
SGI® OpenGL Multipipe™ SDK
User’s Guide

007-4239-004

Version 3.0.1

CONTRIBUTORS
Written by Ken Jones
Illustrated by Chrystie Danzer and Jenn Byrnes
Production by Karen Jacobson
Engineering contributions by Patrick Bouchaud, Davy Courvoisier, Stefan Eilemann, and Philippe Robert

COPYRIGHT
© 2002, 2003 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No
permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole
or in part,without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND
The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA government
or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable license agreement, as
specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of the DoD FAR Supplement; or
sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy 2E, Mountain View, CA 94043-1351.

TRADEMARKS AND ATTRIBUTIONS
Silicon Graphics, SGI, the SGI logo, IRIX, InfiniteReality, OpenGL, Onyx, Onyx2, and Reality Center are registered trademarks and GLX,
InfinitePerformance, Onyx4, Open Inventor, the OpenGL logo, OpenGL Multipipe, OpenGL Performer, OpenGL Volumizer, UltimateVision and
VPro are trademarks of Silicon Graphics, Inc., in the United States and/or other countries worldwide.

DaimlerChrysler is a registered trademark of DaimlerChrysler AG Corporation. HOLOBENCH and TANORAMA are registered trademarks of
Helmut Tan. Responsive Workbench is a registered trademark of GMD. V-Dome is a trademark of SEOS Limited. The X device is a registered
trademark and Xinerama is a trademark of The Open Group in the United States and other countries.

007-4239-004 iii

New Features in This Release

OpenGL Multipipe SDK 3.0 includes the following features:

• Formal support for Silicon Graphics Onyx4 UltimateVision visualization systems

• A new manual, SGI OpenGL Multipipe SDK Programmer’s Reference Pages

• Miscellaneous bugfixes

007-4239-004 v

Record of Revision

Version Description

001 May 2002
Original publication. Supports the 2.0 release of OpenGL Multipipe SDK.

002 October 2002
Updated to support the 2.1 release of OpenGL Multipipe SDK.

003 June 2003
Updated to support the 3.0 release of OpenGL Multipipe SDK.

004 September 2003
Updated to support the 3.0.1 release of OpenGL Multipipe SDK.

007-4239-004 vii

Contents

Figures . . xi

Tables . xiii

About This Guide. . xv
Audience . xv
What This Guide Contains . xv
Related Publications . . xvi
Obtaining Publications . xvi
Conventions . xvi
Reader Comments . . xvii

1. Overview . 1
A Reality Center Facility . . 1
What MPK Provides . . 3

Run-Time Configurability 3
Run-Time Scalability . . 4
Integrated Support for Scalable Graphics Hardware 4
Integrated Support for Stereo and Immersive Environments 4

Components of MPK . . 5
Application Structure . . 5
A Sample Configuration File 6

2. Framebuffer Resources . . 9
The MPK Configuration Hierarchy 9
The config Data Structure 12
The pipe Data Structure . . 12
The window Data Structure 13
The channel Data Structure. 14
Stereo Description . . 15

viii 007-4239-004

Contents

3. Frustum Descriptions . . 17
Orthographic Versus Perspective Frusta. 18
A Frustum in Immersive Environments 20
Two Modeling Methods . 22

Specifying Wall Model Coordinates 23
Specifying Projection Model Coordinates 24

Examples of Common Reality Center Settings 26

4. Compounds . . 31
Scalable Rendering . . 31
Building Compounds . . 32

Frame Decomposition. . 34
Screen Decomposition 34
Database Decomposition. 36
Eye Decomposition . 38

Temporal Decomposition. 40
Frame Multiplexing 40
Data Streaming . 43

Pixel-Based Decomposition 44
Full-Scene Antialiasing (FSAA) Decomposition 45
FSAA Compound Examples. 45

Cull Decomposition . 47
Multilevel Decomposition 49

Stereo-Selective Compounds 52
Automatic Load Balancing for Compounds. 53

Dynamic and Static Load Balancing 53
Proper Environment for Automatic Load Balancing 54
How to Enable Automatic Load Balancing 55
Using a Split-Axis Method for Tiling 55

Choosing the Right Decomposition Model 57

5. Using Scalable Graphics Hardware 59
Using MPK with a DPLEX . 59

Contents

007-4239-004 ix

Using MPK with an SGI Scalable Graphics Compositor 60
General Capabilities . . 60
Hardware Spatial Composition Schemes 61
MPK Specifications . 62

6. Configuration File Format . 65
File Format . . 65

Specifying Comments (#) 65
Specifying Delimiters. . 65
Specifying MPK Data Structures 66
Specifying Values within a Field 67

Defining MPK Data Structures 68
The config Data Structure 69
The pipe Data Structure. 70
The window Data Structure 72
The channel Data Structure 78
The compound Data Structure 82

Specifying Global Attributes 85

Index . 95

007-4239-004 xi

Figures

Figure 1-1 SGI Reality Center 2
Figure 1-2 MPK Application Structure 6
Figure 2-1 MPK Configuration Hierarchy 10
Figure 3-1 An Orthographic Frustum. 18
Figure 3-2 A Perspective Frustum. 19
Figure 3-3 Projections through the Near Plane 20
Figure 3-4 The Effective Frustum 22
Figure 3-5 TANORAMA® POWERWALL (TAN/SGI Democenter) 26
Figure 3-6 TAN HOLOBENCH® (photo courtesy of GMD) 27
Figure 3-7 SGI Reality Center 28
Figure 3-8 V-Dome™ (designed and installed by Trimension Systems, Inc.) . 29
Figure 3-9 Responsive Workbench® (photo courtesy of DaimlerChrysler AG) . 30
Figure 4-1 Source and Destination Channels 32
Figure 4-2 Screen Decomposition 35
Figure 4-3 Database Decomposition 37
Figure 4-4 Eye Decomposition. 39
Figure 4-5 Frame Multiplexing Decomposition 41
Figure 4-6 Data Streaming Decomposition 43
Figure 4-7 4x FSAA Decomposition 46
Figure 4-8 Eye-DB Multilevel Decomposition 50
Figure 4-9 Dynamic Versus Static Load Balancing 54
Figure 4-10 2D Tiling Scheme with Four Regions and Horizontal Tiles . . . 56
Figure 4-11 2D Tiling Scheme with Four Regions and Vertical Tiles 57
Figure 5-1 Hardware Spatial Composition Schemes 62

007-4239-004 xiii

Tables

Table 6-1 Field Types and Formats 67
Table 6-2 The config Fields 69
Table 6-3 The pipe Fields 71
Table 6-4 The window Fields. 73
Table 6-5 Window Attributes— hints Subfields 74
Table 6-6 Window Attributes—planes Subfields 76
Table 6-7 Window Attributes—transparent Subfields 77
Table 6-8 The channel Fields 79
Table 6-9 Channel Attributes—read Subfields 80
Table 6-10 The compound Fields 82
Table 6-11 MPK Global Attributes 86

007-4239-004 xv

About This Guide

SGI OpenGL Multipipe SDK (MPK) is a software development toolkit (SDK) that allows
you to adapt your graphics applications to run in immersive environments and to take
advantage of the scalability provided by multiple pipes and other scalable graphics
hardware. This guide describes how to use and configure an MPK application.

Audience

This guides targets Reality Center administrators. As such, you can configure graphics
applications to run in multipipe environments. Using MPK, you can describe the
physical display area (walls), the hardware resources, and the rendering options.

What This Guide Contains

This guide is divided into the following chapters:

• Chapter 1, “Overview,” describes the features of MPK and its components.

• Chapter 2, “Framebuffer Resources,” describes the function and hierarchy of the
framebuffer data structures for pipes, windows, and channels.

• Chapter 3, “Frustum Descriptions,”describes a frustum in a virtual reality
environment and two methods for computing a frustum for a projection system.

• Chapter 4, “Compounds,” describes the various schemes of decomposition
available under MPK.

• Chapter 5, “Using Scalable Graphics Hardware,”describes the use of compounds
with scalable graphics hardware.

• Chapter 6, “Configuration File Format,” describes the format of an MPK
configuration file.

xvi 007-4239-004

About This Guide

Related Publications

The following books contain additional information that may be helpful:

• SGI OpenGL Multipipe SDK Programmer’s Guide

• SGI OpenGL Multipipe SDK Programmer’s Reference Pages

• SGI InfinitePerformance: Scalable Graphics Compositor User’s Guide

• Onyx2 DPLEX Option Hardware User’s Guide

• IRIX Admin: Software Installation and Licensing

• OpenGL Multipipe User’s Guide

Obtaining Publications

You can obtain SGI documentation in the following ways:

• See the SGI Technical Publications Library at http://docs.sgi.com. Various formats
are available. This library contains the most recent and most comprehensive set of
online books, release notes, man pages, and other information.

• If it is installed on your SGI system, you can use InfoSearch, an online tool that
provides a more limited set of online books, release notes, and man pages. With an
IRIX system, select Help from the Toolchest, and then select InfoSearch. Or you can
type infosearch on a command line.

• You can also view release notes by typing either grelnotes or relnotes on a
command line.

• You can also view man pages by typing man <title> on a command line.

Conventions

The following conventions are used throughout this publication:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

About This Guide

007-4239-004 xvii

Reader Comments

If you have comments about the technical accuracy, content, or organization of this
document, contact SGI. Be sure to include the title and document number of the manual
with your comments. (Online, the document number is located in the front matter of the
manual. In printed manuals, the document number is located at the bottom of each
page.)

You can contact SGI in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library webpage:

http://docs.sgi.com

• Contact your customer service representative and ask that an incident be filed in the
SGI incident tracking system.

• Send mail to the following address:

Technical Publications
SGI
1600 Amphitheatre Parkway, M/S 535
Mountain View, CA 94043-1351

SGI values your comments and will respond to them promptly.

variable Italic typeface denotes variable entries and words
or concepts being defined.

user input This fixed-space font denotes literal items that the
user enters in interactive sessions. (Output is
shown in nonbold, fixed-space font.)

function Functions are denoted in bold with following
parentheses.

manpage(x) Man page section identifiers appear in
parentheses after man page names.

007-4239-004 1

Chapter 1

1. Overview

This overview of OpenGL Multipipe SDK (MPK) consists of the following sections:

• “A Reality Center Facility”

• “What MPK Provides”

• “Components of MPK”

• “Application Structure”

• “A Sample Configuration File”

A Reality Center Facility

Throughout this document, we shall use the term Reality Center facility to convey the
following meaning: an SGI computer environment with extended visualization
capabilities. Note that this definition not only applies to the traditional three-pipe theater
(historically set up for flight simulation) but covers as well all kinds of immersive
environments (such as a Cave, TANORAMA POWERWALL, or TAN HOLOBENCH
facility) and also extends to encompass graphics clusters. Figure 1-1 on page 2 illustrates
an SGI Reality Center facility.

2 007-4239-004

1: Overview

Figure 1-1 SGI Reality Center

What MPK Provides

007-4239-004 3

What MPK Provides

As more and more graphics applications come into the virtual reality arena as a piece of
immersive solutions, application developers face new requirements. Not only do
developers need to take into account high frame rates and low latencies needed for
temporal realism, but also better image quality for visual realism. OpenGL applications
must improve their performances and must be able to run in increasingly complex
environments that include various input peripherals and projection systems. For
applications initially designed to run on a visual workstation in non-real time and with
keyboard-mouse input, new releases now need to be time-accurate and should be able to
integrate a moving frustum tied to head-tracking peripherals and several rendering
engines (graphics pipes) that provide multiple and wider fields of view. Because these
types of evolving environments have numerous parameters, the applications must be
sufficiently flexible and robust to accommodate their demands.

MPK is an application programming interface (API) designed to help software
developers meet the demands of these new immersive environments. This product
enables the application to take advantage of the scalability provided by additional pipes
and other scalable graphics hardware, as well as to support immersive environments.
MPK provides the following specific features:

• Run-time configurability

• Run-time scalability

• Integrated support for scalable graphics hardware

• Integrated support for stereo and immersive environments

Run-Time Configurability

MPK allows developers to create applications that run on multiple platforms ranging
from simple visual workstations to large and complex visualization environments, often
based on several pipes for parallel rendering purposes. It implements a design that
largely isolates the application from the graphics resources and the physical
environment. Providing run-time configurability, an application written in the MPK
programming model can run on a simple desktop platform or, without any modification
or recompilation, in highly complex visualization environments like an SGI Reality
Center facility.

4 007-4239-004

1: Overview

Run-Time Scalability

Graphics-intensive applications often require several pipes in order to achieve a desired
performance. Each pipe contributes to a part of the final rendering. This introduces the
need for a decomposition paradigm and the issue of how the rendering performance
scales with the number of pipes. Rendering in parallel requires the developer to manage
several graphic contexts and then to create tasks or threads, each managing their own
graphic context and sharing the scene to be rendered. MPK allows a multipipe
applications developer to avoid dealing with such parallel programming paradigms and
offers compound algorithms based on several decomposition types.

Integrated Support for Scalable Graphics Hardware

Scalable graphics hardware such as the SGI Scalable Graphics Compositor and the SGI
Video Digital Multiplexer (DPLEX) can perform some of the compositing functions that
MPK now provides in software. MPK supports such hardware as well as conventional
graphics hardware.

Integrated Support for Stereo and Immersive Environments

Along with its scalability features, MPK has integrated the ability to exploit the stereo
features of your application-display environment without recompilation. Having the
related display characteristics of your environment described in a configuration file, you
can specify at run time whether to run in stereo or mono.

In addition, MPK provides the application with the ability to support truly immersive
environments by using a simple programming interface: the application only needs to
provide real-world information about the position and orientation of the viewer. MPK
then transparently adapts its left- and right-eye frustum computations to the actual
user’s location.

The ease of configuring your application to accomodate different hardware resources
(graphics pipes and head-tracking devices) and different display areas makes MPK ideal
for use in immersive environments.

Components of MPK

007-4239-004 5

Components of MPK

MPK has two components:

• Application programming interface

Designed for the applications programmer to adapt OpenGL graphics applications
to fit the MPK programming model in order to support multipipe environments.

• Configuration file interface

Designed for Reality Center administrators to configure MPK graphics applications
to run in their environments. This ASCII file interface allows you to specify how the
framebuffer resources (pipes, windows, and channels) are mapped onto the
physical projection areas (walls) and the parallel decomposition schemes
(compounds) to be used by your applications.

MPK is available on IRIX through C language function calls. It is designed as a thin layer
on top of the operating system, X11, OpenGL, and GLX.

Application Structure

As an application will have to run in different configurations, MPK externalizes the
configuration management by implementing an ASCII file that is separate from the other
application code. The scene management and data workflow is separate from scene
rendering (management of the graphics resources). Figure 1-2 illustrates the structure of
an application based on MPK.

6 007-4239-004

1: Overview

Figure 1-2 MPK Application Structure

A Sample Configuration File

Example 1-1 shows a one-pipe, one-window configuration file that can be used in
conjunction with a MPK-structured program—for instance, volview, a scalable
volume-viewer application packaged as part of the OpenGL Volumizer 2 product.

Core application Graphics tasks

Database management
and

Data workflow

Scene rendering
and

Resource management

A Sample Configuration File

007-4239-004 7

Example 1-1 Sample Configuration File

global {
 MPK_WATTR_PLANES_ALPHA 1
 MPK_DEFAULT_EYE_OFFSET 0.01
}
config {
 name “Volview: 1-pipe”
 mode mono

 mono “/usr/gfx/setmon -n 1280x1024_76”
 stereo “/usr/gfx/setmon -n str_top”
 pipe {
 window {
 viewport [0, 0, 1.0, 1.0]
 channel {
 name “center”
 viewport [0., 0., 1., 1.]
 wall {
 bottom_left [-.5, -.5, -1]
 bottom_right [.5, -.5, -1]
 top_left [-.5, .5, -1]
 }
 }
 }
 }
}

007-4239-004 9

Chapter 2

2. Framebuffer Resources

As noted in the overview, MPK allows you to describe the framebuffer resources (pipes,
windows, and channels), the physical display area (walls), and the rendering options.
This chapter describes how you configure the framebuffer resources and contains the
following sections:

• “The MPK Configuration Hierarchy”

• “The config Data Structure”

• “The pipe Data Structure”

• “The window Data Structure”

• “The channel Data Structure”

• “Stereo Description”

The MPK Configuration Hierarchy

The MPK configuration file uses a tree data structure to describe the physical graphics
resources. The root of the data structure is the whole visualization facility and the leaves
are the physical rendering layouts. Figure 2-1 shows the configuration of an application
running on a two-pipe platform, two windows handling the GLX context, and four
channels.

10 007-4239-004

2: Framebuffer Resources

Figure 2-1 MPK Configuration Hierarchy

Example 2-1 shows a skeletal configuration file that describes Figure 2-1.

 Reality Center
MPK Configuration

 pipe
X-display
 (stereo)

 pipe
X-display
 (stereo)

 window
GLX drawing area

 window
GLX drawing area

 channel
 GL viewport
Physical Layout

 channel
 GL viewport
Physical Layout

 channel
 GL viewport
Physical Layout

 channel
 GL viewport
Physical Layout

The MPK Configuration Hierarchy

007-4239-004 11

Example 2-1 Skeletal Configuration File

config {
 pipe {
 window {
 viewport [parameters1]
 channel {
 viewport [parameters2]
 .
 .
 .
 }
 channel {
 viewport [parameters3]
 .
 .
 .
 }
 }
 }
 pipe {
 window {
 viewport [parameters4]
 channel {
 viewport [parameters5]
 .
 .
 .
 }
 channel {
 viewport [parameters6]
 .
 .
 .
 }
 }
 }
}

12 007-4239-004

2: Framebuffer Resources

Reading this configuration file, MPK determines the following:

• What physical pipes it must allocate

• What parallel tasks it must create

• How to synchronize the rendering tasks

• The final rendering framebuffer area

The following sections describe the function of the framebuffer data structures and
Chapter 6, “Configuration File Format” describes their syntax for the configuration file.

The config Data Structure

The configuration level of the hierarchy, denoted in the configuration file by the config
data structure, primarily describes the rendering resources of an MPK application as a
hierarchy of the following:

• Hardware rendering pipelines (pipes)

• GLX software rendering threads (windows)

• OpenGL framebuffer rendering areas (channels)

It may also describe compounds, various parallelization schemes of the rendering across
channels in order to scale performances. Chapter 4, “Compounds” describes the use of
compounds in MPK.

As shown in Figure 2-1, pipes are children of the root configuration, windows are
children of pipes, and channels are children of windows. As such, you can take
advantage of the attendant inheritance. For instance, you can specify the screen
dimensions at the pipe level and they will be inherited by the child windows and child
channels. This inheritance is made possible because MPK uses no absolute pixel
dimensions but fractional viewport descriptions for its window and channels.

The pipe Data Structure

A pipe data structure describes the rendering resources within a configuration that are
assigned to a given hardware rendering pipe. You must have one pipe entry for every
pipe you want to use in your configuration. The pipe itself is characterized by the name

The window Data Structure

007-4239-004 13

of its corresponding X11 display as well as the expected mono and stereo mechanisms
(full-screen, quad-buffer, and the like) to be applied by its rendering threads (windows).

Example 2-2 shows a minimal pipe specification that is superior to that of the windows
and channels.

Example 2-2 Sample Pipe Specification

pipe {
 display “:0.0”
 window {
 .
 .
 .
 channel {
 .
 .
 .
 }
 }
}

You can specify the display sizes corresponding to the various stereo modes using global
attributes or pipe attributes; otherwise, MPK uses the values returned by the X11
DisplayWidth() and DisplayHeight() functions. Chapter 6, “Configuration File
Format” describes the pipe and global attributes.

The window Data Structure

A window data structure corresponds to a single GLX unit (that is, a single X window
with its associated OpenGL visual and context). Essential in the MPK programming
model is that each window spawns its own rendering thread.

In the configuration file, the window specification is subordinate to the pipe
specification. Example 2-3 shows a minimal specification. Other optional specifications
include the processor where the rendering thread is to run and an extensive set of
window attributes. Chapter 6, “Configuration File Format” describes the complete set of
fields and their syntax.

14 007-4239-004

2: Framebuffer Resources

Example 2-3 Sample Window Specification

window {
 viewport [0., 0., 1., 1.]
 channel {
 .
 .
 .
 }
}

The channel Data Structure

A channel, denoted by a channel data structure in the configuration file, is essentially a
view onto a scene and corresponds to a single viewport inside its parent window. In
addition to the viewport description, a channel also contains the modeling coordinates
for the projection rectangle in the real world. Chapter 3, “Frustum Descriptions”
describes how you describe these coordinates.

Note: MPK allows applications to run in mirrored projection systems, which usually use
mirrors to invert the projected image up and down (with respect to left and right) . To do
this, you must specify a negative value for the height or width of the corresponding
channel’s viewport.

Example 2-4 shows a sample channel specification.

Example 2-4 Sample Channel Specification

channel {
 viewport [0., 0., 1., 1.]
 projection {
 origin [0., 0., 0.]
 distance 3.
 fov [54., 47.]
 hpr [0., 0., 0.]
 }
}

Chapter 6, “Configuration File Format” describes the complete set of fields and their
syntax.

Stereo Description

007-4239-004 15

Stereo Description

When running an MPK application in stereo mode, you can specify two elements from
the configuration file:

• Stereo type

This indicates how the framebuffer resources are configured for each eye pass. The
stereo type is defined as a pipe attribute either in the global attributes section or per
pipe in the pipe data structure. Chapter 6, “Configuration File Format” contains a
detailed list of all attributes and describes how to specify global attributes.

• Stereo command

This command will be executed by MPK when switching to mono or stereo
rendering. The command is specified for mono and stereo in the config data
structure.

Note: If you want to run in quad-buffered stereo mode, your windows must allocate
stereo-capable visuals. This can be specified using the stereo window attribute hint.

The following is an example of stereo specifications in the config data structure:

mono "/usr/gfx/setmon -n 60HZ"
stereo "/usr/gfx/setmon -n 1024x768_96s"

Controlling the stereo specifications at the configuration or pipe levels requires you to
kill windows and restart them. However, you can switch stereo on and off without killing
them if all windows on all quad-stereo pipes have a quad-buffer-capable GLX visual and
you use the window hint attribute, as shown in the following:

attributes {
 hints {
 stereo 1
 }
}

See Chapter 6, “Configuration File Format” for a complete description of the options and
their syntax.

007-4239-004 17

Chapter 3

3. Frustum Descriptions

To allow graphical applications to behave properly in immersive environments, you
must specify the physical layout of the display area and the relative position of the
observer. MPK allows you to do this by extending the notion of the viewing frustum in
a graphical application. This chapter uses the following sections to describe this task:

• “Orthographic Versus Perspective Frusta”

• “A Frustum in Immersive Environments”

• “Two Modeling Methods”

• “Examples of Common Reality Center Settings”

As described in Chapter 6, “Configuration File Format”, MPK expects a frustum
description as part of the channel data structure.

18 007-4239-004

3: Frustum Descriptions

Orthographic Versus Perspective Frusta

Figure 3-1 depicts an orthographic frustum.

Figure 3-1 An Orthographic Frustum

Figure 3-2 depicts a perspective frustum.

Y

X

Z

top

right

left

bottom

near

far

Orthographic Versus Perspective Frusta

007-4239-004 19

Figure 3-2 A Perspective Frustum

Note the following about the two frusta:

• Both are totally defined by the near, far, left, right, top, and bottom distances and the
assumption of having the eyepoint at the origin and the near and far distances for
each defined with respect to the Z axis. The OpenGL near and far planes are always
parallel to each other and perpendicular to the Z axis. An off-axis OpenGL frustum
corresponds to the case where the near-plane rectangle is not centered around the Z
axis. This is generally the case in immersive environments. See Figure 3-4 on
page 22 for an example of an off-axis frustum.

• Both final images (pixmaps) correspond to the near plane image.

• In the case of a perspective frustum and as illustrated in Figure 3-3, the near plane
intersection with a line from the eyepoint to the scene graph object defines the pixel
color. Distant objects appear smaller in the pixmap.

• In the case of an orthographic frustum and as illustrated in Figure 3-3 also, the near
plane intersection with a line parallel to the Z axis and extending to the scene graph

top

right

left

bottom

near

far

Y

X

Z

20 007-4239-004

3: Frustum Descriptions

object defines the pixel color. The size of objects is preserved in the orthographic
view.

Figure 3-3 Projections through the Near Plane

Given these definitions of a pixmap, you control the appearance of the pixmap by
selecting the type of frustum and setting the frustum parameters (near, far, left, right, top,
and bottom).

In non-immersive environments, the location of the eyepoint and monitor screen in the
real world is arbitrary and you do not need to account for it.

A Frustum in Immersive Environments

In non-immersive environments, you have arbitrary (usually symmetric) left, right, top,
and bottom parameters.

In an immersive environment, you need to establish the location of the eyepoint and the
monitor in real-world coordinates; they are no longer arbitrary. The monitor screen is
now a see-through glass window into the scene graph. Figure 3-4 on page 22 illustrates

Y

X

Z

Y

X

Z

A Frustum in Immersive Environments

007-4239-004 21

the new effective frustum, which is completely determined by the following
specifications:

• near and far distances

• Real-world eyepoint location

• Real-world screen position

MPK expects the dimensions (position and size) of the screen to be specified as part of
the associated channel’s data structure—that is, as if the screen itself was a 3D object in
your database. You must specify the same units and coordinate system as will be used by
the application when drawing the database.

MPK allows the eyepoint location to be specified using a simple programming interface.
The application needs only to provide real-world information about the position and
attitude of the viewer. MPK then transparently adapts its left- and right-eye frustum
computation.

22 007-4239-004

3: Frustum Descriptions

Figure 3-4 The Effective Frustum

Two Modeling Methods

MPK provides two modeling methods to describe your projection system:

• Wall model (Cartesian coordinates)

• Projection model (polar/cylindrical/spherical coordinates)

The most appropriate modeling method usually corresponds to the one requiring fewer
manual computations in order to describe the geometry of your environment.

screen

near

far

X

Y

Z

eye

Two Modeling Methods

007-4239-004 23

Specifying Wall Model Coordinates

Wall model coordinates are well-suited to describe projection screens that are arranged
as flat screens, such as in a TANORAMA POWERWALL or TAN HOLOBENCH facility.
To describe a projection screen using the wall model, you need to provide the Cartesian
coordinates of three of its vertices using object data coordinates (x’,y’,z’):

• Bottom-left vertex

• Bottom-right vertex

• Top-left vertex

Example 3-1 shows an example of using wall model coordinates in a configuration file
for a wall that is 3 meters by 3 meters and 1.5 meter in front of the viewer. The example
assumes that the application expects the coordinates to be specified in meters:

Example 3-1 Specifying Wall Model Coordinates

a 3m x 3m screen located 1.5 m in front of the viewer
#
wall {
 bottom_left [–1.5, –1.5, –1.5]
 bottom_right [1.5, –1.5, –1.5]
 top_left [–1.5, 1.5, –1.5]
}

24 007-4239-004

3: Frustum Descriptions

Specifying Projection Model Coordinates

Projection model coordinates are well-suited to describe projection screens that are in a
curved or tilted arrangement, such as in the traditional three-pipe SGI Reality Center, the
V-Dome, and the Responsive Workbench facilities. To describe a projection screen using
the projection model, you need to provide the following information:

• Origin in Cartesian coordinates,using object data coordinates (x’,y’,z’)

• Euler angles of the projection plane—that is, the counter-clockwise rotation around
the Y axis (heading), X axis (pitch), and Z axis (roll) viewed from the positive side of
the axis

• Distance of the projection plane from the origin in the application’s measurement
units

• Horizontal and vertical fields of view (FOV)

Example 3-2 shows an example of using projection model coordinates in a configuration
file. The configuration is a three-channel, hemi-cylindrical Reality Center with the
following dimensions:

Dimension Value

Radius 3 meters

Edge blending 8 percent

Horizontal FOV 54 degrees (total FOV of 150 degrees)

Vertical FOV 47 degrees

Two Modeling Methods

007-4239-004 25

Example 3-2 Specifying Projection Model Coordinates

channel {
 name “front-view”
 projection {
 origin [0., 0., 0.]
 distance 3.
 fov [54., 47.]
 hpr [0., 0., 0.]
 }
}
channel {
 name “left-view”
 projection {
 origin [0., 0., 0.]
 distance 3.
 fov [54., 47.]
 hpr [50., 0., 0.]
 }
}
channel {
 name “right-view”
 projection {
 origin [0., 0., 0.]
 distance 3.
 fov [54., 47.]
 hpr [-50., 0., 0.]
 }
}

For each specified channel, the resulting projection area corresponds to the rectangle that
would be produced by a hypothetical projection system located at origin with the
orientation characterized by the hpr angles and projecting orthogonally onto a wall
situated at distance.

26 007-4239-004

3: Frustum Descriptions

Examples of Common Reality Center Settings

There are a variety of commercial products that illustrate the most appropriate choice for
the two modeling methods. Figure 3-5 and Figure 3-6 illustrate flat-screen arrangements
that are ideal for the use of the wall model.

Figure 3-5 TANORAMA® POWERWALL (TAN/SGI Democenter)

Examples of Common Reality Center Settings

007-4239-004 27

Figure 3-6 TAN HOLOBENCH® (photo courtesy of GMD)

Figure 3-7, Figure 3-8, and Figure 3-9 illustrate curved or tilted arrangements of
projection screens and are ideal for the use of the projection model.

28 007-4239-004

3: Frustum Descriptions

Figure 3-7 SGI Reality Center

Examples of Common Reality Center Settings

007-4239-004 29

Figure 3-8 V-Dome™ (designed and installed by Trimension Systems, Inc.)

30 007-4239-004

3: Frustum Descriptions

Figure 3-9 Responsive Workbench® (photo courtesy of DaimlerChrysler AG)

007-4239-004 31

Chapter 4

4. Compounds

This chapter describes how you can use compounds (or conversely, decomposition) to
scale the performance of your graphics system. Decomposition allows you to use
multiple pipes to render frames that would normally be rendered by a single pipe.

This chapter has the following sections:

• “Scalable Rendering”

• “Building Compounds”

• “Stereo-Selective Compounds”

• “Automatic Load Balancing for Compounds”

• “Choosing the Right Decomposition Model”

Scalable Rendering

To achieve greater application performance, MPK allows you to decompose a global
rendering task into smaller tasks and to assign the smaller tasks to individual pipes. The
task division requires a decomposition scheme. In general, a decomposition scheme
sends a scene to render to each pipe, gets back rendered images from each pipe for
further composition, and then renders the final image. An exception is cull
decomposition, where the cull operation is parallelized with the draw operation.

Figure 4-1 illustrates the role of source and destination channels in scalable rendering.

32 007-4239-004

4: Compounds

Figure 4-1 Source and Destination Channels

Building Compounds

To build a compound, you must create a compound data structure. Chapter 6,
“Configuration File Format” describes the syntax of compound data structures for your
configuration file. This section describes how you build them logically.

Generally, to create a compound, you need to do the following:

1. Choose a decomposition scheme, which divides the global rendering task into
smaller tasks.

2. Distribute the rendering of the smaller tasks to the source pipes for parallel
processing.

3. Designate a destination channel for the reassembly of the final, coherent image.

The destination channel is usually one of the source channels. To achieve optimal
performances, you would usually have one channel per pipe.

Read Read Read Read

Pipe 0

Draw

Source channel 0

Pipe 1

Draw

Source channel 1

Pipe 2

Draw

Source channel 2

Pipe m

Draw

Source channel m

Compound

Destination
channel

Building Compounds

007-4239-004 33

This chapter focuses on the three tasks just cited. Optionally, you can also do the
following:

• Indicate whether your compound is used in only stereo or mono mode.

• Indicate controls for the pixel data transfers between the compound and its regions.

• Indicate whether to use scalable graphics hardware.

• Indicate whether to use automatic load balancing.

The section “Stereo-Selective Compounds” on page 52 describes how you control
whether your compound is used depending on the stereo mode of the application. For
more information on the first two optional tasks, see the descriptions of the mode and
format fields in section Chapter 6, “Configuration File Format”. Chapter 5, “Using
Scalable Graphics Hardware” describes the integration of scalable graphics with MPK.
“Automatic Load Balancing for Compounds” on page 53 describes how MPK balances
the rendering for certain compound modes.

MPK provides several decomposition schemes and the following subsections describe
these schemes:

• “Frame Decomposition”

• “Temporal Decomposition”

• “Pixel-Based Decomposition”

• “Cull Decomposition”

• “Multilevel Decomposition”

Each decomposition mode improves performance or graphics quality, but the
performance gain depends on the application type and the nature of the performance
bottleneck. Four factors are important in choosing the decomposition scheme
judiciously:

Factor Description

Load balancing For a given decomposition, each pipe should execute
roughly the same amount of work since the slowest pipe
dictates the overall performance. Unbalanced
decomposition can seriously affect the scalability.

34 007-4239-004

4: Compounds

Scalability of scheme Scalability is the degree to which the performance grows
as the number of graphics resources increases. To
optimize performance, you only add resources to address
the source of the bottleneck. For example, adding more
geometry power to an application limited by pixel fill will
not improve performance.

Latency added Depending on the decomposition scheme, the frame
delay between a user input and the associated frame
output may be greater than one frame. Minimizing this
latency may be critical for some event-driven
applications.

Graphics I/O consumption A typical decomposition involves the reading and writing
of images from the source channels (contributing
channels) to a destination channel. This transfer might
stress the graphics I/O and memory capabilities of the
system.

Frame Decomposition

In frame decomposition, a frame or view is divided into regions, which are, in turn,
assigned to individual source pipes for rendering. Based on the following perspectives,
there are several approaches to dividing the frame into regions:

• Screen topology (screen decomposition)

• Scene graph primitives (database decomposition)

• Eye view (eye decomposition)

Each approach yields a different flavor of frame decomposition.

Screen Decomposition

In screen decomposition (also referred to as 2D decomposition), each pipe renders a part
of the screen area. Assembling side-to-side each image part constitutes the final
rendering. This type of decomposition is used when the intrinsic pixel fill or geometry
capacity of each pipe slows down the application. The scalability depends on the
balancing of the workloads. The model to display needs to be uniformly distributed
across the screen to accommodate a good balancing and, thus, scalability. The graphics
I/O is relatively low, because the traveling source images are small.

Building Compounds

007-4239-004 35

Figure 4-2 illustrates screen decomposition.

Figure 4-2 Screen Decomposition

Compound

36 007-4239-004

4: Compounds

Example 4-1 shows the configuration file specifications for the screen decomposition
illustrated in Figure 4-2.

Example 4-1 2D Compound in a Configuration File

compound {
 mode [2D]
 channel "destination"

The top left of "destination" image will be
rendered on "source0"...
 region {
 viewport [0., .5, .5, .5]
 channel "source0"
 }
The top right of "destination" image will be
rendered on "source1"...
 region {
 viewport [.5, .5, .5, .5]
 channel "source1"
 }
The bottom left of "destination" image will be
rendered on "source2"...
 region {
 viewport [0., 0., .5, .5]
 channel "source2"
 }
... while "destination" itself takes care of
the bottom right
 region {
 viewport [.5, 0., .5, .5]
 channel "destination"
 }
}

A 2D compound has no frame latency, unless the mode flag ASYNC has been set, in which
case the latency is one frame but you get better overall performance.

Database Decomposition

In database (DB) decomposition, the scene is rendered in parallel by dividing it among
the different graphics pipes. Each pipe renders its share of the scene to generate partial
images. These images are then composited by MPK to generate the final image in the
destination channel. During composition, the application can use depth testing and/or

Building Compounds

007-4239-004 37

alpha blending to achieve the desired effect. Database decomposition allows you to scale
both the geometry and the pixel fill performance of the system. For some applications,
such as volume rendering, it also scales the texture memory capacity of the system by the
number of pipes.

Figure 4-3 demonstrates the use of database decomposition in volume rendering. The
volume data is divided equally among the four pipes and the partial images are
composited on the destination channel. In this case, the destination channel (top left
portion of the figure) is also contributing to the rendering as a source channel.

Figure 4-3 Database Decomposition

Example 4-2 shows the configuration file specifications for the database decomposition
illustrated in Figure 4-3.

38 007-4239-004

4: Compounds

Example 4-2 DB Compound in a Configuration File

compound {
 mode [DB]
 format [COLOR DEPTH]
 channel “channel”

 region {
 range [0., .25]
 channel “buffer0”
 }

 region {
 range [.25, .5]
 channel “buffer1”
 }

 region {
 range [.5, .75]
 channel “buffer3”
 }

 region {
 range [.75, 1.]
 channel “channel”
 }
}

The application must support the DB compound.

Eye Decomposition

Eye decomposition is well-suited for stereo or multiple-view rendering. Each pipe
renders a particular view (left, right, mono). The final rendering depends on the type of
display. As illustrated in Figure 4-4, if stereo is active, then each pipe view fills in the right
or left buffer of the final rendering. This provides good load balancing and scalability,
especially for stereo-view rendering, because the scene content remains similar during
run time.

An EYE compound has no frame latency, unless the mode qualifier ASYNC has been
specified and pixel transfer needs to occur, in which case the latency is 1.

Building Compounds

007-4239-004 39

The number of regions of an eye compound is not limited. If more than one region
correspond to the same eye view, MPK uses the first specified region (for this eye) as
source for the pixel transfer, if needed.

Figure 4-4 Eye Decomposition

Example 4-3 shows the configuration file specifications for the eye decomposition
illustrated in Figure 4-4.

Example 4-3 Eye Compound in a Configuration File

compound {
 mode [EYE STEREO]
 channel “channel”

 region {
 eye LEFT
 channel “buffer”
 }

 region {
 eye RIGHT
 channel “channel”
 }
}

Pipe 0

Pipe 1

Compound

Pipe 1 : Left and right buffers

40 007-4239-004

4: Compounds

Head-Mounted-Device (HMD) decomposition is very similar to that of eye
decomposition, except that the head position actually specifies a new origin for the
physical layout of the channels.

Example 4-4 shows a configuration file specification for an HMD decomposition:

Example 4-4 HMD Compound in a Configuration File

compound {
 mode [HMD]
 channel “destination”

 region {
 eye left
 channel “source::left”
 }

 region {
 eye right
 channel “source::right”
 }
}

If a destination channel is specified, then the frustum is inherited from the destination
channel’s wall or projection frustum specification; otherwise, the source channel’s
frustum specification will be used.

Temporal Decomposition

In contrast to frame decomposition, where the focus of load balancing is on dividing the
frame into regions, temporal decomposition balances the workload by scheduling the
work on each pipe in sync with that of the other pipes to produce a steady stream of
rendered frames. The time scheduling rather than the frame division is the focus. There
are two types of temporal decomposition: frame multiplexing and data streaming. The
work done by each pipe largely distinguishes the two.

Frame Multiplexing

Frame multiplexing (also referred to as DPLEX decomposition) distributes entire frames
to the source pipes over time for parallel processing. The first pipe begins rendering
frame 1; a specified fraction of a frame later the second pipe begins rendering frame 2;

Building Compounds

007-4239-004 41

another fraction of a frame later the third pipe begins rendering frame 3; and so on for all
of the pipes.

Figure 4-5 illustrates frame multiplexing on a four-pipe system.

Figure 4-5 Frame Multiplexing Decomposition

Frame multiplexing globally scales geometry and pixel fill performance, as the workload
balance between pipes is intrinsically maintained. This scheme has an increased
transport delay inherent to frame synchronization required across the pipes. It produces
a latency of (pipes – 1) frames—that is, there will be a (pipes – 1) frames delay between a
user input and the corresponding output frame.

Frame multiplexing can also be accelerated in hardware using the SGI Video Digital
Multiplexer (DPLEX), which connects pipes together with a bus, thereby avoiding the
image readbacks from the contributing pipes. The pipes are daisy-chained to achieve
reduced latency. For more details, see Chapter 5, “Using Scalable Graphics Hardware”.

Example 4-5 shows the configuration file specifications for the screen decomposition
illustrated in Figure 4-5. The application must support the DPLEX compound.

Frame: N+1 N+6N+5N+4N+3N+2

dplex::1

dplex::0

dplex::2

channel

42 007-4239-004

4: Compounds

Example 4-5 DPLEX Compound in a Configuration File

compound {
 mode [DPLEX]
 channel “channel”

 region {
 channel “dplex::0”
 }

 region {
 channel “dplex::1”
 }

 region {
 channel “dplex::2”
 }
}

You can achieve full scalability—that is, scale by the number of pipes rather than by
(pipes–1)—using a DPLEX compound. To do so, you must specify the destination
channel as a source channel also and the application must support this feature.
Example 4-6 shows a configuration file structured for full scalability using the DPLEX
compound.

Example 4-6 DPLEX Compound Structured for Full Scalability

compound {
 mode [DPLEX]
 channel “channel”

 region {
 channel “channel”
 }

 region {
 channel “buffer”
 }
}

Note: Full scalability using the DPLEX compound is supported only on InfiniteReality
graphics systems.

Building Compounds

007-4239-004 43

Data Streaming

Data streaming (also referred to as 3D decomposition) is similar to database
decomposition in that it allows the application to divide the scene among multiple pipes
and then composite the partial results to give the final rendering. But, in this case, the
composition is done using a series of successive compounds for each frame, as shown in
Figure 4-6. For frame N+1, channel stream::1 draws the first quarter of the database,
which is copied to channel stream::2 at the beginning of the next frame. During frame
N+2, channelstream::2draws the second quarter of the database on top while channel
stream::1 starts a new frame. At frame N+4, the destination channel channel finishes
drawing the last quarter and displays the frame started three time steps ago.

Like DPLEX decomposition, this scheme also has a latency of (pipes – 1) frames—that is,
there will be a (pipes – 1) frames delay between a user input and the corresponding
output frame. As shown in Figure 4-6, this latency is due to successive compounds at
each frame. You must wait for (pipes – 1) frame computations before the final rendering
is displayed. Each compound needs to read only one source image. Consequently, this
keeps graphics I/O consumption low while performance scaling is achieved by
pipelining the rendering in parallel across the pipes.

Figure 4-6 Data Streaming Decomposition

As shown in Example 4-7, the configuration file specification for a data streaming
decomposition is similar to that for database decomposition.

Frame: N+1 N+4N+3N+2

stream::3 channelstream::2stream::1

N+5

stream::1 stream::2 stream::3 channel

44 007-4239-004

4: Compounds

Example 4-7 Data Streaming Compound (3D) in a Configuration File

compound {
 mode [3D]
 format [COLOR DEPTH]
 channel “channel”

 region {
 range [.0 .25]
 channel “stream::1”
 }

 region {
 range [.25 .5]
 channel “stream::2”
 }

 region {
 range [.5 .75]
 channel “stream::3”
 }

 region {
 range [.75 1.]
 channel “channel”
 }
}

The application must support the 3D compound.

Pixel-Based Decomposition

In pixel-based decomposition, a frame is rendered using a multipass approach where
single passes are assigned to individual source pipes for rendering. Assembling each
frame using accumulation techniques constitutes the final rendering. Accumulation of
the frames can be achieved using one of the following techniques:

• The SGI Scalable Graphics Compositor

• OpenGL accumulation

• OpenGL blending

Building Compounds

007-4239-004 45

In order to use OpenGL accumulation, you must use an appropriate visual; otherwise,
MPK uses blending.

Full-Scene Antialiasing (FSAA) Decomposition

MPK has implemented one scheme of pixel-based decomposition, a full-scene
antialiasing (FSAA) compound. Each pipe renders the full scene from a slightly different
viewpoint. The number of rendering passes of a FSAA compound is defined by its
number of sources. Furthermore, every channel can thereby be used multiple times. This
type of decomposition is used when the the resulting output quality has highest priority.
The scalability and final rendering quality depends on the number of available pipes.

FSAA Compound Examples

Example 4-8 shows an FSAA compound using the SGI Scalable Graphics Compositor:

Example 4-8 Four-Pipe 4x FSAA Compound Using the SGI Graphics Compositor

compound {
 mode [FSAA HW NOCOPY]
 channel “channel-0”

 # The number of sources defines the FSAA mode
 region {
 channel “channel-0”
 }
 region {
 channel “channel-1”
 }
 region {
 channel “channel-2”
 }
 region {
 channel “channel-3”
 }
}

46 007-4239-004

4: Compounds

Figure 4-7 illustrates the advantage of using a 4x FSAA solution.

Figure 4-7 4x FSAA Decomposition

Example 4-9 shows how to use the same channel multiple times as a source channel to
support multipass rendering in MPK on machines with only a few pipes.

without FSAA

4x FSAA

Building Compounds

007-4239-004 47

Example 4-9 Multiple Use of a Single Channel in FSAA Decomposition

compound {
 mode [FSAA]
 channel “channel”

 # The number of sources defines the FSAA mode
 region {
 channel “channel”
 }
 region {
 channel “channel”
 }
 region {
 channel “channel”
 }
 region {
 channel “channel”
 }
}

Cull Decomposition

Cull decomposition is different from the other decomposition modes in that it does not
decompose the rendering of a frame. Instead, it decomposes (parallels) the cull and draw
operations. Naturally, the use of this feature in the configuration file requires the
application also to support the cull decomposition mode.

In cull decomposition, a region specifies the operation to be executed by this region.
Example 4-10 shows a cull decomposition for a single channel.

48 007-4239-004

4: Compounds

Example 4-10 A Simple Cull Decomposition

config
{
 name “1-window”

 pipe
 {
 window
 {
 name “MPK: simple”
 viewport [0.25, 0.25, 0.5, 0.5]

 channel
 {
 name “channel”

 wall
 {
 bottom_left [-.5, -.4, -1]
 bottom_right [.5, -.4, -1]
 top_left [-.5, .4, -1]
 }
 }
 }
 window
 {
 attributes { hints { drawable none } }
 channel { name “cull” }
 }
 }

 compound
 {
 mode [CULL]
 channel “channel”

 region { cull channel “cull” }
 region { draw channel “channel” }
 }
}

Building Compounds

007-4239-004 49

In this example, the channel cull executes the culling concurrently with the draw
operation of channel channel. It is defined on a window that has no drawable, because
it is not used for any draw operation. You can add the ASYNC flag to force the cull region
to process data for the frame N, and the draw region to draw frame N–1. This introduces
an additional frame of latency, but potentially increases performance.

The region operation can be the value cull, draw, or cull-draw. The default
operation is cull-draw; that is, all source channels first execute the cull operation and
then the draw operation.

If multiple regions of a cull compound execute the same operation (cull or draw) for the
destination channel, they process the data in parallel and, therefore, may speed up the
operation if enough resources are available. As a feature of the MPK implementation, the
distribution of the cull and draw tasks is automatically load-balanced. For
recomposition, MPK uses by default the same algorithm that is used for DB compounds.

Note: Since culling is application-specific, you must determine (perhaps, from your
application vendor) what MPK features and configurations are supported by your
application.

It is possible to further decompose the regions of a cull compound, as described in the
following section, “Multilevel Decomposition”.

Multilevel Decomposition

MPK allows you to combine the various decomposition schemes to fix performance
bottlenecks that differ in nature. For example, a combined solution can use a database
and temporal decomposition scheme for optimizing performance (but it will have a
limiting transport delay) or can use an eye and database decomposition scheme for
stereo volume rendering.

50 007-4239-004

4: Compounds

Figure 4-8 shows a four-pipe solution using an eye and database decomposition scheme.

Figure 4-8 Eye-DB Multilevel Decomposition

Example 4-11 shows the configuration file specifications for the multilevel
decomposition illustrated in Figure 4-8.

Eye

Framebuffer

Left Right

Left back Right backLeft front Right front

DB DB

Building Compounds

007-4239-004 51

Example 4-11 Multilevel Compound in a Configuration File

compound {
 mode [EYE]
 channel “right-front”

 region {
 eye LEFT
 compound {
 mode [DB]
 channel “left-front”

 region {
 range [0., .5]
 channel “left-back”
 }

 region {
 range [.5, 1.]
 channel “left-front”
 }
 }
 }

 region {
 eye RIGHT
 compound {
 mode [DB]
 channel “right-front”

 region {
 range [0., .5]
 channel “right-back”
 }

 region {
 range [.5, 1.]
 channel “right-front”
 }
 }
 }
}

52 007-4239-004

4: Compounds

Stereo-Selective Compounds

In many instances, it will be desirable to control which compounds will be used by the
application based on whether the application is running in stereo mode. MPK provides
a mode parameter for this purpose. For instance, if the application is to run in stereo
mode, you may want to use eye decomposition and when in mono mode, to use another
type of decomposition. Example 4-12 illustrates this conditional use of compounds.

Example 4-12 Stereo-Selective Compounds

compound {
 mode [EYE STEREO]
 channel “channel”

 region {
 eye LEFT
 channel “buffer”
 }
 region {
 eye RIGHT
 channel “channel”
 }
}

compound {
 mode [2D MONO]
 channel “channel”

 region {
 viewport [0., 0., 1., .5]
 channel “buffer”
 }

 region {
 viewport [0., .5, 1., .5]
 channel “channel”
 }
}

The MONO and STEREO flags allow you to specify different channel decompositions
depending on the current configuration mode. This is especially useful for eye
decomposition. In this example, when the destination channel is in stereo mode, MPK
uses the eye decomposition. When the destination channel is in mono mode, MPK uses
the 2D decomposition.

Automatic Load Balancing for Compounds

007-4239-004 53

Automatic Load Balancing for Compounds

Achieving an ideal decomposition among the children of a compound can be difficult,
since the workload per child often changes on a per-frame basis. To address this problem,
MPK provides automatic load balancing for 2D, DB, and 3D compounds.

This section describes the following topics:

• “Dynamic and Static Load Balancing”

• “Proper Environment for Automatic Load Balancing”

• “How to Enable Automatic Load Balancing”

• “Using a Split-Axis Method for Tiling”

Dynamic and Static Load Balancing

Figure 4-9 contrasts dynamic and static load balancing for a 2D compound using
volview. Volume rendering is bound by fill rate; therefore, the load balancing can adjust
the compound’s region so that each pipe has approximately the same amount of volume
to rasterize. When using static tiling, one pipe may have to render the whole volume as
it is moved around. Since the slowest child dictates overall performance, the frame rate
is better, in this case, when using load balancing.

54 007-4239-004

4: Compounds

Figure 4-9 Dynamic Versus Static Load Balancing

Proper Environment for Automatic Load Balancing

Using the rendering times for each child, MPK computes a new viewport or range each
frame. This approach needs the following conditions to work properly:

Condition Description

Low latency A new workload can only be computed after all children
have drawn. Therefore, the higher the latency, the higher
the difference will be between the frame which is used to
compute the new balance and the frame for which the
balance is computed. Logically, high latency is
counterproductive in achieving proper load balancing.

Automatic Load Balancing for Compounds

007-4239-004 55

Frame consistency Since the new viewport or range is computed based on
the last finished frame but applied to the next frame, the
two frames should be similar. This is true for most
applications.

Scalable compound mode The chosen decomposition mode has to solve the
application’s bottleneck. For example, load balancing a
2D compound for a geometry-limited application will
fail, unless this application uses view-frustum culling.

Imbalance in decomposition If the decomposition is already well-balanced—for
example, for a DB compound—the static compound may
provide a better frame rate.

How to Enable Automatic Load Balancing

In the configuration file, you can use the ADAPTIVEmode flag for a compound to enable
load balancing. This mode flag can be used for 2D, DB, and 3D compounds. 2D
compounds will use tiles, while DB and 3D compounds will adapt the z-axis range to
decompose the rendering. The next section describes how you use a split-axis method to
determine tiling schemes and z-axis splits.

Note: If you do not provide a tiling scheme (or z-axis split) for ADAPTIVE mode, MPK
creates one.

Using a Split-Axis Method for Tiling

As the name implies, a split-axis method uses splits on the Cartesian coordinate axes to
determine tiling schemes (or z-axis range splits). As noted in the preceding section, the
tiling schemes are specific to 2D compounds and z-axis splits, to DB and 3D compounds.

You specify a split in the configuration file by using the split field of the compound
data structure. Chapter 6, “Configuration File Format” describes the formal syntax for
the split field. This section provides several examples of how to use the field.
Example 4-13 shows a tiling scheme for a 2D compound with four regions (source
channels) defined.

56 007-4239-004

4: Compounds

Example 4-13 2D Tiling Scheme with Four Regions and Horizontal Tiles

split “[[1 | 2] - [3 | 4]]”

Note the following syntax items and other restrictions:

• The split value is a string.

• MPK uses the following operators in the string to denote the axis-specific splits:

| Splits the x axis.

– Splits the y axis.

/ Splits the z axis.

The operators | and – can be used only with 2D compounds and /, only with DB
and 3D compounds.

• Integers represent the regions in the compound data structure in the order of
declaration. All regions declared in the compound must appear in the split string.

• A set of brackets must enclose a split, which can be nested in another split (as
shown in Example 4-13).

Figure 4-10 illustrates the tiling scheme specified in Example 4-13.

Figure 4-10 2D Tiling Scheme with Four Regions and Horizontal Tiles

y

x

1 2

3 4

Choosing the Right Decomposition Model

007-4239-004 57

Example 4-14 , like Example 4-13, shows a tiling scheme for a 2D compound with four
regions, but this time the primary split is on the x axis.

Example 4-14 2D Tiling Scheme with Four Regions and Vertical Tiles

split “[[1 – 2] | [3 – 4]]”

Figure 4-11 illustrates the tiling scheme specified in Example 4-14.

Figure 4-11 2D Tiling Scheme with Four Regions and Vertical Tiles

If you do not specify a split, MPK will automatically create one.

Choosing the Right Decomposition Model

There are no hard and fast rules for choosing the correct decomposition scheme, but the
following are some general guidelines to aid you in selecting a reasonable scheme for
your environment:

Mode Recommended Use

2D Use this scheme if your application is fill-limited.You can also scale
geometry performance and texture memory if your application is using
view-frustum culling techniques.

3D Use this scheme where you would normally use the DB scheme but
where you experience scalability problems caused by a graphics I/O
bottleneck on the destination pipe. For 3D decomposition, the graphics

y

x

1

3

2

4

58 007-4239-004

4: Compounds

I/O per pipe is constant when changing the number of contributing
pipes. Unlike the DB scheme, however, adding pipes to a 3D compound
increases latency.

DB Use this scheme when your application’s frame rendering can be
sequenced into equally consuming phases. This requires the application
to divide your scene into multiple components and then to composite
them correctly. Scalability here can be either on fill, geometry, or
graphics resources (texture) depending on the application.

FSAA Use this scheme if graphics quality is a primary concern.

EYE Use this scheme for stereo viewing.

DPLEX Use this scheme for general load balancing where the application
maintains a reasonably steady frame rate.

Note: With the DB, 3D, and full-scale DPLEX modes, the application must support the
feature.

These are very high-level guidelines that may very well overlap. As noted in the section
“Multilevel Decomposition” on page 49, you can combine the various decomposition
modes to fix different performance bottlenecks.

007-4239-004 59

Chapter 5

5. Using Scalable Graphics Hardware

In contrast to most of the compounds described in Chapter 4, “Compounds”, scalable
graphics hardware offers a hardware solution to joining or cascading the video output of
two or more graphics pipes and outputting them in a single video output. Scalable
graphics hardware provides nearly perfect scaling of both geometry rate and fill rate on
some applications.

This chapter describes how you use MPK in conjunction with an SGI Video Digital
Multiplexer (DPLEX) and an SGI Scalable Graphics Compositor in the following
sections:

• “Using MPK with a DPLEX”

• “Using MPK with an SGI Scalable Graphics Compositor”

Using MPK with a DPLEX

A DPLEX is an optional daughtercard that permits multiple graphics hardware pipelines
to work simultaneously on a single visual application. DPLEX hardware is available on
Silicon Graphics Onyx2, SGI Onyx 3000, and SGI Onyx 300 systems. This section
describes how you create the DPLEX compound in MPK and shows a configuration file
example. For an overview of the DPLEX hardware, see the document Onyx2 DPLEX
Option Hardware User’s Guide.

To enable DPLEX decomposition, you must specify the DPLEX mode along with the HW
flag in the configuration file. The destination channel’s pipe is used to control the
hyperpipe. Naturally, this is the display pipe of the DPLEX cascade. The use of the
NOCOPY flag is mandatory to suppress pixel transfer.

Example 5-1 shows a three-pipe DPLEX cascade with the pipe associated to channel
channel::1 being the display pipe. The order of the channels reflects the order of the
pipes in the DPLEX cascade.

60 007-4239-004

5: Using Scalable Graphics Hardware

Example 5-1 A Typical DPLEX Compound

compound {
 mode [DPLEX HW NOCOPY]
 channel “channel::1”

 region {
 channel “channel::1”
 }

 region {
 channel “channel::2”
 }

 region {
 channel “channel::3”
 }
}

Using MPK with an SGI Scalable Graphics Compositor

This section gives a brief overview of the SGI Scalable Graphics Compositor and how to
use it with MPK. For more information on the compositor, including the details of the
hardware setup, refer to the document SGI InfinitePerformance: Scalable Graphics
Compositor User’s Guide.

Note: The compositor is currently supported by InfinitePerformance graphics systems
only.

General Capabilities

The compositor can perform spatial compositions, pixel averaging, and stereo rendering.
The compositor receives two to four input signals and outputs a single signal either in
analog or digital format.

Using MPK with an SGI Scalable Graphics Compositor

007-4239-004 61

The following items are noteworthy regarding the compositor’s capabilities:

• For every output pixel, the compositor averages all values from all the pipes.
Among other things, this provides applications with the means to do full-scene
antialiasing (FSAA) in hardware.

• Stereo is supported only for analog output.

• Due to restrictions imposed by the compositor, MPK does not allow the mixing of
the various hardware decomposition modes—for example, two vertical stripes with
two horizontal stripes.

Note: For more information on the current limitations and anomalies associated with the
use of the SGI Scalable Graphics Compositor, refer to the hardware documentation.

Hardware Spatial Composition Schemes

Because the compositor receives two to four input signals and outputs a single signal
either in analog or digital format, it can handle spatial composition of four inputs. This
enables multiple pipes to contribute to a single output. Four different spatial composition
schemes are available:

• Vertical stripes

• Horizontal stripes

• 2D tiles

• Cut-ins

Figure 5-1 illustrates the various hardware composition schemes.

62 007-4239-004

5: Using Scalable Graphics Hardware

Figure 5-1 Hardware Spatial Composition Schemes

MPK Specifications

In order to use the compositor with MPK, you must specify the 2D, EYE, or FSAA
compound mode along with the HW flag. If you do not specify the NOCOPY flag, copying
is performed even though the compositor is being used. Example 4-8 on page 45 shows
a configuration file entry for an FSAA compound using the SGI Scalable Graphics
Compositor.

Example 5-2 shows how a 2 x 2 tiling scheme might look in a configuration file.

Vertical stripes Horizontal stripes

2D tiles Cut-ins

Using MPK with an SGI Scalable Graphics Compositor

007-4239-004 63

Example 5-2 A 2 x 2 Tiling Scheme in a Configuration File

compound {
 mode [2D HW NOCOPY]
 channel “channel0”

 region {
 viewport [0., 0.5, .5, .5]
 channel “channel0”
 }
 region {
 viewport [0.5, 0.5, .5, .5]
 channel “channel1”
 }

 region {
 viewport [0., 0., .5, .5]
 channel “channel2”
 }

 region {
 viewport [.5, 0., .5, .5]
 channel “channel3”
 }
}

Note the following:

• You must specify a destination channel if the compositor is to be used. Otherwise,
MPK uses a software fallback solution.

• MPK does not require that the destination channel be used as a source channel—
that is, it does not have to contribute to the rendering.

To use the Xinerama full-window overlapping feature, specify the display subfield in
the compound data structure. This field specifies the X11 display name to be used for
setting up the glXHyperpipe when using Xinerama and an SGI Scalable Graphics
Compositor. To use this feature, you must first switch to a proper Xinerama Xsgi
configuration. Example 5-3 shows a sample compound specification.

Example 5-3 Using the Xinerama Full-Window Overlapping Feature

compound {
 mode [2D HW NOCOPY]

 region {

64 007-4239-004

5: Using Scalable Graphics Hardware

 display “:0.0”
 viewport [0.0, 0.5, 0.5, 0.5]
 }
 region {
 display “:0.1”
 viewport [0.5, 0.5, 0.5, 0.5]
 }
 region {
 display “:0.2”
 viewport [0.0, 0.0, 0.5, 0.5]
 }
 region {
 display “:0.3”
 viewport [0.5, 0.0, 0.5, 0.5]
 }
}

When Xinerama is used to overlap screen regions on an edge-blended display or
compositor-based system, the cursor will seem to disappear when it enters the
overlapped or uncomposited regions of the display.

By upgrading to IRIX 6.5.20 or later, you can use an X server feature that prevents the
cursor from disappearing in these cases. It causes additional cursor images (not real
cursors) to appear on all pipes contributing to the overlapped regions. To enable this
feature, add the –phantomcursors flag to the X server command line in the
/var/X11/xdm/Xservers file.

For more information about the –phantomcursors option, see the Xsgi(1) man page.

007-4239-004 65

Chapter 6

6. Configuration File Format

This chapter contains the following topics:

• “File Format”

• “Defining MPK Data Structures”

• “Specifying Global Attributes”

File Format

This section describes the format you must use to create an MPK configuration file. The
format of the configuration file closely follows the conventions for the Open Inventor file
format. The following items are described:

• “Specifying Comments (#)”

• “Specifying Delimiters”

• “Specifying MPK Data Structures”

• “Specifying Values within a Field”

Specifying Comments (#)

MPK considers any items between a number sign (#) and the end of the line to be a
comment. The number sign can be anywhere on the line.

Specifying Delimiters

White space delimits most elements in the configuration file—for example, a field name
and its value. Exceptions are noted where they apply. Extra white space created by
spaces, tabs, and new lines is ignored.

66 007-4239-004

6: Configuration File Format

Specifying MPK Data Structures

An MPK data structure consists of the following sequence of elements:

1. Data structure type (config, pipe, window, channel, or compound)

2. Open brace ({)

3. Field specifications (if any), followed by child structures (if any)

4. Close brace (})

The following lines show the syntax symbolically:

data-structure-type {
field-specs
child-specs

}

The following is an example of a channel data structure:

channel {
 viewport [0., 0., 1., 1.]
 projection {
 origin [0., 0., 0.]
 distance 3.
 fov [54., 47.]
 hpr [0., 0., 0.]
 }
}

The later section “Defining MPK Data Structures” on page 68 describes the special
requirements for defining each of the data structures.

File Format

007-4239-004 67

Specifying Values within a Field

There are three types of MPK fields:

• Single-value fields

These fields have the following syntax:

name value

• Multiple-value fields

These fields have the following syntax:

name [value1, value2, . . . valuen]

• Composite fields

These fields have the following syntax:

name {
 subfields-specs
}

The fields can appear in any order.

The values you specify in a field are determined by the field type. The field types and
accepted formats are described in Table 6-1.

Table 6-1 Field Types and Formats

Field Type Accepted Format

int Use an integer in decimal, hexadecimal, or octal
format. Examples:

55

0xff

0177

float Use an integer or floating point number.
Examples:

10

10.

10.3

1.3e–2

68 007-4239-004

6: Configuration File Format

Defining MPK Data Structures

The earlier section “Specifying MPK Data Structures” on page 66 describes the general
format of an MPK data structure as follows:

data-structure-type {
field-specs
child-specs

}

This section describes the field specifications and child specifications required to define
the following MPK data structures:

• config

• pipe

• window

• channel

• compound

Additionally, you can include a global data structure to define defaults for global
attributes. The later section “Specifying Global Attributes” on page 85 describes how you
do so.

string Use double quotation marks (“ “) around the
value. Example:

name “3-pipes”

enum Use a mnemonic. Examples:

true-color

direct-color

boolean Use a mnenomic (y or n) or an integer (0 or 1).

Table 6-1 Field Types and Formats (continued)

Field Type Accepted Format

Defining MPK Data Structures

007-4239-004 69

The config Data Structure

The config data structure encapsulates the other data structures and as such defines the
overall configuration. It has the following form:

config {
 name “config-name”
 mode stereo-mono
 mono “shell command1”
 stereo “shell command2”
 runon processor-spec

pipe-1-specs
pipe-2-specs

 .
 .
 .

pipe-n-specs
compound-specs

}

Every config data structure requires a pipe data entry for each pipe you want to use
in your system. Section “The pipe Data Structure” on page 70 describes the pipe-i-specs
fields, section“The compound Data Structure” on page 82 describes the compound-specs
field, and Table 6-2 describes the other config fields.

Table 6-2 The config Fields

Field Description

name The name field is a string identifier for the current configuration.

mode The mode field characterizes the initial configuration state: either mono or stereo.

mono
stereo

These fields describe the shell command to execute when changing to mono or
stereo mode. By default, no command is executed.

runon If the runon field contains a processor ID, that processor becomes the default
processor for all configuration threads—that is, the processor to which every
window thread will be assigned, unless specified otherwise by the window runon
field. A runon value of –1means the thread is bound to a processor according to the
default run-on policy. If the value is set to auto, MPK will bind the window thread
to a processor on the node for this pipe, if possible. If the value is set to free, the
operating system decides on what processor to execute the thread. The default is –1.

70 007-4239-004

6: Configuration File Format

The pipe Data Structure

A pipe data structure has the following form:

pipe {
 name “pipe-name”
 display “display-name”
 attributes {
 mono {
 width w
 height h
 }
 stereo {
 type stereo-type
 width w
 height h
 offset o
 }
 }

window-spe
}

Every pipe data structure must contain a window entry. The section “The window Data
Structure” on page 72 describes the window-specs field. Table 6-3 describes the other fields
of a pipe data structure.

Defining MPK Data Structures

007-4239-004 71

Table 6-3 The pipe Fields

Field Description

name The name field is a string identifier for the current pipe.

display The display field specifies the name of the X display for the
current pipe.

attributes The attributes field is a composite field with the following
subfields:

mono
stereo

These subfields are in turn composite fields. The subfield mono
has the following fields:

width w
height h
The values for w and h must be integers. The subfield stereo has
the following fields:

type stereo-type
width w
height h
offset o
The values for w, o, and h must be integers. The value for
stereo-type can be one of the following:

quad
rect
top
bottom
user

If no stereo type is specified, quad is used.

72 007-4239-004

6: Configuration File Format

Example 6-1 is an example of a pipe definition:

Example 6-1 A Sample pipe Definition

pipe {
 display “:0.0”
 window {
 runon 2
 viewport [0., 0., 1., 1.]
 channel {
 viewport [0., 0., 1., 1.]
 projection {
 origin [0., 0., 0.]
 distance 3.
 fov [54., 47.]
 hpr [0., 0., 0.]
 }
 }
 }
}

The window Data Structure

A window data structure has the following form:

window {
 name “win-name”
 viewport [x, y, width, height]
 runon processor-spec
 attributes attribute-specs

channel-specs
}

Defining MPK Data Structures

007-4239-004 73

Every window data structure requires a channel entry. The section “The channel Data
Structure” on page 78 describes the channel-specs field. Table 6-4 describes the other fields
of a window data structure.

Table 6-4 The window Fields

Field Description

name The name field is a string identifier for the current window.

viewport The viewport field specifies the fractional viewport (position
and size) of the current window relative to the display
dimensions. The fractional viewport format is [x, y, width, height
] with all parameters in the range 0.0 to 1.0.

See the section “Specifying Global Attributes” on page 85 for more
information on the following related global variables:

MPK_PATTR_MONO_HEIGHT
MPK_PATTR_MONO_WIDTH
MPK_PATTR_STEREO_HEIGHT
MPK_PATTR_STEREO_OFFSET
MPK_PATTR_STEREO_TYPE
MPK_PATTR_STEREO_WIDTH

runon If the runon field contains a processor ID, that processor will be
the default processor for the current window thread—that is, the
processor to which the window thread will be assigned. A runon
value of -1 means the thread is bound to a processor according to
the default run-on policy. If the value is set toauto, then MPK will
bind the window thread to a processor on the node for this pipe,
if possible. If the value is set to free, then the operating system
decides on what processor to execute the thread. The default is –1.

attributes The attributes field specifies the X Window System default
visual attributes and other related information, such as whether
window managers decorations should be present or not.

The attributes field is a composite field with the following
subfields:

hints
planes
transparent

These subfields are in turn composite fields. which are described
in the tables that follow.

74 007-4239-004

6: Configuration File Format

Table 6-5 describes the structure and values of the hints subfields.

Table 6-5 Window Attributes— hints Subfields

Subfield Valid Values Description

visual true-color
pseudo-color
direct-color
static-color
grayscale
static-gray

Specifies the type of GLX visual to be used.

Related global variable:

MPK_WATTR_HINTS_VISUAL

caveat none
slow
non-conformant

Specifies a caveat for selecting the framebuffer, such as
one of the following:

MPK_GLX_SLOW
MPK_GLX_NON_CONFORMANT
MPK_GLX_NOCAVEAT

Related global variable:

MPK_WATTR_HINTS_CAVEAT

transparent y or n Determines if a visual should be opaque or transparent.

Related global variable:

MPK_WATTR_HINTS_TRANSPARENT

X-renderable y or n Determines which visuals are selected. If true, only visuals
which have an associated X visual are selected.

Related global variable:

MPK_WATTR_HINTS_X_RENDERABLE

rgba y or n Specifies if an RGBA or color-index visual is selected.

Related global variable:

MPK_WATTR_HINTS_RGBA

doublebuffer y or n Specifies if a double- or single-buffer visual is selected.

Related global variable:

MPK_WATTR_HINTS_DOUBLEBUFFER

stereo y or n Specifies if a stereo-capable visual is selected

Related global variable:

MPK_WATTR_HINTS_STEREO

Defining MPK Data Structures

007-4239-004 75

drawable window
pbuffer
pixmap
none

Specifies the type of drawable to be used for rendering.
For the value none, MPK executes no draw operation.

Related global variable:

MPK_WATTR_HINTS_DRAWABLE

direct y or n Specifies if a direct or indirect context is created.

Related global variable:

MPK_WATTR_HINTS_DIRECT

largest y or n Determines whether the largest available pbuffer is
allocated. It will be if a pbuffer drawable is used and this
flag is set.

Related global variable:

MPK_WATTR_HINTS_LARGEST

preserved y or n Determines whether the content of the framebuffer is
preserved. It will be if a pbuffer drawable is used and this
flag is set.

Related global variable:

MPK_WATTR_HINTS_PRESERVED

decoration y or n Determines if the window should have window manager
decorations.

Related global variable:

MPK_WATTR_HINTS_DECORATION

xinerama y or n Indicates that this window are created using Xinerama if
xinerama is y. If it is set to n, the window is created
Xinerama-aware.

Related global variables:

MPK_WATTR_HINTS_XINERAMA
MPK_XINERAMA

Table 6-5 Window Attributes— hints Subfields (continued)

Subfield Valid Values Description

76 007-4239-004

6: Configuration File Format

Table 6-6 describes the structure and values of the planes subfields. In all instances in
this table, the variables denote integers.

Table 6-6 Window Attributes—planes Subfields

Subfield Valid Values Description

level x Specifies the buffer level. Positive values
correspond to overlay buffers and negative
values correspond to underlay buffers.

Related global variable:

MPK_WATTR_PLANES_LEVEL

depth x Specifies the minimum depth buffer size.

Related global variable:

MPK_WATTR_PLANES_DEPTH

stencil x Specifies the minimum stencil buffer size.

Related global variable:

MPK_WATTR_PLANES_STENCIL

samples x Specifies the minimum number of
multi-sample buffers.

Related global variable:

MPK_WATTR_PLANES_SAMPLES

auxiliary x Specifies the minimum number of auxiliary
buffers.

Related global variable:

MPK_WATTR_PLANES_AUX

color x Specifies the minimum color-index buffer size.

Related global variable:

MPK_WATTR_PLANES_COLOR

Defining MPK Data Structures

007-4239-004 77

Table 6-7 describes the structure and values of the transparent subfields. In all
instances in this table, the variables denote integers.

rgba [r, g, b, a] Specifies the minimum RGBA buffer size.

Related global variables:

MPK_WATTR_PLANES_RED
MPK_WATTR_PLANES_GREEN
MPK_WATTR_PLANES_BLUE
MPK_WATTR_PLANES_ALPHA

accum [r, g, b, a] Specifies the minimum RGBA accumulation
buffer size.

Related global variables:

MPK_WATTR_PLANES_ACCUM_RED
MPK_WATTR_PLANES_ACCUM_GREEN
MPK_WATTR_PLANES_ACCUM_BLUE
MPK_WATTR_PLANES_ACCUM_ALPHA

Table 6-7 Window Attributes—transparent Subfields

Subfield Valid Values Description

index x Specifies the index value for the transparent
color.

Related global variables:

MPK_WATTR_TRANSPARENT_INDEX

rgba [r, g, b, a] Specifies the RGBA value for the transparent

color.

Related global variables:

MPK_WATTR_TRANSPARENT_RED
MPK_WATTR_TRANSPARENT_GREEN
MPK_WATTR_TRANSPARENT_BLUE
MPK_WATTR_TRANSPARENT_ALPHA

Table 6-6 Window Attributes—planes Subfields (continued)

Subfield Valid Values Description

78 007-4239-004

6: Configuration File Format

The channel Data Structure

A channel data structure has the following form:

channel {
 name “channel-name”
 viewport [x,y, width, height]
 ortho-wall ortho-wall-specs
 wall wall-specs
 projection projection-specs
 channel-attrs

}

In the context of framebuffer resources, the channel data structure is conceptually the
lowest level in the config-pipe-window-channel hierarchy. Functionally, however,
the channel data structure has a child, attributes, shown as channel-attrs in the
preceding syntax description. The attributes data structure has the following syntax:

attributes {
 read {
 depth {
 format GL-format-enum
 type GL-type-enum
 }
 color {
 format GL-format-enum
 type GL-type-enum
 }
 stencil {
 format GL-format-enum
 type GL-type-enum
 }
 }
}

Defining MPK Data Structures

007-4239-004 79

Table 6-8 describes the fields of a channel data structure.

Table 6-8 The channel Fields

Field Description

name The name field is a string identifier for the current channel. You must specify the
name field if your configuration file contains a compound that references this
channel.

viewport The viewport field specifies the fractional viewport (position and size) of the
channel relative to the parent window dimensions. The fractional viewport
format is [x, y, width, height] with all parameters in the range 0.0 to 1.0.

wall The wall field contains the modeling coordinates of the bottom-left,
bottom-right, and top-left corners of the channel’s projection rectangle in the
real world.

This field is a composite field with the following subfields:

bottom_left [x, y, z]

bottom_right [x, y, z]

top_left [x, y, z]

See Example 3-1 on page 23 for an example of specifying the wall field.

You must specify one of the modeling coordinates fields: wall, projection,
or ortho-wall. MPK uses the last specified modeling transformation—that is,
either wall or projection—unless you set the channel to orthographic
projection by specifying the ortho-wall field.

ortho-wall The ortho-wall field contains an alternate wall description that, if specified,
will be used when the channel orthographic frustum is applied.

The format for the field values is the same as that of the wall field.

You must specify one of the modeling coordinates fields: wall, projection,
or ortho-wall. MPK uses the last specified modeling transformation—that is,
either wall or projection—unless you set the channel to orthographic
projection by specifying the ortho-wall field.

80 007-4239-004

6: Configuration File Format

Table 6-9 describes the subfields of read, which is the single field for the attributes
data structure.

projection The projection field contains the modeling coordinates and characteristics of
an imaginary projection system that would produce the channel’s projection
rectangle.

This is a composite field with the following subfields:

origin [x, y, z]
distance d
fov [a, b]
hpr [h, p, r]

The hpr field represents the head, pitch, and roll and describes Euler angles
with respect to the OpenGL convention—that is, the counter-clockwise rotation
around the Y axis (head), X axis (pitch), and Z axis (roll) viewed from the
positive side of the axis. See Example 3-2 on page 25 for an example of
specifying the projection field.

You must specify one of the modeling coordinates fields: wall, projection,
or ortho-wall. MPK uses the last specified modeling transformation—that is,
either wall or projection—unless you set the channel to orthographic
projection by specifying the ortho-wall field.

channel-attrs The channel-attrs field is itself a data structure, attributes, with a single
read field. The read field has subfields, which are described in Table 6-9.

Table 6-9 Channel Attributes—read Subfields

Primary
Subfield

Secondary
Subfield Valid Values Description

color

format Any GL format enum Defines the color format to be used by this
channel when reading color images. The default
value is GL_RGB. See the glReadPixels man
page for a list of supported values.

type Any GL type enum Defines the color type to be used by this channel
when reading color images. The default value is
GL_UNSIGNED_BYTE. See the glReadPixels
man page for a list of supported values.

Table 6-8 The channel Fields (continued)

Field Description

Defining MPK Data Structures

007-4239-004 81

depth

format Any GL format enum Defines the depth format to be used by this
channel when reading color images. The default
value is GL_DEPTH_COMPONENT24_SGIX on
VPro, or else GL_DEPTH_COMPONENT. See the
glReadPixelsman page for a list of supported
values.

type Any GL type enum Defines the depth type to be used by this channel
when reading color images. The default value is
GL_UNSIGNED_INTon VPro, or elseGL_FLOAT.
See the glReadPixels man page for a list of
supported values.

stencil

format Any GL format enum Defines the stencil format to be used by this
channel when reading color images. The default
value is GL_STENCIL_INDEX. See the
glReadPixelsman page for a list of supported
values.

type Any GL type enum Defines the stencil type to be used by this
channel when reading color images. The default
value is GL_UNSIGNED_BYTE. See the
glReadPixelsman page for a list of supported
values.

Table 6-9 Channel Attributes—read Subfields (continued)

Primary
Subfield

Secondary
Subfield Valid Values Description

82 007-4239-004

6: Configuration File Format

The compound Data Structure

A compound data structure is not a part of the pipe-window-channel hierarchy. The
compound data structure is subordinate only to the config or another compound data
structure.

A compound data structure has the following form:

compound {
 name “compound-name”
 channel “channel-name”
 mode [mode flags]
 format [format1 format2 ... formatn]
 split “splitString”
 region region-specs
}

Table 6-10 describes the fields of a compound data structure.

Table 6-10 The compound Fields

Field Description

name The name field is a string identifier for the current compound.

channel The channel field identifies the destination channel for the compound. You must
specify the name as defined in the name field of the associated channel data
structure. If you do not specify this field and the compound has a parent, then its
value is inherited from the parent. If the resulting channel is still unspecified, then
the compound will simply maintain time consistency of the views across all of its
regions with respect to their respective frame latency.

Once a channel is involved in a compound, you must explicitly specify any other
use of that channel with another compound. This is true also for mode-selective
compounds.

Defining MPK Data Structures

007-4239-004 83

mode The mode field specifies the decomposition mode (2D, 3D, CULL, DB, DPLEX, EYE,
FSAA, or HMD) and optionally mode flags (ADAPTIVE, ASYNC, HW, MONO, NOCOPY,
or STEREO). The following are examples:

mode [3D]
mode [DB MONO]
mode [EYE STEREO ASYNC]
mode [2D ASYNC]
mode [DPLEX NOCOPY]

For descriptions of the decomposition modes, see section “Building Compounds”
in Chapter 4.

For the use of 2D, FSAA, HW , DPLEX, and NOCOPY in scalable hardware solutions,
see Chapter 5, “Using Scalable Graphics Hardware”.

For the use of ADAPTIVE, see section “Automatic Load Balancing for
Compounds” in Chapter 4.

ASYNC indicates that the pixel transfer from the regions to the destination channel
should be delayed to the next frame. Despite an additional one-frame latency, this
setting may have a noticeable influence on the compound performance—
especially for 2D and DB decompositions.

MONO or STEREO indicates that the decomposition should only be activated when
the configuration is in the corresponding stereo mode. Note that a window
containing only STEREO-active channels will simply not be launched when the
configuration is in MONO mode.

NOCOPY indicates that no pixel transfer should occur between the compound and
its regions; this is typically useful when you use hardware video compositing
equipment—for example, SGI Video Digital Multiplexer (DPLEX).

format The format field specifies the format of the pixel data that has to be transferred
between the compound and its regions as a combination of COLOR, DEPTH, and
STENCIL. It will be inherited by the compound regions. The following are the
possible combinations:

format [COLOR] # default
format [COLOR DEPTH]
format [COLOR DEPTH STENCIL]

Table 6-10 The compound Fields (continued)

Field Description

84 007-4239-004

6: Configuration File Format

split The split field specifies the tiling scheme (or z-axis split) used when the
compound is used in ADAPTIVE mode. The split value is a string, as shown in
the following example:

split “[[1 | 2] - [3 | 4]]”

The numbers 1, 2, 3, and 4 represent the regions in the compound (source
channels). These numbers map the regions declared in the compound data
structure in the order of declaration. All the regions declared in the compound
data structure must be included into the split string.

The axis that is split is represented by the following operators:

| axis x

– axis y

/ axis z

The split operators | and – can be used only with 2D compounds and the
operator /, only with 3D or DB compounds.

The formal syntax of the split field is following:

split “splitString”

splitString :[group axis group]

group :region | splitString
axis : ‘|’ | ‘–’ | ‘/’

region : [integer]

For the use of the ADAPTIVEmode and examples of tiling schemes, see the section
“Automatic Load Balancing for Compounds” on page 53.

Table 6-10 The compound Fields (continued)

Field Description

Specifying Global Attributes

007-4239-004 85

See Chapter 4, “Compounds” for examples of compound definitions.

Specifying Global Attributes

A global data structure allows you to specify default values for MPK attributes:

• Stereo and pipe display attributes

• Window attributes

region The region field specifies a portion of the compound destination channel and the
channel where this portion should be rendered. Depending on the compound
mode field, the portion described can be either a sub-viewport of the destination
channel [2D], a portion of the application database [DB or 3D], a specific eye view
[EYE or HMD], a pipelined, de-multiplexed rendering cycle [DPLEX], or the
operation to be executed [CULL]. The format for each follows:

2D:

viewport [x, y ,width, height]
channel “channel-name”

2D HW NOCOPY:
display “display-name”
viewport [x, y ,width, height]

CULL:

[cull |draw |cull-draw]

DB or 3D:

range [a ,b]
channel “channel-name”

EYE

eye left-right
channel “channel-name”

HMD

eye left-right
channel “channel-name”

DPLEX

channel “channel-name”

Table 6-10 The compound Fields (continued)

Field Description

86 007-4239-004

6: Configuration File Format

• Channel attributes

To specify a default value for an attribute in the configuration file, use the following
construct:

global {
 attribute1 value
 attribute2 value
 .
 .
 .
 attributen value
}

Your default declarations should precede the definition of the config data structure in
the configuration file. The following is an example of default declarations:

global {
 MPK_DEFAULT_EYE_OFFSET .035
 MPK_WATTR_PLANES_ALPHA 1
}

Table 6-11 provides the data type, default value, and description for the MPK global
attributes.

Table 6-11 MPK Global Attributes

Variable Data Type Default Value Description

MPK_CATTR_FAR float 100. Specifies the default far distance of the
channel. This value is preempted by the
function mpkChannelSetNearFar().

MPK_CATTR_NEAR float 0.01 Specifies the default near distance of the
channel. This value is preempted by the
function mpkChannelSetNearFar().

MPK_CATTR_READ_COLOR_FORMAT Any GL
format
enum

GL_RGB Defines the default color format to be
used by this channel when reading
color images. See the glReadPixels
man page for a list of supported values.

MPK_CATTR_READ_COLOR_TYPE Any GL
format
enum

GL_UNSIGNED_BYTE Defines the default color type to be used
by this channel when reading color
images. See the glReadPixels man
page for a list of supported values.

Specifying Global Attributes

007-4239-004 87

MPK_CATTR_READ_DEPTH_FORMAT Any GL
format
enum

GL_DEPTH_COMPONENT24
_SGIX on VPro, else
GL_DEPTH_COMPONENT

Defines the default depth format to be
used by this channel when reading
color images. See the glReadPixels
man page for a list of supported values.

MPK_CATTR_READ_DEPTH_TYPE Any GL
format
enum

GL_UNSIGNED_INT on
VPro, else GL_FLOAT

Defines the default depth type to be
used by this channel when reading
color images. See the glReadPixels
man page for a list of supported values.

MPK_CATTR_READ_STENCIL_FORMAT Any GL
format
enum

GL_STENCIL_INDEX Defines the default stencil format to be
used by this channel when reading
color images. See the glReadPixels
man page for a list of supported values.

MPK_CATTR_READ_STENCIL_TYPE Any GL
format
enum

Defines the default stencil type to be
used by this channel when reading
color images. The default value is
GL_UNSIGNED_BYTE. See the
glReadPixels man page for a list of
supported values.

MPK_CHANNEL_PASS_CACHE_SIZE int 50 Specifies the cache size for the frame
data queues used for culling. This
attribute affects the granularity and
performance of the data processing for
data passed using
mpkChannelPassData().

MPK_CHANNEL_PUT_CACHE_SIZE int 10 Specifies the cache size for the cull data
queues. This attribute affects the
granularity and performance of the
data processing for data passed using
mpkChannelPutData().

MPK_CONFIG_FRAME_CACHE_SIZE int 100 Specifies the cache size for the
MPKConfig’s frame data queue used
for culling. This attribute affects the
granularity and performance of the
data processing for data passed using
mpkConfigFrameData().

Table 6-11 MPK Global Attributes (continued)

Variable Data Type Default Value Description

88 007-4239-004

6: Configuration File Format

MPK_DEFAULT_EYE_OFFSET float 0.035 Specifies the default value of the eye
offset used by the frustum
computations for the channel. The
function mpkInit() sets this value to
0.035.

MPK_DEFAULT_RUNON_POLICY enum auto Specifies the default run-on policy for
those window threads that are not
explicitly bound to a particular
processor. Setting the value to auto
causes MPK to bind the first n window
threads to the n processors on the node
for the respective pipe. If the value is set
to free, the operating system decides
on what processor to execute the
thread. The default is free.

MPK_PATTR_MONO_HEIGHT int 492 is used for
MPK_STEREO_REC,MPK_S
TEREO_BOT, and
MPK_STEREO_TOP.

Specifies the height of the display to be
used by the function
mpkWindowUpdatePixelViewport()
for mono mode instead of that returned
by the X11 DisplayHeight()
function.

MPK_PATTR_MONO_WIDTH int Specifies the width of the display to be
used by the function
mpkWindowUpdatePixelViewport()
for mono mode instead of that returned
by the X11 DisplayWidth() function.

MPK_PATTR_STEREO_HEIGHT int 492 for full Specifies the height of the display to be
used by the function
mpkWindowUpdatePixelViewport()
for stereo mode instead of that returned
by the X11 DisplayHeight()
function.

MPK_PATTR_STEREO_OFFSET int 532 Specifies the offset of the display to be
used by the function
mpkWindowUpdatePixelViewport()
for rect and bottom stereo modes.

Table 6-11 MPK Global Attributes (continued)

Variable Data Type Default Value Description

Specifying Global Attributes

007-4239-004 89

MPK_PATTR_STEREO_TYPE enum none Specifies one of the following stereo
types:none,user,quad,rect,top, or
bottom.

MPK_PATTR_STEREO_WIDTH int Specifies the width of the display to be
used by the function
mpkWindowUpdatePixelViewport()
for stereo mode instead of that returned
by the X11 DisplayWidth() function.

MPK_WATTR_HINTS_CAVEAT enum MPK_UNDEFINED Specifies the caveats associated with the
window framebuffer configuration.
Accepted values are MPK_GLX_SLOW,
MPK_GLX_NOCAVEAT, and
MPK_GLX_NON_CONFORMANT.

MPK_WATTR_HINTS_DECORATION boolean MPK_UNDEFINED Specifies whether the window should
have window manager decorations.

MPK_WATTR_HINTS_DIRECT boolean MPK_UNDEFINED Specifies whether the window GLX
context should be direct.

MPK_WATTR_HINTS_DOUBLEBUFFER boolean 1 Specifies whether the window
framebuffer configuration should be
double-buffered. Note that setting this
attribute on a window will affect the
behavior of the function
mpkWindowSwapBuffers().

MPK_WATTR_HINTS_DRAWABLE enum MPK_UNDEFINED Specifies the window drawable type.
Accepted values are
MPK_GLX_WINDOW,
MPK_GLX_PBUFFER
MPK_GLX_PIXMAP, and
MPK_GLX_NONE.

For MPK_GLX_NONE, MPK executes no
draw operation.

Table 6-11 MPK Global Attributes (continued)

Variable Data Type Default Value Description

90 007-4239-004

6: Configuration File Format

MPK_WATTR_HINTS_LARGEST boolean MPK_UNDEFINED Specifies the MPKWindow pbuffer
characteristics. This attribute will be
ignored by windows for which the
DRAWABLE hint is not set to
MPK_GLX_PBUFFER.

MPK_WATTR_HINTS_PRESERVED boolean MPK_UNDEFINED Specifies the MPKWindow pbuffer
characteristics. This attribute will be
ignored by windows for which the
DRAWABLE hint is not set to
MPK_GLX_PBUFFER.

MPK_WATTR_HINTS_RGBA boolean 1 Specifies whether RGBA visuals are
used. If the hint is not set, a color-index
visual is used.

MPK_WATTR_HINTS_STEREO boolean MPK_UNDEFINED Specifies whether the window
framebuffer configuration should
support quad-buffer stereo.

MPK_WATTR_HINTS_THREAD boolean MPK_UNDEFINED Specifies whether the window should
be made a separate thread from the
application.

MPK_WATTR_HINTS_TRANSPARENT boolean MPK_UNDEFINED Specifies whether the window
framebuffer configuration should be
transparent.

MPK_WATTR_HINTS_VISUAL enum MPK_UNDEFINED Specifies the window visual type.
Accepted values are
MPK_GLX_TRUE_COLOR,
MPK_GLX_PSEUDO_COLOR,
MPK_GLX_DIRECT_COLOR,
MPK_GLX_STATIC_COLOR,
MPK_GLX_GRAYSCALE, and
MPK_GLX_STATIC_GRAY.

MPK_WATTR_HINTS_X_RENDERABLE boolean MPK_UNDEFINED Specifies whether only framebuffer
configuration that have associated X
visuals (and can be used to render to
windows and/or GLX pixmaps) should
be considered.

Table 6-11 MPK Global Attributes (continued)

Variable Data Type Default Value Description

Specifying Global Attributes

007-4239-004 91

MPK_WATTR_HINTS_XINERAMA boolean Conditional. See the
description.

Determines if a window should be
created using Xinerama (if enabled).
Setting it to 1 causes the window to be
created using Xinerama and setting it to
0 causes a Xinerama-aware window to
be created. The default value is 1 if the
XINERAMA_AWARE environment
variable is not set. If XINERAMA_AWARE
is set, the default value is the opposite
value of XINERAMA_AWARE.

MPK_WATTR_PLANES_ACCUM_ALPHA int MPK_UNDEFINED Specifies the minimum number of
accumulation alpha bitplanes. This
attribute is ignored if the RGBA hint of
the window is not set.

MPK_WATTR_PLANES_ACCUM_BLUE int MPK_UNDEFINED Specifies the minimum number of
accumulation blue bitplanes. This
attribute is ignored if the RGBA hint of
the window is not set.

MPK_WATTR_PLANES_ACCUM_GREEN int MPK_UNDEFINED Specifies the minimum number of
accumulation green bitplanes. This
attribute is ignored if the RGBA hint of
the window is not set.

MPK_WATTR_PLANES_ACCUM_RED int MPK_UNDEFINED Specifies the minimum number of
accumulation red bitplanes. This
attribute is ignored if the RGBA hint of
the window is not set.

MPK_WATTR_PLANES_ALPHA int 0 Specifies the minimum number of
alpha bitplanes. This attribute is
ignored if the RGBA hint of the window
is not set.

MPK_WATTR_PLANES_AUX int MPK_UNDEFINED Specifies the number of auxiliary
buffers.

MPK_WATTR_PLANES_BLUE int 1 Specifies the minimum number of blue
bitplanes. This attribute is ignored if the
RGBA hint of the window is not set.

Table 6-11 MPK Global Attributes (continued)

Variable Data Type Default Value Description

92 007-4239-004

6: Configuration File Format

MPK_WATTR_PLANES_COLOR int MPK_UNDEFINED Specifies the minimum color-index
buffer size. This attribute is ignored if
the RGBA hint of the window is set to 1.

MPK_WATTR_PLANES_DEPTH int 1 Specifies the minimum size of the depth
buffer.

MPK_WATTR_PLANES_GREEN int 1 Specifies the minimum number of
green bitplanes. This attribute is
ignored if the RGBA hint of the window
is not set.

MPK_WATTR_PLANES_LEVEL int 0 Specifies the window buffer level.

MPK_WATTR_PLANES_RED int 1 Specifies the minimum number of red
bitplanes. This attribute is ignored if the
RGBA hint of the window is not set.

MPK_WATTR_PLANES_SAMPLES int MPK_UNDEFINED Specifies the minimum number of
samples required in the multi-sample
buffer.

MPK_WATTR_PLANES_STENCIL int MPK_UNDEFINED Specifies the minimum size of the
stencil buffer.

MPK_WATTR_TRANSPARENT_ALPHA int MPK_UNDEFINED Specifies the alpha component of the
window transparent color. This
attribute is ignored if the RGBA hint of
the window is not set or if the
TRANSPARENT hint of the window is
not set.

MPK_WATTR_TRANSPARENT_BLUE int MPK_UNDEFINED Specifies the blue component of the
window transparent color. This
attribute is ignored if the RGBA hint of
the window is not set or if the
TRANSPARENT hint of the window is
not set.

Table 6-11 MPK Global Attributes (continued)

Variable Data Type Default Value Description

Specifying Global Attributes

007-4239-004 93

You can find more information about the window attributes specifications in the
glXChooseFBConfigSGIX(3G) and glXChooseVisual(3G) man pages.

MPK_WATTR_TRANSPARENT_GREEN int MPK_UNDEFINED Specifies the green component of the
window transparent color. This
attribute is ignored if the RGBA hint of
the window is not set or if the
TRANSPARENT hint of the window is
not set.

MPK_WATTR_TRANSPARENT_INDEX int MPK_UNDEFINED Specifies the window transparent
index. This attribute is ignored if the
RGBA hint of the window is set or if the
TRANSPARENT hint of the window is
not set.

MPK_WATTR_TRANSPARENT_RED int MPK_UNDEFINED Specifies the red component of the
window transparent color. This
attribute is ignored if the RGBA hint of
the window is not set or if the
TRANSPARENT hint of the window is
not set.

MPK_XINERAMA boolean 1 Controls window-intialization
performance. This variable can be set to
0 if all windows are created using
Xinerama, which is the default
behavior. Setting it to 0 improves
window-initialization performance but
causes problems when creating
Xinerama-aware windows.

Table 6-11 MPK Global Attributes (continued)

Variable Data Type Default Value Description

007-4239-004 95

Index

Numbers

2D decomposition, 34
2D tiles, 61
3D decomposition, 43

A

accumulation techniques, 44
attributes data structure, 78

B

blending, 44

C

Cave facility, 1
channel attributes, 80
channel data structures

configuration file format, 78
functional view, 14

channels (See data structures.)
compositors (See Scalable Graphics Compositor.)
compound data structures

configuration file format, 82
functional view, 32

compounds (See decomposition and compound data
structures.)

config data structures
configuration file format, 69
functional view, 12

configuration file
channel data structure, 78
comments (#), 65
compound data structure, 82
config data structure, 12, 69
delimiters, 65
field types, 67
file format, 65
global data structure, 85
pipe data structure, 70
sample, 6
window data structure, 72

cull decomposition, 31, 47
cut-ins, 61

D

data streaming, 43
data structures

attributes (channel), 78
channel, 14, 78
compound, 32, 82
config, 12, 69
functional view, 9
global, 85
hierarchy, 12
pipe, 12, 70
syntax, 66
window, 13, 72

96 007-4239-004

Index

database decomposition, 36
DB decomposition, 36
decomposition

building compounds, 32
cull decomposition, 31, 47
frame decomposition, 34

database, 36
eye, 38
head-mounted-device (HMD), 40
screen, 34

guidelines for choosing mode, 57
hardware decomposition, 61
list of schemes, 33
multilevel decomposition, 49
overview, 4, 31
pixel-based decomposition (FSAA), 44
temporal decomposition, 40

data streaming, 43
frame multiplexing, 40

destination channels, 31
DisplayHeight() function, 13, 88
DisplayWidth() function, 13, 89
DPLEX (See Video Digital Multiplexer.)
DPLEX decomposition, 40, 59

E

eye decomposition, 38

F

frame decomposition, 34
frame multiplexing, 40
framebuffer resources, 9
frusta

immersive environments, 21
orthographic, 18
perspective, 18

FSAA (See full-scene antialiasing.)
full-scene antialiasing (FSAA), 45, 61
functions

DisplayHeight(), 13, 88
DisplayWidth(), 13, 89
glXChooseFBConfigSGIX(), 93
glXChooseVisual(), 93
mpkChannelPassData(), 87
mpkChannelPutData(), 87
mpkChannelSetNearFar(), 86
mpkConfigFrameData(), 87
mpkInit(), 88
mpkSwapBuffers(), 89
mpkWindowUpdatePixelViewport(), 88, 89

G

global attributes
format, 85
MPK_CATTR_READ_COLOR_FORMAT, 86
MPK_CATTR_READ_COLOR_TYPE, 86
MPK_CATTR_READ_DEPTH_FORMAT, 87
MPK_CATTR_READ_DEPTH_TYPE, 87
MPK_CATTR_READ_STENCIL_FORMAT, 87
MPK_CATTR_READ_STENCIL_TYPE, 87
MPK_CHANNEL_PASS_CACHE_SIZE, 87
MPK_CHANNEL_PUT_CACHE_SIZE, 87
MPK_CONFIG_FRAME_CACHE_SIZE, 87
table of, 86

global data structures
configuration file format, 85
global attributes, 85

glXChooseFBConfigSGIX() function, 93
glXChooseVisual(3G) function, 93

H

hardware composition schemes, 61
head-mounted-device (HMD) decomposition, 40

007-4239-004 97

Index

HMD (See head-mounted-device (HMD)
decomposition.)

horizontal stripes, 61

I

immersive environments (See projection systems.)
InfinitePerformance graphics systems, 60
InfiniteReality graphics systems, 42

L

latency, 34
load balancing

auto load balancing, 33, 53, 83
general, 33

M

mirrored projection systems, 14
MPK_CATTR_FAR global attribute, 86
MPK_CATTR_NEAR global attribute, 86
MPK_CATTR_READ_COLOR_FORMAT global

attribute, 86
MPK_CATTR_READ_COLOR_TYPE global

attribute, 86
MPK_CATTR_READ_DEPTH_FORMAT global

attribute, 87
MPK_CATTR_READ_DEPTH_TYPE global

attribute, 87
MPK_CATTR_READ_STENCIL_FORMAT global

attribute, 87
MPK_CATTR_READ_STENCIL_TYPE global

attribute, 87
MPK_CHANNEL_PASS_CACHE_SIZE global

attribute, 87

MPK_CHANNEL_PUT_CACHE_SIZE global
attribute, 87

MPK_CONFIG_FRAME_CACHE_SIZE global
attribute, 87

MPK_DEFAULT_EYE_OFFSET global attribute, 88
MPK_DEFAULT_RUNON_POLICY global attribute,

88
MPK_PATTR_MONO_HEIGHT global attribute, 73,

88
MPK_PATTR_MONO_WIDTH global attribute, 73,

88
MPK_PATTR_STEREO_HEIGHT global attribute,

73, 88
MPK_PATTR_STEREO_OFFSET global attribute, 73,

88
MPK_PATTR_STEREO_TYPE global attribute, 73, 89
MPK_PATTR_STEREO_WIDTH global attribute, 73,

89
MPK_WATTR_HINTS_CAVEAT global attribute, 74,

89
MPK_WATTR_HINTS_DECORATION global

attribute, 75, 89
MPK_WATTR_HINTS_DIRECT global attribute, 75,

89
MPK_WATTR_HINTS_DOUBLEBUFFER global

attribute, 74, 89
MPK_WATTR_HINTS_DRAWABLE global attribute,

75, 89
MPK_WATTR_HINTS_LARGEST global attribute,

75, 90
MPK_WATTR_HINTS_PRESERVEDglobalattribute,

75, 90
MPK_WATTR_HINTS_RGBA global attribute, 74, 90
MPK_WATTR_HINTS_STEREO global attribute, 74,

90
MPK_WATTR_HINTS_THREAD global attribute, 90
MPK_WATTR_HINTS_TRANSPARENT global

attribute, 74, 90

98 007-4239-004

Index

MPK_WATTR_HINTS_VISUAL global attribute, 74,
90

MPK_WATTR_HINTS_X_RENDERABLE global
attribute, 74, 90

MPK_WATTR_HINTS_XINERAMA global attribute,
75, 91

MPK_WATTR_PLANES_ACCUM_ALPHA global
attribute, 77, 91

MPK_WATTR_PLANES_ACCUM_BLUE global
attribute, 77, 91

MPK_WATTR_PLANES_ACCUM_GREEN global
attribute, 77, 91

MPK_WATTR_PLANES_ACCUM_RED global
attribute, 77, 91

MPK_WATTR_PLANES_ALPHA global attribute,
77, 91

MPK_WATTR_PLANES_AUX global attribute, 76,
91

MPK_WATTR_PLANES_BLUE global attribute, 77,
91

MPK_WATTR_PLANES_COLOR global attribute,
76, 92

MPK_WATTR_PLANES_DEPTH global attribute,
76, 92

MPK_WATTR_PLANES_GREEN global attribute,
77, 92

MPK_WATTR_PLANES_LEVEL global attribute, 76,
92

MPK_WATTR_PLANES_RED global attribute, 77, 92
MPK_WATTR_PLANES_SAMPLES global attribute,

76, 92
MPK_WATTR_PLANES_STENCIL global attribute,

76, 92
MPK_WATTR_TRANSPARENT_ALPHA global

attribute, 77
MPK_WATTR_TRANSPARENT_BLUE global

attribute, 77, 92
MPK_WATTR_TRANSPARENT_GREEN global

attribute, 77, 93

MPK_WATTR_TRANSPARENT_INDEX global
attribute, 77

MPK_WATTR_TRANSPARENT_RED global
attribute, 77, 93

MPK_XINERAMA global attribute, 75, 93
mpkChannelPassData() function, 87
mpkChannelPutData() function, 87
mpkChannelSetNearFar() function, 86
mpkConfigFrameData() function, 87
mpkInit() function, 88
mpkWindowSwapBuffers() function, 89
mpkWindowUpdatePixelViewport() function, 88, 89
multilevel decomposition, 49
multipass rendering, 45

O

orthographic frusta, 18

P

parallel processing, 31
perspective frusta, 18
pipe data structures

configuration file format, 70
functional view, 12

pipes (See data structures.)
pixel-based decomposition (FSAA), 44
processor assignment, 69, 73, 88
product components, 5
projection model coordinates, 24
projection systems

Cave facility, 1
frusta, 21
modeling methods, 22
RESPONSIVE WORKBENCH facility, 24, 30

007-4239-004 99

Index

SGI Reality Center facility, 1, 24, 28
TAN HOLOBENCH facility, 1, 23, 27
TANORAMA POWERWALL facility, 1, 23, 26
V-Dome facility, 24, 29

R

Reality Center facility, 1, 24, 28
RESPONSIVE WORKBENCH facility, 24, 30
run-on policy, 69, 73, 88
run-time configurability, 3

S

scalability, 4
definition, 34
full-scalability feature, 42
general support, 4
hardware solution, 59
MPK implementation, 31

Scalable Graphics Compositor, 4, 44, 45, 59, 60
screen decomposition, 34
SGI Reality Center facility, 1, 24, 28
source channels, 31
split-axis method for tiling, 55
stereo

conditional use of, 52
general support, 4
specifying the mode, 15
switching on and off, 15

T

TAN HOLOBENCH facility, 1, 23, 27
TANORAMA POWERWALL facility, 1, 23, 26
temporal decomposition, 40

V

V-Dome facility, 24, 29
vertical stripes, 61
Video Digital Multiplexer (DPLEX), 4, 41, 59, 83
visualization facilities (See projection systems.)
volview application, 6

W

wall model coordinates, 23
window attributes, 74, 76, 93
window data structures

configuration file format, 72
functional view, 13

windows (See data structures.)
workload balance (See load balancing.)

X

Xinerama, 63, 75, 91, 93

	Record of Revision
	Figures
	Tables
	About This Guide
	Audience
	What This Guide Contains
	Related Publications
	Obtaining Publications
	Conventions
	Reader Comments

	Overview
	A Reality Center Facility
	What MPK Provides
	Run-Time Configurability
	Run-Time Scalability
	Integrated Support for Scalable Graphics Hardware
	Integrated Support for Stereo and Immersive Environments

	Components of MPK
	Application Structure
	A Sample Configuration File

	Framebuffer Resources
	The MPK Configuration Hierarchy
	The config Data Structure
	The pipe Data Structure
	The window Data Structure
	The channel Data Structure
	Stereo Description

	Frustum Descriptions
	Orthographic Versus Perspective Frusta
	A Frustum in Immersive Environments
	Two Modeling Methods
	Specifying Wall Model Coordinates
	Specifying Projection Model Coordinates

	Examples of Common Reality Center Settings

	Compounds
	Scalable Rendering
	Building Compounds
	Frame Decomposition
	Screen Decomposition
	Database Decomposition
	Eye Decomposition

	Temporal Decomposition
	Frame Multiplexing
	Data Streaming

	Pixel-Based Decomposition
	Full-Scene Antialiasing (FSAA) Decomposition
	FSAA Compound Examples

	Cull Decomposition
	Multilevel Decomposition

	Stereo-Selective Compounds
	Automatic Load Balancing for Compounds
	Dynamic and Static Load Balancing
	Proper Environment for Automatic Load Balancing
	How to Enable Automatic Load Balancing
	Using a Split-Axis Method for Tiling

	Choosing the Right Decomposition Model

	Using Scalable Graphics Hardware
	Using MPK with a DPLEX
	Using MPK with an SGI Scalable Graphics Compositor
	General Capabilities
	Hardware Spatial Composition Schemes
	MPK Specifications

	Configuration File Format
	File Format
	Specifying Comments (#)
	Specifying Delimiters
	Specifying MPK Data Structures
	Specifying Values within a Field

	Defining MPK Data Structures
	The config Data Structure
	The pipe Data Structure
	The window Data Structure
	The channel Data Structure
	The compound Data Structure

	Specifying Global Attributes

	Index

