
SGI® OpenGL Multipipe™ SDK
User’s Guide
007-4239-001 Version 1.0

CONTRIBUTORS
Written by Ken Jones
Illustrated by Chrystie Danzer and Jenn Byrnes
Edited by Susan Wilkening
Production by Glen Traefeld
Engineering contributions by Patrick Bouchaud, Stefan Eilemann, and Philippe Robert

COPYRIGHT
© 2002 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No
permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole
or in part,without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND
The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA government
or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable license agreement, as
specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of the DoD FAR Supplement; or
sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy 2E, Mountain View, CA 94043-1351.

TRADEMARKS AND ATTRIBUTIONS
Silicon Graphics, SGI, the SGI logo, IRIX, InfiniteReality, OpenGL, Onyx, and Onyx2 are registered trademarks and GLX, InfinitePerformance,
Open Inventor, OpenGL Multipipe, OpenGL Volumizer, and Reality Center are trademarks of Silicon Graphics, Inc.

DaimlerChrysler is a registered trademark of DaimlerChrysler AG Corporation. HOLOBENCH and TANORAMA are registered trademarks of
Helmut Tan. Responsive Workbench is a registered trademark of GMD. V-Dome is a trademark of SEOS Limited. The X device is a registered
trademark and Xinerama is a trademark of The Open Group in the United States and other countries.

Record of Revision

Version Description

001 May 2002
Original publication. Supports the 2.0 release of OpenGL Multipipe SDK.
007-4239-001 iii

Contents

Figures . . ix

Tables . xi

About This Guide. . xiii
Audience . xiii
What This Guide Contains . xiii
Related Publications . . xiv
Obtaining Publications . xiv
Conventions . xiv
Reader Comments . . xv

1. Overview . 1
A Reality Center Facility . . 1
What MPK Provides . . 3

Run-Time Configurability 3
Run-Time Scalability . . 4
Integrated Support for Scalable Graphics Hardware 4
Integrated Support for Stereo and Immersive Environments 4

Components of MPK . . 5
Application Structure . . 5
A Sample Configuration File 6

2. Framebuffer Resources . . 9
The MPK Configuration Hierarchy 9
The config Data Structure 12
The pipe Data Structure . . 12
The window Data Structure 13
The channel Data Structure. 14
Stereo Description . . 15
007-4239-001 v

Contents
3. Frustum Descriptions . . 17
Orthographic Versus Perspective Frusta. 18
A Frustum in Immersive Environments 20
Two Modeling Methods . 23

Specifying Wall Model Coordinates 23
Specifying Projection Model Coordinates 24

Examples of Common Reality Center Settings 26

4. Compounds . . 31
Scalable Rendering . . 31
Building Compounds . . 32

Frame Decomposition. . 34
Screen Decomposition 34
Database Decomposition. 36
Eye Decomposition . 38

Temporal Decomposition. 40
Frame Multiplexing 40
Data Streaming . 43

Multilevel Decomposition 44
Stereo-Selective Compounds 47
Choosing the Right Decomposition Mode 48

5. Using Scalable Graphics Hardware 49
Using MPK with a DPLEX . 49
Using MPK with an SGI Scalable Graphics Compositor 50

How the Compositor Functions 51
MPK Specifications . 52

6. Configuration File Format . 55
File Format . . 55

Specifying Comments (#) 55
Specifying Delimiters . . 55
Specifying MPK Data Structures. 56
Specifying Values within a Field. 57
vi 007-4239-001

Contents
Defining MPK Data Structures 58
The config Data Structure 59
The pipe Data Structure. 60
The window Data Structure 62
The channel Data Structure 68
The compound Data Structure 71

Specifying Global Attributes 74

Index . 83
007-4239-001 vii

Figures

Figure 1-1 SGI Reality Center 2
Figure 1-2 MPK Application Structure 6
Figure 2-1 MPK Configuration Hierarchy 10
Figure 3-1 An Orthographic Frustum. 18
Figure 3-2 A Perspective Frustum. 19
Figure 3-3 Projections through the Near Plane 20
Figure 3-4 The Effective Frustum 22
Figure 3-5 TANORAMA® POWERWALL (TAN/SGI Democenter) 26
Figure 3-6 TAN HOLOBENCH® (photo courtesy of GMD) 27
Figure 3-7 SGI Reality Center 28
Figure 3-8 V-Dome™ (designed and installed by Trimension Systems, Inc.) . 29
Figure 3-9 Responsive Workbench®(photo courtesy of DaimlerChrysler AG) . 30
Figure 4-1 Source and Destination Channels 32
Figure 4-2 Screen Decomposition 35
Figure 4-3 Database Decomposition 37
Figure 4-4 Eye Decomposition. 39
Figure 4-5 Frame Multiplexing Decomposition 41
Figure 4-6 Data Streaming Decomposition 43
Figure 4-7 Eye-DB Multilevel Decomposition 45
Figure 5-1 Hardware Composition Schemes. 51
007-4239-001 ix

Tables

Table 6-1 Field Types and Formats 57
Table 6-2 The config Fields 59
Table 6-3 The pipe Fields 61
Table 6-4 The window Fields 63
Table 6-5 Window Attributes— hints Subfields 64
Table 6-6 Window Attributes—planes Subfields 66
Table 6-7 Window Attributes—transparent Subfields 67
Table 6-8 The channel Fields 68
Table 6-9 The compound Fields 71
Table 6-10 MPK Global Attributes 74
007-4239-001 xi

About This Guide

SGI OpenGL Multipipe SDK (MPK) is a software development toolkit that allows you to
adapt your graphics applications to run in immersive environments and to take
advantage of the scalability provided by multiple pipes and other scalable graphics
hardware. This guide describes how to use and configure an MPK application.

Audience

This guides targets Reality Center administrators. As such, you can configure graphics
applications to run in multipipe environments. Using MPK, you can describe the
physical display area (walls), the hardware resources, and the rendering options.

What This Guide Contains

This guide is divided into the following chapters:

• Chapter 1, “Overview” describes the features of MPK and its components.

• Chapter 2, “Framebuffer Resources,” describes the function and hierarchy of the
framebuffer data structures for pipes, windows, and channels.

• Chapter 3, “Frustum Descriptions,”describes a frustum in a virtual reality
environment and two methods for computing a frustum for a projection system.

• Chapter 4, “Compounds,” describes the various schemes of decomposition
available under MPK.

• Chapter 5, “Using Scalable Graphics Hardware,”describes the use of compounds
with scalable graphics hardware.

• Chapter 6, “Configuration File Format,” describes the format of an MPK
configuration file.
007-4239-001 xiii

About This Guide
Related Publications

The following books contain additional information that may be helpful:

• SGI InfinitePerformance: Scalable Graphics Compositor User’s Guide

• Onyx2 DPLEX Option Hardware User’s Guide

• IRIX Admin: Software Installation and Licensing

• OpenGL Multipipe User’s Guide

Obtaining Publications

To obtain SGI documentation, go to the SGI Technical Publications Library at the
following URL:

http://techpubs.sgi.com

Conventions

The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, programming language structures, and
URLs.

variable Italic typeface denotes variable entries and words
or concepts being defined.

user input This fixed-space font denotes literal items that the
user enters in interactive sessions. Output is
shown in nonbold, fixed-space font.

interface GUI interfaces are denoted in bold. Also functions
are denoted in bold with following parentheses.

manpage(x) Man page section identifiers appear in
parentheses after man page names.
xiv 007-4239-001

About This Guide
Reader Comments

If you have comments about the technical accuracy, content, or organization of this
document, please send them to SGI. Be sure to include the title and document number of
the manual with your comments. (Online, the document number is located in the front
matter of the manual. In printed manuals, you can find the document number on the
back cover.)

You can contact us in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library World Wide Web
page:

http://techpubs.sgi.com

• Contact your customer service representative and ask that an incident be filed in the
SGI incident tracking system.

• Send mail to the following address:

Technical Publications
SGI
1600 Amphitheatre Pkwy., M/S 535
Mountain View, California 94043-1351

• Send a fax to the attention of “Technical Publications” at +1 650 932 0801.

SGI values your comments and will respond to them promptly.
007-4239-001 xv

Chapter 1

1. Overview

This overview of OpenGL Multipipe SDK (MPK) consists of the following sections:

• “A Reality Center Facility”

• “What MPK Provides”

• “Components of MPK”

• “Application Structure”

• “A Sample Configuration File”

A Reality Center Facility

Throughout this document, we shall use the term Reality Center facility to convey the
following meaning: an SGI computer environment with extended visualization
capabilities. Note that this definition not only applies to the traditional three-pipe theater
(historically set up for flight simulation) but covers as well all kinds of immersive
environments (such as a Cave, TANORAMA POWERWALL, or TAN HOLOBENCH
facility) and also extends to encompass graphics clusters. Figure 1-1 on page 2 illustrates
an SGI Reality Center facility.
007-4239-001 1

1: Overview
Figure 1-1 SGI Reality Center
2 007-4239-001

What MPK Provides
What MPK Provides

As more and more graphics applications come into the virtual reality arena as a piece of
immersive solutions, application developers face new requirements. Not only do
developers need to take into account high frame rates and low latencies needed for
temporal realism, but also better image quality for visual realism. OpenGL applications
must improve their performances and must be able to run in increasingly complex
environments that include various input peripherals and projection systems. For
applications initially designed to run on a visual workstation in non-real time and with
keyboard-mouse input, new releases now need to be time-accurate and should be able to
integrate a moving frustum tied to head-tracking peripherals and several rendering
engines (graphics pipes) that provide multiple and wider fields of view. Because these
types of evolving environments have numerous parameters, the applications must be
sufficiently flexible and robust to accommodate their demands.

MPK is an application programming interface (API) designed to help software
developers meet the demands of these new immersive environments. This product
enables the application to take advantage of the scalability provided by additional pipes
and other scalable graphics hardware, as well as to support immersive environments.
MPK provides the following specific features:

• Run-time configurability

• Run-time scalability

• Integrated support for scalable graphics hardware

• Integrated support for stereo and immersive environments

Run-Time Configurability

MPK allows developers to create applications that run on multiple platforms ranging
from simple visual workstations to large and complex visualization environments, often
based on several pipes for parallel rendering purposes. It implements a design that
largely isolates the application from the graphics resources and the physical
environment. Providing run-time configurability, an application written in the MPK
programming model can run on a simple desktop platform or, without any modification
or recompilation, in highly complex visualization environments like an SGI Reality
Center facility.
007-4239-001 3

1: Overview
Run-Time Scalability

Graphics-intensive applications often require several pipes in order to achieve a desired
performance. Each pipe contributes to a part of the final rendering. This introduces the
need for a decomposition paradigm and the issue of how the rendering performance
scales with the number of pipes. Rendering in parallel requires the developer to manage
several graphic contexts and then to create tasks or threads, each managing their own
graphic context and sharing the scene to be rendered. MPK allows a multipipe
applications developer to avoid dealing with such parallel programming paradigms and
offers compound algorithms based on several decomposition types.

Integrated Support for Scalable Graphics Hardware

Scalable graphics hardware such as the SGI Scalable Graphics Compositor and the SGI
Video Digital Multiplexer (DPLEX) can perform some of the compositing functions that
MPK now provides in software. MPK supports such hardware as well as conventional
graphics hardware.

Integrated Support for Stereo and Immersive Environments

Along with its scalability features, MPK has integrated the ability to exploit the stereo
features of your application-display environment without recompilation. Having the
related display characteristics of your environment described in a configuration file, you
can specify at run time whether to run in stereo or mono.

In addition, MPK provides the application with the ability to support truly immersive
environments by using a simple programming interface: the application only needs to
provide real-world information about the position and orientation of the viewer. MPK
then transparently adapts its left- and right-eye frustum computations to the actual
user’s location.

The ease of configuring your application to accomodate different hardware resources
(graphics pipes and head-tracking devices) and different display areas makes MPK ideal
for use in immersive environments.
4 007-4239-001

Components of MPK
Components of MPK

MPK has two components:

• Application programming interface

Designed for the applications programmer to adapt OpenGL graphics applications
to fit the MPK programming model in order to support multipipe environments.

• Configuration file interface

Designed for Reality Center administrators to configure MPK graphics applications
to run in their environments. This ASCII file interface allows you to specify how the
framebuffer resources (pipes, windows, and channels) are mapped onto the
physical projection areas (walls) and the parallel decomposition schemes
(compounds) to be used by your applications.

MPK is available on IRIX through C language function calls. It is designed as a thin layer
on top of the operating system, X11, OpenGL, and GLX.

Application Structure

As an application will have to run in different configurations, MPK externalizes the
configuration management by implementing an ASCII file that is separate from the other
application code. The scene management and data workflow is separate from scene
rendering (management of the graphics resources). Figure 1-2 illustrates the structure of
an application based on MPK.
007-4239-001 5

1: Overview
Figure 1-2 MPK Application Structure

A Sample Configuration File

Example 1-1 shows a one-pipe, one-window configuration file that can be used in
conjunction with a MPK-structured program—for instance, volview, a scalable
volume-viewer application packaged as part of the OpenGL Volumizer 2 product.

Core application Graphics tasks

Database management
and

Data workflow

Scene rendering
and

Resource management
6 007-4239-001

A Sample Configuration File
Example 1-1 Sample Configuration File

global {
 MPK_WATTR_PLANES_ALPHA 1
 MPK_DEFAULT_EYE_OFFSET 0.01
}
config {
 name “Volview: 1-pipe”
 mode mono

 mono “/usr/gfx/setmon -n 1280x1024_76”
 stereo “/usr/gfx/setmon -n str_top”
 pipe {
 window {
 viewport [0, 0, 1.0, 1.0]
 channel {
 name “center”
 viewport [0., 0., 1., 1.]
 wall {
 bottom_left [-.5, -.5, -1]
 bottom_right [.5, -.5, -1]
 top_left [-.5, .5, -1]
 }
 }
 }
 }
}

007-4239-001 7

Chapter 2

2. Framebuffer Resources

As noted in the overview, MPK allows you to describe the framebuffer resources (pipes,
windows, and channels), the physical display area (walls), and the rendering options.
This chapter describes how you configure the framebuffer resources and contains the
following sections:

• “The MPK Configuration Hierarchy”

• “The config Data Structure”

• “The pipe Data Structure”

• “The window Data Structure”

• “The channel Data Structure”

• “Stereo Description”

The MPK Configuration Hierarchy

The MPK configuration file uses a tree data structure to describe the physical graphics
resources. The root of the data structure is the whole visualization facility and the leaves
are the physical rendering layouts. Figure 2-1 shows the configuration of an application
running on a two-pipe platform, two windows handling the GLX context, and four
channels.
007-4239-001 9

2: Framebuffer Resources
Figure 2-1 MPK Configuration Hierarchy

Example 2-1 shows a skeletal configuration file that describes Figure 2-1.

 Reality Center
MPK Configuration

 pipe
X-display
 (stereo)

 pipe
X-display
 (stereo)

 window
GLX drawing area

 window
GLX drawing area

 channel
 GL viewport
Physical Layout

 channel
 GL viewport
Physical Layout

 channel
 GL viewport
Physical Layout

 channel
 GL viewport
Physical Layout
10 007-4239-001

The MPK Configuration Hierarchy
Example 2-1 Skeletal Configuration File

config {
 pipe {
 window {
 viewport [parameters1]
 channel {
 viewport [parameters2]
 .
 .
 .
 }
 channel {
 viewport [parameters3]
 .
 .
 .
 }
 }
 }
 pipe {
 window {
 viewport [parameters4]
 channel {
 viewport [parameters5]
 .
 .
 .
 }
 channel {
 viewport [parameters6]
 .
 .
 .
 }
 }
 }
}

007-4239-001 11

2: Framebuffer Resources
Reading this configuration file, MPK determines the following:

• What physical pipes it must allocate

• What parallel tasks it must create

• How to synchronize the rendering tasks

• The final rendering framebuffer area

The following sections describe the function of the framebuffer data structures and
Chapter 6, “Configuration File Format” describes their syntax for the configuration file.

The config Data Structure

The configuration level of the hierarchy, denoted in the configuration file by the config
data structure, primarily describes the rendering resources of an MPK application as a
hierarchy of the following:

• Hardware rendering pipelines (pipes)

• GLX software rendering threads (windows)

• OpenGL framebuffer rendering areas (channels)

It may also describe compounds, various parallelization schemes of the rendering across
channels in order to scale performances. Chapter 4, “Compounds” describes the use of
compounds in MPK.

As shown in Figure 2-1, pipes are children of the root configuration, windows are
children of pipes, and channels are children of windows. As such, you can take
advantage of the attendant inheritance. For instance, you can specify the screen
dimensions at the pipe level and they will be inherited by the child windows and child
channels. This inheritance is made possible because MPK uses no absolute pixel
dimensions but fractional viewport descriptions for its window and channels.

The pipe Data Structure

A pipe data structure describes the rendering resources within a configuration that are
assigned to a given hardware rendering pipe. You must have one pipe entry for every
pipe you want to use in your configuration. The pipe itself is characterized by the name
12 007-4239-001

The window Data Structure
of its corresponding X11 display as well as the expected mono and stereo mechanisms
(full-screen, quad-buffer, and the like) to be applied by its rendering threads (windows).

Example 2-2 shows a minimal pipe specification that is superior to that of the windows
and channels.

Example 2-2 Sample Pipe Specification

pipe {
 display “:0.0”
 window {
 .
 .
 .
 channel {
 .
 .
 .
 }
 }
}

You can specify the display sizes corresponding to the various stereo modes using global
attributes or pipe attributes; otherwise, MPK uses the values returned by the X11
DisplayWidth() and DisplayHeight() functions. Chapter 6, “Configuration File
Format” describes the pipe and global attributes.

The window Data Structure

A window data structure corresponds to a single GLX unit (that is, a single X window
with its associated OpenGL visual and context). Essential in the MPK programming
model is that each window spawns its own rendering thread.

In the configuration file, the window specification is subordinate to the pipe
specification. Example 2-3 shows a minimal specification. Other optional specifications
include the processor where the rendering thread is to run and an extensive set of
window attributes. Chapter 6, “Configuration File Format” describes the complete set of
fields and their syntax.
007-4239-001 13

2: Framebuffer Resources
Example 2-3 Sample Window Specification

window {
 viewport [0., 0., 1., 1.]
 channel {
 .
 .
 .
 }
}

The channel Data Structure

A channel, denoted by a channel data structure in the configuration file, is essentially a
view onto a scene and corresponds to a single viewport inside its parent window. In
addition to the viewport description, a channel also contains the modeling coordinates
for the projection rectangle in the real world. Chapter 3, “Frustum Descriptions”
describes how you describe these coordinates.

Note: MPK allows applications to run in mirrored projection systems, which usually use
mirrors to invert the projected image up and down (with respect to left and right) . To do
this, you must specify a negative value for the height or width of the corresponding
channel’s viewport.

Example 2-4 shows a sample channel specification.

Example 2-4 Sample Channel Specification

channel {
 viewport [0., 0., 1., 1.]
 projection {
 origin [0., 0., 0.]
 distance 3.
 fov [54., 47.]
 hpr [0., 0., 0.]
 }
}

Chapter 6, “Configuration File Format” describes the complete set of fields and their
syntax.
14 007-4239-001

Stereo Description
Stereo Description

When running an MPK application in stereo mode, you can specify two elements from
the configuration file:

• Stereo type
This indicates how the framebuffer resources are configured for each eye pass. The
stereo type is defined as a pipe attribute either in the global attributes section or per
pipe in the pipe data structure. Chapter 6, “Configuration File Format” contains a
detailed list of all attributes and describes how to specify global attributes.

• Stereo command
This command will be executed by MPK when switching to mono or stereo
rendering. The command is specified for mono and stereo in the config data
structure.

Note: If you want to run in quad-buffered stereo mode, your windows must allocate
stereo-capable visuals. This can be specified using the stereo window attribute hint.

The following is an example of stereo specifications in the config data structure:

mono "/usr/gfx/setmon -n 60HZ"
stereo "/usr/gfx/setmon -n 1024x768_96s"

Controlling the stereo specifications at the configuration or pipe levels requires you to
kill windows and restart them. However, you can switch stereo on and off without killing
them if all windows on all quad-stereo pipes have a quad-buffer-capable GLX visual and
you use the window hint attribute, as shown in the following:

attributes {
 hints {
 stereo 1
 }
}

See Chapter 6, “Configuration File Format” for a complete description of the options and
their syntax.
007-4239-001 15

Chapter 3

3. Frustum Descriptions

To allow graphical applications to behave properly in immersive environments, you
must specify the physical layout of the display area and the relative position of the
observer. MPK allows you to do this by extending the notion of the viewing frustum in
a graphical application. This chapter uses the following sections to describe this task:

• “Orthographic Versus Perspective Frusta”

• “A Frustum in Immersive Environments”

• “Two Modeling Methods”

• “Examples of Common Reality Center Settings”

As described in Chapter 6, “Configuration File Format”, MPK expects a frustum
description as part of the channel data structure.
007-4239-001 17

3: Frustum Descriptions
Orthographic Versus Perspective Frusta

Figure 3-1 depicts an orthographic frustum.

Figure 3-1 An Orthographic Frustum

Figure 3-2 depicts a perspective frustum.

Y

X

Z

top

right

left

bottom

near

far
18 007-4239-001

Orthographic Versus Perspective Frusta
Figure 3-2 A Perspective Frustum

Note the following about the two frusta:

• Both are totally defined by the near, far, left, right, top, and bottom distances and the
assumption of having the eyepoint at the origin and the near and far distances for
each defined with respect to the Z axis. The OpenGL near and far planes are always
parallel to each other and perpendicular to the Z axis. An off-axis OpenGL frustum
corresponds to the case where the near-plane rectangle is not centered around the Z
axis. This is generally the case in immersive environments. See Figure 3-4 on
page 22 for an example of an off-axis frustum.

• Both final images (pixmaps) correspond to the near plane image.

• In the case of a perspective frustum and as illustrated in Figure 3-3, the near plane
intersection with a line from the eyepoint to the scene graph object defines the pixel
color. Distant objects appear smaller in the pixmap.

• In the case of an orthographic frustum and as illustrated in Figure 3-3 also, the near
plane intersection with a line parallel to the Z axis and extending to the scene graph

Y

X

Z

top

right

left

bottom

near

far
007-4239-001 19

3: Frustum Descriptions
object defines the pixel color. The size of objects is preserved in the orthographic
view.

Figure 3-3 Projections through the Near Plane

Given these definitions of a pixmap, you control the appearance of the pixmap by
selecting the type of frustum and setting the frustum parameters (near, far, left, right, top,
and bottom).

In non-immersive environments, the location of the eyepoint and monitor screen in the
real world is arbitrary and you do not need to account for it.

A Frustum in Immersive Environments

In non-immersive environments, you have arbitrary (usually symmetric) left, right, top,
and bottom parameters.

In an immersive environment, you need to establish the location of the eyepoint and the
monitor in real-world coordinates; they are no longer arbitrary. The monitor screen is
now a see-through glass window into the scene graph. Figure 3-4 on page 22 illustrates
the new effective frustum, which is completely determined by the following
specifications:

Y

X

Z

Y

X

Z

20 007-4239-001

A Frustum in Immersive Environments
• near and far distances

• Real-world eyepoint location

• Real-world screen position

MPK expects the dimensions (position and size) of the screen to be specified as part of
the associated channel’s data structure—that is, as if the screen itself was a 3D object in
your database. You must specify the same units and coordinate system as will be used by
the application when drawing the database.

MPK allows the eyepoint location to be specified using a simple programming interface.
The application needs only to provide real-world information about the position and
attitude of the viewer. MPK then transparently adapts its left- and right-eye frustum
computation.
007-4239-001 21

3: Frustum Descriptions
Figure 3-4 The Effective Frustum

screen

near

far

X

Y

Z

eye
22 007-4239-001

Two Modeling Methods
Two Modeling Methods

MPK provides two modeling methods to describe your projection system:

• Wall model (Cartesian coordinates)

• Projection model (polar/cylindrical/spherical coordinates)

The most appropriate modeling method usually corresponds to the one requiring fewer
manual computations in order to describe the geometry of your environment.

Specifying Wall Model Coordinates

Wall model coordinates are well-suited to describe projection screens that are arranged
as flat screens, such as in a TANORAMA POWERWALL or TAN HOLOBENCH facility.
To describe a projection screen using the wall model, you need to provide the Cartesian
coordinates of three of its vertices using object data coordinates (x’,y’,z’):

• Bottom-left vertex

• Bottom-right vertex

• Top-left vertex

Example 3-1 shows an example of using wall model coordinates in a configuration file
for a wall that is 3 meters by 3 meters and 1.5 meter in front of the viewer. The example
assumes that the application expects the coordinates to be specified in meters:

Example 3-1 Specifying Wall Model Coordinates

a 3m x 3m screen located 1.5 m in front of the viewer
#
wall {
 bottom_left [–1.5, –1.5, –1.5]
 bottom_right [1.5, –1.5, –1.5]
 top_left [–1.5, 1.5, –1.5]
}

007-4239-001 23

3: Frustum Descriptions
Specifying Projection Model Coordinates

Projection model coordinates are well-suited to describe projection screens that are in a
curved or tilted arrangement, such as in the traditional three-pipe SGI Reality Center, the
V-Dome, and the Responsive Workbench facilities. To describe a projection screen using
the projection model, you need to provide the following information:

• Origin in Cartesian coordinates,using object data coordinates (x’,y’,z’)

• Euler angles of the projection plane—that is, the counter-clockwise rotation around
the Y axis (heading), X axis (pitch), and Z axis (roll) viewed from the positive side of
the axis

• Distance of the projection plane from the origin in the application’s measurement
units

• Horizontal and vertical fields of view (FOV)

Example 3-2 shows an example of using projection model coordinates in a configuration
file. The configuration is a three-channel, hemi-cylindrical Reality Center with the
following dimensions:

Dimension Value

Radius 3 meters

Edge blending 8 percent

Horizontal FOV 54 degrees (total FOV of 150 degrees)

Vertical FOV 47 degrees
24 007-4239-001

Two Modeling Methods
Example 3-2 Specifying Projection Model Coordinates

channel {
 name “front-view”
 projection {
 origin [0., 0., 0.]
 distance 3.
 fov [54., 47.]
 hpr [0., 0., 0.]
 }
}
channel {
 name “left-view”
 projection {
 origin [0., 0., 0.]
 distance 3.
 fov [54., 47.]
 hpr [50., 0., 0.]
 }
}
channel {
 name “right-view”
 projection {
 origin [0., 0., 0.]
 distance 3.
 fov [54., 47.]
 hpr [-50., 0., 0.]
 }
}

For each specified channel, the resulting projection area corresponds to the rectangle that
would be produced by a hypothetical projection system located at origin with the
orientation characterized by the hpr angles and projecting orthogonally onto a wall
situated at distance.
007-4239-001 25

3: Frustum Descriptions
Examples of Common Reality Center Settings

There are a variety of commercial products that illustrate the most appropriate choice for
the two modeling methods. Figure 3-5 and Figure 3-6 illustrate flat-screen arrangements
that are ideal for the use of the wall model.

Figure 3-5 TANORAMA® POWERWALL (TAN/SGI Democenter)
26 007-4239-001

Examples of Common Reality Center Settings
Figure 3-6 TAN HOLOBENCH® (photo courtesy of GMD)

Figure 3-7, Figure 3-8, and Figure 3-9 illustrate curved or tilted arrangements of
projection screens and are ideal for the use of the projection model.
007-4239-001 27

3: Frustum Descriptions
Figure 3-7 SGI Reality Center
28 007-4239-001

Examples of Common Reality Center Settings
Figure 3-8 V-Dome™ (designed and installed by Trimension Systems, Inc.)
007-4239-001 29

3: Frustum Descriptions
Figure 3-9 Responsive Workbench®(photo courtesy of DaimlerChrysler AG)
30 007-4239-001

Chapter 4

4. Compounds

This chapter describes how you can use compounds (or conversely, decomposition) to
scale the performance of your graphics system. Decomposition allows you to use
multiple pipes to render frames that would normally be rendered by a single pipe.

This chapter has the following sections:

• “Scalable Rendering”

• “Building Compounds”

• “Stereo-Selective Compounds”

• “Choosing the Right Decomposition Mode”

Scalable Rendering

To achieve greater application performance, MPK allows you to decompose a global
rendering task into smaller tasks and to assign the smaller tasks to individual pipes. The
task division requires a decomposition scheme. In general, a decomposition scheme
sends a scene to render to each pipe, gets back rendered images from each pipe for
further composition, and then renders the final image. Figure 4-1 illustrates the role of
source and destination channels in scalable rendering.
007-4239-001 31

4: Compounds
Figure 4-1 Source and Destination Channels

Building Compounds

To build a compound, you must create a compound data structure. Chapter 6,
“Configuration File Format” describes the syntax of compound data structures for your
configuration file. This section describes how you build them logically.

Generally, to create a compound, you need to do the following:

1. Choose a decomposition scheme, which divides the global rendering task into
smaller tasks.

2. Distribute the rendering of the smaller tasks to the source pipes for parallel
processing.

3. Designate a destination channel for the reassembly of the final, coherent image.

Read Read Read Read

Pipe 0

Draw

Source channel 0

Pipe 1

Draw

Source channel 1

Pipe 2

Draw

Source channel 2

Pipe m

Draw

Source channel m

Compound

Destination
channel
32 007-4239-001

Building Compounds
The destination channel is usually one of the source channels. To achieve optimal
performances, you would usually have one channel per pipe.

Optionally, you can also do the following:

• Indicate whether your compound is used in only stereo or mono mode.

• Indicate controls for the pixel data transfers between the compound and its regions.

• Indicate whether to use scalable graphics hardware.

This chapter focuses on the first three tasks. The section “Stereo-Selective Compounds”
on page 47 describes how you control whether your compound is used depending on the
stereo mode of the application. For more information on the first two optional tasks, see
the descriptions of the mode and format fields in section Chapter 6, “Configuration File
Format”. Chapter 5, “Using Scalable Graphics Hardware” describes the integration of
scalable graphics with MPK.

MPK provides several decomposition schemes and the following subsections describe
these schemes:

• “Frame Decomposition”

• “Temporal Decomposition”

• “Multilevel Decomposition”

Each decomposition mode improves performance but the performance gain depends on
the application type and the nature of the performance bottleneck. Four factors are
important in choosing the decomposition scheme judiciously:

Factor Description

Load balancing For a given decomposition, each pipe should execute
roughly the same amount of work since the slowest pipe
dictates the overall performance. Unbalanced
decomposition can seriously affect the scalability.

Scalability of scheme Scalability is the degree to which the performance grows
as the number of graphics resources increases. To
optimize performance, you only add resources to address
the source of the bottleneck. For example, adding more
geometry power to an application limited by pixel fill will
not improve performance.
007-4239-001 33

4: Compounds
Latency added Depending on the decomposition scheme, the frame
delay between a user input and the associated frame
output may be greater than one frame. Minimizing this
latency may be critical for some event-driven
applications.

Graphics I/O consumption A typical decomposition involves the reading and writing
of images from the source channels (contributing
channels) to a destination channel. This transfer might
stress the graphics I/O and memory capabilities of the
system.

Frame Decomposition

In frame decomposition, a frame or view is divided into regions, which are, in turn,
assigned to individual source pipes for rendering. Based on the following perspectives,
there are several approaches to dividing the frame into regions:

• Screen topology (screen decomposition)

• Scene graph primitives (database decomposition)

• Eye view (eye decomposition)

Each approach yields a different flavor of frame decomposition.

Screen Decomposition

In screen decomposition (also referred to as 2D decomposition), each pipe renders a part
of the screen area. Assembling side-to-side each image part constitutes the final
rendering. This type of decomposition is used when the intrinsic pixel fill or geometry
capacity of each pipe slows down the application. The scalability depends on the
balancing of the workloads. The model to display needs to be uniformly distributed
across the screen to accommodate a good balancing and, thus, scalability. The graphics
I/O is relatively low, because the traveling source images are small.
34 007-4239-001

Building Compounds
Figure 4-2 illustrates screen decomposition.

Figure 4-2 Screen Decomposition

Compound
007-4239-001 35

4: Compounds
Example 4-1 shows the configuration file specifications for the screen decomposition
illustrated in Figure 4-2.

Example 4-1 2D Compound in a Configuration File

compound {
 mode [2D]
 channel "destination"

The top left of "destination" image will be
rendered on "source0"...
 region {
 viewport [0., .5, .5, .5]
 channel "source0"
 }
The top right of "destination" image will be
rendered on "source1"...
 region {
 viewport [.5, .5, .5, .5]
 channel "source1"
 }
The bottom left of "destination" image will be
rendered on "source2"...
 region {
 viewport [0., 0., .5, .5]
 channel "source2"
 }
... while "destination" itself takes care of
the bottom right
 region {
 viewport [.5, 0., .5, .5]
 channel "destination"
 }
}

A 2D compound has no frame latency, unless the mode flag ASYNC has been set, in which
case the latency is one frame but you get better overall performance.

Database Decomposition

In database (DB) decomposition, the scene is rendered in parallel by dividing it among
the different graphics pipes. Each pipe renders its share of the scene to generate partial
images. These images are then composited by MPK to generate the final image in the
destination channel. During composition, the application can use depth testing and/or
36 007-4239-001

Building Compounds
alpha blending to achieve the desired effect. Database decomposition allows you to scale
both the geometry and the pixel fill performance of the system. For some applications,
such as volume rendering, it also scales the texture memory capacity of the system by the
number of pipes.

Figure 4-3 demonstrates the use of database decomposition in volume rendering. The
volume data is divided equally among the four pipes and the partial images are
composited on the destination channel. In this case, the destination channel (top left
portion of the figure) is also contributing to the rendering as a source channel.

Figure 4-3 Database Decomposition

Example 4-2 shows the configuration file specifications for the database decomposition
illustrated in Figure 4-3.
007-4239-001 37

4: Compounds
Example 4-2 DB Compound in a Configuration File

compound {
 mode [DB]
 format [RGBA DEPTH]
 channel “channel”

 region {
 range [0., .25]
 channel “buffer0”
 }

 region {
 range [.25, .5]
 channel “buffer1”
 }

 region {
 range [.5, .75]
 channel “buffer3”
 }

 region {
 range [.75, 1.]
 channel “channel”
 }
}

The application must support the DB compound.

Eye Decomposition

Eye decomposition is well-suited for stereo or multiple-view rendering. Each pipe
renders a particular view (left, right, mono). The final rendering depends on the type of
display. As illustrated in Figure 4-4, if stereo is active, then each pipe view fills in the right
or left buffer of the final rendering. This provides good load balancing and scalability,
especially for stereo-view rendering, because the scene content remains similar during
run time.

An EYE compound has no frame latency, unless the mode qualifier ASYNC has been
specified and pixel transfer needs to occur, in which case the latency is 1.
38 007-4239-001

Building Compounds
The number of regions of an eye compound is not limited. If more than one region
correspond to the same eye view, MPK uses the first specified region (for this eye) as
source for the pixel transfer, if needed.

Figure 4-4 Eye Decomposition

Example 4-3 shows the configuration file specifications for the eye decomposition
illustrated in Figure 4-4.

Example 4-3 Eye Compound in a Configuration File

compound {
 mode [EYE STEREO]
 channel “channel”

 region {
 eye LEFT
 channel “buffer”
 }

 region {
 eye RIGHT
 channel “channel”
 }
}

Pipe 0

Pipe 1

Compound

Pipe 1 : Left and right buffers
007-4239-001 39

4: Compounds
Head-Mounted-Device (HMD) decomposition is very similar to that of eye
decomposition, except that the head position actually specifies a new origin for the
physical layout of the channels.

Example 4-4 shows a configuration file specification for an HMD decomposition:

Example 4-4 HMD Compound in a Configuration File

compound {
 mode [HMD]
 channel “destination”

 region {
 eye left
 channel “source::left”
 }

 region {
 eye right
 channel “source::right”
 }
}

If a destination channel is specified, then the frustum is inherited from the destination
channel’s wall or projection frustum specification; otherwise, the source channel’s
frustum specification will be used.

Temporal Decomposition

In contrast to frame decomposition, where the focus of load balancing is on dividing the
frame into regions, temporal decomposition balances the workload by scheduling the
work on each pipe in sync with that of the other pipes to produce a steady stream of
rendered frames. The time scheduling rather than the frame division is the focus. There
are two types of temporal decomposition: frame multiplexing and data streaming. The
work done by each pipe largely distinguishes the two.

Frame Multiplexing

Frame multiplexing (also referred to as DPLEX decomposition) distributes entire frames
to the source pipes over time for parallel processing. The first pipe begins rendering
frame 1; a specified fraction of a frame later the second pipe begins rendering frame 2;
40 007-4239-001

Building Compounds
another fraction of a frame later the third pipe begins rendering frame 3; and so on for all
of the pipes.

Figure 4-5 illustrates frame multiplexing on a four-pipe system.

Figure 4-5 Frame Multiplexing Decomposition

Frame multiplexing globally scales geometry and pixel fill performance, as the workload
balance between pipes is intrinsically maintained. This scheme has an increased
transport delay inherent to frame synchronization required across the pipes. It produces
a latency of (pipes – 1) frames—that is, there will be a (pipes – 1) frames delay between a
user input and the corresponding output frame.

Frame multiplexing can also be accelerated in hardware using the SGI Video Digital
Multiplexer (DPLEX), which connects pipes together with a bus, thereby avoiding the
image readbacks from the contributing pipes. The pipes are daisy-chained to achieve
reduced latency. For more details, see Chapter 5, “Using Scalable Graphics Hardware”.

Example 4-5 shows the configuration file specifications for the screen decomposition
illustrated in Figure 4-5. The application must support the DPLEX compound.

Frame: N+1 N+6N+5N+4N+3N+2

dplex::1

dplex::0

dplex::2

channel
007-4239-001 41

4: Compounds
Example 4-5 DPLEX Compound in a Configuration File

compound {
 mode [DPLEX]
 channel “channel”

 region {
 channel “dplex::0”
 }

 region {
 channel “dplex::1”
 }

 region {
 channel “dplex::2”
 }
}

You can achieve full scalability—that is, scale by the number of pipes rather than by
(pipes–1)—using a DPLEX compound. To do so, you must specify the destination
channel as a source channel also and the application must support this feature.
Example 4-6 shows a configuration file structured for full scalability using the DPLEX
compound.

Example 4-6 DPLEX Compound Structured for Full Scalability

compound {
 mode [DPLEX]
 channel “channel”

 region {
 channel “channel”
 }

 region {
 channel “buffer”
 }
}

Note: Full scalability using the DPLEX compound is supported only on InfiniteReality
graphics systems.
42 007-4239-001

Building Compounds
Data Streaming

Data streaming (also referred to as 3D decomposition) is similar to database
decomposition in that it allows the application to divide the scene among multiple pipes
and then composite the partial results to give the final rendering. But, in this case, the
composition is done using a series of successive compounds for each frame, as shown in
Figure 4-6. For frame N+1, channel stream::1 draws the first quarter of the database,
which is copied to channel stream::2 at the beginning of the next frame. During frame
N+2, channelstream::2draws the second quarter of the database on top while channel
stream::1 starts a new frame. At frame N+4, the destination channel channel finishes
drawing the last quarter and displays the frame started three time steps ago.

Like DPLEX decomposition, this scheme also has a latency of (pipes – 1) frames—that is,
there will be a (pipes – 1) frames delay between a user input and the corresponding
output frame. As shown in Figure 4-6, this latency is due to successive compounds at
each frame. You must wait for (pipes – 1) frame computations before the final rendering
is displayed. Each compound needs to read only one source image. Consequently, this
keeps graphics I/O consumption low while performance scaling is achieved by
pipelining the rendering in parallel across the pipes.

Figure 4-6 Data Streaming Decomposition

As shown in Example 4-7, the configuration file specification for a data streaming
decomposition is similar to that for database decomposition.

Frame: N+1 N+4N+3N+2

stream::3 channelstream::2stream::1

N+5

stream::1 stream::2 stream::3 channel
007-4239-001 43

4: Compounds
Example 4-7 Data Streaming Compound (3D) in a Configuration File

compound {
 mode [3D]
 format [RGBA DEPTH]
 channel “channel”

 region {
 range [.0 .25]
 channel “stream::1”
 }

 region {
 range [.25 .5]
 channel “stream::2”
 }

 region {
 range [.5 .75]
 channel “stream::3”
 }

 region {
 range [.75 1.]
 channel “channel”
 }
}

The application must support the 3D compound.

Multilevel Decomposition

MPK allows you to combine the various decomposition schemes to fix performance
bottlenecks that differ in nature. For example, a combined solution can use a database
and temporal decomposition scheme for optimizing performance (but it will have a
limiting transport delay) or can use an eye and database decomposition scheme for
stereo volume rendering.

Figure 4-7 shows a four-pipe solution using an eye and database decomposition scheme.
44 007-4239-001

Building Compounds
Figure 4-7 Eye-DB Multilevel Decomposition

Example 4-8 shows the configuration file specifications for the multilevel decomposition
illustrated in Figure 4-7.

Eye

Framebuffer

Left Right

Left back Right backLeft front Right front

DB DB
007-4239-001 45

4: Compounds
Example 4-8 Multilevel Compound in a Configuration File

compound {
 mode [EYE]
 channel “right-front”

 region {
 eye LEFT
 compound {
 mode [DB]
 channel “left-front”

 region {
 range [0., .5]
 channel “left-back”
 }

 region {
 range [.5, 1.]
 channel “left-front”
 }
 }
 }

 region {
 eye RIGHT
 compound {
 mode [DB]
 channel “right-front”

 region {
 range [0., .5]
 channel “right-back”
 }

 region {
 range [.5, 1.]
 channel “right-front”
 }
 }
 }
}

46 007-4239-001

Stereo-Selective Compounds
Stereo-Selective Compounds

In many instances, it will be desirable to control which compounds will be used by the
application based on whether the application is running in stereo mode. MPK provides
a mode parameter for this purpose. For instance, if the application is to run in stereo
mode, you may want to use eye decomposition and when in mono mode, to use another
type of decomposition. Example 4-9 illustrates this conditional use of compounds.

Example 4-9 Stereo-Selective Compounds

compound {
 mode [EYE STEREO]
 channel “channel”

 region {
 eye LEFT
 channel “buffer”
 }
 region {
 eye RIGHT
 channel “channel”
 }
}

compound {
 mode [2D MONO]
 channel “channel”

 region {
 viewport [0., 0., 1., .5]
 channel “buffer”
 }

 region {
 viewport [0., .5, 1., .5]
 channel “channel”
 }
}

The MONO and STEREO flags allow you to specify different channel decompositions
depending on the current configuration mode. This is especially useful for eye
decomposition. In this example, when the destination channel is in stereo mode, MPK
uses the eye decomposition. When the destination channel is in mono mode, MPK uses
the 2D decomposition.
007-4239-001 47

4: Compounds
Choosing the Right Decomposition Mode

There are no hard and fast rules for choosing the correct decomposition scheme, but the
following are some general guidelines to aid you in selecting a reasonable scheme for
your environment:

Mode Recommended Use

2D Use this scheme if your application is fill-limited.You can also scale
geometry performance and texture memory if your application is using
view-frustum culling techniques.

DB Use this scheme when your application’s frame rendering can be
sequenced into equally consuming phases. This requires the application
to divide your scene into multiple components and then to composite
them correctly. Scalability here can be either on fill, geometry, or
graphics resources (texture) depending on the application.

3D Use this scheme where you would normally use the DB scheme but
where you experience scalability problems caused by a graphics I/O
bottleneck on the destination pipe. For 3D decomposition, the graphics
I/O per pipe is constant when changing the number of contributing
pipes. Unlike the DB scheme, however, adding pipes to a 3D compound
increases latency.

Eye Use this scheme for stereo viewing.

DPLEX Use this scheme for general load balancing where the application
maintains a reasonably steady frame rate.

Note: With the DB, 3D, and full-scale DPLEX modes, the application must support the
feature.

These are very high-level guidelines that may very well overlap. As noted in the section
“Multilevel Decomposition” on page 44, you can combine the various decomposition
modes to fix different performance bottlenecks.
48 007-4239-001

Chapter 5

5. Using Scalable Graphics Hardware

In contrast to most of the compounds described in Chapter 4, “Compounds”, scalable
graphics hardware offers a hardware solution to joining or cascading the video output of
two or more graphics pipes and outputting them in a single video output. Scalable
graphics hardware provides nearly perfect scaling of both geometry rate and fill rate on
some applications.

This chapter describes how you use MPK in conjunction with a SGI Video Digital
Multiplexer (DPLEX) and an SGI Scalable Graphics Compositor. The following topics are
described:

• “Using MPK with a DPLEX”

• “Using MPK with an SGI Scalable Graphics Compositor”

Using MPK with a DPLEX

A DPLEX is an optional daughtercard that permits multiple graphics hardware pipelines
to work simultaneously on a single visual application. DPLEX hardware is available on
Silicon Graphics Onyx2, SGI Onyx 3000, and SGI Onyx 300 systems. This section
describes how you create the DPLEX compound in MPK and shows a configuration file
example. For an overview of the DPLEX hardware, see the document Onyx2 DPLEX
Option Hardware User’s Guide.

To enable DPLEX decomposition, you must specify the DPLEX mode along with the HW
flag in the configuration file. The destination channel’s pipe is used to control the
hyperpipe. Naturally, this is the display pipe of the DPLEX cascade. The use of the
NOCOPY flag is mandatory to suppress pixel transfer.

Example 5-1 shows a three-pipe DPLEX cascade with the pipe associated to channel
channel::1 being the display pipe. The order of the channels reflects the order of the
pipes in the DPLEX cascade.
007-4239-001 49

5: Using Scalable Graphics Hardware
Example 5-1 A Typical DPLEX Compound

compound {
 mode [DPLEX HW NOCOPY]
 channel “channel::1”

 region {
 channel “channel::1”
 }

 region {
 channel “channel::2”
 }

 region {
 channel “channel::3”
 }
}

Using MPK with an SGI Scalable Graphics Compositor

This section gives a brief overview of the SGI Scalable Graphics Compositor and how to
use it with MPK. For more information on the compositor, including the details of the
hardware setup, refer to the document SGI InfinitePerformance: Scalable Graphics
Compositor User’s Guide.

Note: The compositor is currently supported by InfinitePerformance graphics systems
only.
50 007-4239-001

Using MPK with an SGI Scalable Graphics Compositor
How the Compositor Functions

The compositor receives two to four input signals and outputs a single signal either in
analog or digital format. Hence, it can handle static, spatial composition of four inputs
which enables multiple pipes to contribute to a single output. Four different composition
schemes are available:

• Vertical stripes

• Horizontal stripes

• 2D tiles

• Cut-ins

The following figure illustrates the various hardware composition schemes.

Figure 5-1 Hardware Composition Schemes

Vertical stripes Horizontal stripes

2D tiles Cut-ins
007-4239-001 51

5: Using Scalable Graphics Hardware
The following items are noteworthy regarding the compositor’s capabilities:

• For every output pixel, the compositor averages all values from all the pipes. This
provides applications with the means to do full-screen antialiasing (FSAA) in
hardware.

• Stereo is supported only for analog output.

• Due to restrictions imposed by the SGI Graphics Compositor 1.0, MPK supports
only full-screen configurations and does not allow the mixing of the various
hardware decomposition modes—for example, two vertical stripes with two
horizontal stripes.

Note: For more information on the current limitations and anomalies associated with the
use of the SGI Scalable Graphics Compositor, refer to the hardware documentation.

MPK Specifications

In order to use the compositor with MPK, you must specify the 2D compound mode
along with the HW flag. If you do not specify the NOCOPY flag, copying is performed even
though the compositor is being used. Example 5-2 shows how a 2 x 2 tiling scheme might
look in a configuration file.
52 007-4239-001

Using MPK with an SGI Scalable Graphics Compositor
Example 5-2 A 2 x 2 Tiling Scheme in a Configuration File

compound {
 mode [2D HW NOCOPY]
 channel “channel0”

 region {
 viewport [0., 0.5, .5, .5]
 channel “channel0”
 }
 region {
 viewport [0.5, 0.5, .5, .5]
 channel “channel1”
 }

 region {
 viewport [0., 0., .5, .5]
 channel “channel2”
 }

 region {
 viewport [.5, 0., .5, .5]
 channel “channel3”
 }
}

Note the following:

• You must specify a destination channel if the compositor is to be used. Otherwise,
MPK uses a software fallback solution.

• MPK does not require that the destination channel be used as a source channel—
that is, it does not have to contribute to the rendering.
007-4239-001 53

Chapter 6

6. Configuration File Format

This chapter contains the following topics:

• “File Format”

• “Defining MPK Data Structures”

• “Specifying Global Attributes”

File Format

This section describes the format you must use to create an MPK configuration file. The
format of the configuration file closely follows the conventions for the Open Inventor file
format. The following items are described:

• “Specifying Comments (#)”

• “Specifying Delimiters”

• “Specifying MPK Data Structures”

• “Specifying Values within a Field”

Specifying Comments (#)

MPK considers any items between a number sign (#) and the end of the line to be a
comment. The number sign can be anywhere on the line.

Specifying Delimiters

White space delimits most elements in the configuration file—for example, a field name
and its value. Exceptions are noted where they apply. Extra white space created by
spaces, tabs, and new lines is ignored.
007-4239-001 55

6: Configuration File Format
Specifying MPK Data Structures

An MPK data structure consists of the following sequence of elements:

1. Data structure type (config, pipe, window, channel, or compound)

2. Open brace ({)

3. Field specifications (if any), followed by child structures (if any)

4. Close brace (})

The following lines show the syntax symbolically:

data-structure-type {
field-specs
child-specs

}

The following is an example of a channel data structure:

channel {
 viewport [0., 0., 1., 1.]
 projection {
 origin [0., 0., 0.]
 distance 3.
 fov [54., 47.]
 hpr [0., 0., 0.]
 }
}

The later section “Defining MPK Data Structures” on page 58 describes the special
requirements for defining each of the data structures.
56 007-4239-001

File Format
Specifying Values within a Field

There are three types of MPK fields:

• Single-value fields
These fields have the following syntax:

name value

• Multiple-value fields
These fields have the following syntax:

name [value1, value2, . . . valuen]

• Composite fields
These fields have the following syntax:

name {
 subfields-specs
}

The fields can appear in any order.

The values you specify in a field are determined by the field type. The field types and
accepted formats are described in Table 6-1.

Table 6-1 Field Types and Formats

Field Type Accepted Format

int Use an integer in decimal, hexadecimal, or octal
format. Examples:

55

0xff

0177

float Use an integer or floating point number.
Examples:

10

10.

10.3

1.3e–2
007-4239-001 57

6: Configuration File Format
Defining MPK Data Structures

The earlier section “Specifying MPK Data Structures” on page 56 describes the general
format of an MPK data structure as follows:

data-structure-type {
field-specs
child-specs

}

This section describes the field specifications and child specifications required to define
the following MPK data structures:

• config

• pipe

• window

• channel

• compound

Additionally, you can include a global data structure to define defaults for global
attributes. The later section “Specifying Global Attributes” on page 74 describes how you
do so.

string Use double quotation marks (“ “) around the
value. Example:

name “3-pipes”

enum Use a mnemonic. Examples:

true-color

direct-color

boolean Use a mnenomic (y or n) or an integer (0 or 1).

Table 6-1 Field Types and Formats (continued)

Field Type Accepted Format
58 007-4239-001

Defining MPK Data Structures
The config Data Structure

The config data structure encapsulates the other data structures and as such defines the
overall configuration. It has the following form:

config {
 name “config-name”
 mode stereo-mono
 mono “shell command1”
 stereo “shell command2”
 runon n

pipe-1-specs
pipe-2-specs

 .
 .
 .

pipe-n-specs
compound-specs

}

Every config data structure requires a pipe data entry for each pipe you want to use
in your system. Section “The pipe Data Structure” on page 60 describes the pipe-i-specs
fields, section“The compound Data Structure” on page 71 describes the compound-specs
field, and Table 6-2 describes the other config fields.

Table 6-2 The config Fields

Field Description

name The name field is a string identifier for the current configuration.

mode The mode field characterizes the initial configuration state: either
mono or stereo.

mono
stereo

These fields describe the shell command to execute when
changing to mono or stereo mode. By default, no command is
executed.

runon The runon field contains the default processor ID for all
configuration threads—that is, the processor to which every
window thread will be assigned, unless specified otherwise by the
window runon field. A negative runon value frees the thread to
run on whatever processor the system deems suitable. The
default is –1.
007-4239-001 59

6: Configuration File Format
The pipe Data Structure

A pipe data structure has the following form:

pipe {
 name “pipe-name”
 display ”display-name”
 attributes {
 mono {
 width w
 height h
 }
 stereo {
 type stereo-type
 width w
 height h
 offset o
 }
 }

window-specs
}

Every pipe data structure must contain a window entry. The section “The window Data
Structure” on page 62 describes the window-specs field. Table 6-3 describes the other fields
of an pipe data structure.
60 007-4239-001

Defining MPK Data Structures
Table 6-3 The pipe Fields

Field Description

name The name field is a string identifier for the current pipe.

display The display field specifies the name of the X display for the
current pipe.

attributes The attributes field is a composite field with the following
subfields:

mono
stereo

These subfields are in turn composite fields. The subfield mono
has the following fields:

width w
height h
The values for w and h must be integers. The subfield stereo has
the following fields:

type stereo-type
width w
height h
offset o
The values for w, o, and h must be integers. The value for
stereo-type can be one of the following:

quad
rect
top
bottom
user

If no stereo type is specified, quad is used.
007-4239-001 61

6: Configuration File Format
Example 6-1 is an example of a pipe definition:

Example 6-1 A Sample pipe Definition

pipe {
 display “:0.0”
 window {
 runon 2
 viewport [0., 0., 1., 1.]
 channel {
 viewport [0., 0., 1., 1.]
 projection {
 origin [0., 0., 0.]
 distance 3.
 fov [54., 47.]
 hpr [0., 0., 0.]
 }
 }
 }
}

The window Data Structure

A window data structure has the following form:

window {
 name “win-name”
 viewport [x, y, width, height]
 runon n
 attributes attribute-specs

channel-specs
}

62 007-4239-001

Defining MPK Data Structures
Every window data structure requires a channel entry. The section “The channel Data
Structure” on page 68 describes the channel-specs field. Table 6-4 describes the other fields
of a window data structure.

Table 6-5 describes the structure and values of the hints subfields.

Table 6-4 The window Fields

Field Description

name The name field is a string identifier for the current window.

viewport The viewport field specifies the fractional viewport (position
and size) of the current window relative to the display
dimensions. The fractional viewport format is [x, y, width, height
] with all parameters in the range 0.0 to 1.0.

See the section “Specifying Global Attributes” on page 74 for more
information on the following related global variables:

MPK_PATTR_MONO_HEIGHT
MPK_PATTR_MONO_WIDTH
MPK_PATTR_STEREO_HEIGHT
MPK_PATTR_STEREO_OFFSET
MPK_PATTR_STEREO_TYPE
MPK_PATTR_STEREO_WIDTH

runon The runon field contains the default processor ID for the current
window thread—that is, the processor to which the window
thread will be assigned. A negative runon value frees the thread
to run on whatever processor the system deems suitable. If this
field is not specified, it is inherited from the runon field of the
config data structure. The default is –1.

attributes The attributes field specifies the X Window System default
visual attributes and other related information, such as whether
window managers decorations should be present or not.

The attributes field is a composite field with the following
subfields:

hints
planes
transparent

These subfields are in turn composite fields. which are described
in the tables that follow.
007-4239-001 63

6: Configuration File Format
Table 6-5 Window Attributes— hints Subfields

Subfield Valid Values Description

visual true-color
pseudo-color
direct-color
static-color
grayscale
static-gray

Specifies the type of GLX visual to be used.

Related global variable:

MPK_WATTR_HINTS_VISUAL

caveat none
slow
non-conformant

Specifies a caveat for selecting the framebuffer,
such as one of the following:

MPK_GLX_SLOW
MPK_GLX_NON_CONFORMANT
MPK_GLX_NOCAVEAT

Related global variable:

MPK_WATTR_HINTS_CAVEAT

transparent y or n Determines if a visual should be opaque or
transparent.

Related global variable:

MPK_WATTR_HINTS_TRANSPARENT

X-renderable y or n Determines which visuals are selected. If true,
only visuals which have an associated X visual
are selected.

Related global variable:

MPK_WATTR_HINTS_X_RENDERABLE

rgba y or n Specifies if an RGBA or index color visual is
selected.

Related global variable:

MPK_WATTR_HINTS_RGBA

doublebuffer y or n Specifies if a double- or single-buffer visual is
selected.

Related global variable:

MPK_WATTR_HINTS_DOUBLEBUFFER
64 007-4239-001

Defining MPK Data Structures
stereo y or n Specifies if a stereo-capable visual is selected

Related global variable:

MPK_WATTR_HINTS_STEREO

drawable window
pbuffer
pixmap

Specifies the type of drawable to be used for
rendering.

Related global variable:

MPK_WATTR_HINTS_DRAWABLE

direct y or n Specifies if a direct or indirect context is created.

Related global variable:

MPK_WATTR_HINTS_DIRECT

largest y or n Determines whether the largest available
pbuffer is allocated. It will be if a pbuffer
drawable is used and this flag is set.

Related global variable:

MPK_WATTR_HINTS_LARGEST

preserved y or n Determines whether the content of the
framebuffer is preserved. It will be if a pbuffer
drawable is used and this flag is set.

Related global variable:

MPK_WATTR_HINTS_PRESERVED

decoration y or n Determines if the window should have window
manager decorations.

Related global variable:

MPK_WATTR_HINTS_DECORATION

xinerama y or n Indicates that this window are created using
Xinerama if xinerama is y. If it is set to n, the
window is created Xinerama-aware.

Related global variables:

MPK_WATTR_HINTS_XINERAMA
MPK_XINERAMA

Table 6-5 Window Attributes— hints Subfields (continued)

Subfield Valid Values Description
007-4239-001 65

6: Configuration File Format
Table 6-6 describes the structure and values of the planes subfields. In all instances in
this table, the variables denote integers.

Table 6-6 Window Attributes—planes Subfields

Subfield Valid Values Description

level x Specifies the buffer level. Positive values
correspond to overlay buffers and negative
values correspond to underlay buffers.

Related global variable:

MPK_WATTR_PLANES_LEVEL

depth x Specifies the minimum depth buffer size.

Related global variable:

MPK_WATTR_PLANES_DEPTH

stencil x Specifies the minimum stencil buffer size.

Related global variable:

MPK_WATTR_PLANES_STENCIL

samples x Specifies the minimum number of multisample
buffers.

Related global variable:

MPK_WATTR_PLANES_SAMPLES

auxiliary x Specifies the minimum number of auxiliary
buffers.

Related global variable:

MPK_WATTR_PLANES_AUX

color x Specifies the minimum color index buffer size.

Related global variable:

MPK_WATTR_PLANES_COLOR
66 007-4239-001

Defining MPK Data Structures
Table 6-7 describes the structure and values of the transparent subfields. In all
instances in this table, the variables denote integers.

rgba [r, g, b, a] Specifies the minimum RGBA buffer size.

Related global variables:

MPK_WATTR_PLANES_RED
MPK_WATTR_PLANES_GREEN
MPK_WATTR_PLANES_BLUE
MPK_WATTR_PLANES_ALPHA

accum [r, g, b, a] Specifies the minimum RGBA accumulation
buffer size.

Related global variables:

MPK_WATTR_PLANES_ACCUM_RED
MPK_WATTR_PLANES_ACCUM_GREEN
MPK_WATTR_PLANES_ACCUM_BLUE
MPK_WATTR_PLANES_ACCUM_ALPHA

Table 6-7 Window Attributes—transparent Subfields

Subfield Valid Values Description

index x Specifies the index value for the transparent
color.

Related global variables:

MPK_WATTR_TRANSPARENT_INDEX

rgba [r, g, b, a] Specifies the RGBA value for the transparent

color.

Related global variables:

MPK_WATTR_TRANSPARENT_RED
MPK_WATTR_TRANSPARENT_GREEN
MPK_WATTR_TRANSPARENT_BLUE
MPK_WATTR_TRANSPARENT_ALPHA

Table 6-6 Window Attributes—planes Subfields (continued)

Subfield Valid Values Description
007-4239-001 67

6: Configuration File Format
The channel Data Structure

A channel data structure has the following form:

channel {
 name “channel-name”
 viewport [x,y, width, height]
 ortho-wall ortho-wall-specs
 wall wall-specs
 projection projection-specs

}

The channel data structure is the lowest-level data structure—that is, it has no child
data structures. Table 6-8 describes the fields of a channel data structure.

Table 6-8 The channel Fields

Field Description

name The name field is a string identifier for the current
channel. You must specify the name field if your
configuration file contains a compound that
references this channel.

viewport The viewport field specifies the fractional viewport
(position and size) of the channel relative to the
parent window dimensions. The fractional viewport
format is [x, y, width, height] with all parameters in
the range 0.0 to 1.0.
68 007-4239-001

Defining MPK Data Structures
wall The wall field contains the modeling coordinates of
the bottom-left, bottom-right, and top-left corners of
the channel’s projection rectangle in the real world.

This field is a composite field with the following
subfields:

bottom_left [x, y, z]

bottom_right [x, y, z]

top_left [x, y, z]

See Example 3-1 on page 23 for an example of
specifying the wall field.

You must specify one of the modeling coordinates
fields: wall, projection, or ortho-wall. MPK
uses the last specified modeling transformation—that
is, either wall or projection—unless you set the
channel to orthographic projection by specifying the
ortho-wall field.

Table 6-8 The channel Fields (continued)

Field Description
007-4239-001 69

6: Configuration File Format
ortho-wall The ortho-wall field contains an alternate wall
description that, if specified, will be used when the
channel orthographic frustum is applied.

The format for the field values is the same as that of
the wall field.

You must specify one of the modeling coordinates
fields: wall, projection, or ortho-wall. MPK
uses the last specified modeling transformation—that
is, either wall or projection—unless you set the
channel to orthographic projection by specifying the
ortho-wall field.

projection The projection field contains the modeling
coordinates and characteristics of an imaginary
projection system that would produce the channel’s
projection rectangle.

This is a composite field with the following
subfields:

origin [x, y, z]
distance d
fov [a, b]
hpr [h, p, r]

The hpr field represents the head, pitch, and roll and
describes Euler angles with respect to the OpenGL
convention—that is, the counter-clockwise rotation
around the Y axis (head), X axis (pitch), and Z axis
(roll) viewed from the positive side of the axis. See
Example 3-2 on page 25 for an example of specifying
the projection field.

You must specify one of the modeling coordinates
fields: wall, projection, or ortho-wall. MPK
uses the last specified modeling transformation—that
is, either wall or projection—unless you set the
channel to orthographic projection by specifying the
ortho-wall field.

Table 6-8 The channel Fields (continued)

Field Description
70 007-4239-001

Defining MPK Data Structures
The compound Data Structure

A compound data structure is not a part of the pipe-window-channel hierarchy. The
compound data structure is subordinate only to the config or another compound data
structure.

A compound data structure has the following form:

compound {
 name “compound-name”
 channel “channel-name”
 mode [mode flags]
 format [format1 format2 ... formatn]
 region region-specs
}

Table 6-9 describes the fields of a compound data structure.

Table 6-9 The compound Fields

Field Description

name The name field is a string identifier for the current compound.

channel The channel field identifies the destination channel for the
compound. You must specify the name as defined in the name
field of the associated channel data structure. If you do not
specify this field and the compound has a parent, then its value
is inherited from the parent. If the resulting channel is still
unspecified, then the compound will simply maintain time
consistency of the views across all of its regions with respect to
their respective frame latency.

Once a channel is involved in a compound, you must explicitly
specify any other use of that channel with another compound.
This is true also for mode-selective compounds.
007-4239-001 71

6: Configuration File Format
mode The mode field specifies the decomposition mode (2D, 3D, DB,
EYE, HMD, or DPLEX) and optionally mode flags (MONO,
STEREO, ASYNC, NOCOPY, or HW). The following are examples:

mode [3D]
mode [DB MONO]
mode [EYE STEREO ASYNC]
mode [2D ASYNC]
mode [DPLEX NOCOPY]

MONO or STEREO indicates that the decomposition should only
be activated when the configuration is in the corresponding
stereo mode. Note that a window containing only
STEREO-active channels will simply not be launched when the
configuration is in MONO mode.

ASYNC indicates that the pixel transfer from the regions to the
destination channel should be delayed to the next frame.
Despite an additional one-frame latency, this setting may have
a noticeable influence on the compound performance—
especially for 2D and DB decompositions.

NOCOPY indicates that no pixel transfer should occur between
the compound and its regions; this is typically useful when
you use hardware video compositing equipment—for
example, SGI Video Digital Multiplexer (DPLEX).

For the use of 2D, HW , DPLEX, and NOCOPY in scalable
hardware solutions, see Chapter 5, “Using Scalable Graphics
Hardware”.

Table 6-9 The compound Fields (continued)

Field Description
72 007-4239-001

Defining MPK Data Structures
See Chapter 4, “Compounds” for examples of compound definitions.

format The format field specifies the format of the pixel data that has
to be transferred between the compound and its regions as a
combination of RGBA, DEPTH, and STENCIL. It will be
inherited by the compound regions. The following are the
possible combinations:

format [RGBA] # default
format [RGBA DEPTH]
format [RGBA DEPTH STENCIL]

region The region field specifies a portion of the compound
destination channel and the channel where this portion should
be rendered. Depending on the compound mode field, the
portion described can be either a sub-viewport of the
destination channel [2D], a portion of the application database
[DB or 3D], a specific eye view [EYE or HMD], or a pipelined,
de-multiplexed rendering cycle [DPLEX]. The format for each
follows:

2D:

viewport [x, y ,width, height]
channel “channel-name”

DB or 3D:

range [a ,b]
channel “channel-name”

EYE

eye left-right
channel “channel-name”

HMD

eye left-right
channel “channel-name”

DPLEX

channel “channel-name”

Table 6-9 The compound Fields (continued)

Field Description
007-4239-001 73

6: Configuration File Format
Specifying Global Attributes

A global data structure allows you to specify default values for MPK attributes:

• Stereo and pipe display attributes

• Window attributes

• Channel attributes

To specify a default value for an attribute in the configuration file, use the following
construct:

global {
 attribute1 value
 attribute2 value
 .
 .
 .
 attributen value
}

Your default declarations should precede the definition of the config data structure in
the configuration file. The following is an example of default declarations:

global {
 MPK_DEFAULT_EYE_OFFSET .035
 MPK_WATTR_PLANES_ALPHA 1
}

Table 6-10 provides the data type, default value, and description for the MPK global
attributes.

Table 6-10 MPK Global Attributes

Variable Data Type Default Value Description

MPK_DEFAULT_EYE_OFFSET float 0.035 Specifies the default value of the eye
offset used by channel frustum
computations. The function mpkInit()
sets this value to 0.035.

MPK_CATTR_NEAR float 0.01 Specifies the default near distance of
the channel. This value is preempted
by the function
mpkChannelSetNearFar().
74 007-4239-001

Specifying Global Attributes
MPK_CATTR_FAR float 100. Specifies the default far distance of the
channel. This value is preempted by
the function
mpkChannelSetNearFar().

MPK_DATTR_FULLSTEREO_HEIGHT int Deprecated. Use
MPK_PATTR_STEREO_HEIGHT and
MPK_PATTR_STEREO_TYPE.

Specifies the height of the display to be
used by the function
mpkWindowUpdatePixelViewport()
for full-stereo mode instead of that
returned by the X11
DisplayHeight() function.

MPK_DATTR_FULLSTEREO_WIDTH int Deprecated. Use
MPK_PATTR_STEREO_WIDTH and
MPK_PATTR_STEREO_TYPE.

Specifies the width of the display to be
used by the function
mpkWindowUpdatePixelViewport()
for full-stereo mode instead of that
returned by the X11 DisplayWidth()
function.

MPK_DATTR_FULLSTEREO_OFFSET int 532 Deprecated. Use
MPK_PATTR_STEREO_OFFSET and
MPK_PATTR_STEREO_TYPE.

Specifies the offset of the display to be
used by the function
mpkWindowUpdatePixelViewport()
for full-stereo mode instead of that
returned by the X11
DisplayHeight() and
DisplayWidth() functions.

Table 6-10 MPK Global Attributes (continued)

Variable Data Type Default Value Description
007-4239-001 75

6: Configuration File Format
MPK_DATTR_MONO_HEIGHT int Deprecated. Use
MPK_PATTR_MONO_HEIGHT .

Specifies the height of the display to be
used by the function
mpkWindowUpdatePixelViewport()
for mono mode instead of that
returned by the X11
DisplayHeight() function.

MPK_DATTR_MONO_WIDTH int Deprecated. Use
MPK_PATTR_MONO_WIDTH .

Specifies the width of the display to be
used by the function
mpkWindowUpdatePixelViewport()
for mono mode instead of that
returned by the X11 DisplayWidth()
function.

MPK_DATTR_QUADSTEREO_HEIGHT int Deprecated. Use
MPK_PATTR_STEREO_HEIGHT and
MPK_PATTR_STEREO_TYPE.

Specifies the height of the display to be
used by
mpkWindowUpdatePixelViewport()
for quad-stereo mode instead of that
returned by the X11
DisplayHeight() function.

MPK_DATTR_QUADSTEREO_WIDTH int Deprecated. Use
MPK_PATTR_STEREO_WIDTH and
MPK_PATTR_STEREO_TYPE.

Specifies the width of the display to be
used by the function
mpkWindowUpdatePixelViewport()
for quad-stereo mode instead of that
returned bythe X11DisplayWidth()
function.

Table 6-10 MPK Global Attributes (continued)

Variable Data Type Default Value Description
76 007-4239-001

Specifying Global Attributes
MPK_PATTR_MONO_HEIGHT int Specifies the height of the display to be
used by the function
mpkWindowUpdatePixelViewport()
for mono mode instead of that
returned by the X11
DisplayHeight() function.

MPK_PATTR_MONO_WIDTH int Specifies the width of the display to be
used by the function
mpkWindowUpdatePixelViewport()
for mono mode instead of that
returned bythe X11DisplayWidth()
function.

MPK_PATTR_STEREO_HEIGHT int 492 for full Specifies the height of the display to be
used by the function
mpkWindowUpdatePixelViewport()
for stereo mode instead of that
returned by the X11
DisplayHeight() function.

MPK_PATTR_STEREO_OFFSET int 532 for quad Specifies the offset of the display to be
used by the function
mpkWindowUpdatePixelViewport()
for full-stereo mode instead of that
returned by the X11
DisplayHeight() and
DisplayWidth() functions.

MPK_PATTR_STEREO_TYPE enum none Specifies one of the following stereo
types: none, user, quad, rect, top,
or bottom.

MPK_PATTR_STEREO_WIDTH int Specifies the width of the display to be
used by the function
mpkWindowUpdatePixelViewport()
for stereo mode instead of that
returned bythe X11DisplayWidth()
function.

Table 6-10 MPK Global Attributes (continued)

Variable Data Type Default Value Description
007-4239-001 77

6: Configuration File Format
MPK_WATTR_HINTS_VISUAL enum MPK_UNDEFINED Specifies the window visual type.
Accepted values are
MPK_GLX_TRUE_COLOR,
MPK_GLX_PSEUDO_COLOR,
MPK_GLX_DIRECT_COLOR,
MPK_GLX_STATIC_COLOR,
MPK_GLX_GRAYSCALE, and
MPK_GLX_STATIC_GRAY.

MPK_WATTR_HINTS_DRAWABLE enum MPK_UNDEFINED Specifies the window drawable type.
Accepted values are
MPK_GLX_WINDOW,
MPK_GLX_PBUFFER, and
MPK_GLX_PIXMAP.

MPK_WATTR_HINTS_CAVEAT enum MPK_UNDEFINED Specifies the caveats associated with
the window framebuffer
configuration. Accepted values are
MPK_GLX_SLOW,
MPK_GLX_NOCAVEAT, and
MPK_GLX_NON_CONFORMANT.

MPK_WATTR_HINTS_X_RENDERABLE boolean MPK_UNDEFINED Specifies whether only framebuffer
configuration that have associated X
visuals (and can be used to render to
windows and/or GLX pixmaps)
should be considered.

MPK_WATTR_HINTS_DIRECT boolean MPK_UNDEFINED Specifies whether the window GLX
context should be direct.

MPK_WATTR_HINTS_DECORATION boolean MPK_UNDEFINED Specifies whether the window should
have window manager decorations.

MPK_WATTR_HINTS_RGBA boolean MPK_UNDEFINED Specifies whether window visuals
should support RGBA rendering (that
is, only color-index).

Table 6-10 MPK Global Attributes (continued)

Variable Data Type Default Value Description
78 007-4239-001

Specifying Global Attributes
MPK_WATTR_HINTS_DOUBLEBUFFER boolean MPK_UNDEFINED Specifies whether the window
framebuffer configuration should be
double-buffered. Note that setting this
attribute on a window will affect the
behavior of the function
mpkWindowSwapBuffers().

MPK_WATTR_HINTS_STEREO boolean MPK_UNDEFINED Specifies whether the window
framebuffer configuration should
support quad-buffer stereo.

MPK_WATTR_HINTS_TRANSPARENT boolean MPK_UNDEFINED Specifies whether the window
framebuffer configuration should be
transparent.

MPK_WATTR_HINTS_LARGEST boolean MPK_UNDEFINED Specifies the window pbuffer
characteristics. This attribute will be
ignored by windows for which the
DRAWABLE hint is not set to
MPK_GLX_PBUFFER.

MPK_WATTR_HINTS_PRESERVED boolean MPK_UNDEFINED Specifies the window pbuffer
characteristics. This attribute will be
ignored by windows for which the
DRAWABLE hint is not set to
MPK_GLX_PBUFFER.

MPK_WATTR_HINTS_THREAD boolean MPK_UNDEFINED Specifies whether the window should
be made a separate thread from the
application.

MPK_WATTR_HINTS_XINERAMA boolean Conditional. See the
description.

Determines if a window should be
created using Xinerama (if enabled).
Setting it to 1 causes the window to be
created using Xinerama and setting it
to0 causes a Xinerama-aware window
to be created. The default value is 1 if
the XINERAMA_AWARE environment
variable is not set. If
XINERAMA_AWARE is set, the default
value is the opposite value of
XINERAMA_AWARE.

Table 6-10 MPK Global Attributes (continued)

Variable Data Type Default Value Description
007-4239-001 79

6: Configuration File Format
MPK_WATTR_PLANES_LEVEL int MPK_UNDEFINED Specifies the window buffer level.

MPK_WATTR_PLANES_AUX int MPK_UNDEFINED Specifies the number of auxiliary
buffers.

MPK_WATTR_PLANES_DEPTH int MPK_UNDEFINED Specifies the minimum size of the
depth buffer.

MPK_WATTR_PLANES_STENCIL int MPK_UNDEFINED Specifies the minimum size of the
stencil buffer.

MPK_WATTR_PLANES_SAMPLES int MPK_UNDEFINED Specifies the minimum number of
samples required in the multisample
buffer.

MPK_WATTR_PLANES_COLOR int MPK_UNDEFINED Specifies the minimum color index
buffer size. This attribute is ignored if
the RGBA hint of the window is set to 1.

MPK_WATTR_PLANES_RED int MPK_UNDEFINED Specifies the minimum number of red
bitplanes. This attribute is ignored if
the RGBA hint of the window is not set.

MPK_WATTR_PLANES_GREEN int MPK_UNDEFINED Specifies the minimum number of
green bitplanes. This attribute is
ignored if theRGBAhint of the window
is not set.

MPK_WATTR_PLANES_BLUE int MPK_UNDEFINED Specifies the minimum number of blue
bitplanes. This attribute is ignored if
the RGBA hint of the window is not set.

MPK_WATTR_PLANES_ALPHA int MPK_UNDEFINED Specifies the minimum number of
alpha bitplanes. This attribute is
ignored if theRGBAhint of the window
is not set.

MPK_WATTR_PLANES_ACCUM_RED int MPK_UNDEFINED Specifies the minimum number of
accumulation red bitplanes. This
attribute is ignored if the RGBA hint of
the window is not set.

Table 6-10 MPK Global Attributes (continued)

Variable Data Type Default Value Description
80 007-4239-001

Specifying Global Attributes
MPK_WATTR_PLANES_ACCUM_GREEN int MPK_UNDEFINED Specifies the minimum number of
accumulation green bitplanes. This
attribute is ignored if the RGBA hint of
the window is not set.

MPK_WATTR_PLANES_ACCUM_BLUE int MPK_UNDEFINED Specifies the minimum number of
accumulation blue bitplanes. This
attribute is ignored if the RGBA hint of
the window is not set.

MPK_WATTR_PLANES_ACCUM_ALPHA int MPK_UNDEFINED Specifies the minimum number of
accumulation alpha bitplanes. This
attribute is ignored if the RGBA hint of
the window is not set.

MPK_WATTR_TRANSPARENT_RED int MPK_UNDEFINED Specifies the red component of the
window transparent color. This
attribute is ignored if the RGBA hint of
the window is not set or if the
TRANSPARENT hint of the window is
not set.

MPK_WATTR_TRANSPARENT_GREEN int MPK_UNDEFINED Specifies the green component of the
window transparent color. This
attribute is ignored if the RGBA hint of
the window is not set or if the
TRANSPARENT hint of the window is
not set.

MPK_WATTR_TRANSPARENT_BLUE int MPK_UNDEFINED Specifies the blue component of the
window transparent color. This
attribute is ignored if the RGBA hint of
the window is not set or if the
TRANSPARENT hint of the window is
not set.

MPK_WATTR_TRANSPARENT_ALPHA int MPK_UNDEFINED Specifies the alpha component of the
window transparent color. This
attribute is ignored if the RGBA hint of
the window is not set or if the
TRANSPARENT hint of the window is
not set.

Table 6-10 MPK Global Attributes (continued)

Variable Data Type Default Value Description
007-4239-001 81

6: Configuration File Format
You can find more information about the window attributes specifications in the
glXChooseFBConfigSGIX(3G) and glXChooseVisual(3G) man pages.

MPK_WATTR_TRANSPARENT_INDEX int MPK_UNDEFINED Specifies the window transparent
index. This attribute is ignored if the
RGBA hint of the window is set or if the
TRANSPARENT hint of the window is
not set.

MPK_XINERAMA boolean 1 Controls window-intialization
performance. This variable can be set
to 0 if all windows are created using
Xinerama, which is the default
behavior. Setting it to 0 improves
window-initialization performance
but causes problems when creating
Xinerama-aware windows.

Table 6-10 MPK Global Attributes (continued)

Variable Data Type Default Value Description
82 007-4239-001

Index
Numbers

2D decomposition, 34
2D tiles, 51
3D decomposition, 43

C

Cave facility, 1
channel data structures

configuration file format, 68
functional view, 14

channels (See data structures.)
compositors (See Scalable Graphics Compositor.)
compound data structures

configuration file format, 71
functional view, 32

compounds (See decomposition and compound data
structures.)

config data structures
configuration file format, 59
functional view, 12

configuration file
channel data structure, 68
comments (#), 55
compound data structure, 71
config data structure, 12, 59
delimiters, 55
field types, 57
file format, 55

global data structure, 74
pipe data structure, 60
sample, 6
window data structure, 62

cut-ins, 51

D

data streaming, 43
data structures

channel, 14, 68
compound, 32, 71
config, 12, 59
functional view, 9
global, 74
hierarchy, 12
pipe, 12, 60
syntax, 56
window, 13, 62

database decomposition, 36
DB decomposition, 36
decomposition

frame decomposition, 34
database, 36
eye, 38
head-mounted-device (HMD), 40
screen, 34

guidelines for choosing mode, 48
hardware decomposition, 51
multilevel decomposition, 44
overview, 4
007-4239-001 83

Index
temporal decomposition, 40
data streaming, 43
frame multiplexing, 40

destination channels, 31
DisplayHeight() function, 13, 75-77
DisplayWidth() function, 13, 75-77
DPLEX (See Video Digital Multiplexer.)
DPLEX decomposition, 40, 49

E

eye decomposition, 38

F

frame decomposition, 34
frame multiplexing, 40
framebuffer resources, 9
frusta

immersive environments, 20
orthographic, 18
perspective, 18

FSAA (See full-screen antialiasing.)
full-screen antialiasing (FSAA), 52
functions

DisplayHeight(), 13, 75-77
DisplayWidth(), 13, 75-77
glXChooseFBConfigSGIX(), 82
glXChooseVisual(), 82
mpkChannelSetNearFar(), 74, 75
mpkInit(), 74
mpkSwapBuffers(), 79
mpkWindowUpdatePixelViewport(), 75-77

G

global attributes
format, 74
table of, 74

global data structures
configuration file format, 74
global attributes, 74

glXChooseFBConfigSGIX() function, 82
glXChooseVisual(3G) function, 82

H

hardware composition schemes, 51
head-mounted-device (HMD) decomposition, 40
HMD (See head-mounted-device (HMD)

decomposition.)
horizontal stripes, 51

I

immersive environments (See projection systems.)
InfinitePerformance graphics systems, 50
InfiniteReality graphics systems, 42

L

latency, 34
load balancing, 33

M

mirrored projection systems, 14
MPK_CATTR_FAR global attribute, 75
MPK_CATTR_NEAR global attribute, 74
84 007-4239-001

Index
MPK_DATTR_FULLSTEREO_HEIGHT global
attribute, 75

MPK_DATTR_FULLSTEREO_OFFSET global
attribute, 75

MPK_DATTR_FULLSTEREO_WIDTH global
attribute, 75

MPK_DATTR_MONO_HEIGHT global attribute, 76
MPK_DATTR_MONO_WIDTH global attribute, 76
MPK_DATTR_QUADSTEREO_HEIGHT global

attribute, 76
MPK_DATTR_QUADSTEREO_WIDTH global

attribute, 76
MPK_DEFAULT_EYE_OFFSET global attribute, 74
MPK_PATTR_MONO_HEIGHT global attribute, 63,

77
MPK_PATTR_MONO_WIDTH global attribute, 63,

77
MPK_PATTR_STEREO_HEIGHT global attribute,

63, 77
MPK_PATTR_STEREO_OFFSET global attribute, 63,

77
MPK_PATTR_STEREO_TYPE global attribute, 63, 77
MPK_PATTR_STEREO_WIDTH global attribute, 63,

77
MPK_WATTR_HINTS_CAVEAT global attribute, 64,

78
MPK_WATTR_HINTS_DECORATION global

attribute, 65, 78
MPK_WATTR_HINTS_DIRECT global attribute, 65,

78
MPK_WATTR_HINTS_DOUBLEBUFFER global

attribute, 64, 79
MPK_WATTR_HINTS_DRAWABLE global attribute,

65, 78
MPK_WATTR_HINTS_LARGEST global attribute,

65, 79
MPK_WATTR_HINTS_PRESERVEDglobalattribute,

65, 79

MPK_WATTR_HINTS_RGBA global attribute, 64, 78
MPK_WATTR_HINTS_STEREO global attribute, 65,

79
MPK_WATTR_HINTS_THREAD global attribute, 79
MPK_WATTR_HINTS_TRANSPARENT global

attribute, 64, 79
MPK_WATTR_HINTS_VISUAL global attribute, 64,

78
MPK_WATTR_HINTS_X_RENDERABLE global

attribute, 64, 78
MPK_WATTR_HINTS_XINERAMA global attribute,

65, 79
MPK_WATTR_PLANES_ACCUM_ALPHA global

attribute, 67, 81
MPK_WATTR_PLANES_ACCUM_BLUE global

attribute, 67, 81
MPK_WATTR_PLANES_ACCUM_GREEN global

attribute, 67, 81
MPK_WATTR_PLANES_ACCUM_RED global

attribute, 67, 80
MPK_WATTR_PLANES_ALPHA global attribute,

67, 80
MPK_WATTR_PLANES_AUX global attribute, 66,

80
MPK_WATTR_PLANES_BLUE global attribute, 67,

80
MPK_WATTR_PLANES_COLOR global attribute,

66, 80
MPK_WATTR_PLANES_DEPTH global attribute,

66, 80
MPK_WATTR_PLANES_GREEN global attribute,

67, 80
MPK_WATTR_PLANES_LEVEL global attribute, 66,

80
MPK_WATTR_PLANES_RED global attribute, 67,

80
MPK_WATTR_PLANES_SAMPLES global attribute,

66, 80
007-4239-001 85

Index
MPK_WATTR_PLANES_STENCIL global attribute,
66, 80

MPK_WATTR_TRANSPARENT_ALPHA global
attribute, 67

MPK_WATTR_TRANSPARENT_BLUE global
attribute, 67, 81

MPK_WATTR_TRANSPARENT_GREEN global
attribute, 67, 81

MPK_WATTR_TRANSPARENT_INDEX global
attribute, 67

MPK_WATTR_TRANSPARENT_RED global
attribute, 67, 81

MPK_XINERAMA global attribute, 65, 82
mpkChannelSetNearFar() function, 74, 75
mpkInit() function, 74
mpkWindowSwapBuffers() function, 79
mpkWindowUpdatePixelViewport() function, 75-77
multilevel decomposition, 44

O

orthographic frusta, 18

P

parallel processing, 31
perspective frusta, 18
pipe data structures

configuration file format, 60
functional view, 12

pipes (See data structures.)
product components, 5
projection model coordinates, 24
projection systems

Cave facility, 1
frusta, 20

modeling methods, 23
RESPONSIVE WORKBENCH facility, 24, 30
SGI Reality Center facility, 1, 24, 28
TAN HOLOBENCH facility, 1, 23, 27
TANORAMA POWERWALL facility, 1, 23, 26
V-Dome facility, 24, 29

R

Reality Center facility, 1, 24, 28
RESPONSIVE WORKBENCH facility, 24, 30
run-time configurability, 3

S

scalability, 4
definition, 33
full-scalability feature, 42
general support, 4
hardware solution, 49
MPK implementation, 31

Scalable Graphics Compositor, 4, 49, 50
screen decomposition, 34
SGI Reality Center facility, 1, 24, 28
source channels, 31
stereo

conditional use of, 47
general support, 4
specifying the mode, 15
switching on and off, 15

T

TAN HOLOBENCH facility, 1, 23, 27
TANORAMA POWERWALL facility, 1, 23, 26
temporal decomposition, 40
86 007-4239-001

Index
V

V-Dome facility, 24, 29
vertical stripes, 51
Video Digital Multiplexer (DPLEX), 4, 41, 49, 72
visualization facilities (See projection systems.)
volview application, 6

W

wall model coordinates, 23
window attributes, 64, 66, 82
window data structures

configuration file format, 62
functional view, 13

windows (See data structures.)

X

Xinerama, 65, 79, 82
007-4239-001 87

	Record of Revision
	Figures
	Tables
	About This Guide
	Audience
	What This Guide Contains
	Related Publications
	Obtaining Publications
	Conventions
	Reader Comments

	Overview
	A Reality Center Facility
	What MPK Provides
	Run-Time Configurability
	Run-Time Scalability
	Integrated Support for Scalable Graphics Hardware
	Integrated Support for Stereo and Immersive Environments

	Components of MPK
	Application Structure
	A Sample Configuration File

	Framebuffer Resources
	The MPK Configuration Hierarchy
	The config Data Structure
	The pipe Data Structure
	The window Data Structure
	The channel Data Structure
	Stereo Description

	Frustum Descriptions
	Orthographic Versus Perspective Frusta
	A Frustum in Immersive Environments
	Two Modeling Methods
	Specifying Wall Model Coordinates
	Specifying Projection Model Coordinates

	Examples of Common Reality Center Settings

	Compounds
	Scalable Rendering
	Building Compounds
	Frame Decomposition
	Screen Decomposition
	Database Decomposition
	Eye Decomposition

	Temporal Decomposition
	Frame Multiplexing
	Data Streaming

	Multilevel Decomposition

	Stereo-Selective Compounds
	Choosing the Right Decomposition Mode

	Using Scalable Graphics Hardware
	Using MPK with a DPLEX
	Using MPK with an SGI Scalable Graphics Compositor
	How the Compositor Functions
	MPK Specifications

	Configuration File Format
	File Format
	Specifying Comments (#)
	Specifying Delimiters
	Specifying MPK Data Structures
	Specifying Values within a Field

	Defining MPK Data Structures
	The config Data Structure
	The pipe Data Structure
	The window Data Structure
	The channel Data Structure
	The compound Data Structure

	Specifying Global Attributes

	Index

