element
(e.g., a SUMAC on
an endpoint)

T

Admin Processor

L

Admin Command

Description

Required (R) or
Optional (O) for
Switches and

Endpoints
Ping Are you there? o
*_response Yes I am here (and functioning). R
Set_element_address Here is your “element address”. o
*_response Status (for example, I have started using the O
assigned address).

Reset Initialize yourself o
Exchange_element_ I am a <switch/endpoint> element. R
function What are you?

*_response I am a <switch/endpoint> element. R

21

Overview of IRIX GSN

22

Table 1-6 (continued)

GSN Admin Micropacket Commands

Admin Command Description Required (R) or
Optional (O) for
Switches and
Endpoints

ULA_request Assign me a ULA. R

*_response Here is your ULA. R for switches

Read_register
*_response
Write_register

*_response

Invalid_command

ULA_list_request

*_response

Port_remap

*_response

Port_map_request

*_response

Give me the data from this Admin register.
Here is the data you requested.
Put this data into this Admin register.

Status (for example, the data has been
written).

I received an invalid /unrecognized /
unsupported Admin micropacket.

Give me a list of all the ULAs connected to
you.

Here is the list.

For all traffic containing the specified ULA,
change the route (output port) to a specified
(new) port ID.

Status.

Give me the port ID that I must use to
contact the specified ULA.

Here is the port ID.

@)

@)
@)
o

=

o

R for switches

o

R for switches

o

R for switches

What is ST?

What is ST?

Scheduled Transfer (ST) is an upper-layer protocol that can be implemented to operate
over a number of physical-layer subsystems, including GSN, ATM, FDD], and Ethernet.
This section describes the main characteristics of the ST protocol. For the sake of
introduction and ease of understanding, many of the less important functional details of
ST are not covered in this description. Refer to the ANSI standard (listed in the section
“Overview of Protocols”) for complete details.

ST Overview

The most salient feature of ST is that it prepares both endpoints for the data movement
before any data is transmitted. The first step in the preparation is to create a condition
(state) called a virtual connection or VC (described in “ST Connection Setup Sequence”).
The second step is a handshake that allocates memory for the data movement and
exposes this memory to the other endpoint (described in “ST Data Movement Sequences
Including Memory Allocation”). There are two kinds of the memory-allocation
handshake: one provides memory that is used once (described in “Single-use Memory
Data Movements”); the other provides memory that is used many times until released
(described in “Persistent Memory Data Movements”). The two endpoints exchange ST
control operations to accomplish these prearrangements. Only after these
prearrangements are complete can the first data movement begin; the data movement is
performed with ST data operations.

ST Terminology

The following terms have specific meanings within the context of ST:

operation The ST protocol data unit. It is composed of a 40-byte header and
variable-length data ranging from 0 bits to 4 gigabits (illustrated in
Figure 1-13). Each ST operation is transmitted as one GSN Message, as
illustrated in Figure 1-13.

sequence A series of operations that occur in a specific order and accomplish an ST
protocol task.

initiator The ST endpoint that sends the first operation within an ST sequence. The
endpoint that acts as initiator during one sequence (for example, the
connection setup) can act as the responder in a subsequent sequence (for
example, the data movement).

23

Overview of IRIX GSN

responder The other (not the initiator) ST endpoint participating in an ST sequence.

slot Memory at an ST destination that is reserved for holding one incoming ST
Header.

ST Operations

The Operation is the basic protocol data unit for ST. Each ST Operation is carried within
a single GSN Message, composed of two or more HIPPI-6400 micropackets, as illustrated
in Figure 1-13.

ST protocol data unit (ie, ST operation)

ST Header ST Payload
(40 bytes) (not present in all operations
GSN Message 1 ST Operation = 1 GSN Message
GSN protocol | ST protocol | Other bytes ,
bytes ! bytes ! !
GSN Header| | GSN Data GSN Data
micropacket micropacket micropacket

T T=tall; last micropacket of Message
l l l GSN protocol bytes

Figure 1-13 ST Operation

ST operations (listed in Table 1-7) are commonly grouped into the following categories:
¢ Connection management operations: used to set up and tear down a VC
¢ Control operations: used to manage a VC (for example, status or flow control)

¢ Data operation: used to transmit ST payload (upper-layer data) and/or data
checksum during data movement sequences

24

What is ST?

Table 1-7 ST Operations
Name of Operation Acronym Category Sequencein Description
Which
Operation is
Used
Request_Connection RC connection Setup Requests that a VC be created. Issued by any
management endpoint. First operation of setup sequence.
Connection_Answer CA connection Setup Response to RC. Accepts (creates VC) or
management rejects the RC. Second (and last) operation of
setup sequence.
Request_Disconnect RD connection Teardown Indicates that sender (initiator) is tearing
management down the VC. Issued by either endpoint of
VC. First operation of teardown sequence.
Disconnect_Answer DA connection Teardown Response to RD. Indicates that the sender
management (responder) is tearing down the VC. Second
operation of teardown sequence.
Disconnect_Complete DC connection Teardown Response to DA. Indicates sender (initiator)
management has finished tearing down VC. Third (and
last) operation of teardown sequence.
Request_Memory_Region ~RMR control Data Requests that responder expose memory.
Movement_ First operation of persistent memory
Persistent sequence.
Memory_Region_Available MRA control Data Response to RMR. Exposes responder’s
Movement_ memory to initiator.
Persistent
Get GET control Data Issuer (initiator) is destination for the data
Movement_ movement. Exposes initiator’s memory to
Persistent receive the requested data. Data comes from
source’s exposed persistent memory region.
RMR/MRA handshake must have occurred.
FetchOp FETCHOP control Data Issuer (initiator) is destination for the data
Movement_ movement. Exposes initiator’s memory to
Persistent receive the requested data. Data comes from

source’s exposed persistent memory region.
RMR/MRA handshake must have occurred.

25

Overview of IRIX GSN

Table 1-7 (continued) ST Operations
Name of Operation Acronym Category Sequencein Description
Which
Operation is
Used
FetchOp_Complete FC control Data Response to FETCHOP.
Movement_
Persistent
Request_To_Send RTS control Data Issued by source (=initiator for write or
Movement_ =responder for read). Indicates issuer is
Single-use ready to transmit data; asks responder to
expose single-use memory. First operation of
write sequence.
Request_To_Receive RTR control Data First operation for a read sequence. Indicates
Movement_ issuer is ready to receive data. Issuer becomes
Single-use the initiator of the read sequence.
Clear_To_Send CTS control Data Response to RTS. Gives source permission to
Movement_ transmit one block of data. Exposes
Single-use single-use memory for that data.
Data DATA data Data Carries ST payload and/or checksum; used
Movement in every data movement sequence. Sent by
data source, which can be either initiator or
responder within the data movement
sequence.
Request_Answer RA control Data Response to an RTS, RTR, RMR, GET, or
Movement FETCHOP. Accepts, rejects, or pauses the
request to which it is responding.
Request_State RS control Status Requests VC status information. Issued by
either endpoint.
Request_State_Response RSR control Status Communicates VC state information.

Response to either an RC operation or a
DATA operation in which the Send_state flag
(within the ST Header) is set.

26

What is ST?

Table 1-7 (continued) ST Operations

Name of Operation Acronym Category Sequencein Description
Which
Operation is
Used
End END control Abort Data Terminates an in-progress data movement
Movement (read/write transfer or a persistent memory
region) by causing the allocated memory to
be released; leaves VC open. Issued by either
endpoint.
End_Ack EA control Abort Data Response to END. Indicates responder has

Movement aborted the associated data movement.

ST Header

The ST Header (illustrated in Figure 1-14) carries the information that implements the ST
protocol features. Some of the parameters that are communicated within the ST Header
are:

e Type of operation (listed in Table 1-7)

e Data channel through which this operation travels, which, for ST-over-GSN, maps
directly to GSN virtual channels (summarized in Table 1-3)

e Number of memory spaces (slots for holding ST Headers) that are currently
available at each endpoint for this data channel (that is, VC)

e Port values for initiator and responder within each VC
e Key values for initiator and responder within each VC
¢ Length of the data to be moved from one endpoint to the other

¢ Block number for use in tracking progress, managing flow control and resource
allocation, and performing striping within a data movement

* Memory address (buffer index and offset) to use for the data movement
e Checksum for the operation

¢ Identification numbers for tracking and sequencing operations: DATA operations,
FETCHOP operations, GET operations, and REQUEST_STATE_RESPONSE
operations within each VC

27

Overview of IRIX GSN

The following are some of the endpoint behaviors that can be controlled by the
operation’s ST Header:

* Whether or not the destination for a data movement supports reception of
out-of-order Blocks

¢ Whether or not the operation’s ST Header should be delivered to the destination’s
upper-layer protocol (ULP)

¢ Whether or not the destination ULP should be interrupted when this operation
arrives

® Request status information from the endpoint receiving this ST Header
* Inform initiator that responder is rejecting a request

¢ Pause the transmission during a data movement

bit 0 31
byte 0 | Op + Flags (below) Param OY1€3 | arried in HIPPI-6400
D_Port S_Port byte 7 Header micropacket
D_Key
D_id S_id

Bufx

Offset carried in first HIPPI-6400
Sync Data micropacket for GSN Message

B_num

I_Bufx

byte 36 |_Offset byte 39

Op and Flags Fields

bit O 15
1 1 1 1 1 1 = ~ 1
I I I I I I o =~ [I
1 1 1 1 1 1 < 5 o 1
| | | | | | E =) o o |
. 1 I
Operation_code . ER = o |8 s Data
Function o= | S b= =
(see Table 1-7) . . T3 = 219 2 channel
1 ' ' 1 1 1 o o 2 = = - 1
| | | | | | =o| S o |82 » 3] |
| | | | | | [= c o = @ |
| I I | | I ~3 7] o 5 O a o I
1 1 1 1 1 1 - o = N Om | e 1
1 1 1 1 1 1 1

ULP = upper-layer protocol

Figure 1-14 ST Header

28

What is ST?

ST Sequences

ST defines sequences of operations for accomplishing various tasks, including the
following:

¢ To open a connection between two endpoints and negotiate the parameters
associated with the virtual connection. (See “ST Connection Setup Sequence.”)

e To perform a data movement including the handshake that allocates memory at the
destination. (See “ST Data Movement Sequences Including Memory Allocation.”)

¢ To control the data flow during the data movement, thus enabling full-rate,
non-congested data flow between the endpoints. (See “ST Flow Control
Sequences.”)

¢ To tear down a connection. (See “ST Connection Teardown Sequence.”)

Each ST sequence allows the two endpoints to exchange a set of control parameters and
information. The parameters are carried in the ST Header (illustrated in Figure 1-14).
Each type of operation uses the Header fields differently and exchanges a different set of
parameters.

ST Connection Setup Sequence

Before any ST data can be exchanged, a Virtual Connection (VC) must be set up between
the initiator and the responder. Upon successful completion of this exchange, each
endpoint will have stored a set of parameters associated with the VC and will have set
aside some resources for exclusive use by this VC. Three of the stored parameters are
used (as a tuplet) for identifying /validating operations that arrive to the VC. The
verification tuplet consists of: the remote endpoint’s ST port number, the local endpoint’s
ST port number, and the key value that the local endpoint has assigned to this VC.
Figure 1-15 illustrates how these identification parameters are set up.

Note: The initiator for the connection setup sequence is the endpoint that sends the first
control operation for the sequence (that is, the Request_Connection).

The connection setup sequence consists of two control operations: a Request_Connection
sent by the initiator, followed by a Connection_Answer sent by the responder).

Figure 1-15 and Figure 1-16 illustrate different subsets of the information exchanged in
one successful connection setup sequence. Figure 1-17 illustrates a connection setup
sequence in which the responder refuses to create the VC.

29

Overview of IRIX GSN

30

The ST connection setup sequence negotiates and sets the following parameters and
resources that remain in effect for the duration of the VC:

I_Port and R_Port
ST port value on which endpoint (initiator and responder) wants to receive all
communication associated with this VC.

I_Key and R_Key

Locally unique identification number (key) for use in verifying and identifying this
VC. Each endpoint gives the other endpoint a key, which the other simply echoes
back in each communication; the key means nothing to the remote end and is only
“unique” at the endpoint where it was assigned.

I_Bufsize and R_Bufsize
Size of the buffers used by each endpoint for data it receives on this VC.

I_Slots and R_Slots

Initial number of “slots” available at each endpoint. Each slot indicates memory
that has been set aside for storing ST headers that are received on this VC. Each slot
normally consists of one 40-byte data structure.

CTS_req
Number of Clear_to_Sends that the source would like to have outstanding
(available) at all times during the data movement.

I MaxSTU and R_MaxSTU
Maximum size STU that each endpoint is willing to receive. The other endpoint
must respect this size when transmitting on this VC.

EtherType

Identity of the protocol being encapsulated (carried) within the ST Messages on this
VC. For example, for IP datagrams, the EtherType is 0x0800; when the ST Messages
carry user data that is not enclosed in any additional protocol, the EtherType is
0x0000. The initiator specifies this parameter.

What is ST?

ST Initiator Endpoint

ST Responder Endpoint

Assigns Port + Key for initiator;
allocates resources for connection

Request_Connection

Caches information.

Tuplet for Verifying
Incoming Operations

other_Port (R_Port)
my_Port (I_Port)
my_Key (I_Key)

Figure 1-15

ST Initiator Endpoint

Either side can initiate a data
movement sequence.

Provigeg ;
Initiatoy

Provideg S Port (1
Usoq JeS initiator's Ke ((|_Port);

Well-known Port); orR %/)
(See Figure 1. -16 .
for Other parameters)
choes initiator's

responder's
p\;?)\\l;\cciizss, es%onder s Key (R —
: ure 1-16 for other parame

9

(see Fi

Caches information.
Assigns Port + Key for responder;
allocates resources

Connection_Answer

Tuplet for Verifying
Incoming Operations

other_Port (I_Port)
my_Port (R_Port)
my_Key (R_Key)

ST Connection Setup Sequence: Identification Parameters Only

ST Responder Endpoint

Request_Connection

Caches information.

Figure 1-16

Either side can initiate a data
movement sequence

Bur:
m
identifies Ethef%pg)
(See Flgu,«
e 1- i —
Parameters) 15 for Identification

‘s Bufsize,
Provgea res% d:\ber of Slots-
MaxST

oo Figure 115 ' d

paramete\'s)

entification

Caches information.
Allocates resources.

Connection_Answer

ST Connection Setup Sequence: VC Parameters Only

31

Overview of IRIX GSN

ST Initiator Endpoint ST Responder Endpoint
Provides j
Nitiator
and n, S Bufsize
Request_Connection Identifieg Eetggﬁ%gt MaxsTy
e

parameters) 15 for ide”ﬁficat,'On For some reason, endpoint

cannot or does not want
] uest.
flag is set 10 reject the red ;
- 1-15 for identification

to create this VC.
(see Figure

parameters)

Connection_Answer

Figure 1-17 ST Connection Setup Sequence: Rejection

ST Connection Teardown Sequence
When an endpoint no longer wants a VC, it initiates the connection teardown sequence

illustrated in Figure 1-18. This sequence is not used to terminate data movements. (See
“ST Termination Sequence for a Data Movement”.)

32

What is ST?

ST Initiator Endpoint ST Responder Endpoint

Either side can initiate the
teardown sequence.

0 Taarg ol | Key, R p
. 0 | em
Request_Disconnect ify conne and R
ction to be to M do WKey
Verifies existence/validity of
connection.
port @ and |_Key
uses R_Port, ect\c;/ﬁ b—e'\ng torn down: Disconnect_Answer
to \dent\W conn Tears down most of connection.
Verifies existence/validity of
connection.
UsesR p

t, R
Request_Complete to ’dentn‘y o _Key,

! ”nect:on baing 1.20d I_Key
. g torn do
Tears down connection. N
Tears down connection completely.

Figure 1-18 ST Connection Teardown Sequence

ST Data Movement Sequences Including Memory Allocation

This section describes ST data movement sequences. Each ST data movement sends
upper-layer (user) data from one endpoint (the source) to one other endpoint (that is, one
final destination). The entire data transfer is controlled by the VC parameters negotiated
during one ST connection setup procedure (described in “ST Connection Setup
Sequence”) or renegotiated during the data movement. The setup sequence must be
completed before any data movement sequence is initiated.

The data movement sequences consist of two to five operations, exchanged between the
VC’s two endpoints (the memory-allocation handshake), followed by one or more data
operations. There are five different data movement sequences, as summarized in

Table 1-8. The initiator controls which sequence is used, depending on the type of
memory it wants to have allocated, the type of functionality it desires for the data
movement, and the role it wants to assume in the transfer.

33

Overview of IRIX GSN

34

The memory-allocation handshakes allow either of the following types of memory to be
allocated for receipt of the data:

® Persistent memory: a region of memory that is used over and over for the transfers
that occur within that virtual connection, as described in “Persistent Memory Data
Movements”

* Single-use memory: a region of memory that is written once, then released, as

described in “Single-use Memory Data Movements”

Table 1-8 summarizes the five data movement sequences and indicates where each
sequence is illustrated:

Table 1-8 Data Movement Sequences

Persistent Memory Single-use Memory
Initiator wants to be source Figure 1-20 Figure 1-24
Initiator wants to be destination Figure 1-21 and Figure 1-22 Figure 1-25

Note: Within a data movement sequence, the initiator is the endpoint that sends the first
control operation for the sequence (for example, Request_to_Send or
Request_Memory_Region), regardless of whether it operates as the data transmitter
(source) or receiver (destination).

Table 1-9 summarizes the data size ranges for each type of data movement. Asillustrated
in Figure 1-19, the data is first chunked into one or more Blocks; the maximum size for a
Block is negotiated during the memory allocation handshake. Each Block is divided into
one or more scheduled transfer units (STU; the data for one data operation); the
maximum size for the STU was negotiated during the connection setup sequence. Any
ST data movement that is larger than the VC’s maximum STU size requires multiple data
operations. Each STU (that is, each data operation) is transmitted as one GSN Message.

What is ST?

The flow-control mechanism for user data (described in “ST Flow Control Sequences”)
operates at the Block level.

Table 1-9 Data Sizes Possible for Data Movements
Data Movement Type Minimum Length Maximum Length for Data
Data Movement Movement Sequence
Sequence
Single-use Memory: Write 1 byte 2% minus 1 byte or
unlimited
Single-use Memory: Read 1 byte 2% minus 1 byte or
unlimited
Persistent Memory: each Put 1 byte 24 minus 1 byte or VC'’s

max_STU (one Block)

Persistent Memory: each Get 1 byte 21 minus 1 byte or VC'’s
max_STU (one Block)

Persistent Memory: each FetchOp 8 bytes 8 bytes (one Block)

35

Overview of IRIX GSN

bytes

A set of user data destined for one endpoint (ie, ST Port)

Chunk of data
(one Block)

Another chunk

Another chunk

Final chunk

can be smaller
than max_Block

f

This is only Block

(one STU) >
for PUT, GET, data | | data for STU | X
and FETCHOP ; X
operations. i I
ST STU
1 : 1
I I I
] | |
ST Header ST Payload
(40 bytes) (< size of max_STU)
i i i
| | |
GSN Message
GSN protocol i ST protocol | Upper layer |
i bytes i bytes i
GSN Header| | GSN Data GSN Data
micropacket micropacket eee micropacket
T

36

!

GSN protocol bytes

Figure 1-19

can be smaller
than max_Block

Data Handling for ST Data Movements

Data for ST Movement

ST Blocks

All blocks are same size except,
possibly, first and last. The
max_Block size is negotiated by
RTS/CTS handshake.
Absolute block size in bytes:

256 < max_Block < 248
Within each Block, data is passed
to recipient in correct order.
When function is negotiated, Blocks
can be out of order.

ST STUs
Max_STU size is established
during VC setup sequence (RC/CA).
Negotiated maximum STU size is:
< recipient endpoint's Bufsize, and
< maximum allowed on the ST
data channel (see Table 1-3).

One ST Data Operation = one STU

Credits are not issued for ST header
bytes because Header bytes are not
placed in the memory allocated

at the destination endpoint.

Each STU =1 GSN Message

What is ST?

Persistent Memory Data Movements

The persistent memory sequences consist of a few control operations (the
memory-allocation handshake) followed by any number of Put, Get, and/or FetchOp
sequences. The persistent memory handshake allocates one or more memory regions at
the responding endpoint. These regions are then used multiple times; each buffer within
each region is used over and over during the life of the virtual connection. When
properly used, this method provides permanent, low-latency delivery, in which an
unlimited number of transfers can be performed with no intervening overhead. There is
an important caveat: the low latency on this type of data transfer depends on the speed
at which the memory can be made available for the next use. This type of transfer works
best for small (or fixed-size) data and for applications for which the transmission rate is
well understood, so that the memory can be sized in a manner that allows it to be
recycled within an acceptable period of time. It is the responsibility of the upper-layer
applications to manage flow control and prevent precipitous overwriting of the memory
region.

Once a persistent memory region has been allocated at the responder endpoint, the
initiator can move data in or out of it in three manners:

¢ Put sequence (illustrated in Figure 1-20)
One data operation (STU) that writes any portion of or the entire persistent memory
region at the responder. This sequence can be repeated over and over with no
intervening operations.

¢ Get sequence (illustrated in Figure 1-21)
A GET control operation to expose memory at the initiator for receiving the
requested data, followed by any number of data operations. Each data operation
moves a portion or all of the data from the responder’s allocated memory into the
initiator’s memory. Multiple GETs can be outstanding (occurring) simultaneously to
different or shared portions of the persistent memory region.

¢ FetchOp sequence (illustrated in Figure 1-22 and Figure 1-23)
A FETCHOP control operation to expose memory at the initiator for receiving the
retrieved data and to specify the desired function (increment, decrement, or clear).
Then, a single data operation (one STU) that moves one 64-bit Block of data from
the responder’s memory into the initiator’s memory. When the data arrives
successfully at the initiator, the initiator issues a completion control message, at
which point the responder performs the specified function on its own copy of the
data. If the completion does not arrive within a timeout period, the responder
retransmits the data. Note that, unlike PUT and GET, this data movement sequence
is atomic.

37

Overview of IRIX GSN

38

A persistent memory region is terminated (released) with an End operation, as described

in “ST Termination Sequence for a Data Movement.”

ST Initiator Endpoint

ST Responder Endpoint

Memory Allocation Handshake

Request_Memory_Region

waits for permission.

Verifies existence/validity of
connection.
Caches memory information.

Data

Tuplet for Verifying
Incoming Operations

other_Port (R_Port)
my_Port (I_Port)
my_Key (I_Key)

Figure 1-20

ST Connection Setup Sequence
has been completed.

Either side can initiate the handshake.

's
d location of responder

size an ¢
%é?;gteesnt memory region.
(@)
ne STy = Block

Initiator can do Put, Get, FetchOp,
and/or End Sequences.

Verifies existence/validity of
connection.

Request_Answer or

Allocates memory for reception.

Memory_Region_Available

Verifies existence/validity of
connection. Stores data in
persistent memory region.

Tuplet for Verifying
Incoming Operations

other_Port (I_Port)
my_Port (R_Port)
my_Key (R_Key)

ST Data Movement Sequence: Persistent Memory—Put

What is ST?

ST Initiator Endpoint

ST Responder Endpoint

Memory Allocation Handshake

Request_Memory_Region

Verifies existence/validity of
connection.
Caches memory information.

Get

Verifies existence/validity of
connection. Stores data in
exposed memory.

Tuplet for Verifying
Incoming Operations

other_Port (R_Port)
my_Port (I_Port)
my_Key (I_Key)

Figure 1-21

ST Connection Setup Sequence
has been completed.

Either side can initiate the handshake.

\

i nd i
ses size & n
%:Egstent memory regio

EXPOSe init
->€S Initiatoy
receivin datgfor S Memory for

Inre . Pecifi
. Sponder i €S addresg

om wh; ISiste
Which to retrieve d’gtg’lemOry

Initiator can do Put, Get, FetchOp,

and/or End Sequences.

Verifies existence/validity of
connection.

Request_Answer or

Allocates memory for reception.

Memory_Region_Available

Verifies existence/validity of
connection.

Request_Answer or

Data

Transmits from persistent
memory region.

Tuplet for Verifying
Incoming Operations

other_Port (I_Port)
my_Port (R_Port)
my_Key (R_Key)

ST Data Movement Sequence: Persistent Memory—Get

39

Overview of IRIX GSN

ST Initiator Endpoint

ST Responder Endpoint

Memory Allocation Handshake

40

Request_Memory_Region

Verifies existence/validity of
connection.
Caches memory information.

FetchOp

Verifies existence/validity of
connection. Performs function
on data. Stores data into
exposed memory.

FetchOp_Complete

Tuplet for Verifying
Incoming Operations

other_Port (R_Port)
my_Port (I_Port)
my_Key (I_Key)

Figure 1-22

ST Connection Setup Sequence
has been completed.

Either side can initiate the handshake.

\

'S
d location of responder

ize an
oses siz€ jon.
‘E;e(‘r)s'\stent memory €9

EXpOse o
€S Initiator
g S memory for

data, g =7
In re o OPecifi
pong persister?ts rodress

fi !
to retrieye CIém;nemory

ne Block

ga-bits = one STU=C

\

Initiator can do Put, Get, FetchOp,

and/or End Sequences.

Verifies existence/validity of
connection.

Request_Answer or

Allocates memory for reception.

Memory_Region_Available

Verifies existence/validity of
connection.

Request_Answer or

Data

Transmits from persistent
memory region.

Tuplet for Verifying
Incoming Operations

other_Port (I_Port)
my_Port (R_Port)
my_Key (R_Key)

ST Data Movement Sequence: Persistent Memory—FetchOp

What is ST?

ST Initiator Endpoint ST Responder Endpoint

Persistent Memory at responder

has been exposed.
null
function =
FetchOp on = fetep incr t
Value in

responder's memory.
/ Data

Waits for timeout period.
Retries if completion does
not arrive.

"

Data

'

Value in
initiator's memory.
FetchOp_Complete
\ Performs function.

-

Figure 1-23 Example of FetchOp

Single-use Memory Data Movements

The single-use memory movement sequence consists of a few control operations (the
memory-allocation handshake) that allocate memory at the destination endpoint,
followed by one or more data operations for a specified amount of data. The data transfer
uses the destination’s allocated memory once; each buffer is used only once during the
life of the transfer. This method allows high-bandwidth delivery after an initial delay for
the allocation of resources: the transfer provides for a limited number of back-to-back
writes or reads with no intervening overhead. This method is efficient for large,
variable-length data.

41

Overview of IRIX GSN

A data transfer can be aborted (terminated before all the data has been transferred) with
an End operation, as described in “ST Termination Sequence for a Data Movement.”

Figure 1-24 illustrates the data transfer sequence used when the initiator is the data
source. Figure 1-25 illustrates the sequence used when the initiator is the data
destination. Each illustration includes the memory allocation handshake.

ST Initiator Endpoint

ST Responder Endpoint

Request_To_Send

Memory Allocation Handshake

Verifies existence/validity of
connection.

Tuplet for Verifying Data

Incoming Operations <more Datas>

other_Port (R_Port)
my_Port (I_Port)
my_Key (I_Key)

Waits for permission.

ST Connection Setup Sequence
has been completed.

Either side can initiate the handshake.

Sends | Po

—"Or, R p
10 identify conngyign’ 21 R_Key

Verifies existence/validity of
connection.

Request_Answer

Allocates memory for reception.

Clear_To_Send

<more Clear_To_Sends>

Tuplet for Verifying
Incoming Operations

other_Port (I_Port)
my_Port (R_Port)
my_Key (R_Key)

Figure 1-24 ST Data Movement Sequence: Single-use Memory with Initiator as Source

42

What is ST?

ST Initiator Endpoint

ST Responder Endpoint

Memory Allocation Handshake

Request_To_Receive

Waits for permission.

Verifies existence/validity of
connection. Allocates
memory for reception.

Clear_To_Send

Allocates memory for reception.

<more Clear_To_Sends>

Tuplet for Verifying
Incoming Operations
other_Port (R_Port)
my_Port (I_Port)
my_Key (I_Key)

Figure 1-25

ST Connection Setup Sequence
has been completed.

Either side can initiate the handshake.

Uses | p,

to ldentlfy Conﬁepto and R _Key

Echoes rGQ‘_J?S_‘ ———————————

bort, _Port, and K

uses R_FO™M — tion;
o identify CONNEE L™t mory.

‘Requests region of ™

t, and R Key

Orma
"®gion to yse 1

Verifies existence/validity of
connection.

Request_Answer

Request_To_Send

Waits for permission.

Verifies existence/validity of
connection.

Data
<more Datas>

Tuplet for Verifying
Incoming Operations

other_Port (I_Port)
my_Port (R_Port)
my_Key (R_Key)

ST Data Movement Sequence: Single-use Memory with Initiator as Destination

43

Overview of IRIX GSN

44

ST Flow Control Sequences

Flow control operates differently for data transfers and ST operations. Each is explained
below.

Data Transfer Flow Control

ST endpoints implement strict flow control for all data transfers done to single-use
memory. For this purpose they use the Request_To_Send (RTS) and Clear_To_Send (CTS)
control operations. There can be multiple CTSs generated in response to one RTS, as
explained below and summarized in Table 1-10.

The ST flow control sequence regulates both the number of data transfer events that
occur between the two endpoints and the size of these events. Before any data is
transferred, the data transmitter (source) generates an RTS, in which it specifies the
maximum size block of data and the number of blocks that it wants to send right now.
The specified (requested) size and number do not oblige the receiver to give permission
for that size or number; these are only suggestions that, if followed, could make the
transfer more efficient.

The data receiver (destination) generates one or more CTSs in response to each RTS. In
each CTS, the receiver gives the source permission to transmit one block of data; the
number of CTSs issued by the receiver cannot exceed the number of “requested blocks”
specified in the RTS. In the first CTS for the data movement, the receiver indicates the
block size that it is willing to receive during this data movement; the block size must be
no larger than the maximum block size specified in the associated RTS. Before issuing
each CTS, the receiver must allocate the amount of memory specified by the block size in
that CTS. See Figure 1-24 and Figure 1-25 for illustrations of the flow control sequence.

Note: ST does not use flow control for persistent memory data movements: Put, Get, and
FetchOp.

What is ST?

Table 1-10 ST Flow Control Sequence

Transfer Event Source Specifies Destination Specifies
Parameter

Number of In RTS: number of blocks the source In CTS: with each CTS, the destination

events would like to send at this time. gives the source permission to transmit
1 block of data.

Limitations: none.

Limitations: Destination mustnotissue
more CTSs than source has requested
in its RTS. Destination must allocate
memory for each CTS it generates.

Size of each In RTS: requested maximum block size In first CTS: block size that will be used
event for transfer events associated with this for these transfer events.
RTS.

Limitations: Block size must not exceed
Limitations: none. maximum size specified in the

Note: When the source does the actual associated RTS.

data transfer, the size is not controlled
by the RTS maximum block size; it is
limited by the block size specified in
the CTS.

Operation Flow Control

Flow control for the ST Headers of ST operations is managed with a mechanism called
slot allocation. Each slot represents memory that has been allocated at an endpoint to
hold one incoming ST Header while it awaits processing. All incoming ST Headers use
one slot, except Request_Connection operations and Data operations that have the Silent
flag set.

Note: Data operations with the Silent flag set, do not occupy a slot because the ST Header
for these operations is not passed to the receiving endpoint (and hence is not stored). The
Request_Connection operation does not occupy a slot because the VC does not yet exist
when this operation arrives. An implementation may have a queue of slots associated
with Port 0 (the port to which the Request_Connection arrives), but the queue is not
required because there are no consequences caused by the endpoint dropping the request
other than the initiator trying again, until it succeeds.

45

Overview of IRIX GSN

During the setup sequence for a VC, each endpoint communicates to the other endpoint
the number of slots it has allocated for that VC. Updates for slot availability are
communicated during normal operation with Request_State_Response operations. (See
“ST Status Sequences” for details.) Each source keeps track of the number of outstanding
operations (that is, slot-consuming ST Headers that it sends) and makes sure that it does
not send more operations than the destination can handle.

ST Status Sequences
During normal operation, the endpoints for a VC can use either of two status sequences

(illustrated in Figure 1-26 and Figure 1-27) to obtain information from the other endpoint
about its state and status.

ST Initiator Endpoint ST Responder Endpoint

Request_State \

Figure 1-26 Status Sequence Using Request_State

Request_State _Response

ST Initiator Endpoint ST Responder Endpoint

46

Data

Sflag = 1

Figure 1-27 Status Sequence Using S Flag in ST Header

Request_State_Response

What is ST?

The information that can be exchanged with this mechanism includes:
* number of currently available slots for this VC
¢ highest Block received for a data movement

* reception status for a specific Block

ST Termination Sequence for a Data Movement

The following data movements do not have a natural ending:

* a persistent memory region

® adata transfer of unlimited size

To terminate either of the above data movements and release the associated resources,
either endpoint initiates the termination sequence illustrated in Figure 1-28. In addition,

this sequence can be used to abort a data transfer of specific length before all the data has
been transferred.

ST Initiator Endpoint ST Responder Endpoint

There is currently an active
data movement. Either side
can initiate the termination.

o

Figure 1-28 Termination Sequence

End_Ack

47

Overview of IRIX GSN

Example of ST Virtual Connections and GSN Channels

48

GSN virtual channels are designed to carry specific sizes of data (see Table 1-3). The
various ST data channels (DCs) that exist within ST virtual connections (VCs) can take
advantage of these sized GSN channels. The IRIX ST-over-GSN stack routes any ST
operation with DC=0 to GSN channel 0, DC=1 to GSN channel 1, and so on. For example,
each ST application (for example, ST Port), is required to have one data channel (DC_0)
for its control operations and one or more other channels (DCs 1, 2, and/or 3) for its data
operations. Note that each GSN channel is shared by many VCs; for example, DC_0 for
all ST VCs share GSN channel 0. Figure 1-29 shows an example of ST VCs using their data
channels (DC values) to effectively make use of the four GSN channels.

(creates new VCs) A

connection
management
operations

Virtual Connection #1 GSN Channel #0

—

control operations
N BN BN BN BN BN BN BN BN BN BN BN B .

ST Port 12
small data operations
GSN Channel #1
9
Virtual Connection #2
control operations \ ST DC=0 GSN Channel #2
_— N BN BN BN BN BN BN BN BN BN BN BN B . (
sTport1zs | ____ small data operations | | STDC=1
SR _Ia_rg_e gaia_op_elf\ti_orls_ - ‘/ STDC=3 3 GSN Channel #3

ST DC = ST data channel

Figure 1-29 Example of ST Virtual Connections Using Multiple GSN Virtual Channels

GSN Fabrics and Logical Networks

GSN Fabrics and Logical Networks

This section explains how logical networks are created on GSN and HIPPI fabrics. The
discussion assumes that you have a thorough understanding of the concept of a logical
network, the format of INET addresses, and the use of subnet masks to divide a single INET
network address space into smaller networks (called subnets or LISes).

Note: For complete details on INET address subnetting and the netmask, see the
comments in the /etc/config/ifconfig.options file, the man page for inet(7F), the man page
for ifconfig(1M), and the online IRIS InSight document IRIX Admin:Networking and Mail.

There are three basic concepts that underlie the discussion in this section. Each is
discussed in more detail in subsequent sections:

Basic Concept #1
The hosts connected to a GSN or HIPPI fabric do not have to function as
one logical network whose addresses all come from one address space.

Basic Concept #2
A logical (sub)network or LIS (one address space) can include hosts
from physically different GSN and/or HIPPI fabrics, as long as there is
a bridging switch between the fabrics.

Basic Concept #3
Within a GSN or HIPPI fabric, direct communication (without use of an
intermediate router) between INET hosts can occur only when (1) the
network interfaces involved in the exchange have addresses that come
from the same logical address space (for example, they are members of
the same subnet/LIS), and (2) both hosts have access to an address
resolution mechanism.

Basic Concept #1

The hosts connected to a GSN or HIPPI fabric do not have to function as one network
address space. The hosts can be organized into smaller groupings (for example, based on
function, project, or hardware manufacturer). Each grouping of hosts is a separate logical
network or a logical subnet/LIS. Each (sub)network is assigned a sequence of
network-layer addresses (that is, a unique address space). Figure 1-31 illustrates this
concept.

49

Overview of IRIX GSN

50

A group’s address space can be the complete range of addresses for an INET network
address (192.0.2.0 to 192.0.2.255), or it can be a portion of the range (for example, subnet
192.0.2.0 to 192.0.2.31). Membership in a group is determined for each GSN network
interface (for example, each gsn#) by the INET address associated with the interface (in
the /etc/config/netif.options file) and the netmask value (in the ifconfig.options or the
ifconfig-#.options file). The netmask value defines the size of the address space for each
group. For example, a netmask value of OXFFFFFF0O creates an address range that
provides 256 individual host addresses. However, netmask value OxFFFFFFEQ (shown in
Figure 1-30) creates eight subnets/LISs in which each subnet/LIS can have up to 32
“host” addresses.

Basic Concept #2

A logical network or a subnet/LIS can include hosts from physically different GSN and
HIPPI fabrics, as long as there is a “bridging” communication path between the fabrics.
Hosts that are members of the same INET address space (thus benefitting from the
services provided by broadcast and routing) do not have to be physically attached to the
same physical medium (fabric). Figure 1-32 illustrates this concept.

Basic Concept #3

Direct communication between INET hosts (without use of an intermediate router) can
occur only when the network interfaces involved in the exchange are members of the
same logical address space (network or subnet/LIS). Contact with members outside
one’s own (sub)network requires use of an INET address router.

This rule is true even when a shared hardware connection (for example, a switch) exists
between the two hosts that belong to different (sub)networks/LISs. For example, for two
hosts attached to the same switch, a message from host A in LIS 1, if sent to host B in LIS
2, must go through host C, an INET router. The benefit is that, no matter where a GSN
network adapter is physically located or relocated, it continues to function as a member
of the same LIS. Notice that no address or LIS-membership change is required when an
endpoint is physically relocated.

In addition, all hosts must have access to both an address resolution mechanism (for
example, HARP) and a network broadcast service. This duo enables mapping each
INET-address to a GSN (ULA) address. The broadcast service can be implemented in
hardware (for example, in the bridging switches) or in software (for example, a broadcast
emulation server). For complete details, see “Address Resolution for GSN” on page 57.

GSN Fabrics and Logical Networks

The following facts explain why this concept exists:
* GSN switches do not resolve network-layer (INET) addresses.

® The local INET routing software (for example, IRIX" routed) does not maintain
complete paths to destinations that are not members of the same subnet/LIS.

* Before transmission of an IP packet, a GSN hardware address (ULA) must be
discovered for the destination. This step requires the services of a HARP server

e Each HARP server maintains mappings only for its own (sub)network.

Consequences and Examples

The basic concepts summarized in “GSN Fabrics and Logical Networks” on page 49,
make the examples described in this section possible.

Figure 1-31 and Figure 1-32 show examples of subnetting within two different GSN
fabric configurations. The subnet/LIS addressing used in these examples (summarized
in Figure 1-30) is identical. The examples use network INET address 192.0.2, so that each
host address is 192.0.2.xxx. Hosts in LIS_1 use addresses between 192.0.2.0 and
192.0.2.31; those in LIS_2 use addresses between 192.0.2.32 and 192.0.2.63, and so on.

32-bit INET address: nnnnnnnn_nnnnnnnn_nnnnnnnn_hhhhhhhh (binary)

32-bit INET address: nnnnnnnn_nnnnnnnn_nnnnnnnn_sss hhhhh

subnetted: [|
24 network or netid bits host or hostid bits
additional bits to
create subnet/LIS
subnet mask: 11111121 12122111 121111111 11100000 (binary)
FF:FF:FF:EO (hexadecimal)
LIS addresses sss =000 for LIS 1 Host addresses LIS 1:192.0.2.0 t0 192.0.2.31
(showing only sss = 001 for LIS 2 (5 host bits):
3 subnet bits): sss = 010 for LIS 3 LIS 2: 192.0.2.32 to 192.0.2.63
sss =011 for LIS 4
and so on

Figure 1-30 Subnet Mask for Examples

51

Overview of IRIX GSN

52

If you want a single-fabric site to have multiple address spaces, you can use multiple
INET network addresses, or you can use a netmask to divide a single INET address space
into smaller chunks (referred to as subnets or LISs). Likewise, in a multiple-fabric site,
you can group all the hosts into one logical address space, or into multiple subnets/LISs
regardless of each host’s location.

Figure 1-31 illustrates a GSN fabric that has one switch to which all the network
interfaces are attached (that is, all endpoints in this fabric have a direct physical link to
one another). The example shows two subnets/LISes. Communication from A in LIS_1
to Cin LIS_2 passes through the router (network interfaces] and H). Messages do not go
directly from endpoint A to C, because of the concept explained in “Basic Concept #3”.

GSN Fabrics and Logical Networks

Figure 1-31

endpoint C
192.0.2.60

192.0.2.2 gsno

endpoint A

T »
E E
5 ©
g g
g ¢
o O

endpoint K

endpoint G
192.0.2.5

192.0.2.34

gsnl

router between
LIS1andLIS2

Single-switch GSN Fabric with Subnets/LISs

53

Overview of IRIX GSN

54

Figure 1-32 illustrates a different configuration for the same address space and network
interfaces (“hosts”) used in Figure 1-31. This configuration is a two-switch fabric. In this
example, A, B, E,], K, and L belong to LIS_1, while C, D, F, G, and H belong to LIS_2. The
system with network interfaces H and] continues to perform as the router between the
two LISs. Just as in the first example (Figure 1-31), communication directed to C in LIS_2
from A in LIS_1, goes first to the router (J/H), even though both A and C are physically
attached to the same switch. But, most importantly, notice that the router has been moved
to a different switch, and yet, the INET addressing is identical to that used in the first
configuration. The hardware changes do not affect the addressing. Also note that a router
for an LIS does not need to share a switch with the members of its LISs, as illustrated by
router J in relation to hosts A and B and router H in relation to hosts C and D.

GSN Fabrics and Logical Networks

192.0.2.60

endpoint C 192.0.2.61

endpoint D
192.0.2.3

192.0.2.2

endpoint B

endpoint A

192.0.2.4

endpoint E

Bridging Switch_A
|
Bridging Switch_B

endpoint F endpoint L

endpoint G endpoint K

192.0.2.6

endpoint H
endpoint J

192.0.2.33

192.0.2.34 192.0.25

gsnl
192.0.2.1

router between
LIS1andLIS2

Figure 1-32 Multiple-switch GSN Fabric with Subnets/LISs

55

Overview of IRIX GSN

56

HIPPI-800 Fabric
192.0.2.60

endpoint C 192.0.2.61

endpoint D
192.0.2.3

192.0.2.2 endpoint B

endpoint A
192.0.2.4

endpoint E

| Bridging HIPPI-800/GSN Switch |

| Bridging GSN Switch |

endpoint F endpoint L

endpoint G

endpoint K

endpoint H
endpoint J

192.0.2.33 192.0.2.6

192.0.2.34 192.0.2.5

gsno
192.0.2.32

router between

GSN Fabric LIS 1 and LIS 2

Figure 1-33 LIS Membership That Spans Fabrics

Address Resolution for GSN

Address Resolution for GSN

This section describes how network (OSI layer three) addresses are mapped (resolved) to
physical (OSI layer-one) addresses in a GSN fabric. This section assumes that you are
familiar with standard Internet ARP (RFC 826, Ethernet Address Resolution Protocol) and
Inverse ARP (RFC 1293, Inverse Address Resolution Protocol) protocols.

When a network-layer address is locally associated with (configured to) an IRIX GSN or
IRIS HIPPI subsystem, address mapping is needed between network-layer addresses
and physical-layer addresses so that communication can occur between the local
network-layer entity and remote network-layer entities. The GSN/HIPPI physical
address is known as the universal LAN MAC address or ULA. For IRIX, the default
network protocol stack is the Internet Protocol and the network address is the INET
address.! The address resolution scheme for IP/ST-over-GSN is defined by RFC Internet
Draft, IP and ARP over HIPPI-6400/GSN, as described in the section “HARP Address
Resolution.”

Note: Each INET address (AF_INET) can support multiple protocols. For example, in
IRIX 6.5, INET addresses support both the IP suite of protocols (PF_INET) and the ST
protocol (PE_ST). For further details, see the man page for inet(7).

To transmit data to another network-layer entity within the GSN fabric, each
network-layer stack in the GSN fabric needs two addresses for each destination:

® The network-layer address for the destination host. In IRIX, this information is
supplied by the static “hosts” database or the dynamic NIS server.

¢ The physical-layer address for the destination endpoint. This information is
supplied by the static HARP table or the dynamic HARP server. See “"HARP
Address Resolution” on page 60 for details.

1 For IRIX GSN, the Scheduled Transfer Protocol is an additional default stack; ST shares the INET
address used by IP.

57

Overview of IRIX GSN

58

HARP and Broadcast Support

A GSN fabric is said to support broadcasting when all the switches of that fabric provide
broadcasting. The behavior for HARP clients and HARP servers is slightly different
depending on whether or not the underlying GSN/HIPPI fabric supports broadcasting:

When the fabric does not support broadcasting
Only one host within the address space (LIS) provides HARP service by
behaving as the HARP server. All hosts behave as HARP clients. The
HARRP service is centralized—provided by a single HARP server. All
hosts (that is, HARP clients in the address space) contact the server, both
to register their own address mappings and to obtain information about
the other members of the address space. There may be a list of hosts that
can perform the HARP service; however, only one is used by a host at
any point in time. The HARP standard requires that the active HARP
server also provide broadcast emulation services for the address space
when the fabric does not support broadcasting. Each time a client
registers or re-registers itself with the HARP server, the server
broadcasts the information to all the hosts in its database. Each host
maintains a local dynamic HARP table. Each local host gathers and
updates the HARP table by reading every broadcast HARP packet that
it sees. The default address for contacting the HARP server is ULA
00:10:3b:1f:ff:e0 and the server must be located (for example, attached to
the switch port) at that address.

When broadcast is supported by all switches in fabric
Each host within the address space (LIS) behaves as both a HARP client
and a server. The HARP service is distributed. Each HARP client
transmits (using the broadcast address) HARP packets that register it
with every host (HARP server) in the address space. The switches
broadcast these packets to all endpoints in the fabric. Whenever any host
sees a HARP packet with its own INET address as the target, its local
HARRP server application generates a reply that provides the requested
ULA. Each host maintains a local dynamic HARP table. It gathers and
updates the HARP table by reading every broadcast HARP packet that
it sees. The default address for contacting this distributed HARP service
is the broadcast address (ULA FF:FF:FF:FF:FF:FF). No system is
assigned ULA FF:FF:FF:FF.FF:FE.

Address Resolution for GSN

To function properly, each HARP client and server must figure out whether its
underlying fabric supports broadcasting or not. Each system discovers whether or not
the attached fabric supports broadcasting:

Clients

Servers

When a client does not see its own initial registration packet (that is, its
inverse ARP request), it knows the fabric does not support broadcasting.
It then tries to register itself with the remote HARP server at either the
standard (default) address (00:10:3b:ff:ff:e0) or at the ULA that was
manually configured for contacting the server.

When a client sees its own inverse ARP request (which has been
broadcast by the fabric’s switches), it knows that there is fabric support
for broadcasting, so it continues to register at the distributed dynamic
HARP address: ULA FF:FF:FF:FF:FF:FF.

When a system’s own ULA matches the “ULA for contacting the HARP
service!”, the system knows that it is the only HARP server and that the
fabric does not support broadcasting. The address recommended by the
standard (and IRIX HARP’s default) for the server is ULA
00:10:3b:ff:ff:e0. In this scenario, the server responds to HARP requests
from all clients in the LIS.

When a system’s own ULA does not match the “ULA for contacting the
HARP service”, the system knows that it is not the only HARP server
within the LIS, and that there is a server on every host. In addition,
when a system sees its own inverse ARP request, it knows that the
fabric supports broadcasting. In this scenario, the “ULA for contacting
the HARP service” is FF:FF:FF:FF:FF:FF, but no system should have this
as its own ULA. The fabric broadcasts packets that have
FF:FF:FE:FF:FF:FF as their destination address. Each server responds
only to those broadcast HARP packets that request information about
itself.

! In IRIX HARP, the “ULA for contacting the HARP server” can be either the default (which matches
the value required by the HARP standard) or it can be a customer-configured value.

59

Overview of IRIX GSN

60

HARP Address Resolution

The address resolution protocol for HIPPI networks is specified in the HARP RFCs. The
protocol works with fabrics that provide broadcasting and with those that do not. One of
the first tasks of each HARP client is to determine if its underlying fabric supports
broadcasting, as described in “Determining Fabric Support for Broadcast” on page 60.

HARP provides a dynamic, client/server-based address resolution service. The protocol
makes it possible for each IP/ST-over-HIPPI endpoint (client) within a (sub)network to
register or communicate its own INET address and physical address, and to discover the
physical addresses for hosts with whom it wants to communicate. (The INET address
must be obtained, for example, from the site’s NIS or /etc/hosts database.) The HARP
server maintains a kernel-resident lookup table (database) that maps INET addresses to
physical addresses. HARP occurs in two phases: a registration phase (summarized in the
section "HARP Registration Phase") and a normal operation phase (summarized in
"HARP Normal Operation Phase").

When a (sub)network /LIS includes one or more endpoints that do not support dynamic
HARRP, static mappings for those endpoints must be added to the address resolution table
at the HARP server (as described in the section “Static Address Resolution” on page 65).

Determining Fabric Support for Broadcast

Every host that supports HARP transmits its first HARP packet to the broadcast ULA:
FF:FF:FF:FF:FF:FF (hexadecimal notation). If the host subsequently sees this (its own)
packet on the fabric, it knows that the fabric supports broadcasting. If it does not see the
packet, it knows that the fabric does not support broadcasting, in which case it sends its
next HARP packet to either ULA 00:10:3B:FF:FF:EQ or the manually-configured address
for contacting the HARP server. For a more complete description of this client and server
behavior, see “HARP and Broadcast Support” on page 58.

Note: The HARP protocol is designed so that this initial HARP packet serves the double
purpose of both registering the client with the HARP service (as explained in “HARP
Registration Phase” on page 61), and discovering the fabric’s support for broadcasting.

Address Resolution for GSN

HARP Registration Phase

During bringup, each dynamic HARP client registers its address pair (INET and physical
address') with the HARP service for its (sub)network.” The client does this by sending an
inverse address resolution request (InARP_Request) to the physical address for the
HARP service. The InARP_Request contains the client’s INET address and physical
address, and it asks for the server’s INET address. To do this first step, the client must
know the physical address for the HARP service.® The HARP standard recommends that
the ULA FF:FF:FF:FF:FF:FF be used for this purpose. Complying with this
recommendation allows clients to locate their service without any special configuration.
If the recommended ULA is not used for the HARP service, the system administrator
must manually configure this information on each client within the (sub)network.

If no reply (InARP_Reply) comes back to the client, the client waits five seconds and tries
again; it continues this cycle until it succeeds. If the system has been configured with
backup HARP servers, the client sends each request to all the addresses until it
determines which addresses are active and selects one as primary. When the server
receives an INARP_Request, it enters the new INET-to-ULA mapping into its table and
replies with an InARP_Reply message that provides its own INET address to the client.
If the fabric does not support broadcasting, the server broadcasts its reply to all the
HARRP clients in its database so that they all know about this new client. Once this is
done, the client is registered.

! For HIPPI-6400, the physical address is the ULA.

2 The HARP service may be either of the models described in “Determining Fabric Support for
Broadcast” on page 60.

3 Note that the ULA for the HARP service does not need to be the same as the ULA for the HARP server
that responds to the request. In a fabric with broadcasting, the HARP service ULA is always
FE:FF:FF:FF:FF.FF, while the ULA for the HARP server is different in each reply because it is each
endpoint’s own ULA.

61

Overview of IRIX GSN

62

If a client wants to verify that its registration has been successful, it may send an
ARP_Request to the service asking for its own physical address. (See "HARP Normal
Operation Phase" for details about the ARP_Request.) When the server receives this
standard ARP_Request, it looks in its table for the client’s INET address to discover the
physical address that is mapped to that INET address. It sends the results of this lookup
back to the client in an ARP_Reply message.

Note: On a fabric with broadcast support, the HARP server that responds to this request
is the client’s own local HARP server.

Figure 1-34 illustrates the exchange that occurs between client and server during
registration.

The server keeps each registered entry in its database for a maximum of 20 minutes.

Whenever an entry has aged beyond this maximum, the server removes the entry. To
prevent its entry from disappearing, each functional client re-registers itself with the
service at least once every 20 minutes.

Note: When an endpoint is engaged in a very large data transaction or an ST data
transfer of indeterminate length, the HARP client at that endpoint cannot access the link
to communicate with its HARP server. This may cause the client’s entry in the HARP
server’s database to disappear.

Address Resolution for GSN

IP Client HARP Server

on GSN Network on Same GSN Network
Provideg

! Client's
provides client's JLA;
a kud S Server's uL
INARP_Request %
If no reply occurs within timeout, [~~~ -~ ~~-~~-~-~-~--------------+ Adds time-stamped entry to table.

client waits and tries again later. sIP. INARP_Reply

provides server
Caches information.

Provides clians
asks for ¢| llent's own |P (a5

ARP_Request ient's own UL arge);
(optional, to verify the entry) \
Performs lookup in table.
provides client's ULA: INARP_Reply
Verifies that information

is correct.

Figure 1-34 HARP Registration

HARP Normal Operation Phase

During normal operation, each HARP client requests address resolution from the HARP
service for each IP/ST destination. The client makes this request by sending an
ARP_Request to the service; the request contains the desired destination’s (that is,
target’s) INET or physical address. The server responds with an ARP_Reply that
supplies the target’s missing address. Figure 1-35 illustrates the message exchange that
occurs between client and server during normal operation.

When the HIPPI fabric does not support broadcasting, reception of an ARP_Reply
implies one of the following about the target:

e The targeted client supports dynamic HARP and within the last 20 minutes was
functional enough to register itself with the server that sent the ARP_Reply.

e The targeted client does not support dynamic HARP and its entry at the server is a
static entry. There is no way to know whether the client is functional.

63

Overview of IRIX GSN

When the HIPPI fabric supports broadcasting, reception of an ARP_Reply means that the
targeted client supports dynamic HARP and is currently functional.

An ARP_NAK indicates that the IP /ST client (endpoint) has not registered itself with the
server for at least 20 minutes. This failure to register can be caused by any of the
following conditions:

* The endpoint is powered off.

e The link to the client has been unavailable for at least the last 20 minutes. For
example, the link might be continuously occupied by a network transaction, such as
a large or indeterminate data transfer. The cable might be loose.

e The HARP client software at the endpoint is not up and running.

¢ The endpoint does not support dynamic HARP and the HARP server’s database
does not contain a static entry for the client.

IP Client
on GSN Network

HARP Server
on Same GSN Network

64

ARP_Request

Caches information.

Waits and tries again later.

Figure 1-35

Pr OVideS
Sks for ¢

HARP Normal Operation

Performs lookup in table.

IF entry is available.
ARP_Reply

OR if no entry is available.
ARP_NAK

OR

no response at all

Address Resolution for GSN

Static Address Resolution

When a host within a HIPPI/GSN (sub)network does not support dynamic HARP, the
system administrator needs to add a static entry for that host to the HARP server’s
database. The entries can be placed into a file (for example, the /etc/config/gsnarp.options
file) that the HARP software automatically loads into the kernel-resident database when
it starts, or the entry can be added directly (manually) to the database by using a utility
(for example, gsnarp). Each entry in the database must map a ULA (IEEE or MAC
address) to an INET address.

Guidelines for Selecting a HARP Server

These guidelines explain how to select a system to provide HARP services (that is, be the
HARP server) when the HIPPI fabric does not support broadcasting. It is not necessary
to identify a system for this purpose when the fabric supports broadcasting.

From among the members of the address space (network or subnet/LIS), at least two
systems should be selected to perform the HARP server function. Follow these
guidelines when selecting these systems:

* Atleast one system and its GSN connection to the fabric must be available
(operational) whenever any member of the address space wants to access the GSN
fabric. This does not necessarily mean that the HARP servers must be up and
running 7 days a week for 24 hours a day. It does mean that, if you select a system
that is not always available, you need to understand the network-accessing
habits/needs of all the clients. When a HARP server is not available, no HARP
client within that address space can communicate with any other IP or ST host.

Note: Members of the address space that use only local static table lookup address
resolution are not affected by the unavailability of a HARP server for transmission.
However these clients do not receive communications from members that do rely on
the server for address resolution.

* For ease of configuration and to enhance interoperability, the HARP servers should
be attached to the one port in the GSN fabric that uses Universal LAN MAC address
(ULA) 00:10:3b:ff:ff:e0. This complies with the HARP standard.

Note: With IRIX GSN/IRIX HARP, one HARP server can service multiple address spaces
(LISs).

65

Overview of IRIX GSN

IRIX HARP Table

66

How Address Resolution Works for ST-over-GSN

The IRIX GSN implementation of the ST protocol uses the same address resolution
scheme as is used for IP-over-GSN. See “Address Resolution for GSN” for the details.

Note: Each gsn# network interface services two protocols: ST and IP. The INET address
assigned to an instance of gsn# is shared by the ST-over-GSN and IP-over-GSN stacks.
Some of the upper-layer address processing (for example, routing) that is performed on
the address applies to both IP and ST traffic.

The HARP table is a list of address mappings. Each entry (mapping) consists of an IP
address/name and a GSN ULA. Each entry is either a dynamic entry or a static entry, as
explained below.

Static Entries

IRIX HARP does not alter or remove static entries from its HARP table. These entries are
loaded or removed from the table only with the gsnarp utility. With each invocation of
gsnarp -f filename, static entries are loaded into the HARP table from the file. Entries are
removed with gsnarp -d. A file of any name can be used to load entries; however, the
command uses /etc/config/gsnarp.options as the default filename. The text in the file must
follow the format described in “Configure IRIX GSN Network Interfaces In Real Time”
on page 81.

The gsnarp utility can be invoked manually at the command line. It is automatically
called by the /etc/init.d/network script during each system startup.

Dynamic Entries

IRIX HARP maintains the dynamic entries in its HARP table in conformance with the

HARP standard. It adds entries as it learns about them, refreshes them as they are
reregistered by their owners (the clients), and ages and deletes entries as they go stale.

Assignment of Unit Numbers and Network Interfaces to GSN Hardware

Assignment of Unit Numbers and Network Interfaces to GSN Hardware

The description in this section applies to systems running IRIX 6.5.9f (or later) and to
network interfaces for the Internet Protocol suite (INET address over GSN subsystem)
and Scheduled Transfer (ST-over-GSN) protocol.

Assignment of Unit Numbers to Hardware

With each restart (for example, a power on, a reboot or init 0 command), the startup
routine probes for hardware on all the modules connected into the CrayLink interconnect
fabric. All the slots and links in all the modules within the fabric are probed. The routine
then creates a hierarchical filesystem, called the hardware graph, that lists all the located
hardware. The top of the hardware graph is visible at /iw. For complete details, see the
man page for hwgraph(4). After the hardware graph is completed, the ioconfig program
assigns a unit number to each located device that needs a number. Other programs (for
example, hinv and each device’s driver) read this assigned number and use it.

The XIO slots are searched (probed for a device) in the order shown below; this order is
not the same sequence as the XIO slot numbering. For example, the device in XIO slot 4
is located before the device in slot 2 and, because of this, may have a lower unit number
than the device in slot 2. After the first power on, you can edit the /etc/ioconfig.conf file to
assign unit numbers that are convenient for you. Your changes are used during each
subsequent power on. See the ioconfig(1M) man page for further details.

1. slot8
2. slot11
3. slot10
4. slot7
5. slot12
6. slot9
7. slot4
8. slot2
9. slot6
10. slot5
11. slot 3

67

Overview of IRIX GSN

68

On an initial system startup, ioconfig groups devices into classes/types and assigns
hardware unit numbers sequentially within each class. It records these assignments in
the /etc/ioconfig.conf file; for example, if two SGI GSN products are found, they are
numbered unit 0 (gsn0) for the first one found and unit 1 (gsn1) for the second one. When
an SGI GSN product is a two-board solution, both boards are associated with a single
unit number. On subsequent startups, ioconfig distinguishes between hardware that it has
seen before and new items. To previously seen items, it assigns the same hardware unit
numbers (those that are recorded in the ioconfig.conf file). To new hardware, it assigns
new sequential numbers and records them. It never reassigns a number, even if the
device that had the number is removed and leaves a gap in the numbering. For example,
in a system with two instances of some class of devices, if the unit0 is removed, the next
restart results in the system listing only unit1; if a new board is installed in a new location,
it is listed as unit2.

New items are differentiated from previously seen items through the hardware graph
listing (that is, the path under /hw/module/#/slot/io#/...). The database of previously seen
devices is kept in the file /etc/ioconfig.conf. A replacement board (with the exact same
hardware device name) that is installed into the location of an old board (so that it has the
same hardware graph listing) is assigned the old board’s unit number, but a board that
is moved from one location to another is assigned a new number. For example, in a
two-device system with ioconfig.conf entries illustrated below, if unit0 is moved to a
different slot, the next restart results in a new item in the ioconfig.conf file. The hinv
command lists unit] (an original board in its original slot) and unit2 (the board that has
been moved to a new slot), but not unit0. For more information about the hardware
graph and ioconfig, see the man pages for hwgraph(4) and ioconfig(1M).

Assignment of Unit Numbers and Network Interfaces to GSN Hardware

Initial entries for two devices:

0 / hw/ nodul e/ 1/ sl ot/i 08/ xi o_gsn/ devi ce
1 /hw/ modul e/ 1/ sl ot /i 04/ xi o_gsn/ devi ce
0 /hw/ gsn/0

1 /hw/gsn/1

Entries after unitO is noved:

0 / hw/ nodul e/ 1/ sl ot/i 08/ xi o_gsn/ devi ce
1 /hw/ nmodul e/ 1/ sl ot /i 04/ xi o_gsn/ devi ce
2 / hw/ nodul e/ 1/ sl ot /i 05/ xi o_gsn/ devi ce
1 /hw/gsn/1

2 /hw/ gsn/2

The two-board SGI GSN product occupies two XIO slots that are logically associated
with a single device (one unit number). The device has two XIO slots and two hardware
graph entries. All links (for example, the short or convenience path, /hw/gsn/#) point to
the XIO slot for the main SGI GSN board. All located SGI GSN hardware devices can be
displayed with the /sbin/hinv or find command.

Assignment of Network Interface to Hardware Device

As the startup process continues, it calls the network drivers and protocol software
modules so that they can create their network and programmatic interfaces. For GSN,
this step works in the following manner:

e For each located SGI GSN device (port), the startup process creates short (/hw/gsn/#)
and long (/hw/module/#/slot/io#/xio_gsn) entries in the hardware graph. Then, the
initialization scripts create a symbolic link in /dev that points to the device’s entry in
the hardware graph.

e For each located GSN hardware device, the startup routine creates an entry in the
hardware inventory database that can be displayed by hinv.

e For each located hardware device, the IRIX GSN driver creates a logical network
interface and assigns it a number that matches the hardware. For example, if the
only hardware device is /hw/gsn/2, then the only network interface created is gsn2.

e The ifconfig command searches the netif.options file for IP-over-GSN network interface
names (for example, gsn0, gsnl, gsn2), associates each network interface with the
hardware that is specified, then configures and enables each interface.

69

Overview of IRIX GSN

Comparison of ST to IP

ST requires that the endpoints and their associated resources be set up before any data
movement can proceed in which IP acts on a store-and-forward basis. The IP endpoints
and intermediate hosts dynamically provide resources such as target buffers. ST is
connection-oriented and the end points retain state information such as packet
sequencing numbers. IP does not guarantee sequential delivery of packets and is a
connectionless protocol.

The logical IP subnets on GSN can be independent of the underlying GSN physical
network. Refer to “Consequences and Examples” on page 51.

The table below lists notable differences between ST and IP.

Table 1-11 ST vs IP

P ST ST When It Is
Borrowing From IP
(INET address,
routing protocol, ARP,

etc.)
network-layer routing withinan y n y
LIS
routing between LISes and y n y
inter-LIS forwarding
multiple hop routing (more than y n n
one intermediate hardware
device--switch/concentrator /hub-
-between endpoints
broadcasting to all members of an 'y n y
LIS
broadcasting to all members only if physical only if physical only if physical layer
attached to a physical fabric layer supports layer supports supports
functionality functionality functionality

70

Comparison of ST to IP

Table 1-11 (continued)

ST

ST When It Is
Borrowing From IP
(INET address,
routing protocol, ARP,
etc.)

encapsulation

data handling between source and

final destination

forward; finds
path/resources
along the way

n

direct delivery
from source to
final
destination;
path/resources
established and
openbefore data
transfer started

n

direct delivery;
path/resources
established and open
before data transfer
started

71

Chapter 2

Installing and Configuring IRTX GSN

This chapter provides instructions and information about configuring the IRIX GSN
software, as summarized in this list.

¢ The entire installation and configuration procedure is covered in “Complete GSN
Installation Process” on page 74.

* The following sections provide quick-reference summaries of the configuration
tasks required for specific functionality:

“Configure IP-over-GSN” on page 76
“Configure the Address Resolution Service” on page 77

¢ Each specific configuration task is described separately in detail in the reference
section “Individual Configuration Tasks” on page 79.

e Table 2-2 provides a listing of all the individual parameters in IRIX GSN that can be
configured.

See “Assignment of Unit Numbers and Network Interfaces to GSN Hardware” on
page 67 for a description of how the physical network devices (gsn0, gsnl, gsn2, and gsn3)
are numbered and assigned to IP/ST-over-GSN logical network interfaces (gsn0, gsnl,
gsn2, and gsn3).

73

Installing and Configuring IRIX GSN

Complete GSN Installation Process

74

This section lists the steps required for configuring your IRIX GSN network connection.
The procedures listed below are those that must be performed before an IRIX GSN
connection is functional:

1. Use inst or the System:SoftwareManager to install the IRIX GSN software from
CD-ROM, as explained in the IRIX GSN Release Notes. The inst command is
described in the online man page and the InSight document IRIX Admin: Software
Installation and Licensing that came with the system.

2. Collect the information you need for the configuration, as described in “Collect
Information Before Starting” on page 75.

3. Follow the steps in the section “Configure IP-over-GSN” on page 76 to configure the
IP-over-GSN and ST-over-GSN stacks.

4. Optional: change the default settings for optional configuration tasks, as
summarized in Table 2-2 on page 95.

Note: If the system has more than one GSN network interface, the netmask values
are not optional; they must be set as described in “Summary of Network Interface
Operational Parameters and Default Settings” on page 90.

5. Use the decision tree provided in “Configure the Address Resolution Service” on
page 77 to determine which set of HARP configuration instructions you need to
follow. Then follow those instructions.

6. If there are any members of the LIS that do not support dynamic HARP, follow the
instructions in “Adding Static HARP Table Entries” on page 86.

7. Arrange to have the hardware installed and its functionality verified as described in
SGI GSN XIO Hardware Installation Instructions for SGI Origin Family, SGI-2000-series,
and Silicon Graphics Onyx2 Platforms.

It is most efficient to install the IRIX GSN hardware after installing and configuring
the software. This avoids at least one reboot of the system.

Note: If the hardware is already installed, follow the instructions in the section
“Building a New Driver Into the Operating System” on page 94. Then, follow the
instructions in “Verify That the Board Has Been Located by the Software” on

page 135 and “Verify the SGI GSN Hardware” on page 136 to verify the functionality
of the GSN hardware.

Complete GSN Installation Process

Collect Information Before Starting

To configure the IRIX GSN software, you need the following information. SGI
recommends collecting this information before you start to configure the software.

e AnINET (also known as, IP) address and, optionally, a subnet mask for each
IP/ST-over-GSN network interface.

If there are multiple GSN network interfaces on this system, each interface must
belong to a different LIS. That is, the address and mask for each interface must
identify all the interfaces on the system as members of different address spaces
(LISs). See “GSN Fabrics and Logical Networks” on page 49 and Figure 1-30 for
further explanation.

* A network connection name for each INET address. This name usually includes the
system’s hostname (as configured in the /etc/sys_id file). An example is:
gsn3-amazon.

e If the GSN port is connected to a GSN switch, answer these questions:
Do all the switches in the GSN fabric support broadcasting?
Does this system have multiple GSN network interfaces?

If the answer to either of these questions is yes, collect the information listed below.
Otherwise, you are through collecting information; you can proceed to the next step
in the installation procedure (step 3 on page 74).

e If broadcasting is not supported by the GSN fabric or if this system has multiple
GSN network interfaces, determine the ULA of the HARP server for each interface.
This information must be known even when this system is selected as the HARP
server for one or more LISs.

e For each GSN interface, identify all members of its LIS that do not support dynamic
HARP.

75

Installing and Configuring IRIX GSN

76

Configure IP-over-GSN

This section describes how to configure the IP-over-GSN and ST-over-GSN network
interface. All these steps are standard IP configuration procedures, required for all IRIX
network interfaces.

1. Enable the network layer stack:

chkconfig network on

2. Open the local /etc/hosts file for editing. For each GSN physical port, add an entry
(like the one below) that maps an INET address (for example, IP address) to a GSN
network connection name (“hostname”). Each address is shared by both the IP and ST
protocols. (See “Edit hosts File” for detailed instructions.)

gsn-amazon 223.209.1.18

Note: The local hosts file must be edited. In addition, if the site uses an NIS or DNS
server, this information must be added to that server’s database.

3. Open the /etc/config/netif.options file for editing. For each GSN physical port, add a
pair of entries (similar to the pair below) to map the GSN network interface (gsn#)
of the port to one of the INET/IP addresses (or network connection names) from the
hosts file. (See “Edit netif.options File” for detailed instructions.)

i f 2nane=gsn0
i f 2addr =gsn- anazon

4. Edit the /etc/config/ifconfig-#.options file for one or more of the GSN network
interfaces to change the default settings for the operational parameters that are
listed in Table 2-1. This step is required if there is a subnet mask (netmask) for this
network interface; otherwise, this step is optional. (See “Edit ifconfig-#.options File”
on page 88 for detailed instructions.)

5. Optional: edit the /var/sysgen/master.d/gsn file to change default settings in the
IP/ST-over-GSN driver. (See “Edit master.d /gsn File” on page 91 for detailed
instructions.)

Complete GSN Installation Process

6. If this is the final configuration step, rebuild the operating system so that it includes
the newly configured IRIX GSN driver:

% su

Passwor d: thepassword

/etc/init.d/ autoconfig

Automatically reconfigure the operating system(y or n)? vy
/et c/ shut down

The system is now ready to have its IRIX GSN hardware installed, or if the
hardware is already installed, you can restart the system. The IP/ST-over-GSN
functionality automatically becomes operational during this restart.

7. To verify this configuration, follow the procedures described in “Verifying the IRIX
GSN Subsystem” on page 135 once the hardware is installed .

Configure ST-over-GSN

ST-over-GSN address configuration occurs when you follow the instructions in
“Configure IP-over-GSN” on page 76. Follow the IP instructions even if your site does
not plan to use the IP-over-GSN stack.

Configure the Address Resolution Service

This section helps you determine which configuration procedures you need to follow to
configure IRIX HARP when an LIS does not use HARP default parameters and behavior.
If any of the following statements are true for your configuration, you must manually
configure IRIX HARP:

* The SGI GSN port is directly connected to another host, not to a switch.

* One or more of the switches in the GSN fabric does not support broadcasting and
the selected HARP server is not located at ULA 00:10:3b:ff:ff:e0.

® The IP/ST hosts attached to the GSN fabric belong to two or more LISs, and one (or
more) of the switches in the GSN fabric do not support broadcasting. Said another
way, the GSN fabric does not support broadcasting and some hosts have two or
more GSN ports.

* One or more members of the LIS do not support dynamic HARP.

For each GSN connection/interface, use the decision tree shown in Figure 2-1 to discover
which procedures are required for configuring the address resolution software.

77

Installing and Configuring IRIX GSN

78

What is the GSN port connected to?

e loopback device —> Must be either its own HARP server or have a static HARP

entry for itself in the / et ¢/ confi g/ gsnar p. opt i ons file

® point-to-point, direct connection to another member of LIS

e switch _l

Do all the switches in the GSN fabric support broadcasting?

/

Yes No

l

Does the system have multiple GSN interfaces?

— ~

No Yes
l For LIS #1 For all other
Is LIS using standard ULA / LISs

00:10:3B:FF:FF:EO
for contacting HARP server?

A

l ,

Select one system to be
HARP server (page 65).

Select one system to be

Discover ULA for the selected
system. hipentl gsn# getmac

HARP server (page 65).

Attach selected server
to switch port with ULA
00:10:3B:FF:FF:EOQ.

Configure each client with
ULA for contacting selected
HARP server (page 79).

! !

4

If there are any members of an LIS that do not support dynamic HARP, add these numbers to the HARP table (page 86).

! !

/Finished, no configuration required.
All clients use FF:FF:FF:FF:FF:FF

to contact HARP service.

Every system has an HARP server

\functioning.

Finished.

All clients within this address space
use 00:10:3B:FF:FF:EO to contact
HARP server. Only selected system
runs HARP server program.

Finished.

use configured ULA to contact

runs HARP server program.

All clients within this address space

HARP server. Only selected system

\

J

Figure 2-1 Decision Tree for HARP Configuration Procedures

Individual Configuration Tasks

Individual Configuration Tasks

This section provides detailed instructions for each individual configuration task. Most
of these are optional. This is a reference section only; the tasks appear in alphabetical
order, and are listed below. Most of these tasks are optional. See “Complete GSN
Installation Process” on page 74 for the list of required configuration tasks.

¢ “Change HARP Lookup Table” on page 79

* “Configure IRIX GSN Network Interfaces In Real Time” on page 81
¢ “Configure IRIX HARP Client” on page 82

¢ “Configure IRIX HARP Server” on page 83

¢ “Edit gsnarp.options File” on page 85

¢ “Edit hosts File” on page 88

¢ “Edit ifconfig-#.options File” on page 88

¢ “Edit master.d/gsn File” on page 91

¢ “Edit netif.options File” on page 92

¢ “Enable Networking” on page 93

Note: For additional details about enabling IP networking software and configuring IP

network interfaces, refer to IRIX Admin:Networking and Mail, which is available online
through IRIS InSight.

Change HARP Lookup Table

The /usr/etc/gsnarp command makes changes to the address resolution lookup table that
is currently in memory for use by static HARP. This table maps 32-bit network-layer
INET addresses (or network connection names) to 48-bit physical-layer Universal LAN
Addresses (also known as MAC or Ethernet-style addresses). Changes made with the
gsnarp command are lost if the system or the GSN network interface is restarted; to make
changes that survive restarts, follow the instructions in “Adding Static HARP Table
Entries” on page 86.

79

Installing and Configuring IRIX GSN

80

To add a static entry for a GSN host to the lookup table, use this command line:
gsnarp name ULA_value

where name is the network connection name or address for a logical network
interface as listed in the /etc/hosts file, and the ULA_value is a 6-byte (48-bit) value
represented in hexadecimal characters separated by colons (for example,
7:8d:fe:8:13:5).

To delete one entry from the table, use this command line:
#gsnarp -d name

where name is the network connection name or INET address for a logical network
interface as listed in the /etc/hosts file.

To purge only the dynamic entries and leave the static entries and HARP server
entries in the table, use this command line:

#gsnarp -p filename

Individual Configuration Tasks

¢ Toremove all dynamic (not static) entries and reload from the configuration file, use
this command line:

gsnarp -p -f filename

¢ Toremove all dynamic entries, HARP servers, and GSN interfaces, use this
command line:
gsnarp -r -f

You must then restart the GSN interface by using the ifconfig command.

Configure IRIX GSN Network Interfaces In Real Time

Dynamic configuration of the IRIX GSN network interfaces that use INET addresses is
done with the /usr/etc/ifconfig command, which is explained in detail in the ifconfig(1M)
man page. The command lines listed below are appropriate with IRIX GSN:

ifconfig [gsn#] INET addr

ifconfig [gsn#] netmask Ox##HHHH##HE
ifconfig [gsn#] nmetric

where INET _address is the 32-bit INET (IP) address, ######## is the 32-bit netmask value,
and # is the routing metric. See the ifconfig(1M) man page for details about acceptable
formats.

Note: Some of the standard ifconfig arguments are not supported for IRIX GSN (for
example, broadcast and arp).

Configuration changes made in this manner do not persist across restarts of the system.

To make configuration changes that persist, edit the configuration file as explained in
“Edit ifconfig-#.options File” on page 88 and “Edit netif.options File” on page 92.

81

Installing and Configuring IRIX GSN

82

Configure IRIX HARP Client

This section describes how to configure each IRIX HARP client with one or both of the
following:

Addpress for contacting client’s primary HARP server
This item must be configured when the GSN fabric does not support
broadcasting and the client’s HARP server is not located at the default
ULA—00:10:3b:ff:ff:e0—for non-broadcasting fabrics. When the fabric
supports broadcasting or when the default server ULA is used, no client
configuration is required. For each GSN network connection, use the
decision tree in Figure 2-1 to determine whether this configuration
procedure is required.

Addpress for contacting alternate HARP server(s)
Configuration of this item is optional in all configurations.

1. Open an /etc/config/gsnarp.options file for editing.

2. For each IRIX GSN network interface on this client that requires configuration, add
one line to configure the physical address that this client will use for contacting the
primary HARP server. If the HARP server is an IRIX HARP system, this line must
match the $ser ver line placed in the server’s own gsnarp.options file. This address
must be the same on all the clients in the LIS. The entry must have the following
formats

$server gsn# xx: xx: xx: XX XX XX #iserver is a GSN system
where gsn# is the network interface, xx: xx: xx: xx: xx: xx is the HARP server’s 6-byte

Universal LAN Address (also known as MAC address) in colon-separated
hexadecimal notation. For example:

$server gsnl 08:00:71: C5: AD: 74

Note: Make entries in this file only for those specific network interfaces that need
configuration. Use the decision tree in Figure 2-1 to determine whether this
configuration is required.

Individual Configuration Tasks

Optional: add static (“permanent”) entries to the local HARP table. To do this,
follow the procedure described in “Adding Static HARP Table Entries” on page 86.

To activate the changes, use the following command lines:

% su

Passwor d: thepassword

/usr/etc/ifconfig gsn# down
/usr/etc/gsnarp -f

lusr/etcl/ifconfig gsn# up

where the # identifies the interface for which server address changes were made.

Configure IRIX HARP Server

This section describes how to configure one instance of IRIX HARP to function as an LIS
HARRP server. This configuration task is only required in certain situations. Use the
decision tree in Figure 2-1 to determine whether this task is required.

1.

Verify that this system is appropriate for selection as the LIS HARP server. See
“Guidelines for Selecting a HARP Server” on page 65 for help in making this
selection.

If the system already has its GSN hardware installed, use this command to discover
the ULA that is assigned to this endpoint by its switch:

% gsncnt| gsn# get nac
PROM ULA Address: 08:00: 71: C5: AD: 74
Devi ce ULA Address: 00:01:3b:ff:00:Oe

where gsn# identifies the GSN hardware that carries traffic for the server’s LIS.

Note: Use the Devi ce ULAvalue; this is the address assigned by the switch. The PROV
ULAis the MAC address retrieved from the SGI GSN board.

Otherwise, discover the ULA that the switch will assign to this system, as explained
in the switch manufacturer’s documentation.

Open the /etc/config/gsnarp.options file and add a line in this format. When IRIX
HARP notices that the configured $ser ver address matches its own address, it
starts performing as the HARP server for its LIS. The line must have the following
format:

$server gsn# xx: xx: xx: xx: xx: xx

83

Installing and Configuring IRIX GSN

84

where gsn# is the network interface’s name (for example, gsn0, gsnl, and so on) and
xx: xx: xx: xx: xx: xx is this server’s 6-byte ULA (in hexadecimal notation). Take note
of this address; all HARP clients in the LIS must be configured to know this
non-default address.

If the LIS has any members that do not support dynamic HARP, follow the
instructions in the section “Adding Static HARP Table Entries” on page 86.

Use the following commands to shut down the GSN network interface, reconfigure
IRIX HARP and the network interface, load any new entries into the current HARP
table, then restart the network interface:

ifconfig gsn# down
gsnarp -d -f
ifconfig gsn# up

where the # identifies the network interface being reconfigured.

Changing the HARP Database on the Fly

If IRIX HARP is already functioning and you want to make changes to the HARP
database, invoke one of the following commands as superuser.

Add one static entry
/usr/etc/gsnarp -s name ULA_value

where name is the remote system’s network connection name or INET address and
ULA _value is the remote system’s ULA address in colon-separated hexadecimal
notation (for example, AA:12:CC:34:DD:56).

Individual Configuration Tasks

* Add one dynamic entry
lusr/etc/gsnarp -s name ULA_value tenp
where name is the remote system’s network connection name or INET address and
ULA_value is the remote system’s ULA address in colon-separated hexadecimal
notation (for example, AA:12:CC:34:DD:56).

¢ Add many static entries
/usr/etc/gsnarp -f /etc/confi g/ filename

where filename is a HARP configuration file. The filename can be the default file,
gsnarp.options, or one of your choice.

¢ Purge only the dynamic entries and leave the static entries and HARP server entries
in the table

lusr/etc/gsnarp -p /etc/confi g/ filename

Note: If a dynamic entry already exists for an INET address, the gsnarp command fails,
the dynamic entry remains in the table, and the static entry is not added.

Edit gsnarp.options File

The /etc/config/gsnarp.options file configures parameters for the IRIX HARP client and
server. This file is optional; it does not have to exist for IRIX HARP to operate in a system
with one GSN network interface. When this file is absent, or when the file does not
contain entries for a particular network interface, IRIX HARP uses the HARP
configurations recommended by the HARP standard. Use the decision tree in Figure 2-1
to determine if a network interface requires configuration in this file.

When present, the file can contain entries to accomplish one or more of the following
configuration tasks for each IRIX GSN network interface:

* For an IRIX HARP client
Configure the ULA for contacting the primary HARP service. When present, this
entry replaces the IRIX HARP default address. This same configuration must be
made on every IRIX HARP host in the LIS.

* For an IRIX HARP client
Configure one or more ULAs for contacting alternate (backup) HARP servers.

¢ For an IRIX HARP server
Add static entries to the HARP table to provide address resolution for hosts that do

85

Installing and Configuring IRIX GSN

86

not support dynamic HARP. These entries must be added to the table on the LIS’s
HARP server and to the clients that do not support dynamic HARP; optionally, the
entries can be added to HARP clients in the LIS.

Note: The gsnarp.options file is read automatically during system startup. The
Jetc/init.d/network script calls /etc/init.d/metwork.gsn1 to process the HARP server
configuration entries in this file and /etc/init.d/network.gsn2 to process the static HARP
table entries in this file.

Adding Server Addresses for Client

Follow these instructions to configure each HARP client:
1. Open /etc/config/gsnarp.options.

2. To configure the ULA for contacting the primary HARP server, enter a line similar
to one of the following examples of primary and alternate servers for two separate
GSN networks. In addition to configuring the IRIX HARP client, this entry is also
loaded into the local HARP table as a static entry.

$server gsn0 00: 10: 3b: ff: 00: 25
$al ternate gsnO 00: 10: 3b: ff: 00: 26
$server gsnl 00: 10: 3b: ff:01: 25
$alternate gsnl 00: 10: 3b: ff:01: 26

Adding Static HARP Table Entries

The /etc/config/gsnarp.options file may also contain static HARP entries. Each entry maps
a network connection name (or INET address) to a Universal LAN MAC address (ULA)
for a host that does not support dynamic HARP. The ULA is for any type of HIPPI-based
system.

If the LIS has any members that do not support dynamic HARP, a static HARP table entry
for each such host must exist in the HARP table configuration file of the LIS" HARP
server and on each host that does not support dynamic HARP. These entries do not need
to exist on the dynamic HARP clients.

Follow these instructions to configure static entries for the HARP table:
3. For each host that needs a static HARP entry, add a line similar to the following;:

name xx. xx: xx. xx: xx. xx #host is a GSN system

Individual Configuration Tasks

where name is the remote host’s network connection name or INET address as listed
in the /etc/hosts file and xx: xx: xx: xx: xx: xx is the remote endpoint’s 6-byte Universal
LAN Address (also known as MAC address) in colon-separated hexadecimal
notation. For example:

amazon-gsn0 08: 00: 56: 78: 9a: bc
223.209.1.18 08:00: 70: 9B: FF: 8E
hip-nile 08: 00: 56: 78: 7c: 92

The IRIX HARP software does not check or verify these values. It is the system
administrator’s responsibility to ensure that each entry is both valid and correct.
The ULA value must be the exact ULA (IEEE address) for use as the Destination
ULA in HIPPI-6400-PH headers and in the MAC Header of HARP packets.

Note: Do not create an entry in this format for any system for which a $ser ver or
$al ternate entry already exists in this file.

Loading the New Configuration

Follow these instructions to reconfigure IRIX HARP with the new parameters and data
in the configuration file:

4.
5.

Save the file.

Use the ifconfig command to shut down each GSN network interface for which a
change has occurred in a $ser ver or $al t er nat e entry:

ifconfig gsn# down
where the gsn# matches the changed or new entries in the gsnarp.options file.

Use the following command to purge only the dynamic entries and leave the static
entries and HARP server entries in the table:

gsnarp -p
Use the following command to invoke gsnarp. This reconfigures IRIX HARP for any

disabled network interfaces and loads the entries from the gsnarp.options file into the
new HARP table:

gsnarp -f

Note: If a dynamic entry already exists for an INET address that was added as a
static entry, the gsnarp command fails, the dynamic entry remains in the database,
and the static entry is not added to the table. Wait for the dynamic entry to age and
disappear from the table, then try again.

87

Installing and Configuring IRIX GSN

88

8. Use the ifconfig command to start each GSN network interface that was disabled:
ifconfig gsn# up

Edit hosts File

The /etc/hosts file maps network connection names' (commonly referred to as hosts) to INET
addresses. Each time the IP-over-GSN and/or ST-over-GSN driver starts (for example,
ifconfig gsn# up), it uses information from this file to configure the interfaces. There must
be one entry in the hosts file for each local IRIX GSN connection; this statement is true
even in environments that are using an NIS or DNS server on an attached LAN. The local
hosts file must exist so that the network interface(s) can be configured during system
startup, before the NIS service is accessible. Each address in this file must also exist in the
Jetc/config/netif.options file; the strings (names) in the two files must be identical.

The entries must be similar to the example below, which illustrates four IRIX GSN
interfaces for a system whose hostname is amazon:

223.209.1.2 gsn0O- amazon. brazil.com gsnl-amazon
223.209.2. 4 gsnl-anmazon. brazil.com gsn2- amazon
223.209.3.16 gsn2- anmazon. brazil . com gsn3- anazon
223.209.4.32 gsn3- amazon. brazil . com gsn4- anazon

Note: For systems that have a primary interface served by an NIS or DNS server, this
information must also be added to that server’s database.

Edit ifconfig-#.options File

Each /etc/config/ifconfig-#.options file configures one IP network interface. The # in the
filename matches the numeral in the i f #name entry in the netif.options file. Table 2-1 lists
the operational parameters that can be controlled with this file. Each instance of this file
is optional; when a file does not exist for a specific network interface, the default values
are used (as listed in Table 2-1).

! A network connection name is associated with an IP address (by an entry in the /etc/hosts file) and with
an IP network interface (by an entry in the /efc/config/netif.options file). For example, for the entries
“223.209.1.2 gsnl-amazon; iflname=gsn0 and ifladdr=gsn-amazon,” 223.209.1.2 is the IP address,
gsnl-amazon is the network connection name, and gsn0 is the IP network interface name. Due to UNIX
convention, the hostname (in the /etc/sys_id file) for this machine is probably amazon.

Individual Configuration Tasks

For IRIX GSN, the parameters that are most commonly configured are netmask and local
buffer areas. For a complete description of the IP parameters that can be configured in
this file, see the ifconfig man page.

Configuring Netmask / LIS Address Space

If your site is using variable-length INET addressing or is dividing its INET network
address space into subnets, place a line like this in the ifconfig-#.options file. The netmask
entry determines the number of separate address spaces (LISs) possible within the INET
address space and the number of hosts possible within each LIS.

net mask Oxyour_netmask

where your_netmask is a 32-bit value in hexadecimal notation in which each local network
bitis a 1 and each local host bit is a 0. For example, FFFFFFEQ subdivides a Class-C INET
network address into 8 subnets (LISs) with up to 30 hosts each by dividing the final byte
(the 8 bits of host portion) into 3 bits of additional network address and 5 bits of host
address (E0=1110 0000 binary).

Hint: From the 32 values possible with a 5-bit local host portion, 00000 and 11111 are not
usable, leaving 30 local host addresses available.

Configuring TCP Local Buffer Areas

To obtain optimal TCP/IP performance on an IRIX GSN interface, the size of the local
buffers for handling outstanding/in_transit TCP/IP data must match the sizes used on
the other (remote) systems. If possible, the IRIX GSN default value (524288 bytes) should
be configured on all the GSN interfaces within the GSN fabric. If this default cannot be
used throughout the fabric, you must create an ifconfig-#.options file for each IRIX GSN
interface and set the local buffering (sspace) value to the value selected for the other
systems within the GSN fabric.

To configure the size of the TCP local buffer areas (in bytes), create an ifconfig-#.options
file for the IRIX GSN interface and place these lines in the file:

sspace nnnn
rspace nnnn

where nnnn is any value, divisible by 1024, between 1024 and 524288.

89

Installing and Configuring IRIX GSN

Keep the following in mind:

e If the memory used by TCP/IP applications is an issue, you can obtain nearly full
performance by using 262144 (256%1024), instead of the default 524288 (512%1024).

e Ifrspace is set to a value significantly smaller than the value used for sspace, TCP
acknowledgments (ACKSs) can be delayed. This can have a negative effect on
performance.

e For large TCP windows to work, the t cp_wi nscal e and t cp_t secho variables in
the /var/sysgen/master.d/bsd file must be set to 1 (their defaults).

Summary of Network Interface Operational Parameters and Default Settings

Table 2-1 lists the operational parameters that can be controlled with each
Jetc/config/ifconfig-#.options file and the default values that are used for each parameter
when the file does not exist or when there is no entry in the file for that item.

Table 2-1 IP Network Interface Operational Parameters
Parameter Default Setting for GSN Description
Interfaces
Netmask The mask, appropriate for the ~Value used by system to know which bits

INET address’ Class, that does of the INET address are used locally to
not extend the network portion identify hosts and which bits identify local
or reduce the host portion of ~ subnets (that is, LISs).

the address.

Broadcast address off Value used by system for broadcasting.

ARP off Enables/disables address resolution
(ARP).

Routing metric 0 Number of hops added to the hop count
for this interface. The higher the number,
the less likely the interface will be selected
as a route by the routing module.

sspace 524288 Value used by the transmitting TCP/IP

module for size of buffering for
transmitted but outstanding
(unacknowledged) data for a specific GSN
connection.

90

Individual Configuration Tasks

Table 2-1 (continued) IP Network Interface Operational Parameters

Parameter Default Setting for GSN Description
Interfaces
rspace 524288 Value used by the receiving TCP/IP

module for size of buffering for incoming
data that is not yet passed to the
application for a specific GSN connection.

Automatic startup ~ up When the parameter is set, each system

restart configures and starts this interface.

Edit master.d/gsn File

The /var/sysgen/master.d/gsn file configures the IRIX GSN hardware device driver and the
hardware. This configuration is optional because all parameters have default settings
that are considered optimal for most sites. The settings in this file affect all SGI GSN
boards installed in the system.

The specific items that are configurable vary from release to release, so they are explained
fully within the file. Here are a few of the more important items:

Size of maximum transmission unit. i f _gsn_nt u: valid values are 0-65,280 which is
the GSN default, or 1 to (2*2 minus 1) inclusive.

Enable/disable onboard (hardware) IP checksumming for reception, for
transmission, for both, or for neither. i f _gsn_cksum valid entries are O=disabled,
1=receive_only, 2=transmit_only, and 3= both.

Operate GSN board in onboard loopback mode. gsn_use_| oopback=1 enables
internal loopback and gsn_use_| oopback=0 is for normal operational.

Note: Setting gsn_use_| oopback is not required when the hardware loopback
connector is used.

Number of small buffers (2 KB is default size for each buffer) passed by the driver to
each IP reception entity on the GSN board. Note that one IP reception entity is
associated with each activated interrupt queue (QID).

if_gsn_small_nbuf _entries: valid values are 0 to 8,192 inclusive.

Number of large buffers (16 KB is default size for each buffer) passed by the driver
to each IP reception entity on the GSN board. Note that one IP reception entity is

91

Installing and Configuring IRIX GSN

92

associated with each activated interrupt queue (QID).
i f_gsn_l arge_nbuf _entri es: valid values are 0 to 1024 inclusive.

¢ Number of 5 microsecond increments (ticks) for loading the interrupt holdoff timer.
While this timer is counting, the hardware does not generate interrupts to the
driver. A value of 40 means that interrupts are not generated any faster than one
every 200 microseconds. Adjusting this parameter affects latency and throughput.
The optimal value depends on site-specific network traffic patterns and application
performance requirements. gsn_i nt r _hol dof f _t i cks: valid values are 0 to (2%
minus 1) inclusive.

* Size of queue for Admin micropackets awaiting transmission.
gsn_adm n_desc_entri es: valid values are 2, 4, 8, 16, and 32.

* Number of unanswered HARP registration packets that results in the client making
the alternate HARP server into the primary one. has_hyst er esi s: valid entries are
1 to (2°2 minus 1) inclusive.

After editing this file, follow the instructions in “Building a New Driver Into the
Operating System” on page 94 to start using the new configuration.

Edit netif.options File

The /etc/config/netif.options file maps local network connection names (or IP addresses) to
IRIX GSN network interface names (for example, gsn0, gsnl, and so on), and sets the
maximum number of network interfaces for the system. Each time the IP-over-GSN
and/or ST-over-GSN driver starts (for example, ifconfig gsn# up), it uses information
from this file to configure its interfaces. There must be a two-line entry for each IRIX GSN
network interface. Each address (i f #addr entry) in this file must also exist in the
/etc/hosts file; the strings in the two files must be identical.

The first entry in the netif.options file (that is, the pair of lines: i f 1name and i f 1addr)
defines the primary interface. In most situations, the primary interface should be
Ethernet or FDDI; however, when the GSN fabric supports broadcasting and the LISs on
the fabric are using dynamic client/server HARP, GSN can be configured as the primary
interface. Any system that functions as a client or server for NFS, NIS, or other major
client/server IP program should configure the network interface over which the
client/server program functions occur as the primary network interface.

Note: Systems that function as a client or server for bootp must configure Ethernet as their
primary network interface. The IRIX GSN driver is not included in the miniroot.

Individual Configuration Tasks

The example below illustrates a system with two IRIX GSN network interfaces (gsn#), an
FDDI interface (xpi0), and a primary Ethernet interface (¢f0). If this system’s hostname is
amazon, these IRIX GSN entries work with the examples of /etc/hosts file entries used in
the section “Edit hosts File.” A line that starts with a colon (:) is a comment.

i f lnane=ef 0

i f laddr =$HOSTNAME

i f 2nanme=xpi 0

i f 2addr =f ddi - SHOSTNANME

configuration associated with hardware device /hw gsn/0
i f 3nane=gsn0
i f 3addr =gsn0- $HOSTNAME

configuration associ ated wi th hardware device /hw gsn/1
i f 4dnane=gsnil
i f 4addr =gsnl1- $HOSTNAVE

Note: The use of the SHOSTNAME variable assumes that the system’s hostname has
been defined in the /etc/sys_id file.

IRIX, by default, allows up to eight logical network interfaces of any type to be
configured. To increase this maximum, edit the i f _numline in the netif.options file as
illustrated below. Change the default entry:

if_num=8

to a numeral equal to the number (decimal format) of logical IP network interfaces that
will be configured on this system. For example:

if_nunrl2

Enable Networking

To automatically enable the IP /ST network stacks each time the system is started, edit
the /etc/config/metwork file so that it contains the single word ONor on. If the file is missing,
add the file, or invoke the command-line utility chkconfi g network on.

Note: Enabling networking does not result in IP-over-GSN functionality; it only enables
the IP/ST software within the operating system to operate over whatever drivers are
available to service it. See “Edit netif.options File” for instructions that associate a
network device (that is, its network interface) with the IP /ST stacks.

93

Installing and Configuring IRIX GSN

Building a New Driver Into the Operating System

94

This section describes how to rebuild the operating system to include a totally new driver
or to include configuration changes to a driver that is already present. In either case,
complete all the configuration steps listed in the “Complete GSN Installation Process”
before rebuilding the operating system.

For the IRIX GSN subsystem to be functional, the IRIX operating system (kernel) that is
currently running the system must be rebuilt (after the configuration) to include the new
or reconfigured IRIX GSN driver. When changes are made to either of the following files,
or when new IRIX GSN software is installed, it is necessary to rebuild the operating
system:

® Jvar/sysgen/master.d/gsn
® Jvar/sysgen/system/gsn.sm

Note: After any configuration change, it is advisable to verify that the subsystem is
functional. Follow the instructions in “Verifying the IRIX GSN Subsystem” on page 135
to verify the functionality of the GSN subsystem.

Each set of instructions below builds a new operating system and starts it running. It is
not important which set of instructions you use. Note that in the second set, you shut the
system down twice.

Instruction Set 1

% su

Passwor d: thepassword

/etc/init.dl autoconfig

Autonmatically reconfigure the operating system(y or n)? vy
/etc/reboot

..... <various nessages are displayed on consol e>. ..
configuring gsnO as hostname

configuring gsnl as hostname

Instruction Set 2

% su
Password: thepassword
[etc/shut down

List of All Configurable Parameters for IRIX GSN

After the system shuts down, restart it by turning/pressing the reset/restart key or
button. When the following question is displayed, answer with yes ory.

Automatical ly reconfigure the operating system(y or n)? vy
<l og on>

% su
Passwor d: thepassword
/etc/reboot

After the system shuts down, again restart it by turning/pressing its reset/restart key or
button. When the above question is displayed, answer no or n.

List of All Configurable Parameters for IRIX GSN

Table 2-2 lists all the parameters that can be configured for the IRIX GSN product.

Table 2-2 Summary of Configurable Items for IRIX GSN
Parameter Required (R)/ Default Setting Location of How to Start Using the
Optional (O) Configuration New Configuration

Instructions

IP parameters:

assign netmask

map name (alias) to IP address

assign IP/INET address

map address/name to gsn#

enable IP networking
enable broadcast

ARP (i.e.,, HARP)

assign #s to GSN network interfaces O see page 67 page 69 init 0 or shutdown or reboot
(@) 0 for each page 88 ifconfig gsn# down, then
Class-defined host bit ifconfig gsn# up
and 1 for each netid bit
R none page 88 same as above
R none page 88 same as above
R none page 92 same as above
R disabled page 93 same as above
O automatic, if needed none same as above
@) see HARP entriesin ~ page 79
this table
(@) 65,280 bytes page 91 autoconfig, then reboot

maximum MTU size

95

Installing and Configuring IRIX GSN

Table 2-2 (continued)

Summary of Configurable Items for IRIX GSN

Parameter Required (R)/ Default Setting Location of How to Start Using the
Optional (O) Configuration New Configuration
Instructions
of IP reception entities/queues O 4 page 91 same as above
buffers for IP reception O 50 small and 50 large page 91 same as above
Hardware parameters:
ULA address NA with switch® switch provides addr instructions each time link is activated
for switch
NA for pt-to-pt read from PROM none with each restart
set hold-off timer for O page 91 autoconfig, then reboot
interrupts to CPU
buffers for IP reception (@) 50 small and 50 large page 91 autoconfig, then reboot
assign unit #s to GSN boards (@] usually, hardware #s page 67 init 0 or shutdown or reboot
match network
interface #s
HARP parameters:
HARP server Ofor fabricwith distributed dynamic ~ page 83
broadcasting HARP
O for assumes that server’s Figure 2-1and ifconfig gsn# down,
non-broadcast ~ ULA= 00:10:3b:ff:ff:e0 page 83 gsnarp -f -S, then
fabric ifconfig gsn# up
Rif LIS contains dynamic HARP page 86
any hosts that
do not support
dynamic HARP
O for other assumes defaults in page 91 autoconfig, then reboot
server [var/sysgen/master.d/gsn
parameters file are used

96

List of All Configurable Parameters for IRIX GSN

Table 2-2 (continued) Summary of Configurable Items for IRIX GSN

Parameter Required (R)/ Default Setting Location of How to Start Using the
Optional (O) Configuration New Configuration
Instructions
HARP client @) FF-FF:FF.FF:FF.FF to page 82
locate HARP service
on broadcasting fabric;
00:10:3b:ff:ff:e0 to
locate HARP server on
non-broadcasting
fabric
Rif defaults not see “HARP client” cell page 82 ifconfig gsn# down,
used (above) gsnarp -f -S, then
ifconfig gsn# up
HARP table O dynamic HARP
RonlywhenLIS none page 86 gsnarp -f

contains clients
that do not
support
dynamic HARP

a. NA stands for not applicable.

97

Chapter 3

Maintaining, Monitoring, Verifying, and
Troubleshooting IRIX GSN

This chapter describes how to maintain, monitor, verify, and troubleshoot the IRIX GSN

subsystem.

Commands Available for IRIX GSN

IRIX GSN can be monitored and maintained with the commands summarized in

Table 3-1.

Table 3-1 Utilities for Monitoring and Maintaining IRIX GSN

Command Function Page

Just/etc/gsnarp Configures ULA(s) for contacting interface’s HARP server(s). 82
Adds and deletes static entries to the HIPPI address resolution ~ 84
(HARP) lookup table (in kernel-resident memory). The HARP
table maps ULAs to INET (IP/ST) addresses.
Configures non-default address for contacting HARP server. 86
Displays non-default HARP servers that are configured, and the 132
content of the HARP table with status flags for entries.

Jusr/etc/gsncntl Provides control and status functions for the hardware and driver 102, 103
portions of the IRIX GSN subsystem, including display of GSN
port’s ULA.

/ust/etc/gsntest Verifies the functionality of the SGI GSN (HIPPI-6400) hardware, 136
without using the IP or ST network interfaces.

Just/etc/ttcp Verifies the functionality of IP over any physical-layer subsystem. 138

Jusr/etc/ping Verifies the functionality of IRIX IP network interfaces. Can be 138

used to verify that a gsn# IP network interface is functioning.

99

Maintaining, Monitoring, Verifying, and Troubleshooting IRIX GSN

Table 3-1 (continued) Utilities for Monitoring and Maintaining IRIX GSN

Command Function Page

Jetc/init.d/gsn Reconfigures all IRIX GSN network interfaces with HARP server 131
information in gsnarp.options file. This script calls ifconfig and
gsnarp commands.

fusr/etc/ifconfig Configures standard IP stack options for IRIX GSN network 81
interfaces (that is, ifconfig gsn#). Each ifconfig up of an IRTX GSN
network interface, resets the SGI GSN hardware.

Jusr/etc/netstat Displays network parameters (including INET and ULA/MAC 138,141
addresses), traffic statistics, and status information for
IP-over-GSN and ST-over-GSN. When an IRIX GSN IP/ST
network interface (gsn#) is not configured, the disabled interface
is listed, but without an INET address.

Instructions for Common Procedures

This section describes some procedures that are commonly used to monitor and maintain
the IRIX GSN subsystem. All of the IRIX GSN utilities (gsnmap, gsncntl, and gsntest)
require the user to have superuser (root) privileges. Table 3-2 lists the procedures:

Table 3-2 Common Procedures for Monitoring and Maintaining IRIX GSN
Procedure Utility Page With
Instructions
Hardware:
Check status of hardware gsnentl 103
Configure IRIX GSN to loopback through the board none 102
Display ULA/MAC address for GSN hardware gsnentl; 102
netstat
Reset hardware (and network interface) ifconfig 101
Verify that software has located GSN hardware hinv 135
Verify/test GSN hardware gsntest 136

100

Instructions for Common Procedures

Table 3-2 (continued) Common Procedures for Monitoring and Maintaining IRTX GSN

Procedure Utility Page With
Instructions
IP/ST Software:
Enable/disable IP protocol stack chkconfig 93
Enable/disable each IP/ST-over-GSN network interface ifconfig 101
Check status of IP traffic/interface netstat-pip 130
Check status of ST traffic/interface netstat -p stp 130
HARP/ARP Software:
Change address for contacting primary server gsnarp -S 82
Change address for alternate (backup) HARP server(s) gsnarp -A 82
Add/delete static entries to HARP table gsnarp 86
Display current HARP server(s) gsnarp -S 132
Check status of HARP table gsnarp -a 132

Disable or Enable IP/ST Interface

To enable/disable the network interface to an IRIX GSN port that service the IP protocol
stack and the ST protocol stack, use the standard /usr/etc/ifconfig command:

ifconfig [gsn#] down
ifconfig [gsn#] up

Note: This sequence of commands also resets the XTALK interface(s) to the SGI GSN
hardware, which results in a warm reset of the hardware.

101

Maintaining, Monitoring, Verifying, and Troubleshooting IRIX GSN

102

Display ULA (MAC) Address

To display the ULA (MAC) address for the SGI GSN hardware, invoke this command:

% gsncntl [gsn#] getnac
PROM ULA Addr ess: 00: 01: 3b: ff: 00: Oe
Devi ce ULA Address: 00:01:3b:ff:00:Oe

This command displays both the ULA (MAC) address that is stored in (read from) the

GSN board’s PROM and the ULA that is currently being used for GSN communications,
which is either the address assigned from the attached GSN switch or the address read
from PROM. The IRIX GSN subsystem uses the “Switch ULA” for all communications.

You can also use the netstat command, which displays only the ULA that is currently
being used by the GSN subsystem; netstat does not read from PROM:

% netstat -ina
gsn0 16256 <I NET netid> <conpl ete I NET address>
<ULA/ MAC addr ess>

For example:

% netstat -ina
gsn0 16256 192.0.113 192.0.113.1
00: 01: 3b: ff: 00: Oe

Configure the SGI GSN Board for On-board (Internal) Loopback
Operation

To configure the SGI GSN board to loop outgoing traffic through the SHAC ASIC and
back into the same system (host) that transmitted it, use the following procedure.
Operating the board in this mode tests the software (that is, the host protocol stacks, the
driver, and the firmware on the board) associated with the IRIX GSN subsystem as well
as the SHAC ASIC on the board. This mode of operation does not utilize the GSN
hardware (that is, the SuMAC ASIC and the panel plate receptacle).

Instructions for Common Procedures

1. Edit the SGI GSN board’s configuration file, as described in “Edit master.d/gsn
File” on page 91.

Change this default entry: gsn_use_| oopback = 0
to this: gsn_use_l oopback = 1
2. Use ifconfig to disable then enable (reset) the GSN interface:

% ifconfig gsn# down
% ifconfig gsn# up

To return the board to normal operation, change this variable back to its default setting,
then disable and enable the interface.

Note: In this board-loopback mode, the functionality of the entire SGI GSN board cannot
be verified. Use an external loopback connector for complete hardware verification.

Check Status of Hardware

There are utilities for checking the status of the following functions:

* verify that hardware was located during startup, page 104

e firmware version currently running on hardware, page 104

* ULA (MAC address) currently being used by network interface, page 102

¢ state of GSN physical link, page 104

* operational statistics for the GSN hardware, including SHAC ASIC, page 106
e XIO slot errors, page 107

e ST traffic errors, VC# receive and transmit status in Table 3-6 on page 108

¢ status for GSN element, page 118

e HIPPI-6400 ADMIN traffic, page 127

103

Maintaining, Monitoring, Verifying, and Troubleshooting IRIX GSN

104

Verifying That GSN Hardware Was Found

To verify that the operating system located the SGI GSN hardware during startup, use
this command:

/bin/hinv -d gsn
<di splay for single-board product>
GSN 1-XI O adapter: unit #, in nodule # 1/O slot #
<di spl ay for two-board product>
GSN 2-XI O adapter: unit #,
XIO port 1 in nodule # I/O slot #
XIO port 2 in nodule # I/O slot #

Displaying Firmware Version

To display the version of firmware that is currently running on SGI GSN hardware, use
this command:

gsncntl [gsn#] versions

where gsn# identifies the SGI GSN board for which you want information.

Displaying ULA (MAC) Address

See “Display ULA (MAC) Address” on page 102.

Displaying Status of Physical Link

To display the status of the SGI GSN board and the physical link attached to it, use the
command below. The status information is described in Table 3-3.

gsncntl gsn# status device

Instructions for Common Procedures

Table 3-3 Status Information for GSN Physical Link

Status Item

Normal Value

Description

State:

NULL

CFG

SUMAC_POLL

EX_ELEM

ULA_REQ

LNK_RDY

Flags:
LNK_SWITCH

LNK_RDY

LNK_RDY

LNK_SWITCH

The GSN states are sequential. They are listed here in the
order in which they occur during startup.

The driver has reset the GSN hardware but has not yet
been able to configure it. This state is normal for a few
seconds during startup.

The IRIX GSN driver has successfully configured the GSN
hardware, but has not yet made contact with the SUMAC
ASIC. This state is normal for a few seconds during
startup.

The driver has started communication with the
HIPPI-6400 (SuMAC) ASIC on the GSN board;
HIPPI-6400 ADMIN micropackets are being exchanged.
This state is normal for a few seconds during startup.

The local GSN subsystem has transmitted an
EXCHANGE_ELEMENT_FUNCTION Admin
micropacket and received a reply from the local SUMAC;
the local GSN subsystem is attempting to contact the
system at the other end of its physical link.This state is
normal for a few seconds during startup; if it persists,
there may be a problem with the remote GSN system or
the physical link.

The local GSN subsystem has completed the
EXCHANGE_ELEMENT_FUNCTION with its neighbor,
has requested a ULA from the attached switch, and is
waiting for a reply. This state is normal for a few seconds
during startup; if it persists, there may be a problem with
the attached switch.

The local GSN subsystem (driver and hardware) is ready
to operate. This is the normal operational state.

The local GSN subsystem believes that its neighbor
element is a GSN switch. That is, the physical link (cable)
is attached to a GSN switch.

105

Maintaining, Monitoring, Verifying, and Troubleshooting IRIX GSN

106

Table 3-3 (continued) Status Information for GSN Physical Link

Status Item Normal Value Description

LNK_P-2-P The local GSN subsystem believes that its neighbor
element is another GSN endpoint (not a switch). That is,
the physical link (cable) is attached to a HIPPI-6400
element, but is not attached to a HIPPI-6400 (GSN) switch.

LNK_EXT_LOOP The SGI GSN board is operating with a loopback
connector/cable installed. LNK_P_2_P indicates that the
physical link (cable) attached to another GSN endpoint
(not a switch).

LNK_INT_LOOP The SGI GSN board is configured to operate in
board-loopback mode.

Displaying Status of Local GSN Hardware

To display status information for an SGI GSN board, use either of the following
commands.

gsncntl [gsn#] status

or

gsncntl -v [gsn#] status
<ver bose node expands general error counts into specific errors>

gsn# identifies the SGI GSN board for which you want information

The displayed information is described in Table 3-4. Most of the counted items are
initialized to zero upon reset of the board and roll over to zero upon reaching 2% (that is,
at4,294,967,295); exceptions are explained in the table. Check all of the cables and nodes
between this system and the system(s) you tried to ping. “Verify the SGI GSN
Hardware” on page 136 describes how to do this for the local SGI GSN port and its link.

Instructions for Common Procedures

Table 3-4 GSN Status Information for Copper-Based XIO Hardware
Status Item Description
Link state and flags See Table 3-3.

ADMIN Packet Count and Errors See Table 3-9.

SHAC Status See Table 3-5 and Table 3-6. Display shows errors collected
by the SHAC ASIC on the main SGI GSN board.

Hop Status See Table 3-7. Display shows status for local HIPPI-6400-PH
element (hop 0, SuMAC), as well as the remote (hop 1)
link-end element.

Displaying Status of XIO and Network-layer Processing (SHAC ASIC)

To display status information for the SHAC ASIC, use this command. (The SHAC ASIC
is the component on the main SGI GSN board that processes XIO [that is, XTALK] and
network-layer traffic.) Table 3-5 describes the basic display; Table 3-6 describes the
verbose display that occurs when the - v option is used.

gsncntl [gsn# status shac

or

gsncntl -v [gsn#] status shac
<ver bose node expands general error counts into specific errors>

107

Maintaining, Monitoring, Verifying, and Troubleshooting IRIX GSN

108

Table 3-5

SHAC ASIC Status: Basic Listing

SHAC Status Item

Normal Value Description

Error interrupt status

QIDs with interrupts pending

VC# receive error status

Transmit error status

OK

None

OK

OK

A count of the total number of error interrupts generated by
the SHAC ASIC.

Use the verbose option (- v) to list the specific errors.

A count of the total number of system interrupt queues (QIDs)
that currently have interrupts (generated by the SHAC ASIC)
awaiting processing by the operating system.

Use the verbose option (- v) to list the specific QIDs that have
interrupts pending.

A count of the total number of errors detected by the SHAC
ASIC’s receive logic on the identified GSN virtual channel
(VC#H).

Use the verbose option (- v) to list the specific errors.
A count of the total number of errors detected by the SHAC
ASIC’s transmit logic.

Use the verbose option (- V) to list the specific errors.

Table 3-6

SHAC ASIC Status: Verbose Listing

SHAC Status Item

Normal Value Description

Error interrupt status

XtalkO error

Xtalk1 error

MAC error

IC error

SSRAM parity error

Receive VC# error

OK
0

Error interrupts generated by the SHAC ASIC.

An error occurred on the main GSN board’s XIO slot (that is,
XTALK interface 0).

An error occurred on the additional GSN board’s XIO slot (that
is, XTALK interface 1 located on the XTOWN board).

An error occurred on the SUMAC ASIC.

An error was detected by the SHAC port that connects to the
SuMAC ASIC.

An SSRAM parity error was detected.

An error was detected by the receive logic for the indicated VC
0,1,2,0r3).

Instructions for Common Procedures

Table 3-6 (continued) SHAC ASIC Status: Verbose Listing

SHAC Status Item Normal Value Description
Transmit error 0 An error was detected by the transmit logic.
Synthetic port error 0 An error occurred during a read or write of the area in SSRAM

where information is kept for IP processing and hardware
interrupts to the driver.

Total I desc. oflow 0 SHAC cannot keep up with the interrupts being generated (by
all types of traffic). Specifically, one or more QIDs overflowed.

ST I desc. oflow 0 SHAC cannot keep up with the ST traffic occurring on at least
one of its QIDs. Specifically, the interrupts being generated by
the ST traffic to a specific QID overflowed the queue.

Total I desc. uflow 0 The counts of unprocessed interrupts on one or more QIDs
kept by the GSN driver and the SHAC ASIC are out of sync
with each other. SHAC’s count has fewer unprocessed
interrupts than the driver’s count.

ST I desc. uflow 0 The counts of unprocessed ST interrupts on one or more QIDs
kept by the GSN driver and the SHAC ASIC are out of sync
with each other. SHAC’s count has fewer unprocessed ST
interrupts than the driver’s count.

DMA engine error 0 The on-board DMA logic has been halted because an error was
detected on a XTALK interface or the SSRAM interface. This is
a secondary error indication.

QIDs with interrupts pendin None Identifies the QIDs that currently have interrupts awaitin,
ptsp) y P)
processing. 1=one or more interrupts are pending on this QID;
0=no interrupts pending on this QID.

QID 0 0
QID1 0
QID 2 0
QID 3 0
QID 4 0
QID5 0
QID 6 0

109

Maintaining, Monitoring, Verifying, and Troubleshooting IRIX GSN

110

Table 3-6 (continued)

SHAC ASIC Status: Verbose Listing

SHAC Status Item

Normal Value Description

QID7

VC# receive error status

Sideband error

Underrun error

Overrun error

Fatal error

SSRAM error

STC invalid port error

STC invalid key error

STD invalid port error

STD invalid BID error

STD invalid key error

0
OK

Errors detected by the SHAC ASIC’s receive logic.
VC# identifies the GSN virtual channel (0, 1, 2, and 3).

An incoming HIPPI-6400 micropacket had its ERROR bit set.

A TAIL bit was received unexpectedly. That is, an incoming
HIPPI-6400 micropacket had its TAIL bit set before the receive
logic received the number of micropackets implied by
message’s M_len field.

A TAIL bit was not received when expected. That is, the TAIL
indicator was not set in the final HIPPI-6400 micropacket for
the message, as calculated from the message’s M_len field.

The SHAC ASIC’s connection to the SUMAC ASIC detected a
data or control parity error, a Data Valid error, or an external
Link or Warm Reset. The RX logic cannot recover from these
conditions. When one occurs, SHAC must be reset. All
incoming data is discarded and all pending DMAs are aborted.

The receive logic detected an SSRAM parity error.

The ST header on an incoming Control Operation contained an
invalid entry: for example, an incorrect destination port or an
invalid key.

The ST header on an incoming Control Operation contained an
invalid key for the destination port.

The ST header on an incoming Data Operation contained an
invalid destination port entry.

The ST header on an incoming Data Operation contained an
invalid Mx parameter. Either the Mx parameter itself was
invalid (for example, greater than 4095), or the local
information for the specified Mx parameter is not valid.

The ST header on an incoming Data Operation contained an
invalid key for the destination Mx.

Instructions for Common Procedures

Table 3-6 (continued)

SHAC ASIC Status: Verbose Listing

SHAC Status Item Normal Value Description

STD invalid BUFX error 0

STD BUFX range error 0
STD offset error 0
STD STU num error 0
STD read timeout 0
SRC port 0 oflow 0

The ST header on an incoming Data Operation contained an
invalid BUFX value. Either the BUFX value specified an
unsupported striping feature or the local information for the
specified BUFX is invalid.

The Bufx in the Schedule Header of an ST Data Operation does
not fall in the range allowed for the B_id as specified by the
Base_Bufx and Bufx_Range fields in the B_ID table entry. Any of
the following conditions result in this error:

e ST Schedule Header’s Bufx[31:29] does not equal
Base_Bufx_31_29 in the B_ID table.

e ST Schedule Header Bufx[19:0] is less than Base_Bufx_19_0
from the B_ID table entry.

¢ ST Schedule Header Bufx[19:0] is greater than the sum of
Base_Bufx_19_0 and Bufx_Range from the B_ID table entry.

An ST Data Operation included incorrect offset of data length
values. The Offset (from its Schedule Header) plus the length of
the DMA portion of the STU is greater than the destination
buffer size:

Offset + (M_len - 0x30) > (2**Bufsize).

This error also occurs when Offset[6:0] is non-zero when
Bufx[31:29] is non-zero; this is a violation of the alignment
restriction for memory striping.

The STU sequence numbering for an ST Data Operation is not
sequential with respect to the previous STU for the same B_id.
This error can also occur when the Poisoned (P) bit in the B_ID
table entry is set.

During memory striping or dual-path operation, a readback
timeout occurred on one of the XIO ports.

SHAC dropped at least one ST Control Operation due to an
overflow on its queue for Port 0.

111

Maintaining, Monitoring, Verifying, and Troubleshooting IRIX GSN

Table 3-6 (continued)

SHAC ASIC Status: Verbose Listing

SHAC Status Item

Normal Value Description

STD 6-way offset error

Transmit error status
SSRAM parity error

STD invalid BUFX error

Xtalk read req. timeout

Xtalk read access error

PULL desc. timeout

PULL desc. access error

FIFO CR underrun error

FIFO underrun

0

OK

An error occurred during 6-way striping of data. This error
occurs when, for a six-way striped ST Data Operation, the
Offset (from the Schedule Header) plus the length of the DMA
portion of the STU is greater than three-quarters the
destination buffer size:

Offset + (M_len - 0x30) >.75*(2**Bufsize)

The transmit logic encountered an SSRAM parity error.

The BUEX table entry is invalid for the specified Src_Bufx
parameter in a transmit descriptor for a Data Operation. The
transmission was not performed.

The transmit logic encountered a timeout error for a read
request on the XTALK interface. This error is fatal to the GSN
interface because the SHAC ASIC forces the SuMAC ASIC to
drop all micropackets.

The transmit logic encountered an error in a read request on
the XTALK interface. This error is fatal to the GSN interface
because the SHAC ASIC forces the SUMAC ASIC to drop all
micropackets.

The transmit logic encountered a timeout error on the XTALK
interface for a read request done in Pull Mode.

The transmit logic encountered an error in a read response on
the XTALK interface.

A transmission was initiated by a user process when no credits
had been allocated to the process. The transmission was not
performed. This error cannot be produced by transmissions
initiated by the kernel.

The pointers indicated that there was a descriptor on SHAC's
transmission queue, but SHAC found none when it tried to
read the queue. This error can occur only if software writes the
queue’s consumer pointer, which is illegal during normal
operation.

112

Instructions for Common Procedures

Table 3-6 (continued)

SHAC ASIC Status: Verbose Listing

SHAC Status Item

Normal Value Description

FIFO overrun

User virt. conn. error

User RAW error

User invalid port error

Source offset error

Buffer range error

0

The pointers indicated that there were empty slots on SHAC's
ST transmission queue, but the queue was full when a user
process tried to initiate a transmission (that is, write to the
queue). This error can occur only if software writes the
queue’s producer pointer, which is illegal during normal
operation. This error cannot be produced by transmissions
initiated by the kernel.

A user process attempted to transmit an ST Control Operation.
This is illegal. The transmission is not performed.

A user process attempted to transmit a raw ST Operation. This
is illegal. The transmission is not performed.

A user process initiated a transmission for an invalid PORT.
The transmission is not performed. This error cannot occur
when the initiator is the kernel.

A user process initiated a transmission using an invalid
Src_Offset value; the value was greater than or equal to the
source buffer size specified in Src_Bufsize in the PORT table.
The transmission is not performed. This error cannot occur
when the initiator is the kernel.

A user process initiated a transmission and one of the
following errors occurred:

e The Src_Bufx field is less than Base_Bufx in the PORT table
entry.

® Src_Bufx[31:29] is not equal to Base_Bufx[31:29] in the PORT
table entry.

 The data to be transmitted extends past the last valid Bufx in
the series of valid Bufxs for the PORT.

The transmission was not performed. This error cannot be
produced by a transmission initiated by the kernel.

113

Maintaining, Monitoring, Verifying, and Troubleshooting IRIX GSN

Table 3-6 (continued)

SHAC ASIC Status: Verbose Listing

SHAC Status Item

Normal Value Description

Stripe VC error

Transmit Error Source

VCo0

VC1

vC2

VC3

P vcCl
H2F FIFO

Unknown

None
Local/Remote Xtalk Error Status

Req. unsupported OP

Req. unsupported size

0

OK
0

A user process initiated a transmission in which the Src_Bufx
value indicated striping, but the transmission was to a VCO0,
VC1, or VC2, which is illegal; striping is legal only on VC3. The
transmission was not performed. This error cannot be
produced by a transmission initiated by the kernel.

Identifies the source (the cause) of the first error recorded in
the Transmit error status section. (This section consists of the
rows immediately above this row in this table.) The item
marked with a 1 is the source; only one item is marked.

When 1, indicates error was encountered on VCO.
When 1, indicates error was encountered on VC1.
When 1, indicates error was encountered on VC2.
When 1, indicates error was encountered on VC3.
When 1, indicates error was caused by IP traffic on VCI.

When 1, indicates error was caused by the queue that holds
host-to-board (that is, operating system to firmware)
interrupts/commands.

When 1, indicates that the source for the captured error is
unknown.

When 1, indicates that no error source is identified.

bit 0: SHAC received a crosstalk request packet type that it
does not support: Fetch and Operation, Store and Operation,
Special Packet Request, or Reserved. Note: Even numbered
reserved packet types are considered by SHAC to be requests.
Odd numbered reserved packet typesare considered by SHAC
to be responses and will cause the XRESP_UNEXPECTED
bit to set.

bit 1: SHAC received a Crosstalk request packet type/size
combination that it does not support. All register accesses
must be a single word, i.e., the data enables must be OxOF or
OxFO.

114

Instructions for Common Procedures

Table 3-6 (continued) SHAC ASIC Status: Verbose Listing

SHAC Status Item Normal Value Description

Req. frame error 0 bit 2: The datasize in the command word of arequest did not
match the actual size of the request packet as framed by the
head and tail bits. Thisisasevereerror. If it occurs, there may
be other side effects, such as lost credits and spurious
responses.

Req. err/invalid pkt 0 bit 3: Either the ERROR bit was set in the command word of
arequest, or the Micro-Packet Invalid bit was set in the
sideband of one or more micropacketsin a Crosstalk request
packet.

Req. invalid address 0 bit 4: The reguested address does not exist. This error will
only occur when arequest ismadeto areserved location (i.e.,
ahole) inthe SHAC register space. Accesses to unconfigured
SSRAM or PROM locations will not set this bit.

Req. access error 0 bit 5: A write request was received for aread-only register or
aread request was received for awrite-only register or
descriptor FIFO tail.

Regq. fifo oflow 0 bit 6: A request was received when the request FIFO wasfull.
Thisindicates a credit count problem, i.e., the Crossbow was
programmed to reflect more than four request credits for
SHAC. Because the reguest that overflowed the FIFO may
have been partially written to the FIFO, thiserror will often be
followed by aXREQ_FRAME_ERR.

Req. drop mode enabled 0 bit 7: An error was detected for which it would be unsafe to
continue executing write requests. All writesare dropped until
SHAC isreset or until aclear register isread on the SHAC
ASIC. To diagnose the failure, reads are allowed.

Req. fatal error 0 bit8: A condition was detected that indicates an inconsistency
internal to SHAC.

Resp. unexpected response 0 bit 9: An unexpected crosstalk response was received. A read
response with a TNUM value that is not associated with an
outstanding read request will cause this error. All write
responses will aso cause this error since SHAC does not
generate Write w/Response requests. Also, read responses
with data size = 3 (OVCL) will cause this error since SHAC
does not send requests of this sizes.

115

Maintaining, Monitoring, Verifying, and Troubleshooting IRIX GSN

116

Table 3-6 (continued)

SHAC ASIC Status: Verbose Listing

SHAC Status Item

Normal Value Description

Resp. frame error

Resp. err/invalid pkt

Xtalk req cnt oflow

Xtalk req ent uflow

Xtalk credit oflow

Xtalk credit uflow

Xtalk req timeout

LLP retry timeout

0

bit 10: The data size in the command word of a response did
not match the actual size of the response packet as framed by
the head and tail bits.

OR

A spurious micropacket without the sideband Head bit set was
received when a packet was not in progress.

bit 11: Either the ERROR bit was set in the command word of
aresponse, or the Micro-Packet Invalid bit was set in the
sideband of one or more micropackets in acrosstalk response
packet. Unrecoverable memory errors on DMA reads will
result in this error.

bit 12: Thecounter that keepstrack of the outstanding requests
sent by SHAC has overflowed. This could be caused only by

aninternal error in SHAC, sinceit should never send arequest
if this counter is at its maximum value.

bit 13: Thecounter that keepstrack of the outstanding requests
sent by SHAC has underflowed. Thiswill happen if the
Crosshow returns more request credits to SHAC than the
number of requests SHAC issued.

bit 14: The counter that keepstrack of the credits available to
SHAC for reguests and responses to the Crossbow has
overflowed. Thiswill happen if the Crossbow returns more
reguest and response credits to SHAC than the number of
reguests and responses SHAC issued.

bit 15: The counter that keepstrack of the credits available to
SHAC for requests and responses to the Crossbow has
underflowed. Thiscould be caused only by an internal error in
SHAC, sinceit should never send arequest or response if this
counter is at its maximum value.

bit 16: A Crosstalk read request to the host has not received a
responsein at least the time configured on the SHAC ASIC.

bit 17: The LLP has retried sending a micropacket
LLP MAXRETRY times without success.

Instructions for Common Procedures

Table 3-6 (continued) SHAC ASIC Status: Verbose Listing

SHAC Status Item Normal Value Description

LLP send retry == 256 0 bit 18: The LLP send retry counter (LLP_TX_CNT in
XT_STATUS) hasreached X' FF'.

LLP send retry 0 bit 19: An LLP retry was required on the LLP send side.

LLP recv errors == 256 0 bit 20: The LLP receive error counter (LLP_REC_CNT in
XT_STATUS) hasreached X' FF'.

LLP recv CB error 0 bit 21: A receive check bit error was detected by the LLP.

LLP recv SN error 0 bit 22: A receive sequence number error was detected by the
LLP

117

Maintaining, Monitoring, Verifying, and Troubleshooting IRIX GSN

118

Displaying Status of Closest GSN Elements (Hops)

To display status information for the two closest HIPPI-6400-PH (GSN) elements (hop 0,
hop1, and hop2), use this command:

gsncntl gsn# status elenments

The closest element (hop 0) is the SUMAC ASIC located on the local SGI GSN board; the
next closest element (hop 1) is the link end located at the other side of the physical link.
The identity of this element depends on the configuration of the GSN connection, as
illustrated in Figure 3-1. When a loopback device is installed, the hop 1 element is the
same local GSN element as hop 0; when a cable is connected, the hop 1 element is the
element at the other end of the cable (for example, switch or endpoint). Table 3-7
describes the gsncntl status elements display. Figure 3-1 illustrates the physical position
for each numbered GSN element; status messages refer to the items identified in this
illustration.

Note: When the SGI GSN board is configured for internal loopback, the hop 0 element
is the IRIX GSN driver. The local SUMAC ASIC is not available when the board is
configured for internal loopback.

Instructions for Common Procedures

With External Loopback

gsncntl status

gsntest
upper-layer Hop 2
source IRIX GSN driver

l T

Point-to-Point

gsncntl status

gsntest
upper-layer upper-layer
source destination

l T

With HIPPI-6400 Switch

gsncntl status

gsntest
upper-layer upper-layer
source destination

| T

Element's port to system

Local GSN Element
Hop O
Local GSN Element
Hop 1
SuMAC ASIC
Element's port to HIPPI-6400 fabric

Element's port to system
Local GSN Element / Hop 0

SuMAC ASIC
Element's port to HIPPI-6400 fabric

Element's port to system
Local GSN Element / Hop O

SuMAC ASIC
Element's port to HIPPI-6400 fabric

tx / source
rx / destination

Figure 3-1

tx / source
rx / destination

physical link / cable

physical link / cable

i T

Element's port to HIPPI-6400 fabric

Remote GSN Element / Hop 1

Element's port to
upper-layer sytem

Element's port to HIPPI-6400 fabric
Switch's GSN Element / Hop 1

Element's port to
upper-layer sytem

| T

GSN driver
Hop 2

physical link / cable

i T

Element's port to HIPPI-6400 fabric
Remote GSN Element / Hop 2

Element's port to
upper-layer sytem

l !

Physical Position of GSN Elements for Different Connection Scenarios

119

Maintaining, Monitoring, Verifying, and Troubleshooting IRIX GSN

Table 3-7 HIPPI-6400-PH Element (Hop) Status
Status ltem Normal Description
Values
Hop # Status: Status for the HIPPI-6400 physical element.

Port to endpoint’s system ready

Port to HIPPI-6400 fabric CLK2,
TRAINED,
LLP_OP,
VC_OP

When # = 0, status is for the SuUMAC ASIC on the local
SGI GSN board.

When # = 1, status is for the first element on the other
side of the physical link.

Current state of element’s port that connects to upper
layers. States are sequential and are listed here in the
order in which they occur. For hop 0, this information
is for the port that connects to the SHAC ASIC on the
GSN board.

shut down = the port is shut down.

reset = the port is being reset.

synchroni zi ng ssr = the portis trying to
synchronize itself with the port into the system.

ready = the portis operational.

Status for element’s port that connects to the
HIPPI-6400 fabric. Multiple status items can be listed
simultaneously.

CLK2 =the element detects the activity-monitor signal
(CLOCK?2) coming from the remote element.

TRAI NED = the element has successfully completed its
training sequence for dynamic adjustment of signal
skew over physical link.

LLP_OP = the port’s link-level protocol is operational.

VC_OP = the port’s virtual channels are operating
according to protocol.

120

Instructions for Common Procedures

Table 3-7 (continued) HIPPI-6400-PH Element (Hop) Status

Status ltem Normal Description
Values
Port to endpoint’s system OK Errors detected on the element’s port that connects to
Error Status the upper layers and the system. Errors are listed

alphabetically. For hop 0 (local element), this
information is for the SUMAC port that connects to the
SHAC ASIC on the GSN board.

2nd link=
link errors (data/ctl parity or data invalid errors) have
occurred on more than one clock cycle.

admn missing tail: VC hex_value=

an admin PDU (either GSN micropacket or SGI-LLP
message) did not end with Tail bit set. Table 3-8
explains VC hex_value.

credit-only on VC hex_value =
an illegal credit-only (TYPE=0xA) micropacket was
detected. Table 3-8 explains VC hex_uvalue.

ctl parity=
control parity error was detected.

data invalids=
the signal that indicates the presence of invalid data
was detected more than once in a single micropacket.

data parity in byte hex_value=

data parity error detected. Bit 7 covers most-significant
byte of data, bit 0 covers least-significant byte. When a
bitis set to 1, the corresponding data byte had an error.

ext link=
link error is asserted from system.

I C-SSR sanple =
this port’s SSR layer experienced an illegal clock
transitions.

XK=
no errors were detected since last startup /reset of
hardware.

121

Maintaining, Monitoring, Verifying, and Troubleshooting IRIX GSN

122

Table 3-7 (continued)

HIPPI-6400-PH Element (Hop) Status

Status Item

Normal
Values

Description

M ssing end of nsg on VC hex_value =

a GSN DATA micropacket without Tail bit was
followed by a HEADER or ADMIN micropacket.
Table 3-8 explains VC hex_value.

M ssing strt of nmsg on VC hex_value =

a GSN micropacket with Tail bit was followed by
DATA micropacket (HEADER was missing). Table 3-8
explains VC hex_value.

Rcvr tail timeout on VC hex_value =
receiver timed out before a GSN micropacket with Tail
bit arrived. Table 3-8 explains VC hex_value.

RX VC buf overfl ow on VC hex_value =
receiver’s buffer for the VC overflowed. Table 3-8
explains VC hex_value.

SG -LLP adnin extra tail on VC hex_value =
non-GSN protocol error in the SGI-LLP layer. Table 3-8
explains VC hex_value.

sndr credit=0 tinmeout on VC hex_value =
the credit=0 timeout expired due to internal VC full
assertion from system’s receiving port. Table 3-8
explains VC hex_value.

undefined pkt type on VC hex_value =

a GSN micropacket was detected whose type was not
Header, Data, or Admin. Table 3-8 explains VC
hex_value.

undef i ned val : hex_value =
TYPE value (in hexadecimal notation) read from last
detected undefined micropacket.

Instructions for Common Procedures

Table 3-7 (continued) HIPPI-6400-PH Element (Hop) Status

Status ltem Normal Description
Values
Port to HIPPI-6400 fabric OK Errors that have been detected on the element’s port
Error Status that connects to the HIPPI-6400 fabric. Errors are listed
alphabetically.

activity non lost =
activity monitor signal (CLOCK2) became inactive
after port had been operational.

admn missing tail: VC hex_value=

an admin PDU (either GSN micropacket or SGI-LLP
message) did not end with Tail bit set. Table 3-8
explains VC hex_value.

credit ovfl: VC hex_value=
more than 255 credits were received on the indicated
virtual channel. Table 3-8 explains “VC hex_value”.

ECRC rcv err cnt =

number of micropackets that were received with
ECRC errors in which the micropacket’s Error bit was
not set.

ECRC snd err cnt =

number of micropackets that were transmitted in
which the ECRC received from the system was
erroneous and the micropacket ERROR bit was not set.

LCRC err cnt =
number of micropackets that were received with
LCRC errors.

m ssing end of msg: VC hex_value =

a micropacket of Type=data without Tail bit set was
followed by Type=header or Type=admin. The
micropacket with its Tail bit set was missing. Table 3-8
explains VC hex_value.

m ssing start of nsg: VC hex_value =

a micropacket with its Tail bit set was followed by a
Type=data micropacket. The Type=header
micropacket was missing. Table 3-8 explains VC
hex_value.

123

Maintaining, Monitoring, Verifying, and Troubleshooting IRIX GSN

Table 3-7 (continued) HIPPI-6400-PH Element (Hop) Status

Status ltem Normal Description
Values
K=
no errors were detected since last startup/reset of
hardware.

rcv tail timeout: VC hex_value =

receiving VC timed out before final micropacket (with
its Tail bit set) for a message arrived. This error is called
the “stall timeout error” in the HIPPI-6400-PH
standard. Table 3-8 explains VC hex_value.

Retry cnt =
number of retransmissions that have occurred.

retry failed=
a retransmission failed, forcing port into shutdown.

RSEQ mi ssing cnt =

number of times the ACK timeout expired before an
expected RSEQ was received, resulting in a
retransmission.

RSEQ val err cnt =
number of times an incoming RSEQ value fell outside
the expected range, resulting in a retransmission.

rx vc buf overflow VC hex_value=
receiving VC’s buffer overflowed. See Table 3-8 for
explanation of VC hex_value.

SA -LLP admin extra tail: VC hex_value=
non-GSN protocol error in the SGI-LLP layer. Table 3-8
explains VC hex_value.

skew retrain failed=
skew compensation retraining sequence failed (after it
had been healthy).

skew retrain rst err =
skew compensation has not been successful since last
reset.

124

Instructions for Common Procedures

Table 3-7 (continued) HIPPI-6400-PH Element (Hop) Status

Status Item Normal

Values

Description

sndr credit=0 tineout: VC hex_value=

local source’s credit=0 timeout expired due to VC full
assertion from the element’s port to the system. This
error is called the “credit timeout error” in the
HIPPI-6400-PH standard. Table 3-8 explains VC
hex_value.

TSEQ val err cnt =

number of times a TSEQ value error was detected.
TSEQ errors are not counted if a micropacket has not
been accepted since the last TSEQ error.

undef pkt type: VC hex_value =

a micropacket of an undefined type was detected on
the indicated virtual channel. Table 3-8 explains VC
hex_value.

undef val : hex_value =
value of last detected undefined type of micropacket.

125

Maintaining, Monitoring, Verifying, and Troubleshooting IRIX GSN

Table 3-8 Meaning of “VC hex_value” in Status Screen Displays

VC hex_value Indicates Errors on These VCs |VC3 IVCZ |V(:1|VCO ‘ each bit of hex_value

identifies one VC

0x1 vCo I:]:]]
0x2 VC1 I:]:-:]
0x3 VCo, VC1 l:]:-
Ox4 vC2 I:-:]:]
0x5 VCo0, VC2 l:-:-
0x6 VC1, vC2 I:-:]
0x7 VCo, VC1, VC2 _
0x8 VC3 .:]:]:]
0x9 VCo0, VC3 .:]:-
0xA VC1, vC3 .:-:]
0xB VCo, VC1, VC3 .:-
0xC VC2,VC3 -:]:]
0xD VCo0, VC2,VC3 -:-
0xE V(C1, vC2,VC3 -:]
OxF VCo, VC1, VC2, VC3 _

126

Instructions for Common Procedures

Displaying Status of HIPPI-6400 ADMIN Traffic

See “Checking Status of ADMIN Traffic” on page 127.

Check Status of GSN Traffic

This section describes methods for monitoring various types of traffic that can move
through an IRIX GSN subsystem: HIPPI-6400 Admin micropackets on page 127, ST
messages on page 130, and IP datagrams on page 130.

Checking Status of ADMIN Traffic

To display status information about HIPPI-6400 ADMIN micropackets for a SGI GSN
connection, use the gsncntl status admin command. This command displays counts for
the various types of HIPPI-6400 ADMIN micropackets, as described in Table 3-9; each
count includes both those transmitted and those received. The counts for pairs (for
example, Ping and Ping_Response) should be very close.

gsncntl [gsn#] status admin

Table 3-9 describes the information that is displayed about ADMIN micropackets:

Table 3-9 Local Element’s HIPPI-6400 ADMIN Traffic Status

Status Item Description

ADMIN Packet Count For each type of ADMIN micropacket, the display shows
(by command/type): a count of request/command (Cmd) micropackets and a

count of responses (Rsp).

Ping Simple “HELLO, I'm alive.” Response does same for
remote endpoint.

Set Element Address Commands the element to use the supplied element
address. (This address is different from the
globally-unique ULA.) Response is an acknowledgment
only.

Exchange Element Function Describes element’s function: link-end, endpoint, or
switch. Response does same.

127

Maintaining, Monitoring, Verifying, and Troubleshooting IRIX GSN

Table 3-9 (continued) Local Element’s HIPPI-6400 ADMIN Traffic Status

Status Item

Description

ULA Request

Read Register

Write Register

ULA List Request

Port Remap

Port Map Request

Reset

Invalid Command

ADMIN Packet Errors:

Admin emd/rsp on vc0 or 3

Admincmd onve !=1

Admin rsp on vc !=2

Requests assignment of a Universal LAN MAC address
(ULA) to the requestor from the receiver; the receiver
must be a switch. Response assigns a ULA.

Asks for current contents of element’s ADMIN register.
Response provides the contents. The local IRIX GSN
driver is the main reader for local element’s ADMIN
register.

Asks element to update (write) one or more fields in the
ADMIN register. The local IRIX GSN driver is the main
writer for local element’s ADMIN register.

Asks for a list of all connected ULAs. Response provides
the list.

Changes the port-to-ULA mapping.

Asks switch to provide the physical port that is
necessary to open a connection to a particular ULA.
Response is the port identification.

Commands element to reset (reinitialize) itself. There is
no response to this.

The ADMIN micropacket’s command (that is, the type
of ADMIN packet) was not recognized as one of those
listed in this table. There is no response to this.

An ADMIN micropacket was illegally detected on VCO
or VC3.

A request/command ADMIN micropacket was illegally
detected on a VC other than VC1.

A response ADMIN micropacket was illegally detected
on a VC other than VC2.

128

Instructions for Common Procedures

Table 3-9 (continued) Local Element’s HIPPI-6400 ADMIN Traffic Status

Status ltem Description

Admin rsp w/bad status A response ADMIN micropacket was received with one
of its status flags set. All status flags indicate that some
problem occurred with the request/command that was
generated by the source on the local element: undefined
operation, invalid key, parameter out of range, invalid
address for ADMIN register, command failed, etcetera.

Rec’d pkt when shut down When the physical link was shut down, an ADMIN
micropacket arrived. The packet has been discarded.

Rec’d unexp rd reg An illegal Read Register request/command arrived. For
example, the hop count asked that the micropacket be
forwarded even though the local element’s function is
endpoint (not switch).

Rec’d unexp rd reg rsp A Read Register response arrived when no
request/command has been sent to initiate the response.

Rec’d unexp set elem addr rsp A Set Element Address response arrived when no
request/command has been sent to initiate the response.

Rec’d unexp xchange elem func An illegal Exchange Element Function arrived. For
example, the hop count asked that the micropacket be
forwarded, indicating that the sender believes the local
element is a switch.

Rec’d unexp xchange elem func rsp An Element Function response arrived when no
request/command has been sent to initiate the response.

Rec’d unknown elem type An Element Function response arrived with an
unknown function. The known functions are switch,
link-end, and endpoint.

Rec’d unexp pkt in ULA_REQ state While the local element was waiting for a response to its
request for ULA assignment, an ADMIN micropacket
arrived that seemed to require forwarding (for example,
the hop count was not 0 or the destination element
address was not OXFFFFFFFF).

129

Maintaining, Monitoring, Verifying, and Troubleshooting IRIX GSN

130

Table 3-9 (continued) Local Element’s HIPPI-6400 ADMIN Traffic Status

Status ltem Description

Rec’d unexp pkt in LINK_RDY state After the local element (an endpoint) was functional, an
ADMIN micropacket arrived that required forwarding
(for example, the hop count was not 0 or the destination
element address was not OxFFFFFFFF).

Rec’d unexpected unknown An ADMIN micropacket was received that had an
admin pkt unknown command.

Checking Status of IP-over-GSN Traffic

To list the configuration information for the IRIX GSN network interface (gsn#), use this
command:

% netstat -ina

To display statistics about the IP, TCP, UDP, or ICMP protocol stacks, use these
commands:

% netstat -p ip

% netstat -p tcp
% netstat -p udp
% netstat -p icnp

Checking Status of ST-over-GSN Traffic

To list the configuration information for the IRIX GSN network interface (gsn#) that
handles ST traffic, use this command:

% netstat -ina

To display protocol statistics for the ST protocol stack, use this command:

% netstat -p stp

Instructions for Common Procedures

Checking Status for All Protocols Simultaneously

To simultaneously display statistics for the IRIX GSN network interface, and traffic for
all the protocol stacks, use this command:

% netstat -C

Use the numbers (highlighted in the menu area on the bottom of the display) to select the
protocol or information you wish to view. Notice that there are two menus; press the 9
key on your keyboard to toggle between them. The first menu has Interfaces and IP; the
second menus has ST (listed in the menu as STP), TCP, and UDP.

Use these letters to change the time period over which the displayed statistics have been
counted:

r displays totals collected (counted) since the last reset of the interface or
operating system

resets all statistics to zero and starts counting

d every second resets all statistics to zero and starts counting

Build New HARP Server Addresses Into Network Interfaces

Use either of command-line sequences below to build server address changes (from the
/usr/etc/gsnarp.options file) into GSN network interfaces:

¢ To reconfigure all the GSN network interfaces:
letc/init.d/gsn start

Note: The gsn script marks each GSN network interface as down, reconfigures it,
then brings it back online (that is, marks it up).

¢ To reconfigure one GSN network interface:

lusr/etc/ifconfig gsn# down

<where gsn# identifies the network interface>
/usr/etc/gsnarp -f -S

/usr/etc/ifconfig gsn# up

Note: The gsnarp command displays warning messages about any GSN network
interfaces that are up. Just ignore these messages; the disabled interface is
reconfigured and those that are up are left alone.

131

Maintaining, Monitoring, Verifying, and Troubleshooting IRIX GSN

132

Display Client’s Active HARP Server

Use the command line below to display the address that is currently being used by IRIX
HARP to contact the HARP server (both the primary and the alternate) for the specified
network interface.

% gsnarp -S gsn#

where gsn# identifies the IRIX GSN network interface for which you want information.

Display Address Resolution Lookup Table

Use the command line below to display the HARP table that is currently loaded into
memory and being used by IRIX HARP. This table maps INET addresses to
physical/hardware addresses (ULAs):

gsnarp -a

The following example of a gsnarp display illustrates one static (permanent) entry for a
HIPPI-6400 host and a dynamic entry for the HARP server:

HARP TABLE CONFI GURATI ON

Addr ess ULA FLAGS
gsn- amazon 00: 01:42:ff:b9:0a CONN, PERM
gsn-nile FF: FF: FF: FF: FF: FF CONN, SERVER

The flags possible for each entry are explained in Table 3-10:

Table 3-10 HARP Flags

Flag Description

CONN Registration or re-registration of the ULA for this entry is complete. The entry
is valid and ready for use.

SERVER Entry is for the HARP server. Entry will not be removed until HARP is
reconfigured.

ULA_ALIAS Entry is an index/alias for a ULA to support ST striping.
IP_ALIAS Entry is on IP ALIAS.

LOCAL Entry is the local host.

Installing a Loopback Device

Table 3-10 (continued) HARP Flags

Flag Description

NAK Address resolution request for this entry failed; HARP server did not have this
entry. This flag occurs only in HARP client databases.

PENDING Registration with the HARP server is in progress; a reply from the HARP server
is outstanding (pending).

PERM Entry is permanent (static), not dynamic. Entry does not age,

Installing a Loopback Device

To run a loopback verification test on an SGI GSN board, use one of the procedures
described below to set up the loopback:

1. Disable the IRIX GSN network interface:

% ifconfig gsn# down

where # identifies the network interface you are going to verify.
2. Use one of these methods for installing a loopback path:

e Attach a loopback device to the HIPPI-6400 port on the board’s I/O panel plate.
The connector is keyed with a long and a short side to ensure correct alignment,
as illustrated in Figure 3-2.

133

Maintaining, Monitoring, Verifying, and Troubleshooting IRIX GSN

134

Long/wide side of key

Short/narrow side of key

Figure 3-2 Installing a HIPPI-6400 Loopback Connector

* At the switch, configure the attached input port so that it loops back all traffic to
the same port’s output. For example, you might need to make all the entries in
the port’s routing (forwarding) table point to this port.

* Configure the board for internal loopback, as described in “Configure the SGI
GSN Board for On-board (Internal) Loopback Operation” on page 102.

Note: With internal board loopback, the HIPPI-6400 connector and the GSN
component on the board are not verified during the verification procedures.

3. Enable the network interface:
% ifconfig gsn# up
where # is the interface you disabled.
Note: When you remove the loopback device or link and make a new connection

(point-to-point or to a switch), you must invoke ifconfig down to disable, then ifconfig up
to enable the network interface.

Verifying the IRIX GSN Subsystem

Verifying the IRIX GSN Subsystem

The most reliable method for verifying an IRIX GSN subsystem is to install a loopback
device or looped back link (as described in “Installing a Loopback Device” on page 133),
then run the gsntfest hardware verification test, as described below. After the GSN
hardware has been verified, further upper-layer verification and interconnectivity tests
can be run (for example, the tests described under the headings “Verify an IP-over-GSN
Interface”) by communicating with other GSN systems.

Note: Unlike many IRIX drivers, the IRIX GSN driver does not automatically route
self-addressed packets through the local loopback interface (l00), so that even the IP stack
can be verified with the loopback link in place.

Verify That the Board Has Been Located by the Software

To verify that a SGI GSN board has been located by the operating system during the last
reboot, use any of the following commands:

% hinv -d gsn
GSN #- X1 O adapter: unit # in nmodule # 1/0O slot #

% hinv -nvv -d gsn

Location: /hw nodul e/ #/ sl ot/i o#/ xi o_gsn
XI O_GSN Board: barcode #i###HHt part 030-1361-00# rev #
Goup ff Capability ffffffff Variety ff Laser 0000002adf aa

GSN #- X1 O adapter: unit # in nodule # 1/O slot #

% find /hw nodul e -nanme xi o_gsn
/ hw/ nodul e/ #/ sl ot /i o#/ xi o_gsn

135

Maintaining, Monitoring, Verifying, and Troubleshooting IRIX GSN

136

Each GSN solution may have multiple full-path entries in the IRIX hardware graph. For
example, in the sample display shown below, the startup routine located two SGI GSN
products installed into two different modules; one instance is the two-board product
while the other is the single-board product. With the two-board product, the main GSN
board is always identified as XIO port 1, and the additional board is XIO port 2.

% hinv -d gsn
GSN 1- Xl O adapter: unit O, in nmodule 1 /O slot 8
GSN 2-XI O adapter: unit 1,

XIOport 1 in nodule 2 1/Oslot 4

XIO port 2 in mdule 2 /O slot 12

% find / hw nodul e -nanme xi o_gsn
/ hw/ modul e/ 1/ sl ot /i 08/ xi 0o_gsn

/ hw/ nodul e/ 2/ sl ot/i 012/ xi 0_gsn
/ hw/ nodul e/ 2/ sl ot /i 04/ xi o_gsn

Verify the SGI GSN Hardware

To verify the main SGI GSN board (without going through the IP or ST stack), use the
/ust/etc/gsntest command. This test works only for a SGI GSN board that has a loopback
device installed. (See “Installing a Loopback Device” for instructions.) The command
requires the user to be superuser (root).

Note: Unlike many IRIX drivers, the IRIX GSN driver does not automatically route
self-addressed IP /ST packets through the network stack’s loopback interface (Io0); the
GSN driver passes self-addressed packets to the hardware. This allows you to use
standard IP utilities (such as ping <myaddress>) to test the IRIX GSN subsystem when it
is physically looped back.

Verifying the IRIX GSN Subsystem

For a simple, quick verification test, use the commands below:

%cd /usr/etc
% su
Passwor d: thepassword

hinv -d gsn
<use the displayed unit nunber for # in the follow ng command |ines>

lusr/etc/gsncntl gsn# status device
<verify that the STATE and FLAGS are correct
as described in Table 3-3 on page 105>

/usr/etc/gsntest gsn#

gsntest: PING

GSN PI NG hop 0: Received ping cnd/response fromelement in 150.40 us
GSN PI NG hop 1: Received ping cnd/response fromelenment in 117.60 us
GSN PI NG hop 2: Received ping cnd/response fromelenment in 1707.20 us
<refer to Figure 3-1 to identify the physical elenent

associ ated with each hop #>

The gsntest utility sends HIPPI-6400 Admin “PING” micropackets. The command creates
packets with the following nonconfigurable characteristics:

Key 0
Hop Count 0
Dest_Reg 0

Dest_Addr OxFFFFFFFF
Command HIPPI-6400-SC Ping
Status_Flags 0

Src_Reg 0

Src_Addr Local interface’s ULA obtained from switch, or if not available, as read
from PROM.

Data_Reg Bytes 0-3 contain the PID of the process. Bytes 4-15 contain randomly

generated data.

137

Maintaining, Monitoring, Verifying, and Troubleshooting IRIX GSN

138

Example:

This example illustrates the test when the local SGI GSN port is connected to a switch:

% /usr/etc/gsntest gsn#

gsntest: PING

GSN PI NG hop 0: Received ping cnd/response fromelement in 148.80 us
GSN PI NG hop 1: Received ping cnd/response fromelenment in 131.20 us
GSN PI NG hop 2: Received ping cnd/response fromelenent in 13844.80 us

Note: The hop 1 response came from the switch while the hop 2 response came from the
remote endpoint.

This example illustrates the test when a loopback device is installed on the local SGI GSN
port:

% /usr/etc/gsntest gsn#

gsntest: PING

GSN PI NG hop 0: Received ping cnd/response fromelement in 140.20 us
GSN PI NG hop 1: Received ping cnd/response fromelenment in 148.80 us
GSN PI NG hop 2: Received ping cnd/response fromelenent in xx us

Note: Hop 0 came from the local SuMAC’s source logic. The hop 1 response came from
the destination logic (on the “other side” of the external loopback device) within the local
SuMAC ASIC, while the hop 2 response came from the local IRIX GSN driver.

The gsntest utility does not verify the data path through the second XIO slot of a
two-board GSN solution. If the gsntest utility fails with an error message, locate the error
message in the section “Error Messages from the gsntest Command” in Chapter 4 and
follow the instructions

Verify an IP-over-GSN Interface

To verify that each IP-over-GSN network interface is functional, follow the instructions
in this section. This test assumes that the IRIX GSN subsystem has passed the gsntest
verification, as described under the heading “Verify the SGI GSN Hardware.”

Note: Unlike many network products, the IRIX GSN software does not loop IP packets
through the system’s local loopback interface (l00). All IP-over-GSN packets are passed
to the GSN hardware.

Verifying the IRIX GSN Subsystem

To accomplish this verification, use /ust/etc/ping -r (lowercase -1, not -R) to make this
station communicate with another GSN IP station (or itself) over the IRIX GSN
subsystem.

1. Obtain the IP network addresses for all the IP-over-GSN interfaces (gsn#) on this
system. This information can be displayed with the command shown below. The
network address is listed in the column labeled Net wor k, as illustrated in Figure 3-3.

% /usr/etc/netstat -ina

Net wor k Addr ess | pkts lerrs Opkt s Cerrs Coll
192.74.28 192.74.28.64 873404 1248 316177 (0] 1576

08: AC: 15: B1: 02: 6F

253.5. 88 235.5.88.1 AYA:] 28679 2148

08: 10: 26: 00: 8A: EC

none (0] (0] (0]
127.0.0.1 3609810 O 3609810

Network interface configuration for second IRIX GSN connection

Network interface configuration for first IRIX GSN connection
Ethernet connection

Figure 3-3 The /usr/etc/netstat -ina Display

2. Obtain the name (or IP address) of at least one remote station on each of these GSN
network addresses. Two methods for obtaining station names are described below.

e For a system connected to a local area network that provides name lookup
service (NIS), use the commands below to create a file for each GSN network
connection. Each file will contain the names and addresses of stations that share
a particular network address:

% ypcat hosts | grep gsnO_networkaddress > gsn0. s
% ypcat hosts | grep gsnl_networkaddress > gsnl.s
<do this for each GSN | P network address>

where each gsn#_networkaddress value is an address from the Net wor k column
of the netstat display (illustrated in Figure 3-3).

Example:

139

Maintaining, Monitoring, Verifying, and Troubleshooting IRIX GSN

140

% ypcat hosts | grep 253.5.88 > gsn0.s

* For a system that does not have access to NIS, use these commands to create a
file for each network connection. Each file will contain the locally-known names
and addresses of stations that share a particular network address:

% grep gsn0_networkaddress | et c/ hosts > gsn0.s
% grep gsnl_networkaddress | et c/ hosts > gsnl.s
<do this for each |P-over-GSN network address>

Example:

% grep 253.5.88 /etc/hosts > gsnl.s

Communicate with one station on the GSN network used by the gsn0 connection.
For the variable gsn0_station, you can use any of the names or IP addresses from the
gsn0.s file.

% pi ng -r gsn0_station

Pl NG stationname (IPaddress): 56 data bytes

64 bytes from... tinme=x nms...

<Ctrl ><c>

- - - - stationname PI NG Stati stics----

packets trans, # pckts rcvd, x% packet | oss

Note: If a loopback link is in place, use the system’s own IP address for the
gsn0_station variable.

If netstat lists more than one IRIX GSN (gsn#) network interface, communicate with
one station on each of those networks. For the variable gsn#_station, you can use any
of the names from the gsn#.s file.

% ping -r gsn#_station

PI NG stationname (IPaddress): 56 data bytes

64 bytes from... tinme=x ns

<Ctrl><c>
- - - - stationname PI NG St atistics----
packets trans, # pckts rcvd, x% packet |oss

Note: If a loopback link is in place on any of the ports, use the system’s own IP
address for the gsn#_station variable.

If one ping on each network succeeds, you have completed the verification
procedure. All the local network connections are functioning. Use the commands
below to remove the files with the lists of stations:

% rmgsn0. s
% rmagsnl.s

Troubleshooting

Troubleshooting

<do this conmand line for each gsn#.s file created>

If the ping on a network fails, follow the instructions in “Troubleshoot IP-over-GSN
Interfaces” in the next section.

6. To verify the throughput for a functional network interface, open an IRIX shell
window for the local station and antoher one for a remote station. Then, invoke the
following commands:

<in the IRIX shell for station #1, the receiver>
% /usr/etc/ttcp -s -r -149152 -b1048576

<in the IR X shell for station #2, the transmtter>
% /usr/etc/ttcp -s -t -149152 -b1048576 -n262144 stationl_IPaddress

Note: In the previous example, please note that the -1 option specifies the length.

This section provides basic procedures for troubleshooting IRIX GSN.

Troubleshoot SGI GSN Hardware

See the SGI GSN Hardware Owner’s Guide.

If the gsntest utility fails with an error message, locate the error message in “Error
Messages from the gsntest Command” in Chapter 4 and follow the instructions.
Troubleshoot IP-over-GSN Interfaces

This section describes separate sets of instructions for troubleshooting a system in which

all the IP-over-GSN network interfaces are failing, and a system where only some of the
network interfaces are failing.

141

Maintaining, Monitoring, Verifying, and Troubleshooting IRIX GSN

142

All IP-over-GSN Network Interfaces Are Failing

If the ping verification tests fail for all the system’s IP-over-GSN network connections,
your system probably has been configured incorrectly. Verify the configuration by
performing the steps below.

Note: This procedure assumes that the hardware has been varified by following the
instructions in “Verify the SGI GSN Hardware” and has been found to function correctly.

1. Use this command to verify that the local GSN board is not in loopback mode and
that the physical link is operational:

% gsncnt| gsn# status device
STATE: LNK_RDY
FLAGS: LNK_SW TCH

2. If the system is connected to a switch, use gsncntl to verify that the switch has
assigned a ULA to the local system. The assigned address is the one labeled Device.

% gsncnt| gsn# get nac
PROM ULA Addr ess: 08: 00: 69: 05: 0d: 2c4
Devi ce ULA Address: 00:01:3b:ff:00:04

3. Verify that IP networking is enabled with the following command line:

% / sbin/ chkconfig | grep network
net wor k on

4. Use /usr/etc/netstat -ina to verify that the local IP-over-GSN network interfaces have
been configured and enabled. The display should look similar to that shown in
Figure 3-3.

Refer to the online IRIX Admin:Networking and Mail guide for information about
configuring and troubleshooting IP network interfaces.

5. Use gsnarp -a to verify that the address resolution mechanism is functioning. Check
that a primary HARP server is listed for each local GSN network interface and
verify that the HARP table has correct entries for the remote system(s) that you tried
to ping.

/usr/etc/gsnarp -a
HARP SERVER CONFI GURATI ON

Dev Primary Server Al ternate Server
gsnO ULA = 00: 01: 3B: FF: 00: OE ULA = 00: 01: 3B: FF: 00: 04

HARP TABLE CONFI GURATI ON
Addr ess ULA FLAGS
nile-gsn0 00:01:3b:ff:00: 0E COWL, CONN, | NUSE, SVR

Troubleshooting

ob-gsno0 00: 01: 3b: ff:00: 04 COVPL, CONN, | NUSE
t hames- gsn0 00: 01: 3b: ff: 00: 0D COWPL, CONN, | NUSE

Use ttcp to verify that the local IP protocol stack is functioning:

%ttcp -r -s &
%ttcp -t -s [Paddress

where [Paddress is the INET address (as displayed by the netstat command) for the
local IP-over-GSN network interface.

Verify that the remote system you tried to ping is operational.

Some IP-over-GSN Network Interfaces Are Failing

If the ping verification tests succeed for one GSN network connection, but others fail, the
local IP stack is functioning, but one (or more) specific interface has a problem. To resolve
the problem, follow the instructions below for each problematic network connection.

1.

Make sure that you know which IRIX GSN port is associated with the GSN network
interface (gsn#) that you are troubleshooting.

Use gsnarp -a to verify that a primary HARP server is listed for the problematic
interface (Dev) and to verify that the HARP table has a correct entry for the remote
system you tried to ping.

lusr/etc/gsnarp -a

HARP SERVER CONFI GURATI ON

Dev Primary Server Al ternate Server

gsnO ULA = 00: 01: 3B: FF: 00: 04 ULA = 00: 01: 3B: FF: 00: OE
HARP TABLE CONFI GURATI ON

Addr ess ULA FLAGS

ni | e-gsn0 00: 01: 3b: ff: 00: 04 COVPL, CONN, | NUSE, SVR

ob-gsn0 00: 01: 3b: ff:00:0d COWPL, CONN, | NUSE

Verify that the other endpoint (IP host) is operational.

Or, as an alternative, select a different station in this LIS, and use the ping -r
command with the station’s numerical address (instead of the name). If the ping
works, the network connection is functional. If the ping fails, proceed to the next
step.

143

Maintaining, Monitoring, Verifying, and Troubleshooting IRIX GSN

144

4. Verify that the network portion (leftmost digits) of the addresses you are attempting
to ping match the network address for the GSN interface you are troubleshooting.
The network address for each GSN network interface can be displayed by the
fust/etc/netstat -in command.

Check all of the cables and nodes between this system and the system(s) you tried to

ping. “Verify the SGI GSN Hardware” on page 136 describes how to do this for the local
SGI GSN port and its link.

Chapter 4

IRIX GSN Error Messages

IRIX GSN error messages are written into the /var/adm/SYSLOG file or displayed at the
terminal; some messages appear in both places. Within the SYSLOG file, each message is
preceded by the date, time, hostname, name of the process that created the message, and
process ID number, as illustrated in Figure 4-1 (process ID number not shown).

May 10 05: 12: 03 goofy gsnO[58]: Unknown ULA
date and time host creator text of error message
name

Figure 4-1 Error Message Format in /var/adm/SYSLOG File

Overview of the Error Message Listing

This chapter contains an alphabetic listing of the IRIX GSN product’s error messages.
Only the text of the error message (see the text of error message in Figure 4-1) is included
in this list.

With each error message is a short description of the problems the message may indicate.
The list contains only messages that indicate an error or problem; it does not contain
informational messages that occur during normal operation.

Messages in this chapter are alphabetized according to the following rules:

¢ Each message is alphabetized by the numerals (0-9) and letters (a—z) of the
message’s text. Numerals precede letters.

¢ Nonletters (for example, - or %) and blank spaces are shown in the text of the
message, but are ignored in alphabetization. For example, these messages are
alphabetized as follows: gsn . . ., gsnnet . . ., gsn_open .

145

IRIX GSN Error Messages

When an error message includes an item that the software specifies differently (fills
in) for each instance of the message, this item is displayed in italic font and labeled
with a generic name (for example, filename). The generic names are skipped for
alphabetization purposes. For example, the error message goofy not respondi ng
is located under hostname not respondi ng among the “n” listings. Common
generic names used in this listing include hostname, interfacename, packet#, version#,

userentry, reason, digit, filename, and hexnumeral.

If you cannot find an error message in the listing, identify potential fill-in words,
then look up the message without those words.

Capitalization is not considered in alphabetization.

Note: The lists of error messages in this chapter cover only those unique to IRIX GSN.
Standard system error messages, even when caused by the IRIX GSN code, are not
covered.

Error Messages from the gsnarp Command

146

This section lists gsnarp error messges displayed in the user’s window.

Can

"t clear trace

The HIPSIOC_IFCLRTRACE ioctl returned an error.

"t delete entry

The SIOCDHARP ioctl returned an error.

Can't get HARP table

The SIOCGHARPTBL ioctl returned an error.

"t get | P addresses
The HIPSIOC_INHARPLOOK ioctl returned an error.

"t InHARP_REQ to ULA FF: FF: FF: FF: FF
The HIPSIOC_SNDBCAST ioctl returned an error.

Error Messages from the gsnarp Command

Can’ t

mal | oc space for table
The gsnarp command was unable to use the malloc command to allocate
space for a HARP information table.

nal | oc space for trace buffer
The gsnarp command could not use the malloc command to allocate
space for the Harp trace buffer.

reset HARP
The HIPSIOC_HARPRESET ioctl returned an error.

set new i nterval val ues

The SIOCSHARPINFO ioctl returned an error while trying to set the
new value.

command: you must be superuser

This command requires super user permission.

Couldn’t get entry

The SIOCGHARP ioctl returned an error.

Couldn’t get HARP info

The SIOCGHARPINFO ioctl returned an error.

Coul dn’t get raw socket

The AF_RAW socket create call returned an error.

Coul dn’t open file

Could not open the gsnarp options file. The default file path is
/etc/config/gsnarp.options.

Coul dn’t resol ve nane: hostname

The gethostbyname routine failed to resolve the host name and returned
an error.

147

IRIX GSN Error Messages

148

Failed to set server for interfacename
The HIPSIOC_IFSETPRISERV or HIPSIOC_IFSETALTSERYV ioctl
returned an error.

Harp_*_intervals nust be > 0

The given interval values must be greater than zero.

Invalid alternate address - address

Could not decode the alternate HARP address.

Invalid |ine - line

Searching for three tokens on this line but could not find them.

Invalid primary address - address

Could not decode the primary HARP address.

Invalid ULA specified
The ULA could not be decoded. Could not set the server address. Check
the format and validity of the ULA.

Invalid ULA specified
A decode was attempted on a ULA but the address was illegal. Check
the format.

Invalid ULA - ula
The ULA could not be decoded. Check the format and validity of the
ULA.

WARNI NG gsnarp: HARP set failed
The SIOCSHARP ioctl returned an error.

WARNI NG gsharp: set ULA alias failed
The SIOCSHARP_ULA_ALIAS ioctl returned an error

Error Messages from the gsnentl Command

Error Messages from the gsncntl Command

This section lists gsncntl error messages displayed in the user’s window.

Bad MAC address string

The MAC address entered is not formatted correctly. The error was
detected while parsing the MAC address for the setmac command.

Cannot enabl e/ di sabl e wat chdog

The GSN_WATCHDOG_ENABLE ioctl failed.

Cannot get firmmvare error | og mask

The GSN_GET_FWLOG_MASK ioctl failed.

Cannot set firmmare error | og mask

Coul dn’ t

Coul dn’ t

Coul dn’ t

Coul dn’ t

Coul dn’ t

Coul dn’ t

The GSN_SET_FWLOG_MASK ioctl failed.

get GSN | C Port histograminformation
The GSN_GET_IC_HIST ioctl returned an error.

get GSN SSRAM Port hi stogram i nfornmation
The GSN_GET_SSRAM_HIST ioctl returned an error.

get GSN ULA
The GSN_GET_DEV_ULA ioctl returned an error.
open GSN devi ce: devicename

An open system call on the specified device failed.

set debug val ue

The GSN_SET DEBUG ioctl returned an error

set GSN MAC address
The GSN_SET _PROM_ULA ioctl retuned an error.

149

IRIX GSN Error Messages

150

Couldn’t set I1C Port histogram val ue

The GSN_SET _IC_HIST_CTL ioctl returned an error.

Error ioctl call failed
The GSN_SHUTDOWN ioctl failed.

Error ioctl call failed
The GSN_STARTUP ioctl failed.

Error reading from SUVAC
The GSN_ADMIN_WRRD ioctl returned an error.

Error witing to SUVAC

The write system call returned an error while writing to the GSN device.

GSN adapter already has a MAC address progranmed
The device has an existing MAC address that is not the same as the one
entered.

GSN_GET_FLASH fai | ed
The GSN_GET_FLASH ioctl returned an error.

GSN_GET_VERSI ONS f ai | ed
The GSN_GET_VERSIONS ioctl returned an error.

GSN_PGM FLASH f ai | ed
The GSN_PGM_FLASH ioctl returned an error.

GSN production firmare nagi c header is wong
The magic number in the PROM firmware to be downloaded is
incorrect. It is probably not SHAC PROM firmware.
Gsngetstate: Error ioctl

The GSN_GET_LAST STATE ioctl failed.

Error Messages from the gsnentl Command

Gsngetstate: Error ioctl

The GSN_GET_STATE ioctl failed.

Il egal destination tineout val ue

An illegal timeout value was passed for setting the destination timeout
value (dtimeo command). The value must be less than or equal to 1023.

Il egal prom sector specified: sector

The number of the specified sector exceeds the maximum allowed.

Illegal source tineout value

The stimeo timeout value exceeds the maximum of 1023.

I nsufficient nunber of argunents
An insufficient number of arguments were passed to the command
option.

Invalid MAC address: nust start with 8:0:0x69
An SGI MAC address must begin with 8:0:0x69.

Invalid nunber of argunents

An incorrect number of arguments were entered for this command.

loctl call failed

The ioctl GSN_GET_STATS system call for the GSN device returned an
error.

Mask must be a hex nunber that starts with Ox

The firmware mask should be a hex format number.

Mode is out of range: number

The mode exceeds the maximum value allowed.

Packet PI D does not natch

The packet data returned does not match what was sent out.

151

IRIX GSN Error Messages

Troubl e with GSN_ERASE FLASH mi ght need to shutdown device
The GSN_ERASE_FLASH ioctl returned an error.

Unabl e to read Sunac d obal Parmregister
In an attempt to read the SUMAC GLOBAL_PARMS register, the driver
returned an error.

Unable to wite Sumac d obal Parmregister
In an attempt to write the SUMAC GLOBAL_PARMS register, the driver
returned an error.

You' I I run past end of EEPROM!

The boot code plus firmware exceeds the physical size of EEPROM.

You' | I run past end of sector O and cl obber the MAC address!!

The SHAC PROM boot code is larger than a PROM sector and will
overrun the next sector.

Error Messages from the gsntest Command

152

This section lists gsntest error messges displayed in the user’s window.

Accept error

The accept system call returned an error to the loopback receive process.

clientname: Unspecified client nane
No target host address was specified. Using default
SERV_HOST_ADDR defined in gsntest.h.

Dat a mi sconpare Exp: hexnumber Act: hexnumber

A data miscompare occurred on the test while in loopback mode.

Error opening device_namefor dev access

The open system call on the specified device returned an error. Check for
the existence of the device file.

Error Messages from the gsntest Command

Error witing to socket
The write system call returned an error while sending data in loopback
mode.

Il egal protocol specified number, test->proto
The protocol specified was not PROTO_TCP, PROTO_UDP, or
PROTO_ST and is not allowed.

Link state is unknown - gsn boot sequence has not conpl eted
Could not determine the link state. The state was not internal loopback,
external loopback, point-to-point, or switch.

option: unknown option - character
The specified option is not recognized. See allowable options listed in
the usage message.

Ping error on hop number (status == hexnumber)
An error was detected after attempting to send an admin packet out the
specified number of hop counts. Check other error messages for
timeouts or unexpected packet responses

Read ti ne-out
A SIGALRM was received by the loopback receive process, indicating a
timeout on a read operation.

Sock open failed --
The socket system call returned an error. Unable to get a socket for this
protocol.

Trouble witing
The write from the client side did not write out the requested number of
bytes. The write failed.

Unabl e to bind to | ocal address

The bind system call returned an error to the loopback receive process.

153

IRIX GSN Error Messages

Unabl e to connect

The connect system call returned an error on this socket.

Unabl e to get host nane

The gethostname call failed.

Unabl e to open fd/socket
The socket system call returned an error. Unable to get a socket for this
protocol.

Unable to start tiner

The gsntest command was unable to start the timer.

Error Messages from the GSN Driver

154

This section lists the error messages displayed on the system console by the IRIX GSN

utilities and driver and echoed to the SYSLOG file.

Adm n pkt NG cnd = command, status = status in state
An admin command or response packet was received but is being
dropped due to a detected error condition. Possible reasons include bad
packet status or incorrect virtual channel used.

Al l ocation of xtalk interrupt
A kernel xtalk utility function was unable to allocate interrupt resources
for the xtalk interrupt vector.

Attenpting to program flash EEPROM
Informative message that the EEPROM for this device is going to be
flashed in the next step.

Bad ADM N_READ from SUMAC

An admin read register request was sent to the GSN SUMAC ASIC but
the response from the SUMAC was not correct.

Error Messages from the GSN Driver

Bad READ RESPONSE not valid for SUVAC

A read response admin packet was received but is not valid for the
current GSN state.

Bad WRI TE_RESPONSE from the SUMAC

An admin write register request was sent to the GSN SUMAC ASIC but
the response from the SUMAC was not correct.

Cabl e probl em

A cable was not detected.

Cannot alloc nenory for admin rx

Out of receive descriptor entries for this node.

Cannot get menory for FLUSH PAGE.

An attempt to allocate kernel memory for GSN to use for bufx flush
token target pages failed.

Can’t nmall oc HARP HWt abl e

The HARP module was unable to allocate memory from the kernel for
the HARP hardware entry table.

Can't malloc HARP | P table
The HARP module was unable to allocate memory from the kernel for
the HARP IP table.
Check_inventory_info(): hwgraph_inventory_add(number) err: error
A hardware graph utility function returned an error while trying to add
dual xtalk entries to the hardware inventory.
Check_inventory_info(): xpl->xp0 hwgraph_edge_add(numbers) err: error

A hardware graph utility function returned an error while trying to add
an edge. It was replacing a single xtalk with dual xtalks and cross linking
the hardware graph edges.

155

IRIX GSN Error Messages

156

Check_inventory_info(): xp0O->xpl hwgraph_edge_add(numbers) err: error

A hardware graph utility function returned an error while trying to add
an edge. It was replacing a single xtalk with dual xtalks and cross linking
the hardware graph edges.

Check_i nventory_info(): xpO hwgraph_edge_renove(number) err: error

A hardware graph utility function returned an error while trying to
remove an edge. It was replacing a single xtalk with dual xtalks and
cross linking the hardware graph edges.

Check_i nventory_info(): xpl hwgraph_edge_renove(number) err: error

A hardware graph utility function returned an error while trying to
remove an edge. It was replacing a single xtalk with dual xtalks and
cross linking the hardware graph edges.

Check_inventory_info(): hwgraph_inventory_renmove (hexnumber) err: error

A hardware graph utility function returned an error while trying to
remove an xtalk entry from the hardware inventory.

CLR _BUFX bad port numb number flags flags

During an attempt to clear transmit bufx table entries, the port table
entry number passed into the current function was not in the range
allowed by SHAC (0-2047).

Could not initialize warmreset propagati on mask i n SUVAC

An admin write register request was sent to the GSN SUMAC ASIC to
initialize a register but the operation failed.

Desc_dup for number

An error was returned from an attempt to duplicate a device descriptor.
Possible memory allocation problem.

Devi ce_desc_dup() for device fail ed

While setting up a new xtalk device, a new device descriptor could not
be created. An error was returned during an attempt to create a
descriptor from the current xtalk vertex handle. An EIO error is returned
to the caller.

Error Messages from the GSN Driver

Did not get RX flush token. f_offset number token number bft hex number
An RX flush token was sent but not received. The maximum number of
flush retires was attempted.

Driver in UNKNOMN STATE.

The GSN link bring up received an admin packet during which the
driver was in an unknown state.

ENOVEM f or new_xt al k
The kernel memory allocator is unable to allocate memory for a new
xtalk context.

ENOVEM for qi d: number
The kernel memory allocator could not allocate memory pages to
contain this QID area.

Erasi ng fl ash EEPROM

Informative message that the EEPROM is being erased.

Erasi ng fl ash EEPROM MAC sect or
The GSN driver is processing an ioctl to erase the GSN EEPROM MAC
sector for this device. The flash prom will then be written and re-read to
check for errors.

Fai | ed hwgraph add i nventory number. under number. number
The hardware graph susbsystem returned an error when the driver
attempted to add the xtalk vertex to the hardware inventory.

Failed to add conveni ence edge string to string

A hardware graph utility function returned an error while trying to add
a graph edge from the convenience edge (/hw/gsn/<devnum>) to the
physical device.

Failed to allocate Q D number i nterrupt

The xtalk interrupt handler could not be allocated for this QID for this
interface. An error was returned by a kernel xtalk interrupt management
function.

157

IRIX GSN Error Messages

158

Failed to cfg i/f:
An error was detected during an attempt to configure the interface.
Check possible preceding messages for details on the specific error.
Failed to create string: under number
The hardware graph subsystem could not add this GSN character device
node to the /hw tree and returned an error.
Failed to start tinmer
An attempt to queue a timeout event to the kernel timeout handler
failed.
Failed to start timer
The kernel timeout utility returned an error when called by GSN to set
a link timeout entry for this interface.
Failed to traverse into string: under number
A hardware graph utility function returned an error trying to traverse
the graph from the /hw root to the convenience vertex in the message.
Fi rmnar e processor did not finish booting
The firmware processor portion of the GSN adaptor did not finish
booting.
Firmware size or offset =0

One of the tunables (gsn_firmware_size or gsn_firmware_offset) is zero.

FW BOOTI NG bit set: FWconpletely booted
The SHAC control and status register indicates that the SHAC
successfully booted its firmware.

FWBOOTING bit set: FWentered reset

The SHAC control and status register indicates that the SHAC is still
booting its firmware.

Error Messages from the GSN Driver

FW BOOTI NG bit set: FWsuccessfully tested
The SHAC control and status register indicates that the SHAC
successfully tested its firmware.

FWdid not come out of SSRAM
The EEPROM was reflashed and an attempt was made to reboot the
processor but it did not reboot successfully after waiting past a timeout
period.

Get _nun{ hexnumber)
Aninvalid number of SHAC SSRAM FIFO entries was requested during
configuration of the interface.

GSN adapt er dynami c | oopback unsupported at this tinme

This is a currently unsupported GSN option.

GSN adapt er shutdown unsupported at this tinme

This is a currently unsupported GSN option.

GSN adapter startup unsupported at this tine
This is a currently unsupported GSN option.

GSN cannot alloc nenory for admin rx

There are no more receive descriptor entries for this node.

Gsn device: can't allocate device driver structure
One of several possible errors occurred while trying to set up the
hardware graph information for the device driver.

Gsn: intr_connect () number. number. number : number!

An error was encountered while trying to connect the GSN error
interrupt vector.

159

IRIX GSN Error Messages

160

Gsn_admi n_cnd(cnd: command)

An attempt was made to send an admin packet with an invalid emd
code or an admin packet was received but contains an invalid cmd field
(cmd > ADMIN_MAX_COMMANDS). The check was made while
updating the statistics counters.

Gsn_admi n_desc_entries: entries

The tunable parameter, gsn_admin_desc_entries, exceeds the maximum
of MAX_GSN_ADMIN_DESC_ENTRIES or is not a power of two.

Gsn_char _ti meout (): number

An attempt was made to start a timeout event for this driver but one is
active already.

Gsn_char _ti meout _handl er ():ti meout _i d!

The GSN timeout handler was called but the timeout id was zero. There
was no valid timeout event queued.

Gsn_fl ash_req cnmd=command cmd

A GSN function called this function with an unrecognized command
option (cmd).

Gsn_flash_req cnd= hex number???

A GSN function called this function with an unrecognized command
option (cmd).

Gsn_get __dev(): error hexnumber

gsn_get_dev() was called with an illegal flag. The flag is not recognized.

Gsn_i oc_fw og_mask cnd = hex number???cnd

An unrecognized flag was passed to function gsn_ioc_fwlog_mask
while trying to perform an ioctl command on the firmware processor.

Gsn_ioc_gfx_credits cnd = hex number???cmd

An unrecognized flag was passed to function gsn_ioc_fwlog_mask
while trying to perform a GFX hub credit ioctl.

Error Messages from the GSN Driver

Gsn_nmac_req cnd=command cnd
A GSN function called this function with an unrecognized command
option (cmd).

Gsn_open: add_exit err number

An open of the gsn device failed.

Gsn_qi d_per _node: number
The tunable parameter, gsn_qids_per_node, exceeds the limit of
MAX_CPUS_PER_NODE.

Gsn_regi ster_t size: number. number!
An internal driver structure limit has been exceeded. This is a driver
software error.

Gsn_st_if_input: Failed to allocate nmbuf for receive descriptor!
The ST portion of the GSN driver failed to allocate an mbuf from the
kernel mbuf allocator.

Gsn_st _if_output: Non VC2,3 Data Op specified
An ST data operation was specified but the virtual channel number is
not correct. IRIX ST data operations must use VC2 or VC3.

Gsn_st _if_txdone: G obal credits exceeded number on port number VC number

t oken hex number

The total system wide transmit credits for this VC have been exceeded.

Gsn_st _i f_txdone: received bypass txdone

A txdone interrupt was received for an OS bypass operation.

Gsn_st _set _bufx: M sformed Node G oup

A memory striped bufx scheme is being used but it was detected that
xtalk ports were not being alternated for each bufx as required.
Correcting this now.

161

IRIX GSN Error Messages

162

Gsn_st_set _port: string number Coul d not satisfy bypass tx credit request
This function could not satisfy the request for tx credits from the credit
pools. One or more tx credit pools for the VCs are empty.

Gsn_tx_admin out of tx credits... sending anyway
An admin packet is being prepared to be transmitted but the interface is
out of admin transmit queue credits. Sending anyway.

Gsn_ul a_req cnd=command, crd ioctl

This GSN ioctl is not supported.

HARP server error: downing interface
An error occurred during an attempt to set up the HARP table for this
interface.

Harp_update: invalid PERM case
An error was detected for a HARP permanent entry during a HARP
update operation.

Hwgr aph_edge_add (number, number, string) err
The hardware graph subsystem could not add this edge vertex to the
xtalk sister device and returned an error.

Hagr aph_vertex_nane_get: name
The hardware graph subsystem returned an error while retrieving the
canonical name of the xtalk vertex from the vertex handle.

IDESC len ==
An interrupt descriptor shows an mbuf chain of length zero, which is an
error. This was detected during an IP receive interrupt.

| DESC st at us hex number

Illegal status found in an interrupt packet.

I fconfig gsnnumber UP

An error occurred during an attempt to set up the HARP table for this
interface.

Error Messages from the GSN Driver

If_gsn_net_output() unsupported sa fam |y number
An unrecognized or unsupported address family was specified during
GSN output for this interface. Only AF_INET is supported.

If_gsn_st_input: a ddq entry was m ssed (seq=number) (ddq_i dx=number)
The current ST receive descriptor does not match the current sequence
number for the port. The next receive descriptor does not match either.
Cannot find the correct receive descriptor for this interrupt. Returning
an error to the ifnet layer.

If_gsn_st_input: a ddq entry was ski pped (seq=number) (ddq_i dx=number)
An ST receive descriptor was skipped because it didn’t match the
current sequence number for the receiving port. The next descriptor
matches and will be used. The result is that one receive descriptor slot
will be unprocessed. This is a workaround for a SHAC edge condition.

I gnoring adnmi n pkt cmd: command, daddr =address
An admin packet was received but will be ignored because of an error
condition.

In error state.
The interface adapter specified has detected an error and is changing to
an error state.

I ncorrect manufacturing nunber: number

The SHAC XT_ID field shows an unrecognized manufacturer’s number.

I ncorrect xt_id: partnumber
The SHAC XT_ID field shows an unrecognized widget part number.
Cannot determine the widget type.

Init Node Array: Xtal k device not attached

An attempt was made to configure an xtalk but the GSN device structure
(gsn_dev_s) for this interface does not find it connected.

163

IRIX GSN Error Messages

Interface has nore aliases then the st_ifnet can handle - limting.

The maximum number of interface aliases has been exceeded. The
actual number of aliases will be limited. The maximum number is
compiled into the kernel and cannot be changed.

I nterface usable.

The driver state has transitioned to GSN_STATE_LINK_USABLE.

Intr_connect () numbers
A kernel xtalk utility function was unable to connect previously
allocated xtalk interrupt resources with its handler.

Invalid config: SSRAM mbuf entries sm = wvalue, |1 g = value

One of the tunables does not fall into the allowable ranges. Both values
will be set to the defaults.

if_gsn_small mbuf_entries must be between zero and
MAX_SSRAM_IP_RX_SMALL_ENTRIES, inclusively.

or
if_gsn_large_mbuf_entries must between zero and
MAX_SSRAM_IP_RX_LARGE_ENTRIES, inclusively.
Invalid config: SSRAM nbuf of fsets, valuel, wvalue?

One of the tunables exceeds the limit. Either if gsn_small mbuf_offset
is greater than GSN_SSRAM_UPPER_BOUND or
if_gsn_large_mbuf_offset is greater than
GSN_SSRAM_UPPER_BOUND. Both values will be set to the defaults.

Link startup error
An error occurred during an attempt to set up the HARP table for this
interface.

Link Tineout with switch negotiate

The interface went into the BRING_UP_LINK state and tried to do a
ULA_REQUESTED operation on a switch but timed out.

164

Error Messages from the GSN Driver

Local interface not usable - VCl1 flow controlled due renote
interface.ifconfig down/up when renote problemis cleared.

The number of entries in the admin packet transmit queue has been
exceeded. A likely cause is VC1 being flow controlled by the remote
interface. An ifconfig up/down may clear the problem when the remote
interface recovers.

M sconfig of h2f fifo, offset = offset, entries = entries
Because one of the tunables (gsn_h2f_offset or gsn_h2f_entries) is zero
or an illegal value, H2F FIFO configuration is skipped.

No firmwvare will be configured

The tunable parameter, gsn_firmware_offset, exceeds the limit. It must
be less than GSN_SSRAM_UPPER_BOUND. Firmware offset and size
are being set to null.

No H2F wi |l be confi gured
The tunable parameter, gsn_h2f offset, exceeds the limit. It must be less
than GSN_SSRAM_UPPER_BOUND. Host to firmware FIFO
configuration values are being set to null.

No | P TX FI FO as number
Because one of the tunables (if_gsn_ip_tx_desc_offset or
if_gsn_ip_tx_desc_entries) is zero, IP will not be set up.

No read interface.

There is no direct read interface available for this device.

No ST vc configured

The ST virtual channel has not been configured. SSRAM FIFO setup is
skipped.

No wite interface.

There is no direct write interface available for this device.

165

IRIX GSN Error Messages

166

Not conpiled w GSN_DEBUG ignoring
A GSN ioctl was issued for a debug capability that requires that the GSN
driver be compiled with the GSN_DEBUG debug flag. The ioctl will be
ignored.

O her end inactive. Waiting for other side to come up
An admin packet was received but indicates that the other side is
inactive.

Part nunber not defined in PROM
GSN board part numbers known to the driver were not found in the
PROM.

Pi o_base

The base address pointer of the PIO mapped SHAC address area is null.
The error was found during verification of PIO mappings for this
interface.

Processed nore ST than Total idesc???: number. number!
An unknown interrupt descriptor type was detected while handling a
GSN interrupt.

Recei ved gsn_adm n_cnd(cnd: number)

An admin packet was received but contains an invalid emd field (cmd >
ADMIN_MAX_COMMANDS). The check was made while updating
the statistics counters.

Renmpot e end report UNDEFI NDED ELEMENT. Using Point <-> Point.

The remote endpoint responded during a negotiate link process but the
element type is neither a switch nor a link end element. The endpoint
type is an undefined type.

Renmot e end reports UNKNOAN ELEMENT TYPE. Using Point <-> Point.

The remote endpoint responded during a negotiate link process but the
element type is neither a switch nor a link endpoint. The remote element
type is of type UNKNOWN_ELEMENT.

Error Messages from the GSN Driver

Renot e END- PO NT not respondi ng

The interface went into the BRING_UP_LINK state and tried to find a
link end point but failed.

Renot e hardware not respondi ng

The interface went into the BRING_UP_LINK state and tried to find a
HIPPI end point but failed.

Rermote says it is | NACTI VE

An admin packet was received but indicates that the remote unit is
inactive.

Response ti nmeout
The GSN interface state is being changed to GSN_STATE_TIMEOUT.

RX_FLUSH bad port nunb number flags flags

During an attempt to clear receive bufx table entries, the port table entry
number passed into the current function was not in the range allowed
by SHAC (0-2047).

RX not flushing: base hex number t oken number f _of fset number bft hex number
nmask hex number port number cpu number

The maximum number of bufx flush token tries has been attempted
without success. The ST driver was not successful in flushing in-flight
incoming data.

Setting ST vc[nunber] size=0,was number, offset=hexnumber, was hexnumber

An initialization error was detected during driver bootup while
addresses and entry sizes were being assigned for the ST transmit FIFO
for this virtual channel. Assignments for this virtual channel are being
set to zero.

Set _unit_nunber fail ed!

An error was returned from a GSN driver utility function used to set the
adaptor unit number.

167

IRIX GSN Error Messages

168

Setup_fifo_regs
An error was discovered while checking SSRAM address alignment for
FIFO entries during interface configuration.

Shac 1.0 is installed.
An old revision of the SHAC ASIC in the GSN adapter that is no longer
supported has been detected.

SSRAM al ready initialized

An attempt was made to initialize SSRAM more than once.

string string ti meout - Resetting Sumac
There was a VC full or RX tail timeout error detected. Resetting the
SUMAC to recover.
Sumac was not brought out of string chip_reset by fw
The SUMAC ASIC in the GSN adaptor was not reset by the firmware
processor portion of the adaptor, indicating a possible problem.
The tunabl e gsn_ssramprofile is outside the |l egal range 0 to number.
Setting gsn_ssramprofile = 0.
The gsn_ssram_profile tunable is an invalid number. The SSRAM profile
used will be the default (profile 0).
Too many refcnt: number

An attempt was made to delete a hardware graph vertex but the graph
was not accessible after several retries. GRAPH_IN_USE was returned
from the hardware graph subsystem.

Transition from state to unknown state state

The GSN driver attempted to change to an undefined or illegal state.

TX flush did no progress on VC uvc Port port Aborting tx flush

During an attempt to clear and flush a range of transmit bufx table
entries, the driver detected no progress after a period of time.

Error Messages from the GSN Driver

TX flush tinmeout on VC vc Port port Aborting tx flush
During an attempt to clear and flush a range of transmit bufx table
entries, the timer for this event expired after multiple tries.

Unabl e to select CPU from master node for error interrupt

An error occurred during an attempt to configure the error interrupt
handler for SHAC errors on this interface. An error was returned from
the hardware graph subsystem during an attempt to traverse the graph
from the I/O vertex to a CPU.

Unabl e to select CPU from nmaster node for error interrupt

A kernel hardware graph function returned an error while trying to
traverse the hardware graph from the master node vertex to a CPU. No
CPU vertex could be found on that node.

Unabl e to send Adnmin Reset packet
While the interface was being configured, an error was encountered
when an admin reset packet was sent to the SUMAC.

Unabl e to shutdown RX cl eanly.

An error was encountered while trying to shut down receive and
transmit activity. The driver was in the process of error recovery and
tried to shut down receive processing.

Unexpect ed part number, Expected: stringGot: string There mi ght be a m smatch
bet ween the driver and hardware

An unexpected GSN adaptor part number was encountered while
probing the adaptor. Check for mismatches between the GSN adaptor
hardware revision number on the driver revision.

Unknown devi ce: device

An attempt was made to close a GSN device with a dev_t structure that
did not contain a good GSN_DEV_TAG. This dev_t struct does not point
to a GSN device.

Unknown ioctl: ioctl

This GSN ioctl is unrecognized. Returning an EINVAL error.

169

IRIX GSN Error Messages

170

Unr ecogni zed i -desc type: number
A packet was received by this interface with an unrecognized i-desc

type.
Verify_pio_addr_of fset pio: hex number!
GSN utility function gsn_verify_pio_addr_offset returned an error
indicating that there was an xtalk related address that was not correctly
set up.
Ver t ex(device) : no pi o_map
An error was encountered during an attempt to set up PIO mapping for
an xtalk device for this interface. An EIO error is returned to the caller.
Ver t ex(number. number) : no pi o addr!
A sanity check showed that the PIO address for an xtalk was not set up
correctly.
Wat chdog ti neout: number

The watchdog timer for this interface has exceeded the maximum tries
to determine that the link is in an up or usable state. Resetting the state
to reflect a watchdog timeout.

XT 0 node has no QD

This interface has no interrupt queue available. The error was found
during setup of interface for receiving and transmitting of admin
packets.

Xwi dget _dri ver_register

An attempt to register a driver on an xtalk port failed.

Xwi dget _error _intr (hexnumber, number, hexnumber, hexnumber)

An error interrupt was received by one of the widget error interrupt
handlers. This particular widget error interrupt handler receives errors
reported by the xbow or hub.

Error Messages from the GSN Driver

Xwi dget num numbers for number

While setting up interrupt handling for the interface an error was
detected. The xtalk widget number in the interrupt resource handle does
not match the destination widget number for this node.GSNadmin_3.ps

171

Glossary

bridging switch
A node that connects two different sections of a HIPPI/GSN network. The two sections

can be two different fabrics (such as GSN and HIPPI-800) or two similar sections (such
as two groups of GSN endpoints). The node complies with the following:

e provides broadcasting by using the IEEE 802.1d spanning tree algorithm and
protocol

* uses the complete 6-byte destination ULA for path selection

e complies with the IEEE 802.1d algorithms for its automatic path-select
configuration

destination

The receiving element located at the other end of a physical link. An upper-layer entity
(host, network-layer interface, or program) that uses the GSN subsystem is sometimes
loosely referred to as the destination; however, it is more correct to call these software
entities upper-layer protocols (that is, destination ULPs). A “final destination” refers to
the element that is the ultimate receiver for a micropacket; an element that receives then
retransmits the micropacket (for example, a switch) is simply a destination.

element

Any component of a HIPPI-6400 fabric or system that is able to receive, process, and send
HIPPI-6400 Admin micropackets in a manner that conforms with the HIPPI-6400
standard. Each HIPPI-6400 port on an element contains both a source and a destination.
For example, the SuMAC chip in an SGI GSN product is a single-port HIPPI-6400
element.

endpoint

A final destination or an originating source of GSN traffic. An endpoint may have only
one GSN port. A single system may have many endpoints (for example, an Origin
module with two SGI GSN products has two endpoints).

173

Glossary

174

fabric

All the HIPPI nodes (switches, endpoint devices, extenders) that are physically
interconnected and speak the same physical-layer protocol. For example, a GSN fabric is
a separate entity from a HIPPI-800 fabric.

One GSN fabric can be logically divided into multiple upper-layer address spaces (that
is, networks or LISs). For example, a single GSN fabric can support multiple IP networks.
Conversely, one logical network can include members from multiple HIPPI fabrics. For
example, an IP network can include members from a GSN (HIPPI-6400) fabric as well as
members from a HIPPI-800 fabric.

hardware device name

The string of characters and numerals used to identify a specific item of hardware. This
string is assigned by the operating system, and is not configurable. The hardware names
for the components/devices in a system can be displayed with the hinv command. For
the SGI GSN hardware, this name has the format gsn0, gsnl, gsn2, and so on. See
“Assignment of Unit Numbers to Hardware” in Chapter 1 for details on how the
numbers are assigned to each hardware device (port).

HARP service

A logical IP subnet (LIS) service that provides address resolution for IP hosts operating
over a HIPPI fabric. The service conforms with the proposed HARP RFC. When the
HIPPI fabric supports broadcasting, every IP host provides the service by responding to
address resolution requests that are addressed to it. When the HIPPI fabric does not
support broadcasting, one IP host provides the service by maintaining a HARP table and
answering address requests from the other hosts (clients) of the LIS; in this scenario the
LIS has one HARP server.

hop count

A number used in HIPPI-6400 Admin micropackets to indicate through how many
elements the micropacket should be forwarded. Each time a micropacket exits an
element, the hop count is decremented by one. See “GSN Admin Micropackets” on
page 18 for further details.

hostname

The string of characters and /or numerals used to identify a specific instance of an
operating system (that is, a UNIX host). This string is completely customer-configurable;
it is created by editing the /etc/sys_id file.

Glossary

INET address

Internet address, and frequently referred to as IP address or IP/ST address. A
globally-unique 32-bit number used to identify a network-layer entity that speaks one of
the DARPA Internet protocols (for example, TCP, UDP, ICMP) or another supported
protocol, such as Scheduled Transfer (ST). This address is completely
customer-configurable, but assigned in blocks by a globally-recognized address
authority, such as the National Science Foundation’s InterNIC. In IRIX, this address is
mapped to a network interface name by editing the /etc/config/netif.options file. See the
network connection name glossary entry for a user-friendly name for this address.

initiator
The ST endpoint that sends the first operation within an ST sequence. The endpoint that

acts as initiator during one sequence (for example, the connection setup) can act as the
responder in a subsequent sequence (for example, the data movement).

LIS
See logical IP subnet.

logical IP subnet

Also known as LIS. A globally-known (public) logical address space that is defined by an
INET network address and a subnet mask. The basic methodology of an LIS is similar to
subnet, at the local (site) level; however, the consequences for routing are quite different
for the two methodologies. Refer to “Classless Inter-domain Routing” RFC 1519. Also see
subnet and subnet mask.

netmask

See subnet mask.

network connection name

Sometimes referred to as alias for IP address or (incorrectly) as hostname. The string of
characters and/or numerals used as a user-friendly method for identifying a specific
network-layer entity; the string is an alternate (alias) for an INET address. This string is
completely customer-configurable; it is created and mapped to an INET address in the
/etc/hosts file; it can be used in the /etc/config/netif.options file to configure a network
interface. By convention, the network connection name includes the system’s hostname.
For example, a system with the hostname granite might have network connection names
of granite-ef0.rocks.com and granite-gsn0.rocks.com.

175

Glossary

176

network interface name

The string of characters and numerals used to identify a specific logical network-layer
interface (sometimes known as an if_net instantiation). This string is assigned by the
operating system and tied to a specific hardware subsystem; it is not customer
configurable. For the IRIS GSN product, this name has the format gsn0, gsnl, gsn2, and
so on. The network interface name is mapped to a configurable network-layer (for
example, INET) address by the /etc/config/netif.options file. See “ Assignment of Network
Interface to Hardware Device” in Chapter 1 for details on how the numbers are assigned
to each GSN network interface.

operation

The ST protocol data unit. It is composed of a 40-byte header and variable-length data
ranging from 0 bits to 4 gigabits (illustrated in Figure 1-13). Each ST operation is
transmitted as one GSN Message, as illustrated in Figure 1-13.

physical link

One section of HIPPI-6400-PH transmission medium (copper or fiber-optic cable) that
connects two HIPPI-6400-PH elements. Each element can be either a switch or an
endpoint. Each physical link is a full-duplex link composed of two simplex links; each
simplex link carries data in only one direction. The two streams of data in the full-duplex
link flow in opposite directions. The path (virtual connection) between an original point
of transmission (the originating source) and a final point for reception (the final
destination) can involve numerous physical links.

responder
The other (not the initiator) ST endpoint participating in an ST sequence.

sequence

In the context of the ST protocol, a series of operations that occur in a specific order and
accomplish an ST protocol task.

slot

Memory at an ST destination that is reserved for holding one incoming ST Header.

Glossary

source

The transmitting element located at one end of a physical link. An upper-layer entity
(host, network-layer interface, or program) that uses the GSN subsystem is sometimes
loosely referred to as the source; however, it is more correct to call these software entities
upper-layer protocols (that is, source ULPs). An “originating source” refers to the
element that first transmitted a micropacket; an element that is retransmitting the
micropacket (for example, a switch) is simply a source.

subnet

Also called subnetwork. A site-defined (private) address space that is carved from a
globally-assigned (public) INET network address space. A subnet mask is used to divide
the INET network address into many subnets. See subnet mask.

subnet mask

Also called netmask. A customer-configurable value for increasing the number of bits
within an INET address that are used for network (netid) identification. The netid is
increased by taking 1 or more bits from the host portion (hostid) of the INET address and
using them as additional network bits. For example, a basic INET class C address consists
of 24 bits of netid and 8 bits of hostid. A site can use a subnet mask to alter their addresses
so that 28 bits are used to identify the network and only 4 bits are used to identify hosts.

Use of a subnet mask allows one INET network address to be subdivided into multiple
networks (called subnets). A basic class C address allows a site to have up to 254 hosts on
one network. If a site increases its netid to 28 bits, it can have up to 15 hosts on each of 16
different networks (subnets).

Within a subnet mask, the bits set to 1 specify the portion of the address used to identify
networks, while the bits set to 0 identify the hosts. For example, netmask OxFFFFFF80
(hexadecimal) provides 25 bits of netid and 7 bits of hostid, while OxFFFFFFFO provides
28 bits of netid and 4 bits of hostid. The default netmask for IRIX is OxXFFFFFF00. This
default can be changed for each network interface by editing the appropriate
/etc/config/ifconfig-#.options file.

switch

A node that is located along the route between two endpoints. GSN traffic passes
through the switch on its way to a destination endpoint. A switch must have at least two,
and usually has numerous, GSN ports.

177

Glossary

178

unit number

The numeral portion of the hardware device name. See “ Assignment of Unit Numbers to
Hardware” on page 67 for a description of how these are assigned.

universal LAN MAC address (ULA)

Also known as a MAC (media access control) or ethernet address. A globally-unique
48-bit IEEE 802-style number used to identify a hardware device. The highest bits (that
is, 47 to 24: the Organizationally Unique Identifier) are assigned by the
globally-recognized address authority, IEEE. The lower 24 bits are assigned by the local
organization that has been given (assigned) the OUL

Index

A

address discovery, 14
address resolution. See HARP
Admin micropacket. See micropacket

B

broadcast address, 58, 90
broadcast support, 58

buffer configuration for improved TCP/IP
performance, 89,91

C

commands
apropos, Xv
Jetc/init.d/gsn script, 100
grelnotes, xvi
ifconfig, 100
infosearch, xvi
man, Xiv
netstat, 100
ping, 99
relnotes, xvi
summary of GSN, 99
ttcp, 99
/usr/etc/gsnarp, 99
fusr/etc/gsncntl, 99
/usr/etc/gsntest, 99

compatibility, 5
configuration of
address space for LIS, 89
buffer allotment, 91
buffer sizes, 89
HARP client, 82
HARP server, 83-87
interrupt frequency, 92
IP network interface, 76-77, 81
LIS, 89
MTU, 91
netmask, 89
reception buffers, 91
ULA for contacting HARP server, 82

control bits, 11
credits, 16
customer support, xvii

D

destination, 7
device name for GSN, 4

documentation
additional, xi
list of GSN documents, xii
order paper-copy, xv
via InfoSearch, xvi
via the World Wide Web, xiv, xv

driver configuration file. See /var/sysgen/master.d/gsn

179

Index

E

element

definition, 6

hop count, 19, 118

ports on, 18,119

status, 118
endpoint, 7
error message alphabetization rules, 145
error message log file, 145
error messages, 154
/etc/config/gsnarp.options file, 65, 66, 82, 83, 85, 85-88
/etc/config/ifconfig-#.options file, 88, 90
/etc/config/netif.options file, 76, 92
Jetc/hosts file, 76, 88
/etc/init.d/gsn script, 100

F

fabric
definition, 7
definition of broadcast support, 58
discover broadcast support in, 59
discover configuration of, 14
files
driver configuration. See /var/sysgen/master.d/gsn
error message file, 145
IP configuration files. See /etc/hosts,
/etc/config/netif.options, and
Jetc/config/ifconfig-#.options
log messages, 145
static HARP entries. See /etc/config/gsnarp.options
Jusr/adm/SYSLOG, 145

flow control for GSN, 16

180

G

grelnotes, xvi

gsnarp command. See /usr/etc/gsnarp
gsnarp.options file. See Jetc/config/gsnarp.options
gsnentl command. See /usr/etc/gsncntl

gsn file. See fvar/sysgen/master.d/gsn

GSN product names, 4

GSN protocol
bit rate, 8
control bits, 11
data rate, 8
description, 6-17
flow control. See flow control for GSN
Message format, 17
micropacket. See micropacket
PDU, 11
virtual channels. See virtual channel

gsn script. See Jetc/init.d/gsn
GSN standards, 4
gsntest command. See /usr/etc/gsntest

H

hardware address. See ULA

hardware assignment to network interface, 67-69

hardware checksumming, 91
hardware graph, 67

hardware loopback, 102
hardware name for GSN, 4
hardware number assignment, 67

HARP
client configuration, 82-83
configuration details, 82-85
configuration overview, 77
decision tree for configuration, 78
default address for contacting server, 58

Index

default parameters, 77

description, 57-65

description with/without fabric broadcast

support, 58

flags, 132

operation phase, 63

registration phase, 61

RFC, 4

server’s ULA, 58, 131

server configuration, 83-87

server selection, 65

static entries to HARP table, 65

ULA for contacting server, 58, 82
HARRP client configuration, 82-83
HARP network stack, 3

HARP packet
HIPPI-6400 format, 87
HIPPI-800 format, 87
IEEE address, 87
MAC address, 87
ULA, 87
HARP server configuration, 83-87

HARP service
with broadcasting, 58
without fabric support for broadcasting, 58

HARP table
adding static entries, 86
description, 66
maintenance, 66

help, xvii

hinv command. See /sbin/hinv
HIPPI-6400. See GSN

hop count use, 19

host name, 88

hosts. See /Jetc/hosts file

how to
change static entries in HARP table in real time, 79
change ULA for contacting HARP server, 131
configure specific items. See configuration of

disable hardware checksums, 91

display current address being used to contact
HARP server, 132

display current HARP lookup table, 132

display status information, 106, 127

enable/disable the IP network interface, 101

enable hardware checksums, 91

improve performance, 89,91

increase number of network interfaces, 93

install a loopback link, 133

maintain IRIS GSN subsystem, 100-141

map hostnames to ULAs, 80

map IP addresses to ULAs, 80

monitor IP traffic, 130

monitor IRIS GSN subsystem, 100-141

monitor ST traffic, 130

reset hardware, 101

select HARP server, 65

subnetwork an INET address, 89

troubleshoot an IP network interface, 142

tune interrupt generation, 92

tune latency, 92

verify presence of board in hardware inventory,
135

verify that IP is enabled, 142

verify the GSN hardware, 135-138

verify the IP network interface, 138-??

verify the IRIS GSN subsystem, 135-??

HUB ASIC and GSN, 5

IEEE address, 65

ifconfig-#.options file. See /etc/config/ifconfig-#.options
ifconfig command. See /usr/etc/ifconfig

ifnet name for GSN, 5

image name for GSN, 4

INET address, 49, 81, 88

InfoSearch, xvi

181

Index

internal loopback, 102
interrupt tuning, 92

IP checksumming, 91
IP-over-GSN interface name, 5
IP-over-GSN network stack, 3
IP traffic statistics, 130

IRIX and GSN compatibility, 5
I-field, 65

L

LIS
configure address space for, 89
description, 49-55
relationship to netmask, 50
relationship to subnetworking, 50

locating reference (man) pages, xiv, xv
log file, see files
loopback, 102, 135

M

MAC address, 65
maintaining GSN subsystem, 99
man pages, Xiv, xv
micropacket
Admin, 14,15, 18-23
control bits, 11
definition, 11
PDU, 11
types of, 13

monitoring GSN subsystem, 99
MTU configuration, 91

182

N

names for GSN products, 4
netif.options. See /etc/config/netif.options file
netmask, 81,90

configuration, 50, 89

definition, 50

relationship to LIS, 50
netstat command. See /usr/etc/netstat
network connection name, 88

network interface
assignment to hardware device, 67-69
maximum number, 93
name for GSN interfaces, 5
number assignment, 67

network stacks for GSN, 3

O

onboard loopback, 102

online document viewers
grelnotes, xvi
v, xiv
infosearch, xvi
IRIS InSight, xiv
man, Xiv
relnotes, xvi

P

performance tuning, 89, 91
physical link, 6

ping command. See /ust/etc/ping
product support, xvii

Index

R

reception buffers, 91

reference pages. See man pages
relnotes, xvi

reset, 101

RFC 1323, 89

route metric, 81,90

S

/sbin/hinv command, 104, 135

Silicon Graphics customer support, xvii
simplex link, 6

software image name for GSN, 4
source, 6

standards compliance, 4

status information, 107, 108

status reports, 106, 107, 108, 127
ST-over-GSN interface name, 5
ST-over-GSN network stack, 3

ST protocol description, 23-47

ST standards, 4

ST traffic statistics, 130
subnetworking and the LIS, 50
SuperHIPPIL See GSN

switch, 7

SYSLOG file, 145

SYSLOG file, see /usr/var/adm/SYSLOG

T

technical assistance center, xvii

Technical Publications Library, manuals on the

World Wide Web, xv

testing procedures, 135
ttcp command. See /usr/etc/ttcp
tuning, 91

U

ULA
discovery, 14
for contacting HARP server, 82
HARP client, 65, 87

unit number assignment
for GSN ports, 67

Jusr/adm/SYSLOG file, 145
Jusr/etc/gsnarp command, 79, 84, 99
Jusr/etc/gsncntl command, 99
Jusr/etc/gsntest command, 99, 136
Jusr/etc/ifconfig command, 81, 100, 101
Jusr/etc/netstat command, 100
Jusr/etc/ping command, 99, 139
Jusr/etc/ttcp command, 99
Jusr/var/adm/SYSLOG file, 145
utilities, 100

\Y

fvar/sysgen/master.d/gsn file, 91
verifying the IRIS GSN subsystem, 135-??

virtual channel
definition, 9
type of data carried by each, 10

183

Index

W
World Wide Web

obtaining manuals via, xiv, xv
URL for SGI, xv

184

