
SGI® OpenGL Multipipe™

User’s Guide
007-4318-008 Version 1.4.2

CONTRIBUTORS
Written by Ken Jones and Jenn Byrnes
Illustrated by Chrystie Danzer
Edited by Susan Wilkening
Production by Glen Traefald
Engineering contributions by Bill Feth, Christophe Winkler, Claude Knaus, and Alpana Kaulgud

COPYRIGHT
© 2000–2002 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No
permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND
The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA government
or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable license agreement, as
specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of the DoD FAR Supplement; or
sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy 2E, Mountain View, CA 94043-1351.

TRADEMARKS AND ATTRIBUTIONS
Silicon Graphics, SGI, the SGI logo, InfiniteReality, IRIS, IRIX, Onyx, Onyx2, and OpenGL are registered trademarks and IRIS GL,
OpenGL Performer, InfiniteReality2, Open Inventor, OpenGL Multipipe, Power Onyx, Reality Center, and SGI Reality Center are trademarks of
Silicon Graphics, Inc.

MIPS and R10000 are registered trademarks of MIPS Technologies, Inc. used under license by Silicon Graphics, Inc. Netscape is a trademark of
Netscape Communications Corporation. Xinerama, X Window System, and the X device are trademarks of The Open Group.

New Features in This Release

OpenGL Multipipe 1.4.2 contains the following changes:

• Broader application support

• Stability improvements to (beta) aware window manager
007-4318-008 iii

Record of Revision

Version Description

001 August 2000
Beta release.

002 November 2000
Updated for release 1.0 of the OpenGL Multipipe product.

003 February 2001
Updated for release 1.1 of the OpenGL Multipipe product.
New features:
- Increased overall performance
- Support for overlapping screens, as in SGI Reality Center facilities

004 May 2001
Updated for release 1.2 of the OpenGL Multipipe product.
New features:
- Transparent OpenGL Pipe Management
- Subset of multipipe-aware applications made aware of Xinerama

005 August 2001
Updated for release 1.3 of the OpenGL Multipipe product.
New features:
- Enhanced Support for Multithreaded Applications
- Enhanced tgl Script

006 November 2001
Updated for release 1.4 of the OpenGL Multipipe product.
007-4318-008 v

Record of Revision
Bugfixes:
- Enhanced GLX conformance for context manipulation
- Support for pixmaps, pbuffers, and GLXWindows
Beta features:
- Curved Screen Support
This allows you to run applications on a non-planar Reality Center in
immersive mode by adapting the 3D projections to the display layout.
- Window Manager Support for Aware Windows
All applications started in aware mode can now be under window manager
control by using the customized window manager included with this
release.

007 February 2002
Updated for release 1.4.1 of the OpenGL Multipipe product.
Broader application support
Bugfixes:
- Enhanced OpenGL conformance for applications using glCallList() within
 another display list
- Stability improvements to (beta) aware window manager

008 April 2002
Updated for release 1.4.2 of the OpenGL Multipipe product.
- Broader application support
- Stability improvements to (beta) aware window manager
vi 007-4318-008

Contents

New Features in This Release iii

Record of Revision . v

About This Guide. . xi
Related Publications . . xi
Obtaining Publications . xi
Conventions . xii
Reader Comments . . xii

1. OpenGL Multipipe Overview 1
What OpenGL Multipipe Provides 1
Components of OpenGL Multipipe 4

SGI Xinerama . . 4
Transparent OpenGL . . 4

Supported Platforms . . 5

2. Installing OpenGL Multipipe 7

3. Using OpenGL Multipipe . 9
Enabling SGI Xinerama . 9
Using Transparent OpenGL 10
Running OpenGL Single-Pipe Applications 11
Running Pure X Applications 11
Running IRIS GL Applications 11
Running Multipipe Applications 12
Using Remote Display Connections 13
Configuring Overlapping Screens 13
TGL Pipe Management . 13
Disabling SGI Xinerama . . 14
007-4318-008 vii

Contents
4. Limitations . . 15
Performance Enhancements 15
Nontransparent X Extensions 15
OpenGL Window Size Constraints 16

5. Beta Features . 17
Curved Screen Support . 17

Configuration File . . 19
Structure of the Configuration File 19
Pipe Description . . 20
Hints . 22

X versus OpenGL Inconsistency 24
Window Manager Support for Aware Applications 25

Starting omp4Dwm . . 25
Exiting omp4Dwm . . 26
Defining omp4Dwm as the Default Window Manager 26

6. Troubleshooting . 27
SGI Xinerama Is Not Enabled 28
Using Transparent OpenGL without SGI Xinerama 28
Transparent OpenGL Does Not Support IRIS GL Applications 28
Transparent OpenGL Does Not Support Processors Prior to MIPS R10000 29
Graphics Display Correctly on Some Screens Only. 29

You Failed to Use the tgl Script. 29
A User-Defined Script Invokes an IRIS GL Application 29
TGL Pipe Management Is Used 30

Mouse Behavior Offset by a Screen 30
Problems Running glxinfo 30
Multipipe-Aware Applications Fail to Receive Events on Screen 0 31
Nothing Displays or the Graphic Stalls or Hangs 31
X Applications Are Not Behaving Correctly or Fail to Start 31

X Application Uses Unsupported X Extension 31
SGI Xinerama Client or Server Uses Nonstandard Protocol 32
wts Does Not Display the Main Window 32
viii 007-4318-008

Contents
Simultaneously Running Multiple X Servers with and without SGI Xinerama Enabled . . . 33
Application Graphics Not Synchronized across Screens 33
Tiled Background Image . . 34
Mouse Disappears in Overlap Region 34
Multiple OpenGL Applications Run Slowly 34
Problems Running Multithreaded Applications 35
Problems with Curved Screens 35
Problems with Aware Window Management 35
007-4318-008 ix

About This Guide

This guide describes the OpenGL Multipipe product, which allows you to run
single-pipe applications in a multipipe environment without modification. You can
seamlessly move single-pipe application windows across the single logical display that
OpenGL Multipipe creates from multiple pipes. Both multipipe applications and
single-pipe applications run concurrently.

Related Publications

The following SGI documents contain additional information that may be helpful:

• InfiniteReality Video Format Combiner User's Guide

• POWER Onyx and Onyx Rackmount Owner’s Guide

• IRIX Admin: Software Installation and Licensing

These books might also be helpful:

• Neider, Jackie, Tom Davis, and Mason Woo, OpenGL Programming Guide. Reading,
Mass.: Addison-Wesley Publishing Company, Inc., 1993. A comprehensive guide to
learning OpenGL.

• Nye, Adrian, Volume One: Xlib Programming Manual. Sebastopol, California: O’Reilly
& Associates, Inc., 1991.

Obtaining Publications

To obtain SGI documentation, go to the SGI Technical Publications Library:

http://techpubs.sgi.com
007-4318-008 xi

About This Guide
Conventions

The following conventions are used throughout this document:

Reader Comments

If you have comments about the technical accuracy, content, or organization of this
document, please tell us. Be sure to include the title and document number of the manual
with your comments. (Online, the document number is located in the front matter of the
manual. In printed manuals, the document number is located at the bottom of each
page.)

You can contact us in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library World Wide Web
page:

http://techpubs.sgi.com

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, programming language structures, and
URLs.

variable Italic typeface denotes variable entries and words or
concepts being defined.

user input This bold, fixed-space font denotes literal items that
the user enters in interactive sessions. Output is
shown in nonbold, fixed-space font.

interface This font denotes the names of graphical user interface
(GUI) elements such as windows, screens, dialog
boxes, and menus. Functions are also denoted in bold
with following parentheses.

manpage(x) Man page section identifiers appear in parentheses
after man page names.
xii 007-4318-008

About This Guide
• Contact your customer service representative and ask that an incident be filed in the
SGI incident tracking system.

• Send mail to the following address:

Technical Publications
SGI
1600 Amphitheatre Pkwy., M/S 535
Mountain View, California 94043-1351

• Send a fax to the attention of “Technical Publications” at +1 650 932 0801.

SGI values your comments and will respond to them promptly.
007-4318-008 xiii

Chapter 1

1. OpenGL Multipipe Overview

This overview of OpenGL Multipipe consists of the following sections:

• “What OpenGL Multipipe Provides”

• “Components of OpenGL Multipipe”

• “Supported Platforms”

What OpenGL Multipipe Provides

SGI has always been focused on high-end graphics solutions. The Onyx family of
scalable visualization supercomputers allows you to associate multiple graphics pipes
on one single-system-image machine in order to reach new visualization performances.
These multipipe systems are commonly used to drive expanded visualization systems
such as SGI Reality Center facilities. OpenGL Multipipe extends the use of these
powerful supercomputers to a broad spectrum of graphics applications without the
requirement to modify the applications.

Many existing graphics applications—like Netscape or applications based on Open
Inventor, for example—are constrained to run on one single pipe. On these single-pipe
applications, you can choose the pipe on which to open the application’s windows, but
the windows cannot be dragged from one pipe to another. The main reason is that the
graphics pipes are separate logical units and are handled by an X server as different,
unconnected screens. This means that the X server does not provide any functionality to
group multiple screens into a single logical display. A second reason is that you can
directly connect OpenGL to a specified graphics pipe and bypass the X protocol layer.

In the past, displaying an application on multiple screens required you to explicitly write
the application for that purpose. You had to use tools like the OpenGL Performer or
OpenGL Multipipe SDK libraries to help you create these multipipe applications. These
tools allow you to explicitly open windows on different screens and to draw into them
using OpenGL. However, this solution lacks consistency. In fact, all of the windows on
007-4318-008 1

1: OpenGL Multipipe Overview
the different pipes are independent; hence, moving or iconifying one window on one
screen will not handle the other windows accordingly.

OpenGL Multipipe has been designed to overcome these difficulties. The goal is to group
all pipes managed by the X server in order to create a consistent, single virtual screen as
shown in Figure 1-1. This means that the application clients are not aware of the
underlying hardware configuration. Rather, they only know about a single display and
behave accordingly.

Figure 1-1 OpenGL Multipipe with Non-Overlapping Screens

In contrast to Figure 1-1, if you have screens that overlap each other (like in an SGI
Reality Center wall display with edge blending), OpenGL Multipipe allows you to
2 007-4318-008

What OpenGL Multipipe Provides
specify the amount of this overlap. Figure 1-2 shows the image blended on overlapping
screens.

Figure 1-2 OpenGL Multipipe with Overlapping Screens
007-4318-008 3

1: OpenGL Multipipe Overview
Components of OpenGL Multipipe

OpenGL Multipipe has the following two components:

• An X server with the SGI Xinerama extension. This component enables the
windows to be dragged across and to overlap different pipes. This layer handles the
X part of the connection between the client application and the X server.

• Transparent OpenGL. This layer traps the OpenGL calls in order to dispatch them to
the underlying graphics pipes. This enables OpenGL applications to run across the
graphics pipes. You must enable the SGI Xinerama extension of the X server to use
Transparent OpenGL.

SGI Xinerama

SGI Xinerama is an enhanced version of the Xinerama extension of the X server that
works properly on only pure X applications—that is, applications that do not use other
graphics libraries to draw into their windows. When used alone, SGI Xinerama enables
pure X applications to run transparently over multiple pipes. This means that window
applications that are based on the X protocol and that use X extensions can be dragged
from one pipe to another and even span across multiple pipes. The applications behave
as if they are running on a single, large virtual pipe.

The X server hides the real screens from the clients connecting to it. It dispatches to all
pipes the X requests from the clients and provides the clients with the information of only
one large virtual display.

Transparent OpenGL

An OpenGL application can open a direct connection to a graphics pipe. In this case, the
application is bypassing the X protocol in order to draw in the windows through this
direct connection. SGI Xinerama, which accounts only for the X protocol, is unable to
handle this case. Transparent OpenGL has been designed to handle the OpenGL side of
any application. It is a layer that traps the OpenGL calls and dispatches them to all the
pipes handled by the X server with SGI Xinerama enabled.

Using Transparent OpenGL allows you to run any single-pipe OpenGL application on
top of SGI Xinerama transparently. The windows of such an application can be freely
dragged across the pipes and overlap multiple pipes. The application will not even be
4 007-4318-008

Supported Platforms
aware that the virtual screen is in fact composed of multiple underlying pipes. The
application still correctly displays its graphics with no need of recompilation. It will no
longer be constrained to one specific hardware graphics pipe.

Note: OpenGL Multipipe does not require you to modify or recompile your application.

Supported Platforms

OpenGL Multipipe 1.4.2 requires the following:

• IRIX 6.5.15 or later operating system

• One of the following servers:

– Silicon Graphics Onyx

– Silicon Graphics Onyx2

– SGI Onyx 3000

• MIPS R10000 or later processor
007-4318-008 5

Chapter 2

2. Installing OpenGL Multipipe

This chapter lists information supplemental to the guide IRIX Admin: Software Installation
and Licensing. The information listed here is product-specific; use it with the installation
guide to install this product.

The following are the prerequisites for installing OpenGL Multipipe on your system:

• Hardware: an Onyx, Onyx2, or Onyx 3000 system with MIPS R10000 or later
processors

• Software:

– IRIX 6.5.15 or later

– C++ Standard Execution Environment (c++_eoe)

To install OpenGL Multipipe, follow these steps:

1. Go to the following URL:

http://www.sgi.com/software/multipipe/

2. Click on the Download button and follow the instructions to download OpenGL
Multipipe.

This installer includes the OpenGL Multipipe libraries and tools described in
Table 2-1.

3. Use inst or swmgr to install OpenGL Multipipe.

The libraries are provided in three versions:

Old-32 32-bit MIPS-2. Located in the /usr/lib directory. Provided for
compatibility with older programs.

New-32 32-bit. Located in the /usr/lib32 directory. Usable only on IRIX
6.2 and later operating system releases. New-32 operates at
increased efficiency in many situations.

New-64 64-bit. Located in the /usr/lib64 directory.
007-4318-008 7

2: Installing OpenGL Multipipe
This step installs the file subsystems shown in Table 2-1.

You may check the release notes on our website, cited in step 1, for any critical updated
information between releases.

Table 2-1 File Subsystems for OpenGL Multipipe 1.4.2

Subsystem Description

multipipe_eoe.sw.base Contains the actual OpenGL Multipipe
libraries as well as the script for starting
OpenGL applications in OpenGL Multipipe
mode.

multipipe_eoe.sw64.base Contains the OpenGL Multipipe 64-bit
library.

multipipe_eoe.man.relnotes Contains the release notes, which can be
accessed through one of the following
commands:

grelnotes multipipe_eoe

or

relnotes multipipe_eoe

multipipe_eoe.man.pages Contains the man pages.

multipipe_eoe.man.doc Contains documentation located in the
/usr/share/multipipe/doc/user
directory.

multipipe_eoe.sw.wm Contains the customized window manager
for aware window support.

multipipe_eoe.man.wm Contains documentation related to the
customized window manager.
8 007-4318-008

Chapter 3

3. Using OpenGL Multipipe

As described in Chapter 1, OpenGL Multipipe consists of two components: SGI
Xinerama and Transparent OpenGL. This chapter describes how to effectively use these
components with your graphics applications. The following sections describe the
pertinent tasks:

• “Enabling SGI Xinerama”

• “Using Transparent OpenGL”

• “Running OpenGL Single-Pipe Applications”

• “Running Pure X Applications”

• “Running IRIS GL Applications”

• “Running Multipipe Applications”

• “Using Remote Display Connections”

• “Configuring Overlapping Screens”

• “TGL Pipe Management”

• “Disabling SGI Xinerama”

Enabling SGI Xinerama

To enable SGI Xinerama and verify that it is enabled, do the following:

1. Enter the chkconfig command.

If you are enabling SGI Xinerama on your system for the first time, enter the
following as root in an IRIX shell:

chkconfig -f xinerama on

Otherwise, enter the following to enable SGI Xinerama:

chkconfig xinerama on
007-4318-008 9

3: Using OpenGL Multipipe
2. Restart the X server.

Enter the following as root in an IRIX shell:

(/usr/gfx/stopgfx; /usr/gfx/startgfx) &

The X server has to be restarted to account for the SGI Xinerama extension.

3. Verify that SGI Xinerama is enabled.

Enter the following two commands in an IRIX shell:

$ xdpyinfo -display :0.0 | grep SGI-XINERAMA

If SGI-XINERAMA appears as the result of these commands, SGI Xinerama is
enabled.

Using Transparent OpenGL

To run any single-pipe OpenGL application, OpenGL Multipipe provides Transparent
OpenGL (TGL). To use this layer, the application has to be started with the tgl script as
follows:

$ tgl app_name app_args

The following is an example:

$ tgl ivview /usr/share/data/models/Banana.iv

The tgl script forces the OpenGL application to use the intermediate TGL layer instead
of OpenGL. This enables the OpenGL applications to behave correctly when their
windows are moved across the pipes in SGI Xinerama mode. The applications are then
considered to be started in non-aware mode, since they are not aware of the underlying
graphics hardware structure.

Technically, the tgl script sets the _RLD_LIST environment variable and related ones
(_RLDN32_LIST and _RLD64_LIST) to use the libtGL.so library of matching format
prior to using the libGL.so library.

For more information on using TGL, see the tgl(1) man page or use the –help
command-line option of tgl as follows:

$ tgl –help
10 007-4318-008

Running OpenGL Single-Pipe Applications
Running OpenGL Single-Pipe Applications

OpenGL single-pipe applications are the targeted applications for OpenGL Multipipe.
Simply enable SGI Xinerama and invoke the application using tgl. Any OpenGL
application started with SGI Xinerama enabled and without the tgl script will not
behave correctly. In that case, OpenGL drawings will only show up in the part of the
window overlapping screen 0. On the other screens, the application will display a
random image that corresponds to the current content of the framebuffer on that pipe.

Running Pure X Applications

As noted in Chapter 1, “OpenGL Multipipe Overview”, SGI Xinerama enables pure X
applications to run transparently over multiple pipes. To run pure X applications, simply
enable SGI Xinerama before invoking them and they will run correctly. You do not need
TGL. Thus, do not use the tgl script for these applications.

Running IRIS GL Applications

There are applications that use the IRIS GL graphics library instead of that of OpenGL.
OpenGL Multipipe does not support IRIS GL. To check whether your current application
is attempting to use IRIS GL, enter the following:

$ elfdump -Dl app_name | grep libgl.so

The following is an example:

$ elfdump -Dl /usr/sbin/showcase | grep libgl.so
[11] Jun 6 22:31:51 1996 0xe9155925 ----- libgl.so sgi1.0

The tgl script does this check and prevents OpenGL Multipipe from executing IRIS GL
applications.

However, IRIS GL applications can still be run without using TGL (that is, by not using
the tgl script). In this case, they will work correctly only on screen 0. On the other
screens, 3D drawings will be corrupted.
007-4318-008 11

3: Using OpenGL Multipipe
Running Multipipe Applications

Multipipe applications are written to explicitly take advantage of systems having
multiple graphics pipes. They know about the underlying graphics hardware and
explicitly address the different graphics pipes. Typically, OpenGL multipipe applications
are written using OpenGL Performer or OpenGL Multipipe SDK. Do not try to run such
applications transparently and hide the hardware configuration of the system from them;
that is, do not use TGL with them. These applications run in aware mode because they are
aware of the different graphics pipes handled by the X server.

You can still run multipipe applications concurrently with single-pipe applications
under OpenGL Multipipe. You do this by using the –aware command-line option of the
tgl script, as in the following example:

$ tgl –aware perfly

The use of the XINERAMA_AWARE environment variable has been deprecated.

Even though you can run multipipe applications on an X server with SGI Xinerama, it
introduces a conceptual contradiction. On one side, the SGI Xinerama extension allows
for any window of this application to be dragged from the screen where it originally
appeared (say screen 0) to any other screen. On the other side, all OpenGL commands
issued by this application for that window are issued for screen 0 only. Thus, moving a
given window to another pipe will corrupt the visual results of the OpenGL commands.

Multipipe applications started in aware mode can now be under window manager
control with omp4Dwm, a specialized version of 4Dwm, the SGI standard widow manager.
Window manager omp4Dwm is provided with this release of OpenGL Multipipe. See
“Window Manager Support for Aware Applications” in Chapter 5 for more information
about omp4Dwm.

With other window managers, applications started in aware mode will bypass the X
window manager. This means that their windows cannot be moved, resized, iconified, or
otherwise managed. This includes the regular decoration provided by the window
manager. The windows will not have this decoration.
12 007-4318-008

Using Remote Display Connections
Using Remote Display Connections

Remote display connections allow you to run an application on a given machine (client
machine) and to display the windows of the application on another machine (display
server).

If the display server has SGI Xinerama enabled, the X applications started in non-aware
mode will run correctly (that is, with the same limitations they would have if started on
the display server). In order to start X applications in aware mode, the X libraries on the
client machines must be synchronized (that is, the clients must run IRIX 6.5.15 or later)
with the X server on the display server.

For remote display under OpenGL Multipipe, OpenGL applications can run only if
OpenGL Multipipe is installed on the client machine. Install the same version of
OpenGL Multipipe on both the client machine and on the display server.

Configuring Overlapping Screens

Reality Center environments with multiple projectors and multiple graphics pipes often
have overlapping screens. To allow seamless alignment of these screens, projectors
typically have edge blending capability.

You control the amount of overlapping by specifying the xoffset and yoffset
arguments (in units of pixels) of the -hw parameters in the file
/var/X11/xdm/Xservers. See the Xsgi(1) and xdm(1) man pages for a detailed
description.

TGL Pipe Management

By default, TGL renders OpenGL applications using all underlying physical screens.
However, it is also possible to specify the subset of the screens to use. You specify this
subset with the –pipes command-line option of the tgl script, as in the following
example:

$ tgl –pipes pipe1,pipe2,...,pipen ivview

The use of the TGL_PIPES environment variable has been deprecated.
007-4318-008 13

3: Using OpenGL Multipipe
This feature allows you to minimize the amount of context swapping on the pipes by
constraining the applications to different pipes. This also implies that an application will
display a random image on every pipe that is not part of the given subset.

In the following example, the application Ideas in Motion runs on the physical screens
mapped to pipes 0 and 1 while the Open Inventor viewer ivview uses pipe 2 only:

$ tgl –pipes 0,1 /usr/demo/GLUT/ideas
$ tgl –pipes 2 ivview Banana.iv

Disabling SGI Xinerama

In order to disable the SGI Xinerama extension of the X server, simply set thechkconfig
xinerama flag to off and restart the X server. To do so, issue the following commands
as root:

chkconfig xinerama off
(/usr/gfx/stopgfx; /usr/gfx/startgfx) &
14 007-4318-008

Chapter 4

4. Limitations

OpenGL Mulitpipe allows single-pipe applications to run in a multipipe environment
without any modification and without the need to recompile the application. It also
allows single-pipe and multipipe applications to run concurrently on the same X server.
However, OpenGL Multipipe has limitations and the following sections describe them:

• “Performance Enhancements”

• “Nontransparent X Extensions”

• “OpenGL Window Size Constraints”

For release-dependent limitations, refer to the OpenGL Multipipe release notes.

Performance Enhancements

The major thrust of OpenGL Multipipe is not performance enhancement, as described in
the following items:

• OpenGL Multipipe does not replace performance-aimed multipipe applications—
such as those based on OpenGL Performer or OpenGL Multipipe SDK—or any
other custom solution.

• Using OpenGL Multipipe results in some minimal overhead (performance loss) for
traditional single-pipe applications. This is due to the inherent cost of distributing
the X and OpenGL commands among the graphics pipes.

Nontransparent X Extensions

Some X extensions are inherently nontransparent. For example, Xvc permits control of
video operations on the base graphics hardware and XReadDisplay allows a client to
read device-independent image information from the screen. Applications using these X
extensions, likeoglsnoop, will not function properly. The behavior of these applications
007-4318-008 15

4: Limitations
started in non-aware mode is undefined, though they will generally behave correctly on
screen 0.

OpenGL Window Size Constraints

The hardware graphics pipes have a hardware-dependent limit on the size of the region
into which an OpenGL application renders. For InfiniteReality2 graphics subsystems, it
depends on the number of raster managers and on the selected pixel depth. Typically, it
is limited to a 3840 x 3840 pixel area. OpenGL Multipipe does not allow you to extend
this hardware limit. The consequence is that an OpenGL application is constrained to
draw into a limited area. Enlarging an OpenGL window beyond this size limit results in
undefined behavior. An OpenGL window may be placed anywhere within the the total
area managed by the X server. Only the size of the region into which OpenGL renders is
restricted.
16 007-4318-008

Chapter 5

5. Beta Features

This chapter describes the following beta features:

• “Curved Screen Support”

• “Window Manager Support for Aware Applications”

Curved Screen Support

The goal of OpenGL Multipipe is to hide the underlying graphics configuration to the
client applications and to pretend to the applications that there is only a single virtual
screen. This allows you to run single-pipe applications on a Reality Center with a planar
display layout (an SGI Reality Center wall display).

Support for curved screens in Reality Center environments introduces a conceptual
contradiction: single-pipe applications, which are developed to support only a single
planar screen, are displayed in an environment where the projection of the 3D scene is
different for each underlying screen, as shown in Figure 5-1. There is no exact solution to
handle these cases, where the 2D X Window System part is simply wrapped on the
curved screen while the 3D content is projected according to the screen on which it will
appear.
007-4318-008 17

5: Beta Features
Figure 5-1 Fake Virtual Screen Projected on a Curved Screen Display Environment

A configuration file mechanism has been added in OpenGL Multipipe. It allows you to
specify the display geometry in order to adapt the behavior of Transparent OpenGL to
the Reality Center facility. Some hints can also be given to customize OpenGL Multipipe.
The following subsection, “Configuration File”, describes how you specify the display
geometry and the hints.

Fake flat
single virtual
screen

Real display
layout

Screen 0 Screen 1 Screen 2

Toolchest

Desktop

Internet

System

0

0

1

1
2

2

Projectors
18 007-4318-008

Curved Screen Support
Configuration File

You need to configure OpenGL Multipipe to account for the display geometry of a
particular Reality Center facility. This is done by describing the display layout in a
configuration file.

OpenGL Multipipe searches for the configuration file in the following precedence order:

• User-specified file

Specified by the -config argument of the tgl script. The following is an example:

$ tgl -config ~/cf/rc1.cf ivview model.iv

• .tglrc in the current directory

• .tglrc in the home directory

The following are configuration-related arguments of the tgl script:

Argument Description

-config Allows you to specify an alternate configuration file.

-config_print Outputs the parsed configuration.

-config_debug Provides some hints about possible configuration file parsing
errors.

Structure of the Configuration File

A configuation file consists of the description of one or more graphics pipes and
optionally customization hints for the behavior of OpenGL Multipipe. Example 5-1
illustrates the structure of the file.

Example 5-1 Configuration File Structure

pipe {
name pipe-no
projection-desc

}

pipe {
name pipe-no
projection-desc

}

007-4318-008 19

5: Beta Features
hints {
hint-1
hint-2
...
hint-n

}

Pipe Description

You describe a graphics pipe or, more specifically, the geometry of the screen on which
the pipe displays using the following construct in the configuration file:

pipe {
name pipe-no
projection-desc

}

The keyword name has the argument pipe-no, which corresponds to the pipe number, as
managed by the X server. In the following example, the pipe :0.1 is specified:

pipe {
name 1
...

}

The argument projection-desc is the description of the pipe layout. Two possibilities exist,
the projection description and the wall description.

The projection description uses polar (cylindrical or spherical) coordinates to describe
the layout. You use the following construct in the configuration file:

projection {
origin (x, y, z)
distance d
fov (hfov,vfov)
hpr (head, pitch, roll)

}

20 007-4318-008

Curved Screen Support
The following are arguments you must supply:

Argument Description

(x, y, z) The origin of the projection—that is, the apex of the projection
pyramid. This 3D coordinate value is usually (0, 0, 0) and
corresponds to the center of the projection system.

d The distance from the origin to the screen.

(hfov,vfov) The field of view defining the horizontal and vertical fields of
view, given in degrees.

(head, pitch, roll) The head, pitch, and roll, given in degrees. These are used to define
the horizontal and vertical offsets of the projection (the roll is
usually not used).

The following is an example of a complete projection description of pipe 1 (the # symbol
precedes comments):

pipe {
name 1

projection description
projection {

origin (0, 0, 0)
distance 3
fov (54, 47)
hpr (48, 0, 0)

}
}

The wall description specifies the screen layout as a rectangle in 3D. The rectangle is
defined by three vertices and the projection center is the origin of the coordinate system.
The following is an example of a complete wall description of pipe 2:

pipe {
name 2

wall description
wall {

bottom_left (-2, -1, -3)
bottom_right (2, -1, -3)
top_left (-2, 2, -3)

}
}

007-4318-008 21

5: Beta Features
Both description approaches are equivalent. Any projection description can be expressed
in an equivalent wall description and vice versa. Trigonometric rules in 3D allow you to
compute one description from the other.

Hints

You can specify some optional hints to customize the behavior of OpenGL Multipipe.
The possible hints are the following:

Hint Description

mode Defines the projection strategy. So far, the only defined modes
are standard, which does not account for any projection
correction, and immersive, which discards the projection
definition given by the application and replaces it with a
description extracted from the display layout. The default
value is standard.

ref_pipe Defines the reference pipe, which is needed in various cases.
The reference pipe is used to return the current projection
matrix because this matrix ends up being different for each
pipe in a curved screen environment.

scale_near Defines the scaling factor to compute the effective near plane
value for every pipe. The effective near plane value is the one
given by the application scaled by scale_near. The default
value is 1.

scale_far Allows you to adapt the position of the far clipping plane to
the application’s need, as shown in Figure 5-2. A value of 0 or
no keeps the same far distance for all the screens. For other
values, the far clipping plane is pushed back at the
intersection between the axis of the projection pyramid and
the clipping plane of the ref pipe (that is, moved from A to A’).
The actual scaling is performed on the resulting clipping
plane. For example, a value of 2 will move the far plane at
twice the distance of A’. The default value is no.

track_modelview Indicates the number of stack levels for which the
GL_MODELVIEW matrix is cached. A value of 0 means no
caching at all. The cached matrix is the matrix as known by the
application. The actual matrices on each pipe can be different,
since the modelview matrix is adapted to the display layout.
The default value is 0.
22 007-4318-008

Curved Screen Support
Since matrix caching has a performance impact, you should
avoid its use. Some applications use the matrix push and pop
mechanism in order to reset the matrix to an initial default
value instead of calling glLoadIdentity(), for example. In that
case, the matrix caching allows OpenGL Multipipe to
initialize the modelview matrices correctly on each pipe.

Note: Except for the mode hint, the hints are enabled only in immersive mode.

Figure 5-2 Far Plane Scaling Rule (Top View)

The following lines show an example of a hints specification.

hints {
mode immersive
ref_pipe 1
scale_near .8
scale_far 2
track_modelview 2

}

Ref. pipe

Far plane

Scaled "far plane"

App’s "far plane"

A

A’

Object
007-4318-008 23

5: Beta Features
X versus OpenGL Inconsistency

Transparent support for a curved screen comes with an inherent inconsistency between
the 2D Window system and the 3D OpenGL graphics.

The 2D X position is wrapped on the display layout, as shown in Figure 5-3. The figure
represents a curved screen Reality Center facility. The screen shown as a dark arc is
driven by three projectors. Any application running transparently in this environment
knows only about the single virtual screen, represented by the dark dotted line. Any
drawing generated by the X Window System will be displayed on the curved screen (that
is, arc [LA] for the screen 0) instead of the virtual screen (that is, segment [L’A] for screen
0). The relation between a virtual 2D pixel M’ on the virtual screen and its real projection
M on the curved screen can be approximated by a rotation around the screen edge A. This
means that if the user clicks on M, the application thinks that the click occurred on M’.

Figure 5-3 2D X Versus 3D OpenGL Inconsistency (Top View)

In order to give the user the feeling of being immersed in the 3D scene, the objects must
be projected differently according to the screen on which they appear. For example, a 3D

projection
pyramid
for screen 2

perspective
projection

direction

M"

Observer

Screen 2

Screen 1

Screen 0

M’

M

L’

L

BA
24 007-4318-008

Window Manager Support for Aware Applications
object that is meant to be drawn at M’ by the application will be displayed on M” on the
real screen in order to have a correct immersion perception (M” is the projection of M’,
according to the observer, on the real screen 0).

This inconsistency between 2D wrapping and 3D projection can be observed when the
user wants to pick a 3D object. The user clicks on the object displayed atM, the application
is told the click occurred on M’ and selects the 3D object, which is displayed at M’. This
object is then drawn at M” in order to have the correct perception of immersion.

Window Manager Support for Aware Applications

To allow window manager support for applications started in aware mode, omp4Dwm, a
specialized version of SGI’s standard window manager (4Dwm), has been included in this
release.

This release of OpenGL Multipipe includes a beta version of omp4Dwm, which means that
it is still evolving. For more information about bugs, see the Troubleshooting section in
the Beta Features chapter of the release notes.

Starting omp4Dwm

To start omp4Dwm , perform the following steps:

1. Exit or kill any window manager that is currently managing the display.

If you are using 4Dwm (the default window manager on IRIX), enter the following in
an IRIX shell:

$ tellwm quit

Otherwise, exit your window manager without logging out. One way to do this is to
find the process number for your window manager and kill it manually, as the
following illustrates:

$ ps -e | grep my_window_manager
23878 ? 0:42 my_window_manager

$ kill 23878

Some window managers may not allow you to exit the window manager and
remain logged in. If this is the case, you will need to start omp4Dwm from a
.xsession file. See “Defining omp4Dwm as the Default Window Manager” for
more information.
007-4318-008 25

5: Beta Features
2. Start the specialized window manager by entering the following:

$ start_ompwm

The start_ompwm script starts omp4Dwm after first checking if the display server
supports SGI Xinerama and other features necessary for multipipe-aware window
management. If the display server is determined to be compatible, the script starts
omp4Dwmwith aware window management support enabled. If the display server is
not compatible, the script will exit. The script can be made to start omp4Dwm in
native 4Dwm mode (with aware window management disabled) as a contingency.

For more information on using the start_ompwm script, see the start_ompwm(1)
man page or use the -help command-line option of the script as follows:

$ start_ompwm -help

Note: Starting an application in aware mode and then starting the window manager will
result in the application’s windows being unmanaged. Window manager omp4Dwm
must be started prior to running an application in aware mode in order for its windows
to be managed.

Exiting omp4Dwm

To exit omp4Dwm, simply log out and log back in. Your default window manager will
again be managing your display.

You may also exit omp4Dwm by typing the following:

$ tellwm quit

Then start your original window manager.

Defining omp4Dwm as the Default Window Manager

An alternate way to run the specialized omp4Dwm window manager is to invoke the
start_ompwm script in your $HOME/.xsession file. An example .xsession file is
available in /usr/share/multipipe/X11/etc/.xsession. Refer to the man pages
for X(1) and xdm(1) for more information about .xsession files.
26 007-4318-008

Chapter 6

6. Troubleshooting

This chapter describes some problems you might encounter and what to do to solve
them. For additional considerations, see the OpenGL Multipipe release notes. Enter the
following command or refer to the relnotes (1) man page:

$ grelnotes multipipe_eoe

This chapter documents the following problems:

• “SGI Xinerama Is Not Enabled”

• “Using Transparent OpenGL without SGI Xinerama”

• “Transparent OpenGL Does Not Support IRIS GL Applications”

• “Transparent OpenGL Does Not Support Processors Prior to MIPS R10000”

• “Graphics Display Correctly on Some Screens Only”

• “Mouse Behavior Offset by a Screen”

• “Problems Running glxinfo”

• “Multipipe-Aware Applications Fail to Receive Events on Screen 0”

• “Nothing Displays or the Graphic Stalls or Hangs”

• “X Applications Are Not Behaving Correctly or Fail to Start”

• “Simultaneously Running Multiple X Servers with and without SGI Xinerama
Enabled”

• “Application Graphics Not Synchronized across Screens”

• “Tiled Background Image”

• “Mouse Disappears in Overlap Region”

• “Multiple OpenGL Applications Run Slowly”

• “Problems Running Multithreaded Applications”
007-4318-008 27

6: Troubleshooting
• “Problems with Curved Screens”

• “Problems with Aware Window Management”

SGI Xinerama Is Not Enabled

On systems having only one graphics pipe or in the case where the X server is directed
to handle only one pipe (see theXsgi(1) man page), enabling SGI Xinerama has no effect.
In these cases, SGI Xinerama will be disabled, regardless of the value of the xinerama
flag supplied on the chkconfig command.

Using Transparent OpenGL without SGI Xinerama

The Transparent OpenGL layer needs to run on an X server with SGI Xinerama enabled.
If SGI Xinerama is not enabled on the X server used for display and you invoke an
application using tgl, the application will exit. The following example shell session
shows the result of trying to run the application atlantis on server blaster, which
does not have SGI Xinerama enabled:

$ setenv DISPLAY blaster:0.0
$ tgl /usr/demos/General_Demos/atlantis/atlantis
TGL fatal error: display ‘blaster:0.0’ doesn’t support SGI-XINERAMA
extension

In this case, simply run the application without the tgl script.

Transparent OpenGL Does Not Support IRIS GL Applications

Transparent OpenGL does not support IRIS GL applications. In some cases (when the
application started with the tgl script is an executable and not a script), tgl can
determine if the application is based on IRIS GL. In such a case, a warning message is
generated and the application will not be started, as shown in the following example:

$ tgl showcase
tgl warning: showcase is an IRIS GL application
TGL Library does not support IRIS GL applications
28 007-4318-008

Transparent OpenGL Does Not Support Processors Prior to MIPS R10000
Transparent OpenGL Does Not Support Processors Prior to MIPS R10000

Transparent OpenGL requires that you use a MIPS R10000 processor or later. The
following example shows how you check for the processor type:

$ hinv -t cpu
CPU: MIPS R12000 Processor Chip Revision: 2.3

Graphics Display Correctly on Some Screens Only

If a graphics window displays correctly on some screens only, there are three likely
scenarios, which are described in the following three subsections.

You Failed to Use the tgl Script

If a graphics window displays correctly on one screen only (usually screen 0), ensure that
you start the application with the tgl script. If the same behavior persists when you
invoke the application using the tgl script, ensure the application is not an IRIS GL
application. See the next subsection for more information.

A User-Defined Script Invokes an IRIS GL Application

The tgl script cannot detect IRIS GL applications if it starts another script that in turn
starts the target application. The following shell session illustrates this case:

$ cd /usr/demos/General_Demos/atlantis
$ tgl ./atlantis
tgl warning: ./atlantis is an IRIS GL application
TGL Library does not support IRIS GL applications
$ tgl ./RUN

In the preceding session, RUN is a script that invokes Atlantis. RUN does start the
application, but it will be displayed correctly on one screen only.

If you start an application by using a user-defined script, ensure that the application is
not an IRIS GL application. The following session shows you how to generate the desired
test string:
007-4318-008 29

6: Troubleshooting
$ elfdump -Dl /usr/sbin/clock | grep libgl.so
[1] Oct 20 20:39:53 2000 0xe5383809 ----- libgl.so sgi1.0

TGL Pipe Management Is Used

If you started an application with the tgl script using the TGL Pipe Management feature
(that is, by running tgl –pipes p1,p2... or by specifying the deprecated TGL_PIPES
environment variable), it is possible that a window is opened on a screen that does not
belong to the subset you specified. To see the window rendered correctly, move the
application’s window to a screen you specified.

Mouse Behavior Offset by a Screen

If logical pipe 0 is not in the top left screen position, mouse events (such as clicks) are
offset by one screen. Logical pipe 0 can be any physical pipe; it is the physical pipe
specified by the first -hw argument in the X server configuration file,
/var/X11/xdm/Xservers.

To work around this problem, list the graphics pipe of the monitor that is in the top left
position first in the list of -hw arguments in the Xservers file. See the Xsgi(1) and
xdm(1) man pages for more information about the -hw options and the Xservers file.

Problems Running glxinfo

An application like glxinfo, which is designed to collect information about the
graphics hardware pipes individually, is inherently multipipe-aware. Thus, you need to
start it in aware mode:

$ tgl –aware glxinfo

This allows an application not having a graphical user interface (GUI) to run as if SGI
Xinerama were disabled.
30 007-4318-008

Multipipe-Aware Applications Fail to Receive Events on Screen 0
Multipipe-Aware Applications Fail to Receive Events on Screen 0

Windows of applications that are run in aware mode are not handled by ordinary
window managers. This can cause some problems on screen 0 for keyboard events.

Moving away all the windows that are overlapping the aware window (even if these
windows are displayed behind the aware window) will set the correct focus. The aware
window will then receive the keyboard events.

Alternately, using the specialized window manager included in this release of OpenGL
Multipipe will also fix the focus problem.

Nothing Displays or the Graphic Stalls or Hangs

If you start an OpenGL application with tgl and it does not display anything or the
graphic stalls or even hangs, it might indicate a coding problem in the application. This
can occur for OpenGL applications that are not calling glFlush(), glFinish(), or
glXSwapBuffers() at the end of each frame. This causes Transparent OpenGL to draw
only when the internal buffer overflows. It can happen that the buffer never fills in the
case of an event-driven application—that is, the application draws one frame and waits
for an event before drawing the next frame. There is no real workaround since
Transparent OpenGL is conformant with the OpenGL specification.

X Applications Are Not Behaving Correctly or Fail to Start

If X applications are not behaving correctly or fail to start, there are several cases to
consider and the following subsections describe them.

X Application Uses Unsupported X Extension

Verify that the application is not using unsupported X extensions. There is unfortunately
no way to have the exact list of extensions that are used by an application. The following
examples using the nm command give only a hint about the extensions used. Most
extensions can be detected by searching for occurrences of the string extension or for
the name of a particular extension. The xdpyinfo command lists the names of
extensions supported by the X server.
007-4318-008 31

6: Troubleshooting
Indicating the use of the DOUBLE-BUFFER extension (DBE), the following example
shows that command gmemusage calls XdbeQueryExtension:

nm /usr/sbin/gmemusage | grep -i extension
[116] |2143299120| 436|FUNC |GLOB |DEFAULT |UNDEF| XdbeQueryExtension

The following example indicates that oglsnoop is based on the XReadDisplay
extension. This extension is not supported by SGI Xinerama.

nm /usr/sbin/oglsnoop | grep -i ReadDisplay
[149] | 268453536| 932|FUNC |GLOB |DEFAULT |UNDEF| XReadDisplay

For a list of extensions supported by SGI Xinerama, see the Xinerama(3X11) man page.

SGI Xinerama Client or Server Uses Nonstandard Protocol

The SGI Xinerama versions in IRIX 6.5.11 and earlier use a protocol that is incompatible
with versions of SGI Xinerama released in IRIX 6.5.12 and later. If an application links
with X client libraries (dynamically at run time or statically at compile time) that came
with IRIX 6.5.11 and earlier and then attempts to make SGI Xinerama calls to an X server
from IRIX 6.5.12 or later, the behavior will be undefined. Similarly, linking with X client
libraries from IRIX 6.5.12 or later and connecting to an X server from IRIX 6.5.11 or earlier
will also yield undefined behavior.

Only applications that call XineramaQueryVersion will be able to reliably detect and
report server and client cross-version incompatibilities.

The workaround for this protocol incompatibility is to use a client library and server that
both support the same SGI Xinerama version—that is, use a client library and X server
from the same IRIX version.

See the Xinerama(3X11) and XineramaQueryVersion(3X11) man pages for more
details.

wts Does Not Display the Main Window

If the wts application does not display the main window, it probably indicates that the
Window Size property is not properly set. When the property Window Size is set to
Use Default, the main window of wts does not appear. Setting Window Size to a
fixed size solves this problem.
32 007-4318-008

Simultaneously Running Multiple X Servers with and without SGI Xinerama Enabled
Simultaneously Running Multiple X Servers with and without SGI
Xinerama Enabled

To run X servers with SGI Xinerama enabled simultaneously with regular X servers (that
is, with SGI Xinerama disabled) on the same machine, add +xinerama or –xinerama
to the existing arguments in the file /var/X11/xdm/Xservers. This allows you to
override the chkconfig xinerama flag. Refer to the Xsgi(1) and xdm(1) man pages for
more information.

Application Graphics Not Synchronized across Screens

OpenGL applications may encounter synchronization problems if they are displayed
across multiple screens. This occurs because buffer swapping of windows on different
pipes must be synchronized explicitly by using the swap barrier. You must wire the
genlock and Swap Ready cables. For more information, refer to the POWER Onyx and
Onyx Rackmount Owner’s Guide and to the genlock(7) man page. In order to force the
swap barrier for an OpenGL application, you must use the –sync command-line option
of the tgl script, as shown in the following example:

$ tgl –sync /usr/demos/General_Demos/atlantis/atlantis

The use of the TGL_SWAP_BARRIERS environment variable has been deprecated.

InfiniteReality supports only one Swap Ready line. If you start several applications
simultaneously with this environment variable set, the following warning results:

TGL warning: swap barrier is already used or not available
Cannot synchronize windows across multiple screens

The applications will not benefit from this synchronization mechanism.

Another way to decrease the effect of asynchronized swapping is to place the window so
that every pipe has the same graphics load. The pipes will then execute the buffer
swapping more or less at the same time.
007-4318-008 33

6: Troubleshooting
Tiled Background Image

Setting a large image as the background image will result in having a tile image
displayed across the screens. You can overcome this problem using 4Dwm features (refer
to the 4Dwm(1X) man page):

• Set the following line in the $HOME/.Sgiresources file:

4Dwm*SG_useBackgrounds: True

• Create the background image in the xmp file format. The fewer colors used in that
image, the less impact it will have on the colormaps used by other applications.

• Copy the /usr/lib/X11/system.backgrounds file to $HOME/.backgrounds.

• Edit $HOME/.backgrounds and, using the syntax of
/usr/lib/X11/system.backgrounds as a template, add a new setting for your
image.

• Select your background from the GUI background program.

Mouse Disappears in Overlap Region

Environments such as SGI Reality Center facilities with overlapping projection systems
typically use projectors with edge blending capability. The mouse will fade away when
dragged towards the edge of a screen.

In X, a mouse belongs to one screen of the X server at a time. Therefore, it is not possible
to draw the mouse multiple times (on different screens) in the overlap region. The result
is that the mouse will fade away when entering an overlap region.

Multiple OpenGL Applications Run Slowly

Depending on the OpenGL applications, running several OpenGL applications
simultaneously can slow down rendering speed significantly. A workaround is to try to
limit the extensions of the application windows to separate subsets of the physical
screens. See “TGL Pipe Management” in Chapter 3 for details.
34 007-4318-008

Problems Running Multithreaded Applications
Problems Running Multithreaded Applications

If the application supports the use of POSIX threads (pthreads), use the pthread threading
model with TGL.

To force the use of the pthread threading model, use the -pthread option when starting
the application:

$ tgl -pthread app_name

Problems with Curved Screens

For a description of problems related to curved screens, see the Troubleshooting section
in the Beta Features chapter of the release notes.

Problems with Aware Window Management

For a description of problems related to aware window management, see the
Troubleshooting section in the Beta Features chapter of the release notes.
007-4318-008 35

	RevTitle - Record of Revision
	PrefaceTitle - About This Guide
	Heading1 - Related Publications
	Heading1 - Obtaining Publications
	Heading1 - Conventions
	Heading1 - Reader Comments

	ChapTitle - OpenGL Multipipe Overview
	Heading1 - What OpenGL Multipipe Provides
	Heading1 - Components of OpenGL Multipipe
	Heading2 - SGI Xinerama
	Heading2 - Transparent OpenGL

	Heading1 - Supported Platforms

	ChapTitle - Installing OpenGL Multipipe
	ChapTitle - Using OpenGL Multipipe
	Heading1 - Enabling SGI Xinerama
	Heading1 - Using Transparent OpenGL
	Heading1 - Running OpenGL Single-Pipe Applications
	Heading1 - Running Pure X Applications
	Heading1 - Running IRIS GL Applications
	Heading1 - Running Multipipe Applications
	Heading1 - Using Remote Display Connections
	Heading1 - Configuring Overlapping Screens
	Heading1 - TGL Pipe Management
	Heading1 - Disabling SGI Xinerama

	ChapTitle - Limitations
	Heading1 - Performance Enhancements
	Heading1 - Nontransparent X Extensions
	Heading1 - OpenGL Window Size Constraints

	ChapTitle - Beta Features
	Heading1 - Curved Screen Support
	Heading2 - Configuration File
	Heading3 - Structure of the Configuration File
	Heading3 - Pipe Description
	Heading3 - Hints

	Heading2 - X versus OpenGL Inconsistency

	Heading1 - Window Manager Support for Aware Applications
	Heading2 - Starting omp4Dwm
	Heading2 - Exiting omp4Dwm
	Heading2 - Defining omp4Dwm as the Default Window Manager

	ChapTitle - Troubleshooting
	Heading1 - SGI Xinerama Is Not Enabled
	Heading1 - Using Transparent OpenGL without SGI Xinerama
	Heading1 - Transparent OpenGL Does Not Support IRIS GL Applications
	Heading1 - Transparent OpenGL Does Not Support Processors Prior to MIPS R10000
	Heading1 - Graphics Display Correctly on Some Screens Only
	Heading2 - You Failed to Use the tgl Script
	Heading2 - A User-Defined Script Invokes an IRIS GL Application
	Heading2 - TGL Pipe Management Is Used

	Heading1 - Mouse Behavior Offset by a Screen
	Heading1 - Problems Running glxinfo
	Heading1 - Multipipe-Aware Applications Fail to Receive Events on Screen 0
	Heading1 - Nothing Displays or the Graphic Stalls or Hangs
	Heading1 - X Applications Are Not Behaving Correctly or Fail to Start
	Heading2 - X Application Uses Unsupported X Extension
	Heading2 - SGI Xinerama Client or Server Uses Nonstandard Protocol
	Heading2 - wts Does Not Display the Main Window

	Heading1 - Simultaneously Running Multiple X Servers with and without SGI Xinerama Enabled
	Heading1 - Application Graphics Not Synchronized across Screens
	Heading1 - Tiled Background Image
	Heading1 - Mouse Disappears in Overlap Region
	Heading1 - Multiple OpenGL Applications Run Slowly
	Heading1 - Problems Running Multithreaded Applications
	Heading1 - Problems with Curved Screens
	Heading1 - Problems with Aware Window Management

