IRIS Performer 2.3 Installation and Porting
Guide for Linux

007-4253-001

CONTRIBUTORS
Written by Ken Jones

Edited by Rick Thompson
Engineering contributions by Allan Schaffer

© 1999, Silicon Graphics, Inc. All Rights Reserved. The contents of this document may not be copied or duplicated in any manner, in whole or
in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED AND RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in the Rights in Data clause at FAR 52.227-14 and/or in
similar or successor clauses in the FAR, or in the DOD, DOE or NASA FAR Supplements. Unpublished rights reserved under the Copyright Laws
of the United States. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy., Mountain View, CA 94043-1351.

Silicon Graphics, IRIS, IRIX, and OpenGL are registered trademarks and IRIS Performer, SGI, and the SGI logo are trademarks of Silicon
Graphics, Inc. Caldera and OpenLinux are trademarks of Caldera, Inc. Debian is a trademark of Software in the Public Interest, Inc. Linux is a
trademark of Linus Torvalds in the U.S. and other countries. Motif is a trademark of The Open Group. Mandrake and Linux-Mandrake are
trademarks of MandrakeSoft SA and MandrakeSoft Inc. Pentium is a trademark of Intel Corporation. Red Hat is a trademark of Red Hat, Inc.
SuSE is a trademark of SuSE, Inc. XFree86 is a trademark of The XFree86 Project, Inc. All other trademarks mentioned are the property of their
respective owners.

007-4075-001

Record of Revision

Version Description

001 November 1999
Original publication.

Contents

IRIS Performer 2.3 Installation and Porting Guide for Linux 1

About This Guide. v
Related Publications .vi
Obtaining Publications .vii
Conventions v

Reader Comments. Lwiid

1. Product Overview.

IRIS Performer Components .
I'i bpf and | i bpr
I'i bpfdu
I'i bpfdb
I'i bpf ui
I'ibpfutil

Further References.

2. Installing IRIS Performer on Linux
Dependencies and Supported Platforms
Installation Instructions .

Installing the RPM Files .
Installing the DEB Files: .
Installing the TGZ Files .

NN O U U U WO NN NN ==

007-4003-002 Y

Contents

Vi

Porting IRIS Performer Applications to Linux

Header Files.

Endianness . .

Compiler Differences . e .

Features and Functionality Not Supported in This Release
General IRIS Performer Functionality .
SGI-Specific OpenGL Features or IRIX-Specific Functlonahty

Guidelines for New Applications.

.10
11
.12
.12
.13
.13

007-4003-002

About This Guide

This guide contains installation instructions for IRIS Performer 2.3 for Linux and a
description of differences between IRIS Performer on the IRIX operating system and the
Linux operating system.

IRIS Performer is the premier high-performance 3D rendering toolkit for developers of
real-time, interactive graphics applications. IRIS Performer dramatically simplifies
development of complex applications such as those for visual simulation,
simulation-based design, virtual reality, interactive entertainment, broadcast video,
CAD, and architectural walk-through while providing a high-performance portability
path across the entire SGI product line and now Linux.

Related Publications

007-4075-001

The following documents contain additional information that may be helpful:

IRIS Performer Getting Started Guide

The guide introduces the most important concepts and classes in the Performer
libraries. Use this guide to quick-start your programming using the IRIS Performer
APL

IRIS Performer Programmer’s Guide
The guide explains the techniques and effects of IRIS Performer.
IRIS Performer Class Reference Guide for C Programmers

This reference guide lists the classes in all of the IRIS Performer C programming
libraries along with the methods of each class.

IRIS Performer Class Reference Guide for C++ Programmers

This reference guide lists the classes in all of the IRIS Performer C++ programming
libraries along with the methods of each class.

vii

About This Guide

Obtaining Publications

Conventions

To obtain SGI documentation, go to the SGI Technical Publications Library:

http://techpubs. sgi.com

The following conventions are used throughout this document:

Convention

comand

variable

user i nput

Reader Comments

viii

Meaning

This fixed-space font denotes literal items such as commands, files,
routines, path names, signals, messages, and programming language
structures.

Italic typeface denotes variable entries and words or concepts being
defined.

This bold fixed-space font denotes literal items that the user enters in
interactive sessions. Output is shown in nonbold, fixed-space font.
Also, function names with parentheses following the name - for
example, gl Pol ygonMbde() - and arguments to command line options.

Brackets enclose optional portions of a command or directive line.

Ellipses indicate that a preceding element can be repeated.

If you have comments about the technical accuracy, content, or organization of this
document, please tell us. Be sure to include the title and document number of the manual

with your comments. (Online, the document number is located in the front matter of the

manual. In printed manuals, the document number can be found on the back cover.)

You can contact us in any of the following ways:

* Send e-mail to the following address:

t echpubs@gi . com
® Use the Feedback option on the Technical Publications Library World Wide Web

page:

007-4075-001

About This Guide

http://techpubs. sgi.com

* Contact your customer service representative and ask that an incident be filed in the
SGI incident tracking system.

¢ Send mail to the following address:

Technical Publications

SGI

1600 Amphitheatre Pkwy., M/S 535
Mountain View, California 94043-1351

e Send a fax to the attention of Technical Publications:

+1 650 932 0801

We value your comments and will respond to them promptly.

007-4075-001 iX

Chapter 1

Product Overview

IRIS Performer provides a powerful and extensible programming interface (with ANSI
C and C++ bindings) for creating real-time visual simulation applications, virtual sets,
performance animations, virtual reality systems, engineering visualizations, and other
interactive graphics applications. IRIS Performer is the flexible, intuitive, toolkit-based
solution for developers who want to optimize graphics performance on their
OpenGL-capable systems.

IRIS Performer 2.3 for Linux combines SGI's commitment to high-performance, scalable,
interactive rendering with the reduced cost and cross-platform availability of the Linux
operating system. This release is fully API-compatible with existing IRIX-based IRIS
Performer applications and is a full distribution, including the core run-time libraries
and file loaders, development header files, sample source code, and manual pages.

IRIS Performer Components

007-4075-001

IRIS Performer consists of two main libraries, | i bpf and | i bpr, and four associated
libraries:

e 1ibpf andlibpr

e |ibpfdu
e libpfdb
e | i bpfui
e libpfutil

For aid in application development, IRIS Performer also includes sample application
source code ranging from simple programs to illustrate particular features to the
comprehensive, GUI-driven file viewer per f | y.

1: Product Overview

|'i bpf and | i bpr

l'i bpfdu

i bpf db

i bpf ui

i bpfutil

The basis of IRIS Performer is the performance rendering library | i bpr, a low-level
library providing high-speed rendering functions based on pf GeoSet , efficient
graphics state control using pf GeoSt at e, and other application-neutral functions.

Layered above | i bpr is| i bpf, a real-time visual simulation environment
providing a high-performance database rendering system that takes best advantage
of your hardware and OpenGL.

The database utility library | i bpf du provides powerful functions for defining both
geometric and appearance attributes of three dimensional objects, encourages
sharing of state and materials, and generates efficient triangle strips from
independent polygonal input.

The database library | i bpf db uses the facilities of | i bpf du, | i bpf,and!| i bpr to
import database files in more than fifty industry-standard database formats. These
loaders also serve as a guide to developers creating new database importers.

The | i bpf ui library contains user-interface building blocks for creating
manipulators and user-interface components common to many interactive
applications. This library has both a C and C++ APIL

Completing the suite of libraries is | i bpf ut i |, the IRIS Performer utility library. It
provides a collection of convenience routines implementing tasks such as smoke
effects, multichannel option support, graphical user-interface tools, X-event
collection and management, and traversal functions.

007-4075-001

Further References

Further References

007-4075-001

General information about IRIS Performer, including a product overview, technical data,
news, white papers, training offerings, support information, and links to partner
products can be found on the IRIS Performer web site:

http://ww. sgi . com sof t war e/ per f or mer

Substantial documentation of the features and API of IRIS Performer 2.3 for Linux is
available online:

http://wwmv. sgi . com sof t war e/ performer/|inux-devel oper. htm

You can meet the IRIS Performer developers and learn a lot from fellow IRIS Performer
users on the info-performer mailing list. To join, refer to the following Web page:

http://ww. sgi.com software/ performer/mailinglist.htmnl

1: Product Overview

4 007-4075-001

Chapter 2

Installing IRIS Performer on Linux

Dependencies and Supported Platforms

IRIS Performer 2.3 for Linux has been tested on a variety of systems running Red Hat
Linux versions 6.0 and 6.1 and with several vendors’ graphics accelerators. The software
is understood to be functional with any Linux distribution (including SGI Linux, Red
Hat, Linux-Mandrake, SuSE, Caldera OpenLinux, Debian, and others) with the
following dependencies:

e glibc version 2.1.1

¢ XFree86 version 3.3.3.1
* OpenGL or equivalent
* Motif or equivalent

If you need to download any of the required software above, refer to the online IRIS
Performer 2.3 for Linux FAQ for instructions:

http://wwv. sgi . com sof t war e/ performer/linux-faq. htm #5

IRIS Performer for Linux requires the following hardware:
¢ 200MHz Pentium-class CPU or better
* 48MB RAM or greater (memory requirements vary with database size)

e 1024x768 video resolution with 64K colors or better

Note: IRIS Performer 2.3 for Linux operates on Pentium-based Linux systems only.

Installation Instructions

IRIS Performer 2.3 for Linux is available in three common packaging formats:

007-4075-001 5

2: Installing IRIS Performer on Linux

RPM

Red Hat Package Management Format for systems running Red Hat Linux version
6.00r6.1.

DEB
Debian installation format for systems running Debian Linux.
TGZ

GNU-compressed t ar format for other Linux systems.

Choose the packaging format corresponding to the distribution of Linux installed on
your system.

Installing the RPM Files
1.

Ensure that you have the software listed as dependencies already installed on your
system.

See the prior section “Dependencies and Supported Platforms” on page 5.

Download or copy the IRIS Performer 2.3 for Linux distribution into a temporary
location, such as/ usr/t np.

Note: In some cases, the installation tools for certain Linux distributions will prevent
you from loading IRIS Performer 2.3 until the dependencies are already present on
your system.

Loginasroot.

As r oot , execute this command:

rpm-Uvh /usr/tnp/perfornmer_*-2.3linux-1999112102.i 386.rpm
(Replace / usr/ t mp with the temporary location where you stored the files.)
You may now archive or delete the temporary files.

Your installation is complete.

007-4075-001

Installation Instructions

Installing the DEB Files:
1.

Installing the TGZ Files
1.

007-4075-001

Ensure that you have the software listed as dependencies already installed on your
system.

See the prior section “Dependencies and Supported Platforms” on page 5.

Download or copy the IRIS Performer 2.3 for Linux distribution into a temporary
location, such as / usr/t np.

Note: In some cases, the installation tools for certain Linux distributions will prevent
you from loading IRIS Performer 2.3 until the dependencies are already present on
your system.

Loginasroot.

Asr oot , execute the following commands in order:

dpkg --install /usr/tnp/perfornmer-eoe_2.3linux-1999112102 i 386. deb
dpkg --install /usr/tnp/performer-dev_2. 3linux-1999112102_i 386. deb
dpkg --install /usr/tnp/performer-denps_2.3linux-1999112102_i 386. deb

(Replace / usr/ t mp with the temporary location where you stored the files.)
You may now archive or delete the temporary files.

Your installation is complete.

Ensure that you have the software listed as dependencies already installed on your
system.

See the prior section “Dependencies and Supported Platforms” on page 5.

Download or copy the IRIS Performer 2.3 for Linux distribution into a temporary
location, such as / usr/ t np.

Note: In some cases, the installation tools for certain Linux distributions will prevent
you from loading IRIS Performer 2.3 until the dependencies are already present on
your system.

Loginasroot.

2: Installing IRIS Performer on Linux

4. Asroot, execute the following commands in order:
cd /
tar xzvf [usr/tnp/performer_eoe-2.3linux-1999112102.t9z
tar xzvf /usr/tnp/perforner_dev-2.3linux-1999112102.tgz
tar xzvf [usr/tnp/performer_denops-2. 3linux-1999112102.tgz

(Replace / usr/t np with the temporary location where you stored the files.)
5. You may now archive or delete the temporary files.

Your installation is complete.

8 007-4075-001

Chapter 3

Header Files

007-4075-001

Porting IRIS Performer Applications to Linux

Porting software from one system type to another is an art which requires an in-depth
understanding of the abilities and idiosyncrasies of both the source and target platform.
This section is intended for experienced programmers and experienced users of IRIS
Performer. This section describes the issues you are likely to encounter when bringing
your existing IRIX code base to Linux.

IRIS Performer 2.3 for Linux is fully API-compatible with existing IRIS Performer 2.2
applications built for IRIX. We have made an effort to make porting as easy as possible
by leaving the API mostly unchanged and adding prominent warning messages to your
program output if unsupported functionality is utilized. It is trivial to port most simple
programs and even more intricate applications like per f | y can be ported to Linux with
only a small amount of effort. However, your application may be considerably more
complex or rely on functionality that is not available in Linux or that is not supported in
this release. For most applications, this will not be the case.

The following sections categorize the porting issues in the following manner:
¢ header files

* endianness

¢ compiler differences

¢ features and functionality not supported in this release

¢ guidelines for new applications

Some of the IRIX-based C or C++ header files your program uses through #i ncl ude’s
may not be available on Linux platforms, or the structures they define may be contained
in a different header file than on IRIX. Such issues can usually be resolved by visual
inspection of the header files themselves.

3: Porting IRIS Performer Applications to Linux

Endianness

10

Using the C language version of the IRIS Performer example application per f | y as an
example, the following code was changed to remove headers:

#ifndef __Iinux__
#i ncl ude <sys/sysnp. h>
#i ncl ude <bstring. h>
#el se
#include <limts. h>
#i ncl ude <string. h>
#endi f

The prototypes for bzer o(), bcopy(), etc. are located in st ri ng. h instead. The
#def i ne for PATH_ MAXisinlimts. h.

IRIS Performer 2.3 for Linux is only available for Intel x86-based systems. The
little-endian structure of the Intel x86 architecture is the opposite of that of big-endian
MIPS-based IRIX; so, any code or data that assumes big-endian operation will fail
sometimes in an unpredictable manner.

A typical case where endianness issues are seen is when using data or retained database
files that were generated on IRIX or other big-endian systems. The database loaders
shipped with IRIS Performer 2.3 for Linux have been modified to automatically identify
such files and correct the byte ordering in the file, accordingly. If you have implemented
your own file loaders, you should make similar changes.

See the source code of the bi n or pf b loaders shipped in

/usr/share/ Performer/src/lib/libpfdb/Ilibpfbin/pfbin.cand
{usr/share/ Performer/src/lib/libpfdb/libpfpfb/pfpfb.c forasimple
and a complex example of the changes necessary. In the case of bi n format, the
assumption is made that all input files will contain big-endian data so a byte flip of
integer data is always necessary. In the case of pf b format, a more sophisticated
approach is taken that detects the endianness of the data file by comparing a header key
to its representation in the native format. If they match, no changes are necessary. If they
are in the opposite byte order, then an alternate f r ead function is used that will swap
the bytes.

007-4075-001

Compiler Differences

Endianness issues arise in many other cases, such as when defining RGB color values in
a single 32-bit variable. For example, the following code from IRIX defines an array of
eight RGB color values:

static const uint colors[MAX_SI ZE] =
{

Oxf f 080000,

0xff 190100,

oxf f 2a0100,

oxf f 3b0100,

Ooxf f4c0200,

Ooxf f 5d0240,

Oxf f 6e0280,

Oxff7f02c0O

}s

This would need to be changed in Linux (preferably also using an #i f def __| i nux__
| #endi f preprocessor directive so that the code could still be shared between the two
platforms) to the following:

static const uint colors[MAX_SI ZE] =
{

0x000008f f

0x000119f f,

0x00012af f,

0x00013bf f,

0x00024cf f,

0x40025df f,

0x80026ef f,

0xc0027fff

Compiler Differences

007-4075-001

The compilers shipped with most Linux distributions do not automatically zero
variables and pointers as they are declared. This may expose hidden bugs in your code;
so, you should take extra care to set variables before using them. As an example, var
needs to be initialized to NULL in the code below:

voi d myfunc()

static pfGoup *var;
if (lvar)

11

3: Porting IRIS Performer Applications to Linux

{
/* initialize var */
}

/* use var */

}

A good C program checker such as | i nt may help you to detect such bugs.

Features and Functionality Not Supported in This Release

Certain IRIX functionality or OpenGL functionality specific to SGI IRIX-based systems is
not available on Linux platforms and, likewise, certain functionality from IRIS Performer
2.2 on IRIX is not yet available in IRIS Performer 2.3 for Linux.

This section is an overview of the features commonly used in IRIX-based IRIS Performer
applications that are not supported in this release. Results stemming from the use of such
features is undefined.

Ignoring the settings your program has made, in many cases IRIS Performer 2.3 for Linux
will add prominent warning or informational messages to your program output if
unsupported functionality is utilized and then continue normally . However, in other
cases your program will fail or behave in an unexpected manner.

General IRIS Performer Functionality

The following are general aspects of IRIS Performer functionality not supported in this
release:

* Multiprocessing (forked CULL, DRAWX Input, DBASE, COVPUTE, | SECT, threaded
CULL, threaded LPQO NT, etc.) is not supported. Only PFMP_APPCULLDRAWmode is
available.

* Multipipe operation (pf Mul ti pi pe, pf Hyper pi pe, etc.) is not supported. Only a
single graphics pipeline can be utilized.

® Shared arenas (pf Get Shar edAr ena) and related functions are not supported.
pf Get Shar edAr ena() will always return NULL.

12 007-4075-001

Guidelines for New Applications

SGI-Specific OpenGL Features or IRIX-Specific Functionality

The following are SGl-specific OpenGL features or IRIX-specific functionality that are
not supported in the current release:

e Data pools (pf Dat aPool)

® Real-Time processor control (pf uPr ocessManager)

® Video retrace timing control (pf VCl ock)

e Clip textures (pf O i pText ur e, pf MPAl i pText ur e, pf | mageTi | e, etc.)
e Antialiasing (pf Anti al i as)

e Projected or shadowed light sources (part of pf Li ght Sour ce)

¢ Dynamic video resize (pf Vi deoChannel)

e (Calligraphic light points (pf Cal I i gr aphi c)

e SGI Video Channel Extensions (pf Vi deoChannel)

e DirectfileI/O (pfFil e)

Guidelines for New Applications

007-4075-001

IRIS Performer 2.3 for Linux only operates in a single-process model, which allows
certain poor coding practices to be utilized with regards to program structure. However,
a future release of IRIS Performer for Linux will support the multi-process functionality
of the pf Pi pe object for forked cull, draw, intersections, database paging, and
asynchronous compute functionality familiar to IRIX users. In preparation for these
future releases, here are some very important things to remember so that your new
application will work when multiprocessed. For more detailed information on proper
multiprocess-ready coding practices, refer to the IRIS Performer Programmer’s Guide.

* When allocating any data that must be shared by the APP, | SECT, DBASE, COVPUTE,
CULL, or DRAWSstages of the pipeline, such as geometry data, be certain to allocate
them from the shared arena and with functionality that uses pf Mal | oc(). Note this
example:

pf GeoSet *gs = pf NewGSet (pf Get Shar edArena());

13

3: Porting IRIS Performer Applications to Linux

® Any actual pointers to shared memory that should be visible from the different
pipeline stages should be allocated between pf I ni t () and pf Confi g(). Data
allocated to global variables initialized after pf Conf i g() will only be visible to the
process that did the allocation. This is a correct example:

SharedData *s;

pflnit();

pf Mul ti process(PFVP_DEFAULT) ;

/* allocate shared data before fork()'ing parallel processes */
s = (SharedDat a*) pfMall oc(sizeof (SharedData),

pf Get SharedArena());

pf Confi g();

¢ Only issue OpenGL commands in a pipeline initialization callback, channel draw
callback, or node draw callback. When multiprocessing, the draw callbacks will be
properly executed in the DRAWprocess, which is the only process with a valid GLX
context.

14 007-4075-001

